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Abstract  

One of the most important functions of linguistic 
tools is to apply grammars to texts in order to find 
matching sequences. These grammars are often 
represented by finite-state automata. The 
expressions described in these grammars are 
usually lexical units, but some systems offer the 
possibility of dealing with references to sets of 
words which require the use of electronic 
dictionaries (ex. <N> for nouns). We present here 
a method for applying such grammars rapidly, 
which is based on the tokenization of both 
grammars and texts and on a representation of 
these tokens by integers. 

Introduction 

Linguistic parsers can be divided into two 
categories: those which use approximate 
descriptions, like statistical parsers (Collins 1999, 
Plaehn 1999), and those that use exact 
descriptions. Exact parsers often process texts 
that have been tagged with Part-Of-Speech 
taggers (Luk 2001, Megyesi 2002). The tag sets 
are usually small. However, the behaviour of 
parsers is not well known in the context of large 
grammars, because few people have actually tried 
to use such grammars. Grammars inevitably grow 
considerably when we want to refine 
large-coverage descriptions. In fact, the 
complexity of the grammar grows with the size of 
the vocabulary, because of local constraints that 
can only be dealt with by systematic descriptions. 
These descriptions require the use of finer tags 
than those used by POS taggers; tags such as 
human nouns, collective nouns, etc. The 

experiments that have been carried out (Carvalho 
2001, Constant 2000 & 2002, Dister 2000, 
Domingues 2001, Fairon 2000, Gross 1997, 
1998) show that these grammars must refer both 
to lexical units (single words) and to sets of words, 
that are usually handled by dictionary lookup. If 
grammars are fine enough, the difference between 
advanced pattern matching and syntactic parsing 
becomes superficial: the fact that the grammars 
describe phrases or sentences is a matter of scale. 
 
Linguistic pattern matching is a particular case of 
pattern matching, because the base unit is the 
word rather than the character. It is common to 
consider texts as sequences of such tokens, for 
example in indexation processes, but most 
matching algorithms do not tokenize their input in 
a previous, separate pass. We propose here an 
original way of parsing, which is based on the 
coded representation of tokenized corpora.  
 
The idea is to represent lexical units by integers, 
which are easier to manipulate than strings. This 
representation of tokens by integers has been used 
in computer science for a long time, but it has not 
been fully exploited in the field of linguistic 
parsers. This technique is well-known in 
compilation: the lexical parser analyses sequences 
of characters and produces sequences of symbols 
that are used as input to the syntactic parser (Aho 
1986). However, methods differ, because the 
grammars and vocabularies are much smaller 
with compilation. In addition, users of linguistic 
grammars often modify them for their 
experiments. 
 
We will show that the integerised technique can 



yet be applied very successfully in the domain of 
linguistic pattern matching.  
 
Our parsing method has 3 stages: 
• tokenizing the text; 
• optimizing the grammar for the text; 
• applying the grammar. 
 
First, we will present our tokenization rules. Then 
we will describe the transformations to be made 
on the grammar, taking into account the possible 
use of lexical resources. Finally, we will discuss 
operational complexities, focusing on some 
linguistic aspects in order to show that this 
method is well adapted to linguistic pattern 
matching.  

1 Tokenizing texts 

During the first stage, we tokenize the text into 
lexical units. To do this, we must take a formal 
definition of a lexical unit 1. For languages with 
well delimited words, we can consider that a 
lexical unit can be: 
• a sequence of letters2; 
• a non-alphabetic character. 
 
If the tokenization is case sensitive, we can then 
associate a unique integer with each token. If we 
replace every token by its number, the text can be 
represented by the token list and the sequence of 
integers. Note that this process need only be 
executed once, even if we want to apply several 
grammars to the text. The process is proportional 
to the length of the text. 
 
Results show that the two files produced occupy 
approximately the same disk space as the original 

                                                 
1  The following definition is not available for the 
languages that use particular spacing rules. In many 
Asian languages such as Thai, words are not 
necessarily separated by spaces or punctuation marks, 
and so the following tokenization rule would segment 
lexical units wrongly. 
2 We assume that the notion of letter is well defined, 
according to an alphabet file or a standard like 
Unicode. 

text file. As our goal is to speed up the parsing, we 
always give preference to time optimization over 
space complexity as long as there is no explosion. 

2 Optimizing the grammar 

The second stage consists in optimizing the 
grammar according to the text. We will assume 
that the grammar is represented by a finite-state 
automaton, whose transition tags are lexical units 
that conform to the tokenization rule used during 
the first stage. 

2.1 Replacing lexical units by integers 

First, we replace every transition tagged by a 
lexical unit by the exhaustive list of the tokens 
that it can match.  
 
One lexical unit can match more than one token in 
the text because of case variation. In fact, it is very 
natural to look by default for all the case variants 
of a word when you search it. For example, if you 
look for the word doctor, you may want to match 
both sequences doctor and Doctor. For some 
applications, the variations allowed can be more 
permissive: for example, web search engines 
usually do not take accents into account. Thus, we 
can assume that some variation will typically be 
allowed. 
 
A particular lexical unit in the grammar may not 
be matched in the text. By optimizing the 
grammar according to the text, we can remove 
such transitions. In fact, if we construct for each 
lexical unit in the grammar the exhaustive list of 
the lexical units of the text that can match, we can 
find out which lexical units can match nothing by 
checking if the list is empty. In that case, we can 
remove from the grammar every transition tagged 
by this lexical unit. 
 
Finally, for all remaining transitions, we replace 
the original lexical unit by the list of the tokens it 
can match. The tokens are represented by their 
associated integers that have been computed 
during the text tokenization.  



2.2 References to word classes 

2.2.1 Word classes  
Some linguistic tools (not only parsers) allow the 
use of lexical resources (Silberztein 1993, 
Bernard 2001, Jassem 1997). In general, the word 
classes in these resources are referenced in 
grammars through patterns. These patterns can be 
more or less precise : 
• any word that is in the dictionary; 
• any word of a particular grammatical 

category (any verb, any noun, ...); 
• any inflected form of a word. 
 
This list is not exhaustive, and we can imagine 
many kinds of patterns for many kinds of 
applications and dictionaries. The important point 
is that these patterns always define word classes.  
 
These classes can be more or less important, 
depending on the pattern precision. The pattern 
“any word in the dictionary” recognizes many 
more words than “any noun in the feminine 
singular”, which itself recognizes many more 
words than “any inflected form of the verb to eat”. 
 
Checking on the fly if a word in the text verifies a 
pattern or not has two disadvantages. First, it 
involves accessing the dictionary, which means 
reloading it when needed or keeping it in memory. 
The other point is that it makes the grammar non 
deterministic, because several patterns could 
recognize the same word. 
 
It would also cost considerable space to replace 
systematically the pattern of a transition by the list 
of all the matching tokens in the case of a 
low-precision pattern like “any word in the 
dictionary”. We have thus devised the following 
intermediate solution. 
 
2.2.2 A class-size based solution 
We propose to test the pattern precision by 
counting the matching tokens. If this number is 
lower than a certain limit, we can replace the 
pattern by the token list. Otherwise, we give a 
number to this pattern and we record the fact that 

every token in the list is recognized by this pattern. 
This can be done very efficiently by using a bit 
array for each token, setting to 1 the nth bit if the 
token verifies the nth pattern. As tokens are 
represented by integers, checking if a token 
matches a pattern can be done by simple access to 
a two-dimensional bit array, indexed by the token 
number and the pattern number. 
 
As such an array is often very sparse, it can be 
greatly compressed, for example in terms of 
chained lists. 
 
2.2.3 Compound words 
This solution concerns only single tokens, but we 
can extend it to handle compound word resources. 
First, we check for each compound word all the 
patterns that can match it. Then we construct the 
list of all the compound words that are matched 
by one pattern at least; for example: 
• all clear: matched as adjective and noun 
• globe-trotter: matched as noun 
• government-owned: matched as adjective 
• governmen-issue: matched as noun 
 
From this list, we can build a tree of which the 
nodes are the tokens that compose the compound 
words. On each terminal node of the tree, we store 
the numbers of the patterns that match the 
corresponding compound word. The tree 
constructed from the previous example list is 
shown on figure 1 (the numbers 1 and 2 that 
appear inside round brackets represent 
respectively the patterns “adjective” and “noun”). 
 
We add to this tree all the case variants of each 
token. Then we replace the tokens by their 
number and we arrive at a data structure ready for 
speedy comparison with the text. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

Figure 1: example of token tree 
 
Now we can test whether the pattern that has the 
number i matches one or more compound words 
in the text by exploring simultaneously the token 
tree and the sequence of integers in the text 
representation. If we reach a final node in the tree, 
we just have to check if i is in the list of the 
patterns that match the corresponding compound 
word. 

2.3 Sorting integer lists 

Once we have made all these replacements, there 
are two kinds of transitions : integer lists 
representing tokens, and patterns representing 
word classes. To explore a state of the grammar 
automaton, we must test both pattern transitions 
and token transitions. 
 
Because of the non-determinism that they 
introduce, we must test every pattern transition 
and so, to do this, we make a list of them for each 
state. 
 
On the other hand, token transitions can be 
merged into one integer list. The fact that each 
integer represents a unique token implies that, at 
the most, only one integer of the list can match 
with the one in the representation of the text. 
Checking if a token transition can match the text 
token is equivalent to testing if an integer appears 
in an integer list. To speed up this test, we turn the 
integer list into a sorted integer array, so that we 
can achieve very fast lookups by dichotomy. 

3 Gain 

3.1 Dictionary accesses 

If a grammar contains word classes, we have 
shown that these references can be tested with a 
simple array access in the case of simple words.  
 
In the case of compound words, we obtain a 
complexity of O(n), where n is the number of 
tokens that compose the compound word to be 
matched 3 . If we test references through a 
dictionary lookup, this operation will have a 
minimal complexity of O(m), where m is the 
number of letters in the word to be matched. This 
minimal complexity is always greater than O(n),  
so we can say that our method tests references to 
word classes faster. 

3.2 Token comparisons 

We will demonstrate the importance of 
representing token transitions by sorted integer 
arrays in comparison with string lists and 
character automata. Let us consider the simplest 
case of a grammar composed of a single word list, 
such the grammar in Figure 2. 
 
 
 
 
 
 
 
 
 

 
Figure 2: a simple grammar 

 
To simplify comparisons, we will assume that 
these words have no case variants. Variants 
actually found in texts are mainly words that 
begin with an upper-case letter. As that 
phenomenon only concerns few words, we can 
                                                 
3 We can note that, in our whole method, this n is the 
only value that has something to do with the length of 
words. 



consider that ignoring variants has little effect on 
the length of the list. 
 
Following our method, we obtain the complexity 
of a dichotomy research in a sorted array, which is 
1+log(n), where n is the array size (here, n is the 
number of words in the list). The constant 1 is due 
to the fact that the word can be absent from the 
array. 
 
Consider now the representation by a string list. If 
this list is not sorted, we obtain a complexity of 
m*n. If the list has been sorted, we can have the 
log(n) complexity of the dichotomy search. 
However, the comparison function has a 
non-constant complexity because it compares 
strings, and so it is less efficient than an integer 
comparison. We can conclude that this 
representation is not as efficient as ours. 
 
Let us consider now a representation by a 
deterministic character automaton, in which 
transitions are sorted so that they can be explored 
by dichotomy. The presence of a word with a 
length of m in such a deterministic automaton can 
be tested with a complexity of m*(1+log(t),  
where t is the average number of transitions per 
state. m, n and t are independent values. To 
compare the values 1+log(n) and m*(1+log(t)),  
we must look at linguistic facts. 

3.3  Linguistic aspect 

If the number n of words in the list is lower than a 
certain limit which depends on the length of these 
n words, typically 50 words, the relation log(n) < 
O(m*log(t)) is verified because log(n) is lower 
than m (the number of letters of the word we want 
to test), which means that for small word lists, our 
method is more efficient. 
 
When n grows, the value O(m*log(t)) is quite 
impossible to calculate, because the number of 
transitions per state depends on the words that are 
in the list. However, we can make the following 
estimate. 
 
The log(n) value can be limited by the logarithm 

of the number of words of the language. If we 
took one million as a rough approximation, we 
would obtain log(1000000) ˜  20. In fact, the 
number of words in a list is much lower than that 
for a linguistic reason: words do not appear 
randomly in the same list. The aim of a linguistic 
grammar is to describe a consistent set of rules, 
and so if some words appear in the same list, that 
means that they are linked (same grammatical 
category, by synonymy, etc). This phenomenon is 
illustrated by the grammar of Figure 2, in which 
“day” names constitute an evident word class. If 
the members of a class are too numerous (for 
example all the nouns), they might not appear as a 
list in the grammar, but as entries in a dictionary. 
In practice, most of these lists contain fewer than 
10 items. The biggest lists we have found in 
grammars are made of proper nouns, like country 
names. Even these lists do not contain more than 
500 items. In this way, we can consider that log(n) 
is usually smaller than 7, and that 10 is a 
reasonable upper limit for 1+log(n). 
 
As the m value considered in m*(1+log(t)) is the 
length of the word in the text to be matched, we 
can consider that this value is close to the average 
length of words in a text. As an example, we have 
computed that the average length of a French 
word in a text is 5.7 letters. This value has been 
obtained through the examination of one year of 
the daily French newspaper Le monde for the year 
19944.  
 
If we consider that n is great enough, we can 
assume that the value 1+log(t) will be greater than 
1. In that case, the value m*(1+log(t)) will surely 
be greater than 10, which is a reasonable 
maximum value for 1+log(n).  
 
While this calculation is just an estimate, it gives 
an idea of what could happen for word lists that 
are large enough. We have empirically verified 
that our method is faster than parsing algorithms 
that use character automata. We have applied 
several grammars containing word lists of various 

                                                 
4 This represents 120 Megabytes of raw text. 



sizes. Tests have been made on both English and 
French data:  
• numeric expressions in French (Constant 

2000); 
• verbal sequences in English (Gross 1998); 
• noun phrases in the economic domain in 

French. 
 
The experiments show that our method is always 
faster. The acceleration factor depends very much 
on the grammar structure, but in the most 
favourable cases, our method was 600 faster than 
using character automaton and consulting 
dictionaries on the fly. Empirical tests thus 
confirm the intuition arrived at in the previous 
estimate (Paumier 2000). 

3.4 Cost of pre-processing 

The experiments show that the parsing is faster 
when it is based on a representation of lexical 
units by integers. However, we must take into 
account the complexity of the pre-processing 
operations, which are tokenizing the text and 
optimizing the grammar.  
 
The text tokenization has a linear complexity 
depending on the text length. In practice, the cost 
of this operation can be ignored when grammars 
are non-trivial, because the time that is required to 
tokenize the text is negligible in relation to the 
time necessary to parse it. As linguistic grammars 
are almost always non-trivial, we can consider 
that the complexity of this operation does not 
affect the global performance of the method. 
 
The optimization of the grammar requires the 
replacement of every token in the grammar by its 
equivalent integer list. The complexity of this step 
is O(N), where N is the size of the grammar 
alphabet. This operation is negligible compared 
with the parsing complexity. If the grammar 
contains references to dictionaries, we must 
access these dictionaries, which is an operation 
with a complexity that depends on the dictionary 
representation. If this complexity is important, 
this stage in the grammar optimization may be 

critical.  
 
If the grammar is fully explored during the 
parsing, then all the references to dictionaries 
must be computed. In that case, there is no 
difference between our method and an on the fly 
dictionary exploration: whatever complexity this 
operation has, it is unavoidable. 
 
On the other hand, if the grammar is not explored 
at all, no dictionary access will have been done 
with an on the fly algorithm, while these 
operations are done anyway with by method. The 
critical case is thus when we apply a grammar that 
has very few chances of matching in the text. 
From a linguistic point of view, this case is quite 
rare, because there is no sense in applying a 
grammar to a text that has nothing to do with the 
expressions described by this grammar. No one 
would apply a grammar of French noun phrases to 
an English corpus, or an electronic term grammar 
to a poetic text. 

3.5 Global performances 

As very few parsers allow dictionary lookups, our 
experiments were done comparing our own 
program with Intex software. After discussion in 
2000 with Max Silberztein, the author of this 
software, we have concluded that the Intex 
parsing algorithm was at that time roughly 
equivalent to character automaton parsing.  
 
In practice, we have measured the sum of 
pre-processing time and parsing time and 
established that it is lower than the parsing time of 
Intex when grammars are non trivial. Table 1 
presents some results obtained on a Pentium 500 
MHz with a RAM of 128 Mb. The numeric 
expression grammar contains very few dictionary 
references, whereas there are many in the verbal 
sequences and about 20 in the noun phrases. 
 
Our experiments show that this method is well 
adapted to linguistic pattern matching. However, 
the gain is very important only when grammars 
are large enough. Our method is not very efficient 
when applied to small scale data. 



 
 
 Numeric 

expressions 
Verbal 
sequences 

Economic 
noun 
phrases 

States 107 000 250 000 587 
Transitions 703 000 2 000 000 3596 
Corpus size 0.4 Mb 16 Mb 120 Mb 
Time with 
Intex 

20 min  Parsing 
failure 

9 min 

Time with 
our 
program5 

22 sec 3 min 37 s 1 min 11 s 

 
Table 1: experiment results 

 

Conclusion 

We have proposed a way of optimizing text 
parsers that use lexical resources such as 
electronic dictionaries. This method is based on 
word tokenization, and on a representation 
whereby tokens are coded by integers.  
 
We have established that the gain obtained grows 
with the size of grammars. Our method is thus a 
specific optimization for linguistic parsers that 
use large grammars. The current development of 
grammars and electronic resources in many fields 
of computational linguistics make us think that 
such optimizations will be very useful.  
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