
A Time-Efficient Token Representation for Parsers

Sébastien Paumier

To cite this version:

Sébastien Paumier. A Time-Efficient Token Representation for Parsers. Proceedings of the
EACL Workshop on Finite-State Methods in Natural Language Processing, 2003, Budapest,
France. pp.83-90, 2003. <hal-00621502>

HAL Id: hal-00621502

https://hal-upec-upem.archives-ouvertes.fr/hal-00621502

Submitted on 10 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48346071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00621502

A time-efficient token representation for parsers

Sébastien Paumier
IGM, University of Marne-la-Vallée,

5 boulevard Descartes,
77454, Champs-sur-Marne, France

paumier@univ-mlv.fr

Abstract

One of the most important functions of linguistic
tools is to apply grammars to texts in order to find
matching sequences. These grammars are often
represented by finite-state automata. The
expressions described in these grammars are
usually lexical units, but some systems offer the
possibility of dealing with references to sets of
words which require the use of electronic
dictionaries (ex. <N> for nouns). We present here
a method for applying such grammars rapidly,
which is based on the tokenization of both
grammars and texts and on a representation of
these tokens by integers.

Introduction

Linguistic parsers can be divided into two
categories: those which use approximate
descriptions, like statistical parsers (Collins 1999,
Plaehn 1999), and those that use exact
descriptions. Exact parsers often process texts
that have been tagged with Part-Of-Speech
taggers (Luk 2001, Megyesi 2002). The tag sets
are usually small. However, the behaviour of
parsers is not well known in the context of large
grammars, because few people have actually tried
to use such grammars. Grammars inevitably grow
considerably when we want to refine
large-coverage descriptions. In fact, the
complexity of the grammar grows with the size of
the vocabulary, because of local constraints that
can only be dealt with by systematic descriptions.
These descriptions require the use of finer tags
than those used by POS taggers; tags such as
human nouns, collective nouns, etc. The

experiments that have been carried out (Carvalho
2001, Constant 2000 & 2002, Dister 2000,
Domingues 2001, Fairon 2000, Gross 1997,
1998) show that these grammars must refer both
to lexical units (single words) and to sets of words,
that are usually handled by dictionary lookup. If
grammars are fine enough, the difference between
advanced pattern matching and syntactic parsing
becomes superficial: the fact that the grammars
describe phrases or sentences is a matter of scale.

Linguistic pattern matching is a particular case of
pattern matching, because the base unit is the
word rather than the character. It is common to
consider texts as sequences of such tokens, for
example in indexation processes, but most
matching algorithms do not tokenize their input in
a previous, separate pass. We propose here an
original way of parsing, which is based on the
coded representation of tokenized corpora.

The idea is to represent lexical units by integers,
which are easier to manipulate than strings. This
representation of tokens by integers has been used
in computer science for a long time, but it has not
been fully exploited in the field of linguistic
parsers. This technique is well-known in
compilation: the lexical parser analyses sequences
of characters and produces sequences of symbols
that are used as input to the syntactic parser (Aho
1986). However, methods differ, because the
grammars and vocabularies are much smaller
with compilation. In addition, users of linguistic
grammars often modify them for their
experiments.

We will show that the integerised technique can

yet be applied very successfully in the domain of
linguistic pattern matching.

Our parsing method has 3 stages:
• tokenizing the text;
• optimizing the grammar for the text;
• applying the grammar.

First, we will present our tokenization rules. Then
we will describe the transformations to be made
on the grammar, taking into account the possible
use of lexical resources. Finally, we will discuss
operational complexities, focusing on some
linguistic aspects in order to show that this
method is well adapted to linguistic pattern
matching.

1 Tokenizing texts

During the first stage, we tokenize the text into
lexical units. To do this, we must take a formal
definition of a lexical unit 1. For languages with
well delimited words, we can consider that a
lexical unit can be:
• a sequence of letters2;
• a non-alphabetic character.

If the tokenization is case sensitive, we can then
associate a unique integer with each token. If we
replace every token by its number, the text can be
represented by the token list and the sequence of
integers. Note that this process need only be
executed once, even if we want to apply several
grammars to the text. The process is proportional
to the length of the text.

Results show that the two files produced occupy
approximately the same disk space as the original

1 The following definition is not available for the
languages that use particular spacing rules. In many
Asian languages such as Thai, words are not
necessarily separated by spaces or punctuation marks,
and so the following tokenization rule would segment
lexical units wrongly.
2 We assume that the notion of letter is well defined,
according to an alphabet file or a standard like
Unicode.

text file. As our goal is to speed up the parsing, we
always give preference to time optimization over
space complexity as long as there is no explosion.

2 Optimizing the grammar

The second stage consists in optimizing the
grammar according to the text. We will assume
that the grammar is represented by a finite-state
automaton, whose transition tags are lexical units
that conform to the tokenization rule used during
the first stage.

2.1 Replacing lexical units by integers

First, we replace every transition tagged by a
lexical unit by the exhaustive list of the tokens
that it can match.

One lexical unit can match more than one token in
the text because of case variation. In fact, it is very
natural to look by default for all the case variants
of a word when you search it. For example, if you
look for the word doctor, you may want to match
both sequences doctor and Doctor. For some
applications, the variations allowed can be more
permissive: for example, web search engines
usually do not take accents into account. Thus, we
can assume that some variation will typically be
allowed.

A particular lexical unit in the grammar may not
be matched in the text. By optimizing the
grammar according to the text, we can remove
such transitions. In fact, if we construct for each
lexical unit in the grammar the exhaustive list of
the lexical units of the text that can match, we can
find out which lexical units can match nothing by
checking if the list is empty. In that case, we can
remove from the grammar every transition tagged
by this lexical unit.

Finally, for all remaining transitions, we replace
the original lexical unit by the list of the tokens it
can match. The tokens are represented by their
associated integers that have been computed
during the text tokenization.

2.2 References to word classes

2.2.1 Word classes
Some linguistic tools (not only parsers) allow the
use of lexical resources (Silberztein 1993,
Bernard 2001, Jassem 1997). In general, the word
classes in these resources are referenced in
grammars through patterns. These patterns can be
more or less precise :
• any word that is in the dictionary;
• any word of a particular grammatical

category (any verb, any noun, ...);
• any inflected form of a word.

This list is not exhaustive, and we can imagine
many kinds of patterns for many kinds of
applications and dictionaries. The important point
is that these patterns always define word classes.

These classes can be more or less important,
depending on the pattern precision. The pattern
“any word in the dictionary” recognizes many
more words than “any noun in the feminine
singular”, which itself recognizes many more
words than “any inflected form of the verb to eat”.

Checking on the fly if a word in the text verifies a
pattern or not has two disadvantages. First, it
involves accessing the dictionary, which means
reloading it when needed or keeping it in memory.
The other point is that it makes the grammar non
deterministic, because several patterns could
recognize the same word.

It would also cost considerable space to replace
systematically the pattern of a transition by the list
of all the matching tokens in the case of a
low-precision pattern like “any word in the
dictionary”. We have thus devised the following
intermediate solution.

2.2.2 A class-size based solution
We propose to test the pattern precision by
counting the matching tokens. If this number is
lower than a certain limit, we can replace the
pattern by the token list. Otherwise, we give a
number to this pattern and we record the fact that

every token in the list is recognized by this pattern.
This can be done very efficiently by using a bit
array for each token, setting to 1 the nth bit if the
token verifies the nth pattern. As tokens are
represented by integers, checking if a token
matches a pattern can be done by simple access to
a two-dimensional bit array, indexed by the token
number and the pattern number.

As such an array is often very sparse, it can be
greatly compressed, for example in terms of
chained lists.

2.2.3 Compound words
This solution concerns only single tokens, but we
can extend it to handle compound word resources.
First, we check for each compound word all the
patterns that can match it. Then we construct the
list of all the compound words that are matched
by one pattern at least; for example:
• all clear: matched as adjective and noun
• globe-trotter: matched as noun
• government-owned: matched as adjective
• governmen-issue: matched as noun

From this list, we can build a tree of which the
nodes are the tokens that compose the compound
words. On each terminal node of the tree, we store
the numbers of the patterns that match the
corresponding compound word. The tree
constructed from the previous example list is
shown on figure 1 (the numbers 1 and 2 that
appear inside round brackets represent
respectively the patterns “adjective” and “noun”).

We add to this tree all the case variants of each
token. Then we replace the tokens by their
number and we arrive at a data structure ready for
speedy comparison with the text.

Figure 1: example of token tree

Now we can test whether the pattern that has the
number i matches one or more compound words
in the text by exploring simultaneously the token
tree and the sequence of integers in the text
representation. If we reach a final node in the tree,
we just have to check if i is in the list of the
patterns that match the corresponding compound
word.

2.3 Sorting integer lists

Once we have made all these replacements, there
are two kinds of transitions : integer lists
representing tokens, and patterns representing
word classes. To explore a state of the grammar
automaton, we must test both pattern transitions
and token transitions.

Because of the non-determinism that they
introduce, we must test every pattern transition
and so, to do this, we make a list of them for each
state.

On the other hand, token transitions can be
merged into one integer list. The fact that each
integer represents a unique token implies that, at
the most, only one integer of the list can match
with the one in the representation of the text.
Checking if a token transition can match the text
token is equivalent to testing if an integer appears
in an integer list. To speed up this test, we turn the
integer list into a sorted integer array, so that we
can achieve very fast lookups by dichotomy.

3 Gain

3.1 Dictionary accesses

If a grammar contains word classes, we have
shown that these references can be tested with a
simple array access in the case of simple words.

In the case of compound words, we obtain a
complexity of O(n), where n is the number of
tokens that compose the compound word to be
matched 3 . If we test references through a
dictionary lookup, this operation will have a
minimal complexity of O(m), where m is the
number of letters in the word to be matched. This
minimal complexity is always greater than O(n),
so we can say that our method tests references to
word classes faster.

3.2 Token comparisons

We will demonstrate the importance of
representing token transitions by sorted integer
arrays in comparison with string lists and
character automata. Let us consider the simplest
case of a grammar composed of a single word list,
such the grammar in Figure 2.

Figure 2: a simple grammar

To simplify comparisons, we will assume that
these words have no case variants. Variants
actually found in texts are mainly words that
begin with an upper-case letter. As that
phenomenon only concerns few words, we can

3 We can note that, in our whole method, this n is the
only value that has something to do with the length of
words.

consider that ignoring variants has little effect on
the length of the list.

Following our method, we obtain the complexity
of a dichotomy research in a sorted array, which is
1+log(n), where n is the array size (here, n is the
number of words in the list). The constant 1 is due
to the fact that the word can be absent from the
array.

Consider now the representation by a string list. If
this list is not sorted, we obtain a complexity of
m*n. If the list has been sorted, we can have the
log(n) complexity of the dichotomy search.
However, the comparison function has a
non-constant complexity because it compares
strings, and so it is less efficient than an integer
comparison. We can conclude that this
representation is not as efficient as ours.

Let us consider now a representation by a
deterministic character automaton, in which
transitions are sorted so that they can be explored
by dichotomy. The presence of a word with a
length of m in such a deterministic automaton can
be tested with a complexity of m*(1+log(t),
where t is the average number of transitions per
state. m, n and t are independent values. To
compare the values 1+log(n) and m*(1+log(t)),
we must look at linguistic facts.

3.3 Linguistic aspect

If the number n of words in the list is lower than a
certain limit which depends on the length of these
n words, typically 50 words, the relation log(n) <
O(m*log(t)) is verified because log(n) is lower
than m (the number of letters of the word we want
to test), which means that for small word lists, our
method is more efficient.

When n grows, the value O(m*log(t)) is quite
impossible to calculate, because the number of
transitions per state depends on the words that are
in the list. However, we can make the following
estimate.

The log(n) value can be limited by the logarithm

of the number of words of the language. If we
took one million as a rough approximation, we
would obtain log(1000000) ˜ 20. In fact, the
number of words in a list is much lower than that
for a linguistic reason: words do not appear
randomly in the same list. The aim of a linguistic
grammar is to describe a consistent set of rules,
and so if some words appear in the same list, that
means that they are linked (same grammatical
category, by synonymy, etc). This phenomenon is
illustrated by the grammar of Figure 2, in which
“day” names constitute an evident word class. If
the members of a class are too numerous (for
example all the nouns), they might not appear as a
list in the grammar, but as entries in a dictionary.
In practice, most of these lists contain fewer than
10 items. The biggest lists we have found in
grammars are made of proper nouns, like country
names. Even these lists do not contain more than
500 items. In this way, we can consider that log(n)
is usually smaller than 7, and that 10 is a
reasonable upper limit for 1+log(n).

As the m value considered in m*(1+log(t)) is the
length of the word in the text to be matched, we
can consider that this value is close to the average
length of words in a text. As an example, we have
computed that the average length of a French
word in a text is 5.7 letters. This value has been
obtained through the examination of one year of
the daily French newspaper Le monde for the year
19944.

If we consider that n is great enough, we can
assume that the value 1+log(t) will be greater than
1. In that case, the value m*(1+log(t)) will surely
be greater than 10, which is a reasonable
maximum value for 1+log(n).

While this calculation is just an estimate, it gives
an idea of what could happen for word lists that
are large enough. We have empirically verified
that our method is faster than parsing algorithms
that use character automata. We have applied
several grammars containing word lists of various

4 This represents 120 Megabytes of raw text.

sizes. Tests have been made on both English and
French data:
• numeric expressions in French (Constant

2000);
• verbal sequences in English (Gross 1998);
• noun phrases in the economic domain in

French.

The experiments show that our method is always
faster. The acceleration factor depends very much
on the grammar structure, but in the most
favourable cases, our method was 600 faster than
using character automaton and consulting
dictionaries on the fly. Empirical tests thus
confirm the intuition arrived at in the previous
estimate (Paumier 2000).

3.4 Cost of pre-processing

The experiments show that the parsing is faster
when it is based on a representation of lexical
units by integers. However, we must take into
account the complexity of the pre-processing
operations, which are tokenizing the text and
optimizing the grammar.

The text tokenization has a linear complexity
depending on the text length. In practice, the cost
of this operation can be ignored when grammars
are non-trivial, because the time that is required to
tokenize the text is negligible in relation to the
time necessary to parse it. As linguistic grammars
are almost always non-trivial, we can consider
that the complexity of this operation does not
affect the global performance of the method.

The optimization of the grammar requires the
replacement of every token in the grammar by its
equivalent integer list. The complexity of this step
is O(N), where N is the size of the grammar
alphabet. This operation is negligible compared
with the parsing complexity. If the grammar
contains references to dictionaries, we must
access these dictionaries, which is an operation
with a complexity that depends on the dictionary
representation. If this complexity is important,
this stage in the grammar optimization may be

critical.

If the grammar is fully explored during the
parsing, then all the references to dictionaries
must be computed. In that case, there is no
difference between our method and an on the fly
dictionary exploration: whatever complexity this
operation has, it is unavoidable.

On the other hand, if the grammar is not explored
at all, no dictionary access will have been done
with an on the fly algorithm, while these
operations are done anyway with by method. The
critical case is thus when we apply a grammar that
has very few chances of matching in the text.
From a linguistic point of view, this case is quite
rare, because there is no sense in applying a
grammar to a text that has nothing to do with the
expressions described by this grammar. No one
would apply a grammar of French noun phrases to
an English corpus, or an electronic term grammar
to a poetic text.

3.5 Global performances

As very few parsers allow dictionary lookups, our
experiments were done comparing our own
program with Intex software. After discussion in
2000 with Max Silberztein, the author of this
software, we have concluded that the Intex
parsing algorithm was at that time roughly
equivalent to character automaton parsing.

In practice, we have measured the sum of
pre-processing time and parsing time and
established that it is lower than the parsing time of
Intex when grammars are non trivial. Table 1
presents some results obtained on a Pentium 500
MHz with a RAM of 128 Mb. The numeric
expression grammar contains very few dictionary
references, whereas there are many in the verbal
sequences and about 20 in the noun phrases.

Our experiments show that this method is well
adapted to linguistic pattern matching. However,
the gain is very important only when grammars
are large enough. Our method is not very efficient
when applied to small scale data.

 Numeric

expressions
Verbal
sequences

Economic
noun
phrases

States 107 000 250 000 587
Transitions 703 000 2 000 000 3596
Corpus size 0.4 Mb 16 Mb 120 Mb
Time with
Intex

20 min Parsing
failure

9 min

Time with
our
program5

22 sec 3 min 37 s 1 min 11 s

Table 1: experiment results

Conclusion

We have proposed a way of optimizing text
parsers that use lexical resources such as
electronic dictionaries. This method is based on
word tokenization, and on a representation
whereby tokens are coded by integers.

We have established that the gain obtained grows
with the size of grammars. Our method is thus a
specific optimization for linguistic parsers that
use large grammars. The current development of
grammars and electronic resources in many fields
of computational linguistics make us think that
such optimizations will be very useful.

References

Aho Alfred V., Ravi Sethi and Jeffrey D. Ullman
(1986) Compilers. Principles, Techniques and Tools,
Addison-Wesley

Balvet Antonio (2000) Approches catégoriques et non
catégoriques en linguistique des corpus spécialisés,
application à un système de filtrage d'information.
Thèse de doctorat. Université Paris 10

Bernard Pascale et al. (2001) Ressources linguistiques
de l’ATILF. Actes du 8e colloque TALN, Tours

5 An implementation of this method can be found in
the GPL licensed software Unitex, available at
http://www-igm.univ-mlv.fr/~unitex

Carvalho Paula (2001) Grammaires de levée
d’ambiguïtés entre noms et adjectifs. Lingvisticæ
Investigationes, 24:1, pp. 127—145.

Collins Michael et al. (1999) A statistical parser for
Czech. In ACL 99 Proceedings

Constant Matthieu (2000) Description d’expressions
numériques en français. In Anne Dister (ed.), Actes des
3e Journées Intex, Revue Informatique et Statistique
dans les Sciences Humaines, n° 1 à 4

Constant Matthieu (2002) On the Analysis of Locative
Phrases with Graphs and Lexicon-Grammar: The
Classifier/Proper Noun Pairing. In proceedings of
PorTAL 2002: 33-42

Dister Anne, ed. (2000) Actes des 3èmes Journées
INTEX. Revue Informatique et Statistique dans les
Sciences Humaines, 36ème année, n° 1 à 4

Domingues Catherine (2001) Étude d'outils
informatiques et linguistiques pour l'aide à la
recherche automatique d'information dans un corpus
documentaire. Thèse de doctorat. Université de
Marne-la-Vallée

Fairon Cédrick (2000) Structures non-connexes.
Grammaires des incises en français : description
linguistique et outils informatiques. Thèse de doctorat.
Université Paris 7

Gross Maurice (1997) The Construction of Local
Grammars. In E. Roche and Y. Schabes (eds.),
Finite-state language processing. MIT Press, pp.
329—354.

Gross Maurice (1998) Lemmatization of compound
tenses in English. Lingvisticæ Investigationes, 22, pp.
71—122.

Jassem Krzysztof (1997) A Polish-to-English
Text-to-text Translation System Based on an
Electronic Dictionary. In proceedings of ACL
Workshop 1997

Luk Po Chui, Weng Fuliang and Meng Helen (2001)
Automatic Grammar Partitioning for Syntactic
Parsing. Proceedings of the International Workshop
on Parsing Technologies, Beijing

Megyesi Beata (2002) Shallow Parsing with PoS
Taggers and Linguistic Features. Journal of Machine
Learning Research, 2 :639-668

Paumier Sébastien (2000) Reconnaissnce
d’expressions dans de grands corpus: le système
AGLAE. Mémoire de DEA, Université de
Marne-la-Vallée

Plaehn Oliver (1999) Probabilistic Parsing with
Discontinuous Phrase Structure Grammars. PhD
Thesis, Saarland University

Silberztein Max (1993) Dictionnaires électroniques et
analyse automatique des textes. Le système INTEX,
Paris, Masson

