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Abs tract

The unbiased decision rule, based on the conventional F-statistic,

is proposed for the choice of the most adequate model from a given set

of nested alternative regression models. Mallows' (1973) idea is

adapted to measure the adequacy of each model. The biases of several

customarily used criteria for the choice of regression models, includ-

ing the AIC, Mallows' C and R, are discussed. The critical point for

the unbiased decision is numerically computed and tabulated. Also, the

approximate formula for the unbiased critical point is derived.
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1. Introduction

There has been a vast amount of literature dealing with procedures

of selecting the most adequate regression model from a given set of

alternatives. This fact illustrates that the choice of the most appropriate

subset of regressors is one of the most difficult as well as bothersome

problems in practical regression analysis. To compare several alter-

native models, the most frequently used as well as most primitive

criterion may be the residual sum of squares

-1 ^ - 2
(1.1) (L = Y' [I - X (X'X) -^ X'] Y = Z (Y. - Y )^

i=l ^

2
for a regression model: E(Y) = X3, V(Y) = a I, or an equivalent

expression, the multiple correlation coefficient

Q .

(1.2) R = [1 E ]l/2

° — 2
I (Y, - Y)^

where Y is an n-dimensional vector random variable; X is an n x p matrix

2
of fixed constants; a is a scalar unknown; 6 is a p x 1 vector of

unknowns; I is an n x n identity matrix; Y!s are components of Y; Y

is the mean of Y's; Y's are interpolated values. These criteria have

an apparent shortcoming in that they do not weigh the costs of

successive increases in the parameter space against the improvements

in model fit. To overcome this, we usually make an adjustment such as

(1.3) R^ = 1 - (n - 1) (1 - R^)/(n - p).

R is commonly called the multiple correlation coefficient adjusted for

the degrees of freedom. As a descriptive measure of the goodness of
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fit, R has a sound intuitive appeal. So far, however, no persuasive

reasons have been given to justify the use of R. That is, it is not

clear why R should be preferred to any other possible adjustments to R.

Mallows (1973) proposed another criterion called the C statistic

(1.4) C = Q + 2p u^

where the first term on the right hand side is the residual sum of

"2
squares, p is the number of regressors, and w is an appropriately

chosen unbiased estimate for the true variance of the Y's. In fact

"2
it is an open question how to obtain u , but it should be noted that

"2
oj is independent of p and common factor in C to all alternative

2
models. The true distribution of Y is assiimed to be N (y,u I). The

C statistic has been derived as an unbiased estimate for the mean
P

squared error

(1.5) W = E ;| Y° - Yl 1^ = Z E (Y° - Y.)^
p '

' - -'
' ^^^ 1 i'

of the least squares prediction Y = X (X'X)""'" X'Y for Y_ which is

2
distributed as N (p,tj I) independently of Y.

Based on a different and more profound reasoning, Akaike (1974)

suggested a procedure for model identification, which is called the

Akaike Information Criterion (AIC) . It is defined as minus twice the

maximized likelihood function plus twice the number of parameters in

the likelihood function. This assumes that the likelihood function is

well defined by each of the alternative models. Given a set

of alternative models, we choose the one that gives the smallest AIC.

The decision rule based on the AIC is termed the minimum AIC (MAIC)
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procedure. This procedure has an advantage of being applicable to any

statistical problem as long as each of the alternative models well

defines the likelihood function. If we apply the MAIC procedure to a

linear normal regression model, we arrive at the asymptotically equiv-

alent decision rule as Mallows' C .

P

One of the present authors (Sawa (1976)) has recently developed

another information criterion for the choice of regression models.

The criterion is called the BIG and has been derived, following Akaike

(1973), from the Kullback-Leibler measure of the mean information for

discrimination between two alternative models. However, the difference

between the AIC and the BIG is quite pronounced for the sample size

typically dealt with in practical data analysis. Primarily it stems

from the difference existing between Akaike 's and Sawa's views on the

true model.—

The purpose of the present paper is to propose another criterion

for the choice of regression models. The proposed decision rule is

called the unbiased decision rule; unbiased in the sense that it leads

us to the correct decision with probability higher than .5.

If the alternative models are nested, all the decision rules

described above, are reduced to a decision based on a magnitude of

the observed F statistic. Therefore, they can be compared in

terms of implied critical points for the preliminary F test of the null

hypothesis that a subset of coefficients be zero. Some readers may feel

that it is useless to study the preliminary test any more because the

resultant estimator has been proved to be inadmissible. To avoid this
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criticism In advance, we point out that what we are proposing is not an

estimation procedure but a procedure for model identification. More

precisely, in the present context we aim to develop a procedure for

identifying the most adequate model from a given set of alternatives

rather than estimating unknov/n parameters involved in a given true

model

.

2. Unbiased Critical Point

We begin by postulating a linear normal regression model

(2.1) Y '^^ N (X0, 0^1)

for an n-dimensional vector random variable Y, the true distribution

of which is

(2.2) Y 'V. N (y.ai^I),

where X is an n x p full rank matrix of known constants; 8 is a p x 1

vector of unknown parameters; I is an n x n identity matrix; y is an

2 2
n X 1 vector of unknowns; oi and a are unknown positive constants.

The regression model (2.1; assumes that the mean vector u belongs

to a linear subspace spanned by the columns of X. The least squares

estimate 3 = (X'X) X'Y has a normal distribution with mean P_ =

(X'X)"-'-X'y and variance o^'^ {X' X)~^ .-

Let us consider two nested alternative regression models

(2.3) M^: Y '^. U (X^g^^, aj I)

(2.4) M2: Y -v N (X^Bj^ + X2S2. 02 I)

where X^^ and X™ are, respectively, n x p and n x q matrices. Without

loss of generality we may assume that X, and X„ are orthogonal. The
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regression coefficients $^ and Sj are

(2.5) $3^
= (XlX^)"-"- X[u, &2 " (^2^2^'"'' ^2^'

Mallows' statistic for each of the models is given by

(2.6) Cp = Qp + 2 p Jl^

for M. and

for M^, where Q and Q. are the residual svims of squares for M, and M«i

"o 2respectively; ui^ is a certain unbiased estimate of ui . Without addi-

2
tional information, a reasonable estimate of to would be the unbiased

2
tGtimate /(n-p-q) of a„. Then Mallows' decision rule,

based on whether C < C , or C > C
, , is equivalent to a decision

p p+q P P+q'

based on whether F is less than or greater than two, where

(2.8) F = ^ P /.^^
^

%+q/("-P-l)

is the conventionally used F statistic to test the null-hypothesis that

M, is true. Hence Itellows' C decision rule is equivalent to a pre-

liminary F test with a constant critical point 2 irrespective of the

degrees of freedom.

If the simpler model M, is "true", F has a central F distribution

with q and n-p-q degrees of freedom; if the more complex model M„ is

true, it has a singly noncentral F distribution, with noncentrallty

parameter.

(2.9) X^ = u'X2 (X^X^)"-^ X^ y/o)^
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aad q and n-p-q degrees of freedom. If the true distribution of Y is

2
N (y,(i) I) and hence M, and M^ are both incorrect, F has a doubly non-

central F distribution with q and n-p-q d.f. and noncentrality parameters

X^ and

(2.10) X2 = m' [I - X (X'X)"-"- X'] p/u^

where X = (X^, X2).

The MAIC procedure leads us to a preliminary F test with a varying

critical point: that is, we choose M, if

(2.11) F < [exp (^) - 1] -(Bz£zai
— n q

and choose M- otherwise. The AIC critical point, given in (2.11), varies

with n, p, and q. It approaches 2 from below as n becomes large.

Sawa's (1977) MBIC procedure is somewhat more complicated. It

implies the following decision rule: choose M, if

(2.12) n log W - 2 (p+2) W + 2 W^ + 2 (p+q+1) <

or vice versa , where

(2.13) W = -£±3. = [1 + _3_ F]-l
Q n-p-q

Although the BIC critical point cannot be explicitly written as a func-

tion of n, p, and q, (2.12) is equivalent to the inequality that F is

less than some constant depending on n, p, and q. Asymptotically, the

3/
critical point approaches 2, and hence the BIC is equivalent to the AIC.—

It is also straightforward to see that the decision based on R

is also equivalent to the preliminary F test with a constant critical

point equalling one.
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In what follows we confine our discussion to a class of decision

rules based on the F statistic: choose M^ if F ^ c and choose M„ if

F > c, where c is nonnegative and varies with n, p, and q.

Following Mallows (1973) , we choose

(2.14) Wp = E IIYq - Y
I

[2

as a risk function of the model M , where Y» is an n-dimensional random

vector, independent of Y but distributed with the same mean y and

2 " -1
variance-covariance matrix w I as Y, and Y = X (X'X) X'Y. By

virtue of the independence assumed between Y and Y_, we have

(2.15) Wp = y' [I - X^(Xp^)"-'-X^] M + in + p) J

= [X^ + A^ + (n + p)] u)^

Similarly, the risk function of the model M^ is

(2.16) W ^ = y' !l - X (X'X)'-'" X'] U + (n+p+q) lo^

= [\^+ (n+p+q)] 0)^

"2 2
If CO is an unbiased estimate of w independent of Y, then we can

unbiasedly estimate W and W , by C and C
, , because E (Q )

=
p P+q ^ P P+q P

2 2
iX^ + A^ + n - p) to and E (Q ^) = (A^ + n - p - q) u .

Based on the Mallows' risk, we say that the simpler model M^ is

better than M„ if W < W , and vice versa. That is, we choose M, if
2 p p+q 1

(2.17) ^1 1 q

and choose M„ if
2 >

(2.18) ^3^ > q

Now we are in a position to define the unbiasedness of a decision

rule.
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Definition : A decision rule based on the F statistic with critical

point c is said to be unbiased if

(2.19) Pr (F < c
I

A^ < q) >^ .5

and

(2.20) Pr (F > c
I

X > q) >^ .5.

If either of the above conditions is not fulfilled, the decision rule

is said to be biased.

Noting that X^ js the noncentrality parameter of the numerator of
JL

F and also that the F distribution is continuous, we realize that the

above conditions are equivalent to a single equality

(2.21) Pr (F < c [
X^ = q) = .5

which iEplies thi-t the probability of selecting M^ (or M„) is .5 when

ii, auJ K„ ar^ indifferent.

Ine unbi-ued critical point c satisfying (2.21) depends on the

noncentrality parameter .\„ of the denominator as well as the degrees

of freiidcm. Tt^e parameter X„ measures the discrepancy of M„ from the

ZTixB di3? ribjtj.on. Since there is no way of estimating X„, we confine

ourselves to the case when X^ = 0, i.e., when the more complicated model

M„ is true , 'xne unbiased critical points are computed and tabulated in

Table 2.1 for various values of q and n p-q. To solve the equation (2.21)

we mad? use ol the algorithm developed by Mudholkar, et^ ^. (1976) for

Gram-Charlier series approximation of the noncentral F distribution. The

approximation is accurate enough for the present purpose. To compare

the result with the conventional preliminary F test with a fixed signif-

icance level ve computed the probability of F exceeding the unbiased

critical point unJer the null-hypothesis that M, is true. The results

are tabulated in Table 2.2.
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The following points are observed from these tables. First, the

unbiased critical point Increases with q and decreases with the degrees

of freedom. The MAIC and Mallows' procedures are biased toward the

simpler model; i.e., they are favorable to the model with less parameters

unless we have the extremely small degrees of freedom associated with

the large number of additional parameters. Secondly, the implied

significance level varies over a fairly wide range. This may imply that

a decision rule with fixed level of significance may not be recommended

as far as unbiasedness is concerned. Thirdly, the decision rule based

on R is nearly unbiased when q = 1. Therefore, a decision rule based

on R has a desirable property of unbiasedness if the decision is con-

cerned with one additional variable.

3. Approximate Formula

In this section we will derive the approximate formula for the

unbiased critical point. Our decision has been based on the statistic

F defined by (2.8), the distribution of which is the doubly noncentral

F with q and v (= n-p-q) degrees of freedom and noncentrality parameters

2
X, and X2. If we apply Patnaik's (1949) central x approximation to

2
each of the noncentral x variates, we may approximate

1 + P2 Xj^ X^

(3.1) 3-^ F, where p^ = — and p^ = —

by a central F distribution with degrees of freedom

q(l + 2p ) v(l + 2p,)
(3.2) V, = i-, v^ = '^

1 2 ' ? 2
(1 + p^)^ ^ (1 + p^)^

Now we have an approximate equality
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(3.3) P(F < c) . PIU . i%^'' - ."' (^)"' A'" < 01 .

2 2 2
where Xi arid Xo are independent x variate p with v.. and v„ degrees of

2
freedom, respectively. The cubic root of the x variate is approximately

normally distributed, and hence we approximate the distribution of U by

the normal distribution. The approximate mean of U is given by

(3.4) p^ . (1 - ^) - c^/^ (^)'/' (1 -
9^^)

-2 -2
where the error of approximation is of order 0(v .. ) and 0(\) ). Since

the median of the normal distribution is identical with the mean, the

right hand side of (3.3) is approximately equal to 0.5 when y = 0,

I.e.

,

(3.5)

1 - 2/(9v^)]3

1 - l/(6q) \2

^ "^ ^2 h - 2 (1 + 2p2)/[9v (1 + pp^lj

The value of c given by (3.5) is monotone decreasing in p™, and when

Pj ~ it is equal to

^ ^ h - 2/(9v)^'

which may be regarded as the approximate formula for the unbiased

critical points tabulated in Table 2.1.

4. Conclusion

Various decision rules have been developed and used for the model

selection in practical regression analysis. Some of them are based on

intuitive reasoning, while others on sophisticated theoretical frameworks.
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In any case, as long as alternative models are nested, all the decision

rules, considered in this paper, reduce to a decision based on the

magnitude of the conventionally used F statistic. The difference among

them is, therefore, described in terms of "implied" critical points.

To compare various decision rules we have introduced a certain

criterion of optimality, which is termed the unbiasedness of a decision

rule. The critical point for the F test that leads us to the unbiased

decision has been calculated for various combinations of the degrees of

freedom and the number of variables. It turned out that the decision

rules which are customarily used are more or less biased; that is, the

M^IC and Mallows' rules are biased toward the simpler model, whereas

the minimum R rule is rather biased toward the more complex model.
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Footnotes

1. See Sawa (1976).

2. In Sawa (1976) 3(> Is denoted by the pseudo-true value of B.

3. For a small sample typically dealt with in practical data analysis,

the difference between the AIC and BIC critical points Is far from

negligible.
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