
XML-Based Representation Formats of Local Grammars

for the NL

Javier M. Sastre

To cite this version:

Javier M. Sastre. XML-Based Representation Formats of Local Grammars for the NL. Vetulani
Zygmunt. 2nd Language & Technology Conference (LTC’05), Apr 2005, France. pp.314-317,
2005. <hal-00621526>

HAL Id: hal-00621526

https://hal-upec-upem.archives-ouvertes.fr/hal-00621526

Submitted on 10 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48346033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00621526

XML-Based Representation Formats of Local Grammars for the NLP

Javier M. Sastre Martínez

Institut Gaspard Monge, Université de Marne-la-Vallée
77454 Marne-la-Vallée Cedex 2

sastre@univ-mlv.fr

Abstract
The construction of local grammars for the exact recognition of each valid structure of a natural language is a very long term task
which consumes huge amounts of human resources and produces huge amounts of data to be accumulated over the years. The use of
convenient computer assisted grammar construction (CAGC) tools alleviates this task, but the representation format of the generated
data must not be tool-dependent because of two reasons: the data must persist across the time in spite of the short life span of such
tools due to the fast computer technology evolution; cooperative work groups must be able to easily exchange their data even if they
use different CAGC tools. We propose here two equivalent representation formats based in well-covered solid standards, like XML
and XML-Schema, and conceived to serve as exchange formats between computer applications dealing with local grammars.

Introduction
Local grammars are conceived to exactly recognize
specific natural language structures and to recursively
serve as pieces of further more complex grammars
recognizing higher level structures until the construction
of an exact grammar covering the whole extension of a
natural language is reached. Many new problems have
arisen since this approach to the exact recognition was
introduced (Gross, 1997). First of all, it was necessary to
provide linguists with computer tools which would
facilitate the construction of local grammars and would
be able to apply them over real corpus in order to validate
them. The Intex system (Silberztein, 1993) was an
already existent tool allowing the construction of local
grammars. Subsequently, the Unitex system (Paumier,
2002) was developed for this purpose. Both of them use
graphical representations of grammars called graphs. The
figure 1 shows an example of graph representing a local
grammar semantically equivalent to the structure “in
order to + verb”. The code “<V:W>” represents any
infinitive verb defined in an electronic dictionary and the
code <a> corresponds to “a” or “an”. Grey boxes
represent references to other graphs. This way it is
possible to reuse grammar definitions in order to easily
built larger ones. In this case, the referenced grammars
define verbal constructions. As we can see, this graphical
representation is simple and easy to read: we can rapidly
realize of the recognized sequences just by reading from
left to right (e.g.: “in attempts to <V:W>”, “in an attempt
to <V:W>”, etc).

Figure 1: “In order to + verb” graph

As the number of constructed grammars increases, it
becomes harder to efficiently store and selectively
recover them so that we can reuse them for the
construction of new ones. Consequently, a local grammar
library allowing to search and extract them by means of
grammar specific queries has already been conceived
(Constant, 2003). However, it does not exist up to now a
common graph representation format; it has been
necessary the use of format conversion tools in order to
edit graphs with other tools than the one used to create
them. If a system for the massive storage and exchange of
graphs amongst computer applications is to be built, it is
firstly necessary to develop a graph exchange
representation format easy to be supported, able to
represent any natural language grammars and as most
stable as possible. Especially, stability is an important
factor since the migration from a representation format to
a new one is a hard task that, if not correctly done, can
lead to data corruption.

The World Wide Web Consortium (W3C) is an
international recognized organization whose purpose is
the development of common protocols allowing
interoperability over the World Wide Web (WWW). The
Extensible Markup Language, or XML (Skonnard, 2001),
is a simple, very flexible text format derived from SGML
and which is being widely used as exchange format of
data on the Web and elsewhere. XML Schemas (Vlist,
2002) provide means for defining the structure, content
and semantics of XML documents.

The Unicode Standard (Allen, 2003) is a character coding
system designed to support the worldwide interchange,
processing and display of the written texts of the diverse
languages and technical disciplines of the modern world.
In addition, it supports classical and historical texts of
many written languages. XML relies on Unicode and
closely tracks its revisions.

There exist several tools and libraries which facilitate the
development of software dealing with XML and XML
Schema based representation formats. For example, the
Java Architecture for XML Binding (JAXB) is a Java
technology in the Java Web Services Developer Pack, or
JWSDP (Armstrong, 2003), that enables to automatically
generate Java code for the analysis, validation and

synthesis of XML documents following a given XML
Schema specification.

The common graph exchange formats presented in this
paper are based on XML and formally defined by means
of XML Schemas, thus fulfilling all the presented
requirements: stability, language independency and
easiness of being supported.

Graph object description
Graphs are graphical objects equivalent to transducers
within a recursive transition network (RTN) conceived to
facilitate the construction and comprehension of
grammars for the NLP. As we can see in the example
graph (figure 2), a graph is composed by a set of linked
boxes of different types.

Figure 2: example graph

Transduction boxes
Transduction boxes recognize a set of input token
sequences and optionally generate an output character
sequence. If no output is defined, the empty sequence is
assumed by default. Graphs can also be referenced within
a transduction box allowing the box to recognize every
sequence recognized by the referenced graph; from a
procedural point of view, we say that the referenced
graph is “called” by the graph containing the referencing
box. Every directly or indirectly called graph is a
subgraph of the calling graph, and recursive calls are also
allowed. Each white background line of a transduction
box corresponds to an input sequence (e.g.: “nuclear
bomb”) and each gray background line to a subgraph call
(e.g.: “NNMDW” subgraph). An additional line under the
box corresponds to the box output sequence (e.g.:
“<MDW>X</MDW>”), if defined. Once a
transduction box recognizes an input sequence fragment,
its associated output sequence is appended to the graph
output. Transduction boxes that only recognize the empty
word are represented by an empty triangle with the
associated output below.

Initial and final boxes
Initial and final boxes are to be contained in every well-
formed graph, a single one of each type per graph. Only
transduction or record boxes are to be the initial box of a
graph, which is distinguished from the others by an
incoming-from-no-box transition. The application process
of a graph starts at its initial box and follows the outgoing
links or transitions as the following boxes are able to
recognize the next input fragment. By default, transitions
start at the box right sides and end at the left box sides.
The transition direction can be switch for the
representation of right-to-left language grammars. A
whole input sequence is recognized by a graph if its last
fragment is recognized by a box having an outgoing link
towards the final box, which is represented by a circle
containing a square. Opposite to the initial box, the final

box has no other purpose than marking the recognition of
a sequence accepted by the graph.

Record start/stop boxes
Record start/stop boxes represent points within a graph
where the input sequence recording mechanism is
switched: once a record start box is reached, the
associated variable (e.g.: “X”) is defined and initialized to
an empty sequence value and every later recognized input
sequence fragment is appended to the variable content
until a record stop box associated to the same variable is
attained. Once a record stop box is reached, the
associated variable remains defined but its content is no
longer modified until a start box associated to the same
variable is reached. Recorded input fragments may be
parts of transduction box character sequence outputs by
specifying the correspondent initialized variable identifier
within the output sequence specification (e.g.: “X”; we
surround variable identifiers with dollar symbols in order
to distinct them from merely output character sequences).
Once the final box is reached, defined variables within
the graph become undefined: variable values are not
conserved once a graph application has ended. Called
subgraphs may access variables initialized by their calling
graphs independently of the call depth. In case of variable
identifier conflict between successive graph calls, the
inner call graph variable value is assumed (outer variable
definitions are hidden by same identifier inner variable
definitions). Apart from the recording mechanism, record
boxes behave as transduction boxes recognizing the
empty word and generating an empty output sequence.

Comment boxes
Comment boxes (e.g.: “Tagger for nuclear bomb and
other mass destruction weapons”) contain meta-
information conceived to facilitate the interpretation of
the graph. The presence or absence of such boxes does
not alter the represented grammar.

From graphs to FSTs
Let G be a graph, we call compilation of G the
transformation process of G and its subgraphs into
minimal finite-state transducers (FSTs) and further
optimization of the resulting RTN. We call G the main
graph of the compilation. Every information w.r.t. the
representation format of the graphs is lost. The structure
of the resulting RTN may be modified in order to boost
its application. The compilation process, as usual, is not
reversible.

Opposite to standard FSTs, whose operations associated
to their transitions involve uniquely input
recognition/output generation, graph equivalent FSTs
may have three extra operation types: sub-FST calling,
record start and record stop operations. Every transition
associated to a sub-FST calling operation is equivalent to
an epsilon transition towards the initial state of the called
sub-FST and further coming back from any of its final
states towards the arriving state of the calling transition.
Transitions associated to record start/stop operations are
equivalent to epsilon transitions that switch the input
sequence recording mechanism analogous to the graph’s
one. We call main FST of a RTN the first one to be
considered during the RTN application process. We say

that an FST is a sub-FST of another one iif the former is
called within any of the transition operations of the latter.

XML Terms
Terms are the atomic information units to be recognized
and which compose input sequences. We represent them
as the following XML elements:

1. <epsilon/>: empty word.
2. <blank/>: mandatory blank space occurrence

before the next term.
3. <noblank/>: no blank space occurrence before

the next term.
4. <symbol>: specified symbol (not a letter).
5. <word/>: any word (sequence of letters).
6. <word case=”lowercase”/>: any lowercase word.
7. <word case=”uppercase”/>: any uppercase word.
8. <word case=”firstupper”/>: any uppercase

starting word.
9. <word> specified word (sequence of letters) or

any of its variants (e.g., case variants).
10. <word case-sensitive=”false”> specified word.
11. <token/>: any token (symbol or word).
12. <token case=”lowercase”>: any symbol or

lowercase word.
13. <token case=”uppercase”>: any symbol or

uppercase word.
14. <token case=”firstupper”>: any symbol or

uppercase starting word.
15. <token> specified token or any of its variants.
16. <token case-sensitive=”false”> specified token.
17. <dicentry>: specified dictionary entry.1
18. <dicword/>: any dictionary defined word.
19. <dicword>: any dictionary defined word having

the set of properties specified using the
dictionary’s notation.

20. <punctuation>: any punctuation symbol.
21. <number>: any sequence of numbers.
22. <sentencetag>: end of sentence.

Additionally, any term representing a set of tokens have
the optional attributes “complement” and “filter”. A term
having the former attribute set to “true” represents the
complement of the set represented by the original term. If
the attribute is not set or is set to “false”, default behavior
is assumed. If the considered term is <dicword>, the
domain of the complementation is restricted to the set of
dictionary-defined words. The “filter” attribute value is a
POSIX regular expression. When present, the token to be
recognized by the term must match the regular
expression. This attribute represents a further restriction
by means of a regular expression filter. If both
complementation and filtering operations are to be
applied, the former is considered before the latter.

XML output char subsequences
Output character subsequences are represented by
<chars> elements or by <var varid=”…”/> elements. The
former contains the character subsequence to be
generated (direct addressing) and the latter specifies by

1 A dictionary entry corresponds to a non-ambiguous lemma
description. Dictionary entry references are to be used in
lexically disambiguated corpus by means of added tags.

means of its “varid” attribute value the identifier of the
variable containing the subsequence (indirect addressing).
An output character sequence is represented by a
sequence of one or more <chars> and/or <var/>
subsequence elements. Alternate direct/indirect
addressing within an output sequence specification is
allowed.

XML graphs
A graph is represented by an element <graph
pathname=”…”>, whose attribute “pathname” value is
the address of the represented graph. This element has an
optional element <format> and an element <boxes>. The
former contains information about the graphical
representation of the graph and the second the list of
boxes that compose the graph. This list must contain an
initial box, zero, one or more non initial or final boxes
and a single final box. The element <boxes> must have
an attribute “initialbox” whose value is the identifier of
the initial box.

Box elements
Every box element representing a non-comment box, and
therefore a reachable box, has an attribute “id” whose
value identifies uniquely the box. Every box element has
a pair of optional attributes “posx” and “posy”, which
represent the coordinates in a Cartesian system where the
box is to be located in the graphical representation of the
graph. Record start and record stop boxes are represented
by <recordstart> and <recorstop> elements respectively.
Both of them have an attribute “varid” whose value is the
identifier of the variable associated. Comment boxes are
represented by <comment> elements, whose only content
is the comment text. The final box is represented by the
element <final/>, which has no content. Transduction
boxes are represented by <transduction> elements. The
elements representing record boxes or transduction boxes
may contain an element <transitions>. Such element
contains the list of box identifiers, separated by a single
space, which are pointed by the box outgoing transitions.

Inputs and output elements
Additionally, each <transduction> element contains an
<inputs> element, which defines every input recognized
by the box, and optionally an <output> element, which
defines the output character sequence to be generated by
the box. If no output is to be generated, the <output>
element is omitted. The element <inputs> contains one or
more elements <sequence> or <subgraph/>. The former
represents a sequence of terms and the latter a subgraph
call. The element <sequence> must contain a sequence of
at least one term element. The <subgraph/> elements
have an attribute “pathname” whose value is the address
of the subgraph to be called. The element <output>
contains a sequence of at least one output character
subsequence element.

Input subsequence elements
The input subsequence elements <symbols>, <words>,
and <tokens> represent sequences of one or more
consecutive symbols, words or tokens respectively.
Consecutive sequences of <symbol>, <word> or <token>
elements can be represented by an input subsequence

element containing the list of the correspondent tokens
separated by a single space. Input subsequence elements
have two optional attributes: “case-sensitive” and
“blanks”. The former indicates if word variants are
accepted (“true” value) or not (“false”, default value).
The latter indicates if blank spaces between tokens are
optional (“optional”, default value), mandatory
(“mandatory” value) or forbidden (“forbidden” value).

XML RTNs
An RTN is represented by an <rtn pathname=”…”>
element, whose attribute “pathname” value is the address
of the represented RTN. This element contains an
element <fsts> and an element <operations>. The former
represents the list of FSTs that compose the RTN and the
latter the set of operations associated to the transitions of
all the FSTs within the RTN.

FST elements
The element <fsts> must contain an element <main>,
which represents the main FST, and a list of zero, one or
more elements <sub>, which represent the sub-FSTs of
the main FST. The structure of both <main> and <sub>
elements is the same: they have an attribute “id”, whose
value identifies uniquely the FST within the RTN, and
contain an element <initialstate> and zero, one or more
elements <state>. The element <initialstate> corresponds
to the initial state of the FST and the <state> elements to
the rest of its states. Those elements share the same
structure: they have an attribute “id”, whose value
identifies uniquely the state within the FST, and an
attribute “final”, whose value indicates if the state is final
(true) or not (false, default value). They contain zero, one
or more <transition> elements, each one representing a
state outgoing transition. Those elements have an
attribute “operationid”, whose value is the identifier of
the operation associated to the transition, and an attribute
“stateid”, whose value corresponds to the identifier of the
arriving state.

Operation set element
The <operations> element contains zero, one or more
operation type elements, each one representing a single
operation to be associated to any of the FST transitions.
Every operation type element has an attribute “id” whose
value identifies uniquely the operation within the whole
RTN.

Transduction operation element
An element <transduction> within the <operations>
element represents an input term recognition/output
character sequence generation operation. The input term
is represented by a mandatory term child element. In case
an output is to be generated, it is represented by an
<output> element containing a sequence of at least one
output character subsequence element.

Sub-FST call operations
FSTs within a RTN are also considered operations when
associated to a transition: the transduction operation
defined by the FST. We represent a sub-FST call
operation by setting the “operationid” attribute value of
the correspondent <transition> element to the identifier of

the FST to be called. FST and operation identifiers must
be different since they share the same space.

Record operation elements
Record start and record stop operations are respectively
represented by <recordstart> and <recordstop> elements
within the <operations> element content. In addition to
their “id” attribute, they have a “varid” attribute whose
value is the identifier of the recording variable.

Conclusion
In this paper we described XML-based representation
formats of graphs and RTNs. Those formats have been
formally described by means of XML Schemas. Both
XML and XML Schemas are solid standards, thus the
presented formats are expected to last and consequently
to save the effort of developing new formats and to avoid
data corruption due to format migration. Thanks to the
compatibility of XML with Unicode, any natural
language is to be supported. Thanks to tools like JAXB, it
will be relatively easy from now on to add support for the
presented formats to existing or new computer
applications and, therefore, to enable them to exchange
local grammars. Graph and RTN format conversion tools
have already been developed and tested for the migration
from Unitex native formats to the presented XML-based
formats. The 88% of the resultant Java source code was
automatically generated by JAXB. Now that we have set
an appropriated media for local grammar representation
we can proceed with the implementation of a local
grammar management system for their efficient storage
and diffusion among the scientific community.

References
Armstrong E., Ball J., S. Bodoff and Jendrock E. (2003).

The JavaTM Web Services Tutorial.
http://java.sun.com/webservices/tutorial.html. Viewed
21st April 2004. Sun Microsystems.

Constant M. (2003). Grammaires locales pour l’analyse
automatique de textes : Méthodes de construction et
outils de gestion. http://www-igm.univ-
mlv.fr/LabInfo/theses/2003/constant.pdf. Viewed 20th
September 2003. Université de Marne-la-Vallée.

Gross M. (1997). The Construction of Local Grammars.
In Roche E. and Schabes Y. (eds.), Finite State
Language Processing, Cambridge, Mass., The MIT
Press, pp. 329-352.

Paumier S. (2002). Unitex manuel d’utilisation.
http://www-igm.univ-mlv.fr/~unitex/manuelunitex.pdf.
Viewed 28th February 2004. Université de Marne-la-
Vallée.

Silberztein M. (1993). Dictionnaires électroniques et
analyse automatique de texts: le système INTEX.
Mason Ed. : Paris. ISBN 2225841578.

Skonnard A. and Gudgin M. (2001). Essential XML
Quick Reference: A Programmer’s Reference to XML,
XPath, XSLT, XML Schema, SOAP and More.
Addison-Wesley Pub Co; 1st edition. ISBN 021740958.

Vlist E. (2002). XML Schéma. O’Reilly, Paris. ISBN
2841772152.

Allen J. and Becker J. (Eds.) (2003). The Unicode
Standard Version 4.0. The Unicode Consortium

