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Abstract This article deals with synchronization in the En-
velope Elimination and Restoration (EER) type of transmit-
ter architecture. To illustrate the performances of such so-
lution, we choose to apply this architecture to a 64 carriers
16QAM modulated OFDM. We first introduce the problem-
atic of the realisation of a highly linear transmitter. We then
present the Envelope Elimination and Restoration solution
and draw attention to its major weakness: a high sensitivity
to desynchronization between the phase and envelope signal
paths. To address this issue, we propose an adaptive synchro-
nization algorithm relying on a feedback loop, a Least Mean
Square formulation and involving an interpolation step. It
enables the correction of delay mismatches and tracking of
possible variations. We demonstrate that the quality of the
interpolator has a direct impact on Error Vector Magnitude
(EVM) value and output spectrum. Implementation details
are provided along with an analysis of the behaviour and
performances of the method. We present HPADS and Mat-
lab simulation results and then focus on the enhancement of
the transmitter performances using the proposed algorithm.

1 Introduction

Recent radiocommunication systems aiming at high data rate
are based on efficient modulation schemes in which Quadra-
ture Amplitude Modulations (QAM) are obviously preferred
to frequency or phase modulation. While the 3GPP standard
employs QPSK and 16QAM, higher data rate are achieved
(in WLAN system for example) using Orthogonal Frequency
Data Multiplexing (OFDM) modulation. Although these mod-
ulations are suitable for signal processing, the realization of
the RF front end, particularly the transmitter, becomes more
and more complex.
In the conception of a transmitter, it is essential to achieve
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both efficiency and linearity. In radiocommunication stan-
dards, the quality of the transmitted signal is well defined,
usually in terms of output spectrum, Adjacent Channel Power
Ratio (ACPR) and Error Vector Magnitude (EVM). When
the modulated signal presents an envelope variation, similar
to an amplitude modulated signal, the compression effect of
the Power Amplifier (PA) generates intermodulation prod-
ucts which directly impact the three mentioned figures of
merit. This implies that with a classic class A PA, the in-
put signal would have to present a mean power (depending
on the type of modulation) lower than the input compres-
sion point: the difference is quantified in terms of back off.
In order to gain in efficiency, a linearization system is often
preferred to a linear amplification.
In this paper, we deal with theEnvelope Elimination and
Restoration(EER) principle, and illustrate it in the case of a
16QAM 64 carriers OFDM modulation. The EER principle
was proposed by Kahn in 1952 [14] and is based on the split-
ting of a modulated signal into two signals. The first one is
a constant envelope phase modulated signal, while the sec-
ond one is the envelope of the original signal. In the original
EER transmitter, the splitting is realized in an analog way us-
ing a limiter and an envelope detector. The phase modulated
signal is the input of an efficient PA whereas the envelope
signal is sent to a switching power supply which feeds the
last stage of the PA. The transmitter now evoluates toward a
fully digital transmitter [23] as shown in Fig.1.

OFDM

Modulator

I

Q

CORDIC

Processor

Envelope

Frequency

RF out

-1.0 -0.5 0.0 0.5 1.0-1.5 1.5

-1.0

-0.5

0.0

0.5

1.0

-1.5

1.5

Power

Supply

Modulated phase 

locked Loop

Fig. 1 Polar transmitter using a CORDIC processor
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The digital creation of the two signals is achieved using a
CORDIC processor [22]. The principle of this processor re-
lies on the rotation of a vector(Xi ,Yi) to a new vector. In
our case, the final vector is(Zi ,θ), whereZi is the magni-
tude of the vector and the rotation angle is our phase. VLSI
implementation can profit from of a suitable iterative formu-
lation. The phase signal is sent to the PA amplifier using a
modulated PLL. This solution is preferred to a I/Q RF mod-
ulator in order to reduce transmitted spurious emissions. To
limit distortion, the envelope signal is usually amplified with
a class S modulator using aΣ∆ modulator rather than a clas-
sic PWM. The final amplification is realized by a high effi-
ciency amplifier. As the input signal is a constant envelope
signal, switched class of power amplifiers are preferred due
to their high efficiency. As demonstrated in [20], the class E
power amplifier is very suitable for this application since the
expression of the output voltage is directly proportionnalto
its power supply. This property is mandatory as we intend to
reinject the envelope variation through the modulation of its
power supply.
However the main drawback of this architecture is its sensi-
tivity to delay mismatch between the two signals.
The delays introduced by the two paths can be mismatched
due to pipeline differences in the paths and the delay in
the anti-alias filter (amplitude path), as well as small con-
tributions from other analog delays [21]. Furthermore, in a
production environment, delays should be matched to varia-
tions in process including supply voltage, frequency, output
power and temperature [18]. This usually requires careful
factory calibration procedures. The mismatch deteriorates
both the EVM and the output spectrum of the transmitted
signal [4; 24] and has to be corrected. A linear interpola-
tion was suggested in [11] to compensate for the mismatch,
while a group delay equalizer was proposed in [17]. In these
two cases, it still remains to identify the delay mismatch and
track its possible variations. In this article, we propose a
scheme and an associated algorithm that covers the whole
calibration problem: identification, correction and tracking.
In the first part, we demonstrate the sensitivity of EER ap-
plied to a 16QAM 64 carriers OFDM modulation and bring
forward the maximum tolerable delay mismatch for this mod-
ulation. The second part presents an efficient algorithm which
corrects this default. We then focus on the implementation
of the algorithm and on the importance of the interpolation
filter used to resynchronize the signals. In the final part, an
analysis of the behaviour and performances of the algorithm
is provided. Simulation results performed on HPADS are
presented and show the performances achieved with this so-
lution in terms of output spectrum, EVM and ACPR.

2 Impact of delay mismatches on an OFDM modulation

Using a 16QAM 64 carriers OFDM modulation is an in-
teresting case study for the validation of this kind of ar-
chitecture because of its high Peak to Average Power Ra-
tio (PAPR). In fact, for an OFDM modulation, the PAPR

Table 1 ACPR obtained for different delay mismatches. It is evalu-
ated for the full 64 carriers 20MHz OFDM modulation, with a channel
spacing of 25MHz.

Delay T/27 T/13 T/5 T/3
ACPR (dB) -37 -29.7 -20.7 -15.7

is equal to the number of carriers, which corresponds to
10log(64) = 18dB in our simulation case. A few results have
already been presented on the study of the whole transmit-
ter with this modulation [2] and this paper indicates that the
critical specification is the synchronization of signals. Fig. 2
and Fig.3 present the impact of delay mismatch in the range
of ±T

3 , with T the time symbol, on the output spectrum and
on the EVM. Table 1 gives the values of ACPR for these
delays. The symbol rate is 20MHz.
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Fig. 3 Impact of the delay mismatch on the EVM

It is important to notice that the EVM calculation for OFDM
modulations must be realized on each carrier separately and
then averaged. Fig.4 shows that the effect of the desynchro-
nization on the first subcarrier for delaysT/27 andT/5 acts
as additional noise.
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Fig. 4 Impact of the delay mismatch on the constellation for T/27 and
T/5

As a guideline, we take specifications from 802.11.a stan-
dard: the rms EVM is specified at a maximum of 11.22%
and the output spectrum has to remain under -40dBc above
a 30MHz frequency offset from the carrier measured in a
1MHz resolution bandwidth. When analysing the EVM re-
sults, we can observe that a desynchronization ofT/3 pro-
duces an EVM value of 14% and when considering the out-
put spectrum, in 1MHz bandwidth, the value at 30MHz from
the carrier is about -7.5dBc. In fact, the value of -40dBc is
only obtained for a delay ofT/27 which gives an EVM value
of about 0.6% This demonstrates that the synchronization of
signals impacts so strongly on the output spectrum that it is
mandatory to implement a correction algorithm.

3 The correction algorithm

This paper is an extended version of [3] where we presented
a preliminary version of the algorithm. In this version, the
algorithm is presented in more details and implementation
issues are discussed. More specifically, we discuss the role,
performances and implementation of the interpolation step
and provide a detailed analysis of the algorithm performances.

3.1 Envelope and phase alignment

According to the central limit theorem, for complex modu-
lation schemes such as the OFDM, when the number of sub-
carriers is large, the emitted signal can be approximated as
a gaussian distributed complex random variable. For a nar-
rowband stationary signal written as

ξ (t) = x(t)cos(ω0t)+y(t)sin(ω0t) (1)

it is well known thatRxx(τ ) = Rxy(τ ) and thatRxy(τ ) =
−Ryx(τ ), whereRxx and Rxy are respectively the autocor-
relation and intercorrelation functions. The processesx(t)
andy(t) are always uncorrelated at the same instant, that is
Rxy(0) = 0. If ξ (t) is normal, thenx(t) andy(t) are indepen-
dent at the same instant. The complex gaussian processξ (t)
is completely characterized by its mean and autocorrelation
function

Rξξ (τ ) = Rxx(τ )cos(ω0τ )+Rxy(τ )sin(ω0τ ). (2)

Let us denoteSξξ ( f ) andSxx( f ) the spectra ofξ (t) andx(t),
that is the Fourier transforms of the autocorrelation functions
Rξξ (τ ) andRxx(τ ). WhenSξξ ( f ) is symmetric with central
frequencyf0, the in-phase and quadrature componentsx(t)
andy(t) are uncorrelated, that isRxy(τ ) = 0. The baseband
spectrumSxx( f ) is generally proportional to the square of
the transfer function of the emission filter, which shall be
shaped as a square-root Nyquist filter. Consequently, the au-
tocorrelation functionRxx(τ ) = Ryy(τ ), which is the inverse
Fourier transform of the baseband spectrum, is the impulse
responseh of a (full) Nyquist filter. The processξ (t) can
also be written as

ξ (t) = ρ(t)cos(ω0t −φ(t)) (3)

whereρ(t) is the envelope andφ(t) is the phase process,
with

{

x(t) = ρ(t)cos(φ(t)),
y(t) = ρ(t)sin(φ(t)).

In the case of a complex gaussian process, it is well known
that the envelope and phase are independentat the same
instant and respectively distributed according to the Ray-
leigh and uniform distributions. The case of delayed enve-
lope and phase is less known. In fact, it appears that for
gaussian processes, the envelopeρ(t) and phaseφ(t − ∆ )
are also Rayleigh and uniform distributed, and arealways
independent (see [4]) with no reference to the correlation
coefficient, whatever the delay between envelope and phase
components. In consequence, the output do not convey any
information on the time alignment or mismatch between the
envelope and phase components. As a result, it isnot pos-
sible to correct the relative delay between the envelope and
phase components from the sole observation of the system
output. Calibration then needs to rely on a feedback loop and
involve a direct comparison between the initial “aligned”
signal and the observed signal.
In a calibration step without data transmission, we can also
modify the modulation scheme and design non-gaussian se-
quences with some dependence between envelope and phase.
In such a situation, a ‘contrast’ based on the output proper-
ties may be devised in order to align the components. How-
ever, we will focus here on the feedback solution that pre-
serves the data and modulation technique.

3.2 The compensation algorithm

Let us denotez(t) the output of the system. Due to the delays
∆1 and∆2 that affect the envelope and phase components,
we have

z(t) = ρ(t −∆1)cos(ω0t −φ(t −∆2))

= ρ(t −∆1)cos(φ(t −∆2))cos(ω0t)

+ρ(t −∆1)sin(φ(t −∆2))sin(ω0t) .

We propose here to correct the delays using an adaptive pre-
compensation. The synchronization algorithm relies on the
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idea of introducing two advancesµ1 andµ2 in order to prec-
ompensate the delays, as illustrated in Fig.5. In such a case,
the output becomes

z(t) = ρ(t + µ1−∆1)cos(ω0t −φ(t + µ2−∆2)) (4)

and we will adjust the advancesµ1 andµ2 in order to min-
imize a statistical distance betweenz(t) andξ (t). A natural
criterion is the minimization of the quadratic distance

J(µ1,µ2; t) = E
[

|ξ (t)−z(t)|2
]

, (5)

where E[•] is the statistical expectation operator. This ex-
pression can also be rewritten as

J(µ1,µ2; t) = E
[

ex(t)
2]cos(ω0t)2+E

[

ey(t)
2]sin(ω0t)

2

+E[ex(t)ey(t)]sin(2ω0t)

where ex(t) and ey(t) are the errors for the in-phase and
quadrature components respectively,

ex(t) = (ρ(t)cosφ(t)−ρ(t1)cosφ(t2)) (6a)

ey(t) = (ρ(t)sinφ(t)−ρ(t1)sinφ(t2)) (6b)

and where, in order to simplify the expressions, we noted

t1 = t + µ1−∆1 andt2 = t + µ2−∆2. (7)

After time averaging, this simply reduces to

J(µ1,µ2) =
1
2

{

Jx(µ1,µ2)+Jy(µ1,µ2)
}

(8)

with

Jx(µ1,µ2) = E
[

ex(t)
2] andJy(µ1,µ2) = E

[

ey(t)
2]. (9)

The global criterion equals the sum of two elementary cri-
teria on the in-phase and quadrature components. We can
readily obtain the same criterion (up to a factor) using the
demodulated, baseband, version of the signal.
In practice, we indeed work in baseband with digital signals.
After sampling, we compare the digital input signal to the
sampled baseband output. In the following, we will keepT
for the symbol period and noteTs the sampling period. Con-
sequently, we will note the different discrete time indexesas
follow







t(n) = nTs
t1(n) = nTs+ µ1−∆1
t2(n) = nTs+ µ2−∆2.

(10)

The output sampling clock does not need to be synchronous
to the input: it may be a divided version of the input clock,
and any propagation delay will be absorbed in the correction
procedure.
Since it is simpler to generate delayed signals than advanced
signals, we introduce a small processing delayD in Fig. 5.

ρ(t+µ1-∆1)

φ(t+µ2-∆2)

RF Transmitter
ρ(t+µ1)

φ(t+µ2)

ρ(t)cos(φ(t)) ρ(t+µ1-∆1)cos(φ(t+µ2-∆2))

+ −

ρ(n)

φ(n)
µ1,µ2z-D

ρ(t)sin(φ(t)) ρ(t+µ1-∆1)sin(φ(t+µ2-∆2))

Fig. 5 Principle of delays correction.

Let us consider the criterionJx(µ1,µ2) in (9) on the in-phase
component. Developing and taking into account the inde-
pendence betweenρ(t1) andφ(t2) lead to

Jx(µ1,µ2) = 2Cx(0,0)−2Cx(µ1−∆1,µ2−∆2) (11)

where

Cx(τ1,τ2) = E[ρ(t)cos(φ(t))ρ(t − τ1)cos(φ(t − τ2))]
(12)

with τ = 1= µ1−∆1 andτ2 = µ2−∆2, is a kind of ‘correla-
tion function’. The termCx(0,0) simply reduces toCx(0,0)=
E
[

ρ(t)2
]

E
[

cos(φ(t))2
]

= Rxx(0), the variance of the in-phase
x(t) component. It is important to note thatCx(τ ,τ ), ob-
tained withτ1 = τ2 = τ is nothing else but the correlation
functionRxx(τ ). Since we know that the correlation function
is proportional to the shaping filterh, it appears that the be-
haviour of the criterionJx(µ1,µ2) is closely related to the
shaping filter. Regarding the quadrature component and cri-
terionJy(µ1,µ2), the same conclusions and formulas found
in (11,12) are easily obtained by substitutingx by y and cos
by sin.
In the case of an OFDM modulation, the criterionJ(τ1,τ2)
was evaluated numerically by Monte-Carlo simulations with
a square root Nyquist filter (square root raised cosine with
0.5 roll-off). This is illustrated in Fig.6 for delays (advances)
between−4T and 4T. We can recognize here the general
shape of the (inverted) impulse response of a raised cosine,
somewhat distorded and modulated. The criterion does not
only present a global minimum atτ1 = 0, τ2 = 0, but also
several other minima. Derivation of a closed-form formula
for criteria (9) involving (12) is a challenging if not impos-
sible task. However, in Fig.7, where the criterion for delays
less than 1.5T is shown, we clearly observe that any descent
algorithm will avoid local minima for delays∆1,∆2 ≤ T,
with initial conditions set to zero.

3.3 Gradient algorithm

Since we do not have a closed-form for the criterion nor a
direct explicit solution for its global minimizer, we need to
exhibit the solution using a descent algorithm. We simply
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use a gradient algorithm that consists in iterating the follow-
ing formulas:











µ1(n+1) = µ1(n)−γ1(n) ∂J(µ1,µ2)
∂ µ1

∣

∣

∣

µ1=µ1(n)

µ2(n+1) = µ2(n)−γ2(n) ∂J(µ1,µ2)
∂ µ2

∣

∣

∣

µ2=µ2(n)

(13)

whereγ1(n) andγ2(n) are two adaptation steps that possibly
depend on the iteration indexn. The gradients are given by

∂J(µ1,µ2)

∂• =
1
2

[

∂Jx(µ1,µ2)

∂• +
∂Jy(µ1,µ2)

∂•

]

(14)

and we readily obtain

∂Jx(µ1,µ2)

∂ µ1
= −E

[

dρ(u)

du

∣

∣

∣

∣

u=t1(n)

cosφ(t2(n))ex(t(n))

]

(15a)

∂Jy(µ1,µ2)

∂ µ1
= −E

[

dρ(u)

du

∣

∣

∣

∣

u=t1(n)

sinφ(t2(n))ey(t(n))

]

(15b)

and

∂Jx(µ1,µ2)

∂ µ2
= −E

[

dcosφ(u)

du

∣

∣

∣

∣

u=t2(n)

ρ(t1(n))ex(t(n))

]

(16a)

∂Jy(µ1,µ2)

∂ µ2
= −E

[

dsinφ(u)

du

∣

∣

∣

∣

u=t2(n)

ρ(t1(n))ey(t(n))

]

(16b)

with ex andey defined by (6a,6b).
The update equations are obtained using these gradients in
(13). However, we do not have the analytical expressions
of the statistical expectations involved in these formulas.
Therefore, we have to resort to using a stochastic approx-
imation of these theoretical recursions. A popular solution
in adaptive filtering is theLeast Mean Squares(LMS) algo-
rithm that simply consists in omitting the statistical expec-
tation. The LMS then involves theinstantaneous gradient
rather than the (correct) statistical average. Furthermore, the
equations are updated at each new sample. This gives

µ1(n+1) = µ1(n)+γ1(n)
dρ(u)

du

∣

∣

∣

∣

t1(n)

×
(

cos(φ(t2(n)))ex(t)+sinφ(t2(n))ey(t(n))
)

(17)

µ2(n+1) = µ2(n)+γ2(n)ρ(t1(n))×
(

dcosφ(u)

du

∣

∣

∣

∣

t2(n)

ex(t)+
dsinφ(u)

du

∣

∣

∣

∣

t2(n)

ey(t(n))

)

. (18)

Practical implementation of formulas (17) and (18) requires

– computation of the errorsex(t(n)) andey(t(n)) defined
in (6a) and (6b) which results from the comparison of
the system input and output,

– computation of the derivatives that can be simply ap-
proximated by finite differences ofρ(t1(n)) and cos(φ(t2(n))).

Of course, the algorithm can be simplified by considering
a sole error component rather than two. For instance, one
can simply putey = 0 in the previous equations. In practice,
simulations show that the gain associated with the second
component is extremely small.
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For formulas (17) and (18), the computational load is about 8
real multiplications per iteration. However, since the deriva-
tives must be computed at timet1(n) and t2(n), that is at
the output of the corrected system,ρ(t) and cos(φ(t)) must
be separately accessible. This implies a quadrature demod-
ulation before the feedback loop. Furthermore, with this ap-
proach, we need to adjust two advancesµ1,µ2 and apply
them to the input signal. Adopting very high sampling fre-
quencies in order to get the required precision may not be
an efficient solution. Digital interpolation is a more effec-
tive solution as it keeps reasonable sampling frequencies and
save consumption.

4 Impact of the interpolator

Contrary to what we indicated in [3], the interpolation pro-
cedure has a significant impact on the performances of the
algorithm in terms of the EVM and output spectrum.
According to the Shannon-Nyquist sampling theorem, we
know [29] that any band-limited signalx(t) can be recov-
ered exactly from its samplesx(m) = x(mTs) taken at the
sampling frequency 1/Ts by the formula

x(t) = ∑
m

x(m)sinc(π(t −mTs)/Ts), (19)

where sinc is the cardinal sine. This indicates that, in prin-
ciple, the samples convey enough information to reconstruct
the original signal at any desired time. In particular, it ispos-
sible to reconstructx(t − τ ), for any τ , and therefore new
shifted samplesx(kTs− τ ) from the original samplesx(kTs),
according to

x(kTs− τ ) = ∑
m

x(mTs)sinc(π(kTs− τ −mTs)/Ts). (20)

The above expression is in the form of a digital convolu-
tion and can be implemented as a filtering operation. How-
ever, because the underlying filter has an infinite (sinc) im-
pulse response, and is non causal, practical implementation
introduces truncation and delay. Another possibility is touse
a convenient approximation of the ideal interpolator men-
tioned above. The MMSE FIR interpolator [19] is the min-
imum mean square error approximation of the ideal filter
with finite impulse response. Although optimum implemen-
tations of these interpolators exist [6], the coefficients shall
be pre-computed and tabulated for each possible fractional
delay and these types of structures should be reserved for the
interpolation with fixed delays.

Another class of interpolators relying on polynomial approx-
imation can be used instead. Indeed, the Weierstrass approx-
imation theorem states that every continuous function de-
fined on an interval can be uniformly approximated as closely
as desired by a polynomial function. We can then use a poly-
nomial to approximate the value of the function, given a se-
ries of samples, at the desired delay. Such interpolators are
especially interesting for our application since they can be

described by FIR filters. They can be implemented very ef-
ficiently in hardware, and their coefficients can be computed
in real time rather than taken from a table. An efficient struc-
ture was devised by Farrow [8; 15] and improvements to the
structure can be found in [25; 7; 5]. In this structure, the de-
lay is directly adjustable without modification so that it is
suitable for our adaptive synchronization problem.
A related problem is Sample Rate Conversion (SRC) which
is often considered in digital front ends [10; 9]. In SRC, a
digital signal has to be converted into another digital sig-
nal but with a different sampling frequency. Caution must
be exercised to avoid aliasing in the operation. In this situ-
ation, polynomial interpolators are usually disqualified be-
cause they do not provide enough anti-aliasing. In the last
decade, following [27], many solutions have been developed
for the synthesis of adjustable fractional delay filters with
larger bands and better anti-aliasing capabilities [26; 13; 12;
30; 32].
It is worth mentioning that adjustable fractional delay fil-
ters can also be obtained using programmable allpass Infi-
nite Impulse Response (IIR) filters [16; 31]. However, such
filters are more sensitive to quantization, transients may oc-
cur when changing coefficients, and synthesis is complicated
by the stability issues.
In our application, interpolation operates directly on thedig-
ital input signal, without any rate change. Aliasing can still
occur due to the sampling operation of the output, which is
needed for our feedback loop. However, the system specifi-
cations, in particular the power limitation in adjacent chan-
nels, severely constrain the design and limit the images of
the original band-limited spectrum. Furthermore, since the
over-sampling ratioT/Ts is typically greater than 5, an anti-
aliasing filter can be easily designed.
The over-sampling ratio being high is an important factor
since it allows the use of very low-order interpolators. In-
deed, the frequency response of the corresponding filters is
almost flat in magnitude and linear in phase in the band of in-
terest. This is illustrated in section4.1. Then, in section4.2,
we examine and compare the performances of the different
interpolators in terms of interpolation error and EVM at the
output of the transmitter.

4.1 The interpolators and their frequency responses

In this section, we choose to compare four interpolators [1,
Chapter 25]: Linear, Bessel, third and fifth order Lagrange
interpolators. We first give the expressions of these interpo-
lators and then compare their frequency responses.
The first interpolator, the forward linear interpolator, isthe
simplest, and is given by:

x(m,τ ) = x(m)+ τ (x(m+1)−x(m)) (21)

wherex(m,τ ) represents the interpolated value of the input
value at the time(m+ τ )Ts.
The second interpolator studied is the third order Lagrange
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interpolator:

x(m,τ ) = x(m)+ τ (x(m)−x(m−1))

+ τ (τ+1)
2 (x(m+1)−2x(m)+x(m−1)).

(22)

This interpolation uses three successive points. The first part
of the expression is similar to the linear interpolator and the
second part is a correction term calculated using the point
before and after the central one.
The third interpolator we looked at is the Bessel central dif-
ference interpolator, fourth order, described as follow:

x(m,τ ) = x(m)+ τ (x(m+1)−x(m))

+ τ (τ−1)
4 (x(m+2)−x(m+1)−x(m)+x(m−1)).

This interpolation uses four successive points and is also
similar to the linear interpolation with an additional correc-
tion term. Compared to the third order Lagrange formula-
tion, the correction term is not symmetrical.
The last interpolator is the fifth order Lagrange interpolator:

x(m,τ ) = (τ 2−1)(τ−2)τ
24 x(m−2)

− (τ 2−4)(τ−1)τ
6 x(m−1)+ (τ 2−1)(τ 2−4)

4 x(m)

− (τ 2−4)(τ+1)τ
6 x(m+1)+ (τ 2−1)(τ+2)τ

24 x(m+2).

(23)
These different interpolators can be clearly viewed as FIR
filters, where impulse responses can be deduced from the
above equations. Therefore, it is certainly interesting tocom-
pare their frequency responses to the frequency response ofa
pure delay. This comparison is shown in Fig.8 for the mag-
nitude and in Fig.9 for the phase. With the exception of
the linear interpolator, it appears that the interpolatorshave
interesting performances for normalized frequencies below
0.2 (over-sampling ratio greater than 5). While the two La-
grange interpolators show the flattest magnitude, the Bessel
interpolator exhibits a better phase linearity. This informa-
tion will be completed by other measures of performances,
namely interpolation error and EVM at the output of the
transmitter.

4.2 Comparison of performances

In order to evaluate interpolation errors, we compare an orig-
inal signal to a reconstructed one. This comparison is real-
ized on the envelope of the OFDM modulated signal previ-
ously introduced. Starting with an original signal with 300
samples per time symbol, we subsample it by a factor of 100.
This gives an over-sampling ratio of 3. The signal is then re-
constructed by interpolating the missing 200 values between
x(m−1) andx(m+1), and the interpolated values at a delay
∆ from the sample, are compared to the value of the original
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signal. Performances of the different interpolators are pre-
sented in Fig.10 in terms of the rms quadratic error, given
in percent. These experimental results are confirmed by the
theoretical analysis in section4.4.

Let us noteTs the sampling period and callEo the original
signal,Ei the interpolated signal. The quadratic error (rms)
is expressed as:

Err(∆ ) = 100

√

∑k (Eo(kTs−∆ )−Ei(kTs−∆ ))2

∑k(E2
o(kTs−∆ )

(24)
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Fig. 10 Comparison of the normalized quadratic error (rms) between
the four interpolators.
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When the interpolators are used betweenx(m) andx(m+1),
their rms quadratic errors are similar with a maximum error
in the middle of the two samples. The Bessel and 5th order
Lagrange interpolators achieve similar results with a maxi-
mum error of about 0.4%, while the two other interpolators
present less than 0.6%. However, a problem arises when the
interpolator is used in the range ofx(m−1) andx(m). The
linear interpolator is obviously not up to par with a 3.5% of
error followed by the Bessel with 2.5%. The asymmetry can
degrade the quadratic error performances. During iterations,
positive as well as negative values ofτ may indeed appear.
The best solution remains certainly the two Lagrange for-
mulas which are quasi symmetrical and more appropriate to
our problem. The order of the interpolator can also make a
difference in terms of the complexity of the implementation.
Using HPADS, the interpolators can be validated with the
study of the EVM (computed for the OFDM after FFT de-
modulation) and the output spectrum. The simulation is real-
ized differently than with the previous quadratic error evalu-
ation. Here the signal sampled atT/3 is delayed or advanced
by τ taken between±1 and resynchronized using the inter-
polator. This is a complementary analysis to the previous
analysis and is better suited to standard transmitter analysis.
Fig. 11 shows the EVM at the output of the transmitter and
presents the same profile as the error quadratic curves in
Fig. 10.
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Fig. 11 Comparison of EVM values for the different interpolators.

The main problem is the relatively high values of the EVM.
Values reach a maximum of 2% for the 5th order Lagrange
interpolator and 3.5% for the 3rd order Lagrange interpola-
tor. The latter is not acceptable for our application. We then
need to sample the signal to a higher rate.
Fig. 12 presents the EVM values when changing the sam-
pling period of the signal fromT/3 to T/9 (odd values are
here preferred to facilitate the demodulation of the OFDM
signal in simulation). Thex axis of the curve is normalized to
symbol duration. The difference between samplings atT/3
andT/9 is dramatic, going from 2% to 0.1%.
The sampling rate not only has an impact on the EVM value,
it also affects the output spectrum.
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Fig. 12 EVM values for the 5th order Lagrange interpolator with dif-
ferent sampling periods.

4.3 Implementation using the Farrow structure

A polynomial interpolator can efficiently be implemented
using a Farrow structure [8] or its extensions [27; 13; 5]. We
only describe here the original Farrow structure but other
possibilities will deserve further investigation. The Farrow
structure relies on the parallelization ofN FIR filters which
can be expressed as

yi (m) =
M−1

∑
k=−M

hi(k)x(m−k). (25)

The output of these filters are combined so that the output
signal can be expressed as

y(m,τ ) =
N−1

∑
i=0

τ iyi (m) =
N−1

∑
i=0

τ i
M−1

∑
k=−M

hi (k)x(m−k) (26)

For instance, rewriting the equations of the 5th order La-
grange interpolator (23) gives

y0 (m) = 5
4x(m) ,

y1 (m) = − 2
24 (m+2)+ 4

6x(m+1)
−4

6x(m−1)− 2
24 (m−2)

y2 (m) = − 1
24 (m+2)+ 4

6x(m+1)− 5
4x(m)

+4
6x(m−1)− 1

24 (m−2)

y3 (m) = 2
24 (m+2)− 1

6x(m+1)+ 1
6x(m−1)− 2

24 (m−2)
y4 (m) = 1

24 (m+2)− 1
6x(m+1)+ 1

4x(m)− 1
6x(m−1)

+ 1
24 (m−2)

and can be implemented on HPADS as presented in Fig.13.

For the 5th order Lagrange filter, this implementation uses 5
multiplications, 20 additions and 15 arithmetic divisions. As
for the 3rd order Lagrange interpolator, the implementation
leads to only 2 multiplications, 5 additions and simpler di-
visions that only requires to divide by 2. This can certainly
be an argument for the choice of the interpolator, not only
in terms of performances but also in terms of simplicity of
implementation.
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4.4 On the interpolation noise

If the interpolator were perfect, the algorithm, in the absence
of observation noise, would find theexactsolution. How-
ever, as illustrated in Figs.10, 11and12, the system is char-
acterized by an internal “self-noise” associated with the in-
terpolator. Indeed, for equally spaced pointst0, t1, . . .tn, the
remainder of the Lagrange interpolation polynomial of de-
green for estimatingx(t0 + τT) is [28]

ni(t0 + τT) = Tn+1ω(τ )
x(n+1)(ξ )

(n+1)!
(27)

with ω(τ ) = τ (τ −1) . . .(τ −n), and whereξ is an unknown
point in the interval[t0, tn]. Thus, we can evaluate the vari-
anceσ2

i (τ )= E
[

ni(t0 + τT)2
]

of this interpolation noiseni(t)
and obtain

E
[

ni(t0+ τT)2]= (−1)n+1 T2(n+1)

(n+1)!
|ω(τ )|2R(2(n+1))

xx (0)

(28)

using the relation E
[

|x(n+1)(t)|2
]

= (−1)n+1R(2(n+1))
xx (0).

As a result, the variance of the interpolation noise is non-
stationary since it depends on the interpolation pointt0+τT.
With this formula, it also appears that the higher the sam-
pling rate and the higher the interpolation order, the lower
the variance. To illustrate this, Fig.14compares the theoret-
ical formula (28) to simulation results (see also the results in
Fig. 10).
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Fig. 14 Standard deviation of the interpolation noise for a Lagrange
5th order interpolator. Theoretical formula (28) (plain line) is compared
to simulation results (dashed line).

5 Analysis of the algorithm and results

Typical results for delays 0.18T and 0.47T for envelope and
phase respectively, are shown in Fig.15. The measured EVM
after convergence is only 0.7% compared to 14% without
correction. The resulting spectrum is reported in Fig.16.
It shows very interesting performances: the spectrum is im-
proved by 30dB compared to the uncorrected case. The re-
maining noise floor at -50dBc in 200kHz bandwidth corre-
sponds to the interpolation errors. Surprisingly, it appears
that the spectrum obtained with the values at the output of
the correction algorithm is slightly better than the spectum
obtained with the true values of delays. This is commented
in §5.2.

0.0

0.2

0.4

-0.2

0.6

P
h

a
s
e

 d
e

la
y

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

0 1
0
0
0

0.0

0.1

-0.1

0.2

Number of symbol

E
n

v
e

lo
p

e
 D

e
la

y

Fig. 15 Convergence ofµ1 andµ2 to the true delays∆1 = 0.47T and
∆2 = 0.18T.

With correction

Without correction

2320 2340 2360 2380 2400 2420 2440 2460 24802300 2500

-60

-40

-20

0

-80

20

Mega_Hertz

o
u

tp
u

t 
s
p

e
c
tr

u
m

With exact values

Fig. 16 Comparison of ideal, uncorrected and corrected spectra, inthe
case of delays∆1 = 0.47T and∆2 = 0.18T.

However interesting these results are, it is important to ex-
amine the role of the interpolator, the impact of the values
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of the adaptation step and to study figures of merit such as
the settling time (convergence speed), the bias and variance
of results as well as the overall EVM. We evaluated these
different points by Monte-Carlo experiments for a varying
adaptation stepγ and for all delays less thanT. In the study,
we took the same adaptationγ = γ1 = γ2 step for both adap-
tations. Furthermore, the signal power was normalized to
one in order to be independent of signal scales.
To analyse these different characteristics, we use a simpli-
fied ‘toy’ model that is simpler to analyse than our original
problem. Letz(t)= x(t−∆ ) be an observed, delayed version
of an original signalx(t). In order to identify and correct the
delay, we adopt the following recursion

µ(n+1) = µ(n)+γ
dx(u)

du

∣

∣

∣

∣

u=t−∆+µ(n)

[x(t)− x̃(t −∆ + µ(n))]

(29)
with x̃(t −∆ + µ(n)) the interpolated value at time(t −∆ +
µ(n)).

5.1 Settling time

The convergence speed is an important issue for the practical
use of such algorithm. With∆ µ(n) = (µ(n)−∆ ) small, we
have

x(t)− x̃(t +∆ µ(n)) ≃−∆ µ(n)ẋ(t)+ni(t), (30)

whereẋ(t) is the derivative of processx(t) and whereni(t)
represents the interpolation noise. Then,

∆ µ(n+1) = ∆ µ(n)−γ∆ µ(n)ẋ(t +∆ µ(n))ẋ(t)

+γẋ(t +∆ µ(n))ni(t) (31)

Therefore, the mean trajectory is

E[∆ µ(n+1)] = E[∆ µ(n)]
(

1−γRẋẋ(∆ µ(n))
)

, (32)

with E[ẋni ] = 0. Considering thatRẋẋ = −R̈xx, and since we
supposed∆ µ(n) small, so thatR̈xx(∆ µ(n)) ≃ R̈xx(0), the
previous equation can be solved recursively and we get

E[∆ µ(n+1)]≃
(

1+γR̈xx(0)
)n

E[∆ µ(0)] , (33)

with R̈xx(0) < 0. This means thatµ(n) converges exponen-
tially to ∆ , with a time constanttc =−1/ log

(

1+γR̈xx(0)
)

≃
1/
(

γR̈xx(0)
)

. This is illustrated in Fig.17, where are pre-
sented the settling times for the algorithm measured as the
rise from 0 to 95% of the final value,ts = 3tc. This figure
shows that the convergence speed is clearly independent of
the interpolator and the simulation results are in line withthe
above development.

We also examined the variation of the convergence speed
with respect to the values∆1,∆2. The results reported in
Fig. 18 clearly indicates that the convergence speed is in-
dependent of the final values.
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5.2 Bias

A careful examination of the results shows that both enve-
lope and phase are often affected by a small, but undeni-
able, bias. In addition, we have observed in practice that the
quadratic error associated with the biased estimates is lower
than the error obtained with the true values. Similarly, it ap-
pears that the spectrum with identified values is slightly bet-
ter than the spectrum associated with the true values. This
can be explained as follow. The errore(t) is

e(t)= x(t)− x̃(t−∆ +µ(n))=
(

x(t)−x(t−∆ +µ(n))
)

+ni(t),

(34)
so that its variance is

σ2
e = E

[

e(t)2]= E
[(

x(t)−x(t−∆ + µ(n))
)]

+E
[

ni(t)
2] ,

(35)
that is

σ2
e = E

[

e(t)2]= 2(Rxx(0)−Rxx(µ(n)−∆ ))+σi(µ(n)),
(36)

whereσi(µ(n)) = E
[

ni(t)2
]

is the variance of the interpo-
lation noise that depends on the value of the advanceµ(n),
see the discussion in §4.4. The purpose of the algorithm is



Envelope and Phase delays correction in an EER radio architecture 11

to find a valueµ minimizing σ2
e . The first term clearly de-

creases whenµ(n)→∆ while the second term may increase.
Therefore, the procedure will find the best values that mini-
mize the sum of the two terms, realizing a trade-off between
bias and variance of the interpolation noise. The solution is
theoretically given by

Ṙxx(µ(n)−∆ ) = −dσ2
i (µ(n))

dµ(n)
. (37)

Fig.19presents the bias measured for the envelope and phase
component with respect to the adaptation parameter. We find
that the bias still exist and do not depend on the adaptation
parameterγ as it was indicated by the analysis. The bias is a
function of the interpolator type and order.
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Fig. 19 Biasµ −∆ for the different interpolators, as a function of the
adaptation parameterγ. Phase (indicated by−◦−) and envelope bias
are almost constant with respect toγ.

5.3 Variance

Variations after convergence are also an important issue. These
variations can be modeled as an additive noise on the esti-
mates. With our toy model, we obtained expression (31) for
the trajectory of the algorithm. This expression is only valid,
on average, if∆ µ(n+1) has a zero mean. Thus, taking now
∆ µ(n+ 1) = µ(n+ 1)− µ̄ , whereµ̄ is the value at conver-
gence and rearranging the terms, we get

∆ µ(n+1) = ∆ µ(n)
(

1−γẋ(t +∆ µ(n))ẋ(t)
)

+γẋ(t +∆ µ(n))ni(t). = An∆ µ(n)+Bnni(t) (38)

Taking the square and the expectation and making the, clearly
false, hypothesis thatAn and∆ µ(n), Bn andni(t) are uncor-
related, we obtain

σ2
µ(n+1) = E

[

A2
n

]

σ2
µ(n)+E

[

B2
n

]

σ2
i (39)

with σ2
µ(n) the variance ofµ at stepn. We also find E

[

A2
n

]

≃
1+ 2γR̈xx(0)+ γ2E

[

ẋ(t)4
]

(with µ −∆ ≃ 0), and E
[

B2
n

]

=

−γ2R̈xx(0). At convergence, we finally obtain

σ2
µ =

E
[

B2
n

]

σ2
i

1−E[A2
n]

=
γσ2

i

2+γE[ẋ(t)4]/R̈xx(0)
. (40)

This expression shows that the variance of the estimates in-
creases linearly withγ and that it is only associated to the
‘self-noise’ in the system. Despite using approximations in
the derivation, the simulation results are once more in line
with this formula. Fig.20gives the variance of the estimates
of the envelope and phase delays as a function ofγ. The lin-
ear dependence can be clearly seen.
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the different interpolators, as a function of the adaptation parameterγ.
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with γ.

5.4 EVM - Quadratic error

The EVM is a crucial parameter in digital communications.
As we will observe, it sums up some of the other proper-
ties. In the case of a single carrier modulation, the EVM is
defined by E

[

|Ze−Zo|2
]

/E
[

|Zo|2
]

whereZe = ρeejφe and
Zo = ρoejφo stand for the complex envelope of the emit-
ted signal and the original signal respectively. Let us insist
on the fact that the situation is more complicated for multi-
carrier modulations. In our setting, the expression becomes

EVM =
E
[

ρ2
o +ρ2

e −2ρoρecos(φo−φe)
]

E[ρ2
o ]

. (41)

Therefore, if∆φ = φo −φe is small, cos∆φ ≃ 1−∆φ2/2,
the expression becomes

EVM =
E
[

(ρo−ρe)
2 +ρoρe∆φ2

]

E[ρ2
o ]

≃ E
[

∆ρ2 +ρ2
o∆φ2

]

E[ρ2
o ]

(42)
or

EVM ≃ E
[

∆ρ2
]

E[ρ2
o ]

+E
[

∆φ2] (43)

assuming thatρo and∆φ are independent. As a result, the
EVM is a function of the quantities we previously studied.
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We already established that the estimates are biased and that
their variances, which are proportional to interpolation noise,
increase linearly withγ. Therefore, the EVM behaves as

EVM ≃ γ
2

[

σ2
ρ

E[ρ2
o ]

+σ2
φ

]

+

[

B2
ρ

E[ρ2
o ]

+B2
φ

]

, (44)

whereσ2
ρ andσ2

φ are the variances of interpolation noise for
the envelope and phase, andBρ andBφ the bias terms. Since√

1+αx≃ 1+αx/2, the EVM rms may also show the same
behaviour. This is the case in Fig.21 where we clearly see
a linear slope and an offset value. It also shows that the La-
grange and Bessel interpolators have the best performances.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

γ

Bessel

Linear

3rd Lagrange

5th Lagrange

Fig. 21 EVM rms (in %) at the output of the algorithm, for delays
∆1 = 0.36T,∆2 = 0.12T as a function of the adaptation parameterγ.

It is also interesting to look at the EVM with respect to all
possible delays and with a fixedγ. Fig. 22 presents these
results forγ = 0.05. We can observe a ‘modulation’ which
is related to the variable variance of the interpolation noise
with respect to the delay (see Fig.14). Here, as in previous
examples, we tookT/Ts= 5 and indeed notice error minima
at interpolation nodes.
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Envelope delayPhase delay

Fig. 22 EVM at output of the algorithm withγ = 0.05, for all possible
delays. The ‘modulation’ is related to the non-stationary interpolation
noise that vanishes at interpolation nodes.

Table 3 Settling times of the algorithm and EVM rms (in %) for the
output, for different interpolators and several values of the adaptation
stepγ.

Settling time EVM rms %
γ 3rd Lag Bessel 5th Lag

0.05 228 1.045 0.89 0.815
0.1 127 1.07 0.9 0.84
0.5 45 1.24 1.05 1.009

5.5 Summary of the results

In the previous developments we have examined the behaviour
of our algorithm according to the choice of interpolators and
adaptation steps. Using specific examples, we have demon-
strated a vast improvement can be achieved in terms of EVM
and output spectrum, as shown in figures15and16. Further-
more, using an approximate ‘toy’ model of the algorithm, we
have shown theoretically and checked numerically, that

– the settling time decreases exponentially with the adap-
tation step (Fig.17),

– a small estimation bias exists that does not depend on
the adaptation parameter but rather of interpolation order
(Fig. 19). The presence of this bias is explained as a way
to reduce the whole quadratic error,

– the variance (40) behaves approximately as a linear func-
tion of the adaptation parameter (Fig.20),

– the EVM (44) increases linearly with the adaptation step
γ (Fig. 21).

As a consequence, a trade-off has to be made between the
two important parameters that are the settling time and the
EVM. The choice of the order of the interpolation is also
important with respect to performances and implementation
costs. The main values for the bias and variance can be found
in Table 2 for different interpolators and several values of
the adaptation stepγ. The results for the settling time and
the EVM are reported in Table 3 for the same conditions.
In order to ensure independence in signal scales, the signal
power was normalized to one.

6 Conclusion

In this paper, we proposed and analysed a new synchro-
nization algorithm tailored for an EER architecture. Perfor-
mances are indeed severely degraded in case of delay mis-
match between envelope and phase paths. The proposed al-
gorithm is based on an adaptive LMS structure. We studied
the influence of the adaptation on the quadratic error, EVM
and output spectrum. The algorithm uses an interpolation
procedure that is characterized in terms of performances and
in terms of implementation. We also examined the influence
of the sampling rate. These studies demonstrated the strong
interest of such a mandatory correction algorithm and the
enhancement of transmitter performances.
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Table 2 Bias(µ −∆) and varianceσ2
µ of the estimates of delays, for different interpolators andseveral values of the adaptation stepγ.

Bias×103 Variance×105

γ 3rd Lag Bessel 5th Lag 3rd Lag Bessel 5th Lag
0.05 ρ -15.5 8 -9 6.2 10 5.8
0.05 φ -19 2 -9 5.8 6.59 5.75
0.1 ρ -15 8 -8 11.5 21 11.5
0.1 φ -28 4 -8 4.5 4.6 4.5
0.5 ρ -14 8 -7 56.5 89 56
0.5 φ -17 4 -9 13 11.5 11.5

Regarding the algorithm, a few points can be further investi-
gated: adopting different adaptation steps for the two recur-
sions, decrasing the number of adaptation steps and alternat-
ing the two recursions. Higher system view point has to be
taken into account in order to define the best use of the pro-
cedure: full tracking of delays or training periods. A for the
implementation, modified and optimized Farrow structures
should be considered.

This solution has drawbacks. For instance, it requires I/Q de-
modulation and uses a Cordic processor to split the envelope
and phase of the PA output signal (derivative computation).
We are currently working on these issues to improve our sys-
tem.

Other concerns are the behaviour of the system with further
mismatches such as a complex gain in the feedback loop,
non-linear distortions and quantization noise. Preliminary
results show that the algorithm is robust against the gain
and noise mismatch, in the sense that the optimum solution
remains unchanged. Evidently further mismatches imply a
degradation of performances so future work will include at-
tempts to also correct these mismatches with the same feed-
back loop.
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