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Therefore the surgeon in seeking a thoroughly reliable knowl-

edge must duly -prepare a dead body. . . .It should be the body

of someone who had neither been excessively old, nor one who

died of poison, nor of a protracted disease.

Susruta (III, 5)



PREFACE

It is safe to say that interest in cortical architecture has not been widespread since

the appearance of Brodmann's Vergleichende Lokalisationslehre der Grosshirnrinde

in 1909. Brodmann's contention (p. 305), frequently reiterated by the Vogts, that

each cortical area is an organ in itself, tied up cortical architectonics with a theory

of cortical function that threatened, under the influence of holistic views in psy-

chology and biology, to become more and more outmoded. The minute panellation

of the cortex by the Yogt school, moreover, made this theory less and less tenable.

The subject became not only difficult and abstruse, but doubts about the re-

liability of cytoarchitectonics grew until, "Unless the criteria are clearly stated

and objectively verifiable . . . architectonic charts of the cortex represent little

more than the whim of the individual student," could be written, amidst widespread

applause, by Lashley and Clark (1946).

In 1927, G. Elliot Smith, who twenty years previously had published a brain map
of his own, in reviewing the work of Economo and Koskinas, wrote: "It can be

confidently said that such a survey will not have to be done again, and that this

work will become a standard treatise of reference on the topography of the human
cerebral cortex. No doubt in the future much detailed work will be done upon

particular regions, perhaps introducing small points of modification, but the work

as a whole is bound to stand as a permanent achievement."

The work is a standard reference and a permanent achievement, yet there seem

good reasons why the human cerebral cortex should be investigated once more, why
it would be wrorth a considerable outlay of time and money to go over a ground

that seemingly has been worked over so carefully. The number of brains that

have actually been examined is not very large, nor was the state of their preservation

always as good as one might have wished. Campbell (1905), by his own account,

examined three hemispheres completely for nerve cells and nerve fibers, and two

others incompletely. Brodmann never gives precise information about his material.

The Brain Institute under Vogt's direction possessed, when Brockhaus (1940) pub-

lished his paper, at least seven hemispheres. We find, in the last two volumes

(49, 50) of the J . f. Psychol, u. Neurol, mention of eleven normal human brains

serially sectioned for anatomical study. These brains were removed about ten hours

postmortem (C. & O. Vogt, 1942) and put into a 10 per cent neutral formalin

solution. When it is realized that one brain was not fixed until twenty-four hours

after death, and when one of Vogt's pupils (Strasburger, 1937) mentions that the

staining occasionally had to be corrected by means of a camel's-hair brush, one's

desire for corroboration grows. Economo and Koskinas evidently had three brains,

but took "most" of their photographs from one and the same hemisphere. Their

material was fixed by immersion into formalin at some unstated time after death.

Only for the occipital lobe (Economo, 1930a) the supratemporal plane (Economo
and Horn, 1930; Kakeshita, 1925) and a few other areas do we have more plentiful

information except for that which is contained in the studies of the Brain Institute

of Moscow (only the first four volumes of which were available to us), difficult to
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obtain and in Russian. According to Blinkow and Poliakov (1938) the Moscow
Institute possessed at that time "over 30 series of complete microscopic sections

through the entire brain hemispheres of an adult." Whatever might be the meaning

of this ambiguous statement, the study of yet another brain, properly fixed and

stained, seemed desirable in any event.

The importance of proper material for anatomical study was known already to the

ancient Hindus. Through the kindness of Colonel J. E. Ash, then Director of the

Armed Forces Institute of Pathology, we came into possession of a particularly

perfect brain removed from a young healthy adult male, who died of an accident

without injury to the head. The brain was removed within one hour of death after

perfusion through the arteries with a 4 per cent aqueous solution of formaldehyde;

it weighed, after fixation, 1,347 gm.; and will be referred to henceforth by the sym-

bol H. Subsequent study proved the brain to be uniformly fixed throughout.

The unsuitability of the brains removed many hours after death, and fixed in

the usual way by immersion in formalin, should be evident to anyone, and the

histological preparations made from them show clear evidences of pathological

alteration. We might cite, as an example, the drawing of the cortex given by Ram6n

y Cajal (1911, tome II, Fig. 334, p. 522). It could serve well, without alteration, in

a textbook of neuropathology to illustrate severe acute degenerative changes of

the ganglion cells. The superiority of brains immediately injected through the

arterial system over those removed after the body has been kept in refrigeration

for twenty- four hours, or even those removed immediately and immersed in the

fixing fluid, has been recognized by M. Rose (1929), Bartelmez and Hoerr (1933),

Barnard (1940), and many others.

The immediate reason why we decided to embark on this renewed investigation

of the human cerebral cortex is found in our previous work on macaque and chim-

panzee. That work was undertaken to lend precision to the results of physiological

neuronography performed on these primates and to be applied, so it was hoped, to

man. But, in the process of our studies, it became clear that the precise homology

of which we had dreamed could be achieved only when maps of all three primates

—

man, chimpanzee, and macaque—had been drawn up by the same observers.

As our work on cytoarchitectonics progressed, it became increasingly apparent

to us that more than local patchings were required, as Lashley and Clark have also

found. What was needed was to state as objectively as possible those architectural

types that can be clearly distinguished, but to refrain from giving quite secondary,

obviously unimportant, details the same critical value. Anybody can see, to give an

example, the difference between Brodmann's areas 17 and 18. But the differences

between his 18 and 19 are quite tenuous and very difficult to recognize. To draw

a map on which these three areas are given three different markings—such as dots,

cross-hatchings, and broken lines—is to create an entirely misleading impression.

Useful as such maps are for the description of corticocortical connections, they do

not translate accurately cytoarchitectonic data. The frontispiece of this monograph

is drawn on a different principle (see opposite title page) from those used for the

macaque (Bonin and Bailey, 1947) and chimpanzee (Baile}', Bonin, and McCulloch,

1950). In those maps colors were used mainly to facilitate the portrayal of regions

of transitional structure and many areas were distinguished largely for the purpose
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of describing the findings of the method of physiological neuronography without

much regard for degree of differentiation.

This is not to deny that such subtle and minute distinctions can be made; it is,

however, to deny that, at least at present, they serve any useful purpose. Coming
from subhuman primates we are more impressed, as will appear in the course of

this monograph, by the astounding homogeneity of the human cortex than by its

divisibility into a host of elemental organs as Brodmann would have it. To present

a new analysis of the adult human cerebral cortex to modern neurologists, who do

not rush at once to questions of functional localization, seemed amply justified.

Most students of cytoarchitecture have been "arrested in the Nissl stage" as

Rioch (1948) put it to one of us. But how can we progress beyond it? That myelo-

architectural studies are less reliable than cytoarchitectural ones was noted by

Vogt (1906a) and confirmed by Brodmann (1909), although some of their pupils

seem to have forgotten it. Myelin preparations show only a fraction of the axonal

plexus, but no dendrites. The way in which the axons break up into telodendria, the

unmyelinated collaterals, as well as the type of the synapses can be seen only in

Golgi preparations. Lorente de N6's (1949) description of the cerebral cortex is

based on Golgi preparations of the mouse. His account may be valid for man, but

we have only fragmentary data with which to check it, mostly old observations of

Ramon y Cajal (1911). Other silver preparations are utterly unsuited for archi-

tectural studies, as Cajal noted long ago. They show so many bewildering details

that one cannot see the wood for the trees. In the case of Golgi preparations, so

few cells are impregnated that again the architecture of a given area cannot be

made out. Unfortunately, the full details of the axons and their collaterals in the

adult brain cannot be demonstrated by any method. The Golgi method will im-

pregnate them onty in newborn material where they are most probably not yet fully

developed; Ramon y Cajal (1911, vol. 2, p. 536) remarked that collaterals are not

demonstrated by the Golgi method until 1-1.5 months after birth. It is well to keep

these limitations in mind. The microphotographs of Flexner and his co-workers

(see Peters and Flexner, 1950) suggest the phaseshift microscope as a promising tool.

We became aware of it only after our brain had been sectioned and stained.

Racial differences in the sulcal pattern have frequently been discussed, and their

existence is indeed implicitly assumed, or at least suspected, in many of the titles

which the studies of the sulcal pattern bear. Weinberg (1905), Landau (1911, 1914),

Shellshear (1926, 1937), van Bork-Felkamp (1930), Connolly (1950) could be cited.

It is true, of course, that thoughtful anatomists such as Tiedemann (1836), Stieda

(1908), or Kohlbrugge (1908) were skeptical about racial differences and loath to

interpret individual differences in the sulcal pattern as signs of mental inferiority or

superiority. "My intention was to shake the belief in the importance of gross exami-

nation of the brain and to undermine the opinion that individual differences of

gyri and sulci are of importance for mental functions" was Stieda 's concluding

sentence.

It is, however, the architecture of the cerebral cortex which is the main topic of

this stud}'. The incredibly complicated spatial pattern in which the neurones are

arranged within the cerebral cortex still defies a thorough understanding, as the

following pages should make clear. But this lack of understanding is precisely the
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reason why repeated discussions are necessary, or at least felt to be so, by those who
disagree with what has been said before.

Although convinced that structure determines function, we do not believe that

one can discourse about function by taking one's eyes off the microscope and leaning

comfortably back in one's chair. That needs further work, of a different kind, outside

the scope of this study. What we propose to do here is to analyze the architecture

of the cortex. The reader has been told how best to preserve a brain for such studies.

From now on, we are afraid, the cortex will be dead; to bring it back to life we must
leave to others.

It is impossible to present a subject such as cortical architecture in an inductive

manner as it can be—and generally is—approached in the experimental sciences.

For a classification into types, be it of species or genera or be it of cortical areas, is

still arrived at by intuition rather than by objectively stated rules. Our study

proceeds, therefore, in the same way as those of our predecessors. The architectural

types are described first, although the method of induction would demand them to

be put last. We shall then tax the reader's patience by taking him through the whole

cortex block by block. The next chapter will discuss the brain map which appears

to us the logical outcome. It differs from those given previously, hence it is necessary

to take issue with those authors from whose opinions we differ. We hope to justify

our beliefs without unduly sharp criticisms. The chapters that follow, on cortico-

cortical and afferent and efferent connections, tend to round out our picture of the

isocortex of man, of which the last chapter will give an impressionistic sketch.

Figure 113 has been reproduced by kind permission of the Oxford University

Press. We are especially indebted to Mrs. Emily Rashevsky, who prepared for us

a literal translation in English of the entire first four volumes of the studies from

the Brain Institute in Moscow. Dr. George B. Hassin also helped us with the

Russian literature and Dr. Arnold Zimmerman with the Italian. All translations

from the German were made by Dr. Gerhardt von Bonin and from the French by
Dr. Percival Bailey. We are much indebted also to the artists, Lillian Hunter and

Jane Kobukata; to the photographers, Lawrence Toriello and Lorraine Genovese;

to our secretaries, Beatrice Kahn and Dorothy Duncan; and especially to our

technician, Cherie Imai, who skillfully and patiently prepared the multitudinous

sections. To the continued interest and forbearance of Professor Eric Oldberg and

Professor Otto Kampmeier we owe the time to devote ourselves to these laborious

studies ; to the patience and understanding of the staff of the University of Illinois

Press we owe the beauty of the presentation and to the Office of Naval Research,

Task Order III, the necessary funds. May the result be worthy of their confidence.

November 1, 1950 P. B.

G. v. B.
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Chapter I : Historical Introduction

It must, however, be owned, that all that both Ancients and Moderns have told us about

the Brain is so uncertain, that the Books which contain the Anatomy of this Organ may
be said to be chiefly a Collection of Doubts, Disputes and Controversies; but still a great

advantage may be made of their Labour, and even of their Mistakes.

Nicolaus Stenonius (1665)

A white line in the cortex near the calcarine fissure had been noted independently

by Gennari in 1782 (see Fulton, 1937) and Vicq d'Azyr (1786). It was known to

Blumenbach (cited after Soemmerring, loc. cit., p. 70) and Soemmerring (1788).

But this line of Gennari (or of Vicq d'Azyr, as it later became known) remained for

long an isolated, purely anecdotal fact. This is hardly surprising, for at that time

the cerebral cortex was held to be quite unimportant functionally, consisting prob-

ably of minute glands. Nerve fibers almost exclusively held the attention of anato-

mists who looked upon the white matter, the centrum ovale of Vieussens, or upon

the ventricles where the fibers were thought to end, as the seat of the

mind. Baillarger (1840) was the first to investigate seriously the structure of the

cerebral cortex. He demonstrated the intimate connection between the white

matter and the gray matter of the cortex and thus ushered in our modern concep-

tions of cortical function. Meynert (1867-68) first attempted to relate regional

structural differences in the cerebral cortex to its function. He avowedly set out to

prove or refute certain theories about the brain. To quote him verbatim: "The

main function of the central organ is to transmit the fact of existence to an ego

gradually shaping itself in the stream of the brain. ... If we look upon the cortex

as an organ functioning as a whole then all that can be said is that it subserves the

processes of the mind. . . . To think further about the cortex is impossible and

unnecessary . . . but our hope to understand eventually the function of the hemi-

spheres is raised again by the opposite assumption which leads us straight to an

organology of the cortical surface. . . . Between these two theoretical possibilities

the facts have to decide." Meynert gives then a detailed account of the structure of

the cerebral cortex in general, of what is now known as the visual area in particular

where he describes the solitary cells which still bear his name, and devotes a large

space to an analysis of the hippocampal formation, the olfactory lobe, and the

septum pellucidum. He ends by distinguishing between cortex with gray surface

and cortex with white surface. The former is subdivided once more into 5-layered

and 8-layered cortex; the latter is subdivided into the three types just mentioned.

To speak in modern terms, Meynert thus divided allocortex from isocortex, and

analyzed within the isocortex in detail the peculiar structure of the striate area.

His formulation of the problem and his term "organology of the cortex" are perhaps

of equal historical importance.'

'"Spate Fischer werfen dann die Netze,

Spate Taucher in den Tiefen spah'n

Und es segnet uns'res Erbes Schatze

Ein Geschlecht, fur das wir untergeh'n."

to quote Meynert once more.

1
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Soon afterward the motor area was discovered by Betz (1874). In the precentral

region of man, of the chimpanzee and other primates, and of the dog, he described

the giant pyramidal cells which still bear his name. Comparing his findings with the

results of electrical stimulations, he deduced the motor function of the cortical

center which he had discovered. In 1881 Betz published, in both French and Ger-

man, a brief account of his cytoarchitectonic studies. These accounts are evidently

translations from a Russian original. Each text contains obvious errors, usually

readily corrected by comparison with the other, but some points remain obscure.

Nevertheless, the account seems to us of sufficient importance that we have

prepared an English version, as accurate as has seemed to us possible without

having the original Russian text at our disposal. Unfortunately, the atlas promised

in the last paragraph was never published (Benedikt, 1906).

By means of the present communication, I shall try to give the anatomical proof of the

existence of specific regions in the human cortical substance, which are distinguished from

one another as much by the form as by the disposition of their integral parts.

These regions of the cortical substance are found at the surface of the human brain in

definite and constant situations. The variations in their structure may serve as criteria for

their different physiological functions.

The general type of the structure of the human cerebral cortex is the following : the cortical

substance consists of five different layers which, from without inward, are superimposed on

one another in the following manner

:

The first layer consists of a thick network called neuroglia in which are strewn, here and

there, small granular bodies.

The second layer contains, besides the neuroglia (which, moreover, all the layers contain)

pyramidal cells not too large which, not very near each other, have their apices directed

toward the first layer, the base toward the bottom.

The third layer is composed of the same pyramidal cells, only two or three times larger,

but in compensation less numerous and further apart from one another.

The fourth layer, called the granular layer, consists of small, round or elliptical cells.

The fifth layer finally consists of specific fusiform cells.

This structure of five layers may be considered as the general type of the cortical sub-

stance. Up to the present time, one has observed only a few particularities relative to the

structure of the cortical substance, and for only a few parts.

Thus, Meynert has demonstrated that the third layer (pyramidal layer) is lacking in the

cortical substance around the calcarine fissure, but that instead one encounters there two

granular layers separated one from the other by layers of nerve fibers. In these layers of

fibers are found, solitary or in pairs widely separated, pyramidal cells of considerable size.

Besides that, it is mentioned that the cortical substance of the hippocampus contains prin-

cipally elements of the third layer and that the claustrum is composed of elements of the

fifth layer. Finally, according to my investigations, the cortical substance of the anterior

central convolution and of the lobulus paracentralis contains gigantic nerve cells situated

by groups in the form of nests.

That is all which, up to the present time, one knew on the subject of the peculiarities of

certain regions of the cerebral cortex. By the study of 5,000 preparations examined by me
during recent years, and coming from the right and left hemispheres of the same individuals

(male brains, female, of all ages, even of an embryo of seven months, of newborn and infants

of six weeks), I have obtained the following results:

Almost every part of the cortical substance of man, even the most insignificant, be it in

the form of a lobule or a characteristic convolution, be it in the form of a part of a convolu-

tion, is distinguished by a specific structure.

This last consists of quantitative variations (different thicknesses) of each of the five

elementary layers of the cortical substance which, sometimes larger, sometimes smaller,

occasionally separated by elements not corresponding to the general type, present sometimes
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new forms of cells or cells grouped differently or finally are distinguished by the total lack of

certain layers. It is especially the disposition of the third layer which varies. One finds it more
or less large, more or less dense, in its proper place or replacing the second layer; sometimes

it is found above the fifth layer.

These principal characters of the peculiarities of the structure of the cortical substance

of man are repeated precisely in the same regions on the surface of the most different brains.

It happens that the type corresponding to certain convolutions occupies, on one brain or

on one hemisphere, a larger extent; in this case one finds in the corresponding region of the

cortical substance a greater or lesser number of convolutions or lobules. Certain parts of the

cerebral cortex are distinguished by the most remarkable constancy of the limits of their

characteristic structure which, in the most different brains, never exceeds a certain region.

As specially characteristic are distinguished the structure of the following regions of the

cortical substance:

Of the anterior central convolution;

Of the arciform convolution (gyrus cinguli)

;

Of the hippocampus;

Of the third frontal convolution

;

Of the lobulus paracentralis;

Of the gyrus lingualis;

Of the lobulus extremus; and
Of the ventral extremity of the polus temporalis.

The anterior central convolution, from the superior limit of the inferior third toward the

vertex, shows the following peculiarities: in the first place one encounters, above the fifth

layer, large cells, solitary or in pairs, very far apart from one another. Higher up, these cells

are grouped by threes or fours, in the form of nests, and less distant. Still higher up, these

groups are composed of a larger number of cells; they contain at least four, sometimes five,

and even as many as seven. At the same time these cells pass, from their first place above the

fifth layer, to the third, where they are disposed in the form of a continuous line; moreover,

one finds them isolated in the second and fourth layers, or even in the fifth. Toward the

lobulus paracentralis, this layer breaks up again into nests and, in the lobulus paracentralis

itself, the cells are distributed in layers one above another or in nests differently grouped.

The nearer one approaches this lobulus the larger these cells become until, in the lobulus

itself, they have the appearance of true giant cells.

They are found only in the anterior central convolution, but never [sic] extending to the

posterior central convolution.

They reach the deepest parts of the central fissure, and it is only in brains of older subjects

that they are situated in the very depths of the fissure and are found isolated on the base of

the posterior central convolution.

Before advanced age, sometimes already in the adult, one encounters these cells in the

superior part of the posterior central convolution, there where it passes into the lobulus

paracentralis.

The arciform convolution [gyrus cinguli], at its origin above the anterior part of the

lamina terminalis, is composed only of two layers: of the superior layer and of the fifth;

the pyramids of the second layer are scarcely encountered and those which are found there

are very small.

In this region, the particularity which characterizes the fifth layer consists in the disposi-

tion of those cells which, instead of being distributed as everywhere else along the base of

the convolution, are situated vertically to its section, as are the cells of the third layer of the

other convolutions.

These fusiform cells of the gyrus cinguli are much larger than those of the fifth layer (two,

or even three times as large).

Near the knee of the corpus callosum these cells are found, one might say, pushed toward

the bottom by the second layer, here very thick. In the middle of this convolution, there

appears again the granular layer, as well as the pyramidal cells of the third layer, but these

last are much smaller than in the other convolutions.

There where the gray layer touches the transverse fibers of the corpus callosum, above this
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latter, appear three new layers, beginning at the posterior half of the gyrus cinguli. One of

these layers, the inferior layer, consists of longitudinal fibers, which form an arc above the
superior part of the corpus callosum. The second, the gray layer, is composed of small py-
ramidal cells or of fusiform cells of considerable dimensions. As these layers approach the
posterior extremity of the gyrus cinguli, they gain in dimension, occupying nevertheless only
the inferior border and the internal inferior face of this convolution.

There where the gyrus cinguli passes over into the hippocampal gyrus the layer of large

cells enlarges suddenly and forms the internal layer of cells of the hippocampal convolution
(already known). The new granular layer becomes the known granular layer of the hippo-

campal convolution, and the white layer of longitudinal fibers of the gyrus cinguli spreads
along the surface of the hippocampus and, enlarging always, forms its granular white sub-

stance (substantia reticularis alba) ; then it transforms itself into the very substance of the
hippocampus where, as the imperfect white wall, it has been described by Meynert under
the name of granular sheet (Kernblatt), a denomination moreover which is not justified.

In this way, what the authors call taenia tecta etfasciola cinerea are the integral parts of the

hippocampus developed independently on its posterior half and sometimes even more
anteriorly. As a peculiarity of the extremity of the hippocampal convolution and of the

entire extremity of the polus temporalis, one must remark that one there encounters the

pyramidal cells of the third layer again immediately under the first layer. It is here that they
are disposed quite singularly in the form of great round groups separated from each other by
considerable intervals ; the pyramidal cells of these very groups lie in the most different direc-

tions; their distribution resembles a ball of yarn. It is for this reason that I call them cortical

balls (glomerula corticalia).

On the third frontal convolution one discerns three segments which may be distinguished

by their cortical substance. The posterior segment reaches from the extremity of the anterior

central convolution to the ascending branch of the fissure of Sylvius; the middle segment,

from the latter place to the beginning of the orbital part of the third frontal convolution ; the

third segment finally (inferior segment) extends from the extremity of this convolution to

the polus insulae. The first segment shows sometimes, in its third layer, pyramidal cells

larger than those of the other convolutions of the frontal lobe. Here and there, especially in

the brains of aged subjects, are found giant cells of lesser caliber which, sometimes, extend to

the inferior extremity of the anterior central convolution. In some brains they occupy a con-

siderable part of that extremity ; this is something I have never encountered in the brains of

subjects still young.

The second segment of the third frontal convolution contains, in the second and third

layers, little oblong pyramidal cells with very long apical processes. These cells are crowded
close to one another. They have, as have their processes, an oblique position, so that they are,

one may say, interlaced with one another. The third segment of the frontal convolution,

finally, contains for the most part cells of the type of those of the fifth layer, approaching in

dimension the cells of the claustrum ; they are disposed mostly perpendicularlj' to the trans-

verse section of the cortex; sometimes one encounters cells of the third layer, but they are

always very small.

One can make the same assertion concerning the insula, where one encounters also groups

of small pyramidal cells with oblong processes, as well as cells of the fifth layer, analogous in

dimensions to the cells of the beginning of the gyrus cinguli. At the very root of the operculum

Blumenbachii on the convolution of the insula of the adult, one encounters often, in the third

layer, large pyramidal cells, sometimes solitary, sometimes in groups, resembling giant cells

of medium caliber.

The gyrus lingualis is distinguished among all the others by its structure. One may dis-

tinguish in it eight layers, although the cortical gray substance of this convolution is thinner

than that of all the others. From without inward, these layers are as follows: (1) layer o

neuroglia, (2) layer of very small pyramidal cells, (3) granular layer, (4) layer of longitudi-

nal fibers—the fibers lie horizontal to the base of the cortical gray substance— (5) second

granular layer, (6) second layer of longitudinal fibers, (7) layer of triangular pyramidal cells

very far from one another, (8) layer of fusiform cells, corresponding to the type of the cells
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of the fifth layer in the general type. In some parts of tliis convolution, especially in the

middle, are encountered, in the fifth and sixth layers, sometimes even still higher, large

pyramidal cells analogous to the cells of the third layer of the general type.

The limits of the fusiform lobe, at the internal face of the cuneus and at the entire ex-

tremity of the polus occipitalis, present the same structure.

The nearer one approaches the lobulus extremus, the more one sees the seventh layer

disappear and, arrived at the extremity of the gyrus descendens, all the layers fuse, one may
say, with one another and form a compact substance of granular cells and a little fine of

fusiform cells.

The external face of the occipital lobe offers already the second and the third layer of

pyramidal cells of the general type, and sometimes one encounters these cells of a considerable

dimension; one finds them large especially at the convexity of the convolution. The same
structure of the cerebral cortex is remarked in the three occipital convolutions of the gyrus

angularis, which often is transformed into a lobulus, even a lobe, and in the transitional

superior gyrus (pli de passage) of Gratiolet. In this last, the solitary cells of the third layer

are much larger than the cells of this same layer in the lobus occipitalis and, by their appear-

ance, this convolution is clearly distinguished from the extremity of the superior temporal

convolution. In ripe age, and sometimes even at a young age, one sees, in certain parts of the

gyrus angularis and at the extremity of the anterior limit of the occipital convolutions, that

the third layer is separated into two belts superimposed and separated by a layer of small

pyramidal cells. This same structure extends just to the temporal convolution, where it

stops abruptly.

The posterior central convolution and the superior and inferior parietal lobules offer a
structure of general type.

Sometimes, in aged brains, the third layer of the posterior central convolution penetrates

into the second layer and almost always one encounters, at the superior extremity of this

convolution, giant cells. I have already mentioned this fact.

Often one finds in the third layer of this convolution, in its superior part, pyramidal cells

of considerable dimensions.

The three temporal convolutions are distinguished by the great dimensions of their fifth

layer and by the little cells of their third except, nevertheless, the polus temporalis which was
mentioned above.

The two hidden temporal convolutions (gyri parietotemporales et gyri temporales

transversi) recall, by their structure, the posterior central convolution. There one encounters

also, here and there, sometimes solitary, sometimes grouped, cells which by their dimensions

resemble small giant cells. The structure of the lobulus quadratus (praecuneus internus) is

the same as that of the superior parietal lobe but, on the highest part of its border, one en-

counters, in the third layer and above the fifth layer, two lines of pyramidal cells. The frontal

convolutions, with the exception of the inferior, are distinguished by the following peculiari-

ties: The superior frontal convolution and its internal face contain, in the third layer, rather

large pyramidal cells. This layer is thick and extends to the fifth, from which it results that

the granular layer (fourth layer) is very small and enlarges only over the anterior third of

this convolution. As the granular layer augments, the third layer diminishes toward the

extremity of this convolution, just as its elements which become smaller and rarer.

One can make the same affirmation concerning the second frontal convolution, although

on this last the granular layer, from its beginning, is more distinct.

In older brains, one encounters sometimes giant cells of lesser dimensions, but they are

only found at the beginning of the frontal convolutions.

The gyrus rectus resembles greatly the anterior part of the gyrus cinguli. The other orbital

convolutions are not to be distinguished essentially from the extremity of the frontal convo-

lutions. Nevertheless, the granular layer predominates there. Only as one advances toward
the point of this triangular lobe, one sees the pyramidal cells diminish in size and number.

At the posterior and internal extremity of these convolutions one sees the fifth layer gain in

dimensions; it becomes especially of a considerable size.

My atlas of the surface of the human brain will treat in more detail of what I have just

said, as well as of the structure of the convolutions.
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The locations of the areas which Betz described are fairly clear except for the

lobulus extremus. We have been unable to find any such term in the older descrip-

tions of the gyri of the human brain. His account of its structure seems to fit best

the retrosplenial region.

From Benedikt (1£06), who knew Betz personally, we learn that he gave up his

position in the University of Kiev to become physician to the Southern Russian

Railroad and that his atlas was never published. He was a perfectionist, never

satisfied with his work, as Benedikt adds. Betz saw very clearly the import of his

work on our conception of the cortex. "It follows from what has been said that the

present conception of the topography of the surface of the human brain, based as it

is sometimes on the most detailed investigation of the sulci, sometimes on com-

parative anatomy and, finally, sometimes on ontogeny, is inapplicable to the adult

brain. The brain and its convolutions can be subdivided only on the basis of dif-

ferences in the anatomical structure."

A remarkably detailed subdivision of the cortex was achieved by Flechsig (1898)

by the myelogenetic method, i.e., by studying the spatio-temporal distribution of

myelination of the fibers in the white substance immediately subjacent to the

cortex. In 1898 Flechsig described forty cortical fields. Numbers 1-8 were primordial

areas; numbers 9-32 intermediate ones; and numbers 33-40 terminal ones. Flechsig

considered the first eight as sensory areas, the others as association areas. The
terminal areas were those which distinguished the human brain most clearly from

those of the anthropoids [the third frontal convolution nowhere belongs to them].

Throughout, Flechsig alludes frequently to local differences in cortical architecture,

even in the brain of the hamster, without, however, ever giving details. Flechsig's

papers and books contain a wealth of information and ideas; they deserve much
closer study than is now generally devoted to them. In spite of Vogt's adverse

criticism (1906a) it may be doubted whether cyto- and myeloarchitecture would

ever have led to such detailed maps without Flechsig's example. Later Flechsig

made alterations in his map and increased the number of areas. Although he pro-

tested (1901) when Hitzig drew a map without his authorization, we have taken

the liberty of drawing one from his data given in 1920 (Fig. 1). In this map the

cross-hatched zone is myelinated at birth; the zone of parallel lines is myelinated

between birth and one month after birth; the clear zones are myelinated later.

Analysis of the cerebral cortex received another impetus from Hammarberg
(1895). This young Swedish worker, whom a fatal appendicitis removed far too

soon from a promising career, was primarily concerned with the brains of idiots.

To do a thorough job, however, he had to describe and measure normal brains

and, in the course of that work, he demonstrated the cytoarchitecture of some

areas, giving the only numerical data available before Economo and Koskinas

(1925).

Cytoarchitecture in the modern sense of the word got under way shortly after

the turn of the century, with Campbell (1905) and Brodmann (1907). "Localiza-

tion" appears in the title of both their studies, since they both took function

localization for granted. That this conception had its root in the phrenology of

Franz Josef Gall is too well known to need retelling. Its early history, particularly

as it relates to the study of aphasia, has been given by Head (1926). In the latter

part of the nineteenth century, the facts about the sensory and the motor function
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Fig. 1. Myelogenetic map of the cerebral cortex. Redrawn and altered slightly from Flech-

sig. Cross-hatched—primordial areas; lined—intermediate areas; plain—terminal areas.
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of the cortex added, or so it seemed, new proofs to the theory of localization of

function. That these functions were based more on extrinsic connections of these

areas with other parts of the nervous system than on their intrinsic structure was,

if not overlooked, then at least not investigated systematically.

Brodmann and Campbell followed Flechsig's example in publishing cortical maps
(Figs. 2 and 93, seep. 190), and soon one textbook after another copied at least one

of them. Brodmann never gave a detailed description of the areas indicated on his

map of the human brain. He had done that only for the cercopithecus (1905);

external circumstances and his untimely death prevented him from publishing a

similarly thorough analysis of the human brain. It is strange that for many years

the scientific world has accepted statements, and built upon them, for which no

direct proof had ever been given.

The forty odd years which have elapsed since the classical period of cytoarchi-

tecture have seen attempts in two directions. There was clearly a job for the com-

parative anatomist. Brodmann and Campbell had made forays into that field, but

there was obviously work for several generations. Mott, Woollard, and LeGros

Clark in England, the Vogts and their associates in Germany contributed to our

knowledge, which was reviewed, as far as it was germane to anthropogenesis, by

LeGros Clark (1934). Brodmann 's original conception of an increasing differentia-

tion during evolution seemed amply confirmed. It is well to remember that, for

Brodmann, differentiation meant higher perfection. It seemed to him logical,

therefore, to expect and to search for ever more detailed subdivisions of the human
cerebral cortex. Indeed, the Vogts and their coworkers described more than a

hundred different areas in the human brain on the basis of myeloarchitectural

studies. This was imposing, but also quite bewildering. For not everyone saw the

subtle distinctions which the Vogts described and, while politely admired, the teach-

ings of the Vogts had little influence (except for Foerster) on general neurological

thought. Even the grandiose attempt of Economo who, with Koskinas (1925), pub-

lished a voluminous atlas and gave a detailed description of each area, did not mend
matters a great deal. By and large, Economo (1927) kept close to Brodmann's

areas. Lorente de N<5 (1949) once called it an "unsystematic elaboration" of

Brodmann. M. Rose's (1935) account of the isocortex is little more than an abstract

of Economo and Koskinas.

Since Brodmann's classification was based on ontogenesis, there was need for

more detailed knowledge of cortical development. M. Rose (1926) has published an

elaborate classification of the cerebral cortex based on its histogenesis as follows:

I. Cortex seniiparietinus sive striatalis [semicortex (Regio praepyriformis, Tuberculum
olfactorium, Regio periamygdalaris, Regio diagonalis, Septum pellucidum)].

II. Cortex totoparietinus sive pallialis (Totocortex)

.

a) schizoprotoptychos (Sehizocortex)

.

a) parvumstratificatus (Regio praesubicularis, Area perirliinalis).

(3) multistratificatus (Regio entorhinalis).

b) Holoprotoptychos (Holocortex)

.

a) bistratificatus (Cornu Ammonis, Subiculum, Taenia tecta, Fascia dentata,

Regio retrobulbaris).

/3) quinquestratificatus (Regio infraradiata, Regio subgenualis, Regio retrosplenialis

granulans, Regio retrosplenialis agranularis)

.

t) septemstratificatus (Regio frontalis, Regio parietalis, Regio temporalis, Regio

occipitalis)

.
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Fig. 2. Campbell's map of the cerebral cortex.
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III. Cortex pallio-striatalis sive bigenitus (Bicortex).

a) quatuorstratificatus (Area praepyriformis I).

0) septem- (octo) stratificatus (Regio insularis agranularis).

7) novemstratificatus (Regio insularis granularis et propeagranularis)

.

After a long, detailed study of the morphogenesis of the cerebral cortex, Ed.

Beck (1940) concluded that "Rose's teaching concerning the histogenesis of the

cortex is incorrect in all of its statements and, therefore, has shown itself to be

erroneous."

Filimonoff (1947) has also criticized the system of Rose. He states:

Our classification is based on quite another concept than that of Rose which, in our opinion,

is particularly erroneous with respect to his "schizocortex." Rose considers this portion of

the cortex in contrast to his "holocortex," presented in his scheme as a unit and including

such actually heterogeneous structures as the isocortex and Amnion's cortex. Our investiga-

tions would show that the relations are just the reverse: The schizocortex ("periarchicortex"

in our terminology) occupies a place intermediate between Amnion's cortex (archicortex)

and the isocortex, since Amnion's plate can by no means be considered as a homologue of

the isocortical plate. Our understanding of the semicortex (cortex semiseparatus, not cortex

semiparietinus in the sense of Rose) is also entirely different. The cortex bigenitus occupies

an intermediate place between the isocortex and the allocortex both in our classification

(perisemicortical zone) and in the Rose system (between the cortex totoparietinus and the

cortex semiparietinus). However, we understand this intermediate position in a quite dif-

ferent sense, since our concept of the genetic character of the claustrum is quite a different one.

Filimonoff summarizes his system as follows

:

The main territories of the cerebral cortex are designated in our scheme as cortex com-

pletus or isocortex (after 0. Vogt) ; cortex incompletus, or allocortex (after 0. Vogt), but with

considerable limitations (allocortex sensu strictiori), and cortex intermedius, or periallo-

cortex.

The cortex completus, or isocortex, includes the whole territory within which the end

brain wall is characterized, even in relatively early stages of development (27 mm. stage

in our material), by the presence of all the fundamental layers of His, including the clearly

differentiated cortical plate.

The cortex incompletus, or allocortex sensu strictiori, includes, first, the semicortex, or

semicortical zone, to which belong the tuberculum olfactorium, the diagonal zone, the septum

pellucidum, the periamygdalar region, and the prepiriform region, but the latter only partly,

since, as a matter of fact, it presents a transition from the semicortex sensu proprio to a

cortex of higher type, namely, the cortex intermedius (perisemicortex) . The second main

territory of the allocortex is represented by the archicortex, or the archicortical, or Amnion's

zone, which includes the subiculum, the cornu ammonis, the fascia dentata, and the tenia

tecta (indusium corporis callosi).

The cortex intermedius, separating ... the semicortical and archicortical zones (forming

together the cortex incompletus) from the cortex completus, is divided, like the cortex in-

completus, into two zones—the perisemicortical and the periarchicortical zone.

The perisemicortical zone includes the intermediate insular formations and partly also

the prepiriform region, which can thus be referred to the semicortex in a rather conventional

sense.

The periarchicortical zone includes the presubicular and the entorhinal region.

The presubicular region is situated in the immediate neighborhood of the archicortical

zone and surrounds it almost completely. It is, accordingly, represented not only by the

temporal but also by the retrosplenial, supracallosal and subgenual parts.
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Most of this controversy is irrelevant to our study, since we deal with the iso-

cortex, but it should be remarked that we propose to include under this term most

of the insular cortex and the anterior limbic cortex which Rose did not include in

his holocortex septemstratificatus.

Recently Eduard Beck (1950) has begun to publish again and Elisabeth Beck

(1949), in England, has made a study of the orbital frontal cortex which differs

little from the analysis of Economo. The attempts of Mettler (1949) to reconcile

Brodmann and Economo might also be mentioned. These latter studies have been

provoked by the extirpations of neurosurgeons in their attempts to found a psycho-

surgery.

Various pupils of the Vogts have been elaborating on the old Vogt scheme, using

cell- as well as myelin-preparations. Gerhardt (1940) has analyzed in detail the

parietal lobe, Ngowyang (1934b) and Strasburger (1937) the frontal lobe, M. Rose

(1927) the limbic lobe, Brockhaus (1940) the island, Kreht (1936) and Knauer (1909)

the inferior frontal gyrus, and Lungwitz (1937), M. Vogt (1929) and Ngowyang
(1934a) the occipital region.

The Russian school at the Brain Institute in Moscow has followed traditional

lines, using the terminology of Brodmann. We possess now four elaborately illus-

trated volumes of their studies. Their chief characteristics are the insistence on

limitrophic regions and on variations from brain to brain (0. Vogt, 1929; Blinkow

& Poliakov, 1938).

The efforts of all these authors were meticulous to the point of hair-splitting, yet

they suffered, so it would seem, from a basic weakness in our understanding of the

functional importance of architectural differences and merely served to make our

knowledge of the cortex anatomically top-heavy. Indeed, until the advent of

Berger's encephalography and the oscilloscope, introduced to neurophysiology by
Gasser and Erlanger, no method to assess architectonic differences from a functional

point of view was available. What the differences in the Nissl picture or in the dis-

tribution of myelinated fibers meant for the intrinsic function of the cortex was
hardly ever asked; as early as 1899, Hans Berger, then an assistant in Binswanger's

clinic, noted the inadequacy of the available methods of study for the functional

analysis of the cerebral cortex and embarked on the search which finally led him to

the development of electroencephalography. It enabled, for the first time, an

attempt to justify the areal subdivisions by appeal to other than anatomical

methods. Kornmuller (1937) made the first systematic investigation on the rabbit.

His statement that each "area" has its characteristic pattern of electrical activity

has, however, not been generally accepted. Garvin and Amador (1949) found in

the macaque significant differences from the general type in the pre- and postcentral

regions, and in the occipital region, but were otherwise unable to correlate the type

of spontaneous activity (under Dial or local anesthesia, recorded with ink-writers)

with the cytoarchitecture.

The electroencephalographic record is difficult to interpret in any case since the

exact way in which it arises is not yet understood. Rosenblueth and Cannon (1942)

showed that the electrical response of different parts of the cortex to an artificial

stimulus varies and, therefore, the intrinsic structure of the cortex influences the

pattern of response. This still leaves the recognition of the responsible histological
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differences an unsolved problem. One might expect help from theoretical work.

Experimental information about the properties of single nerve cells has been pro-

vided by Lorente de N6 (1947) and the neuronal processes underlying the electrical

activity of the brain have been studied and analyzed by Bremer (1949), O'Leary

(1949), Walter (1950), and many others, yet the theoretical work has not been

carried far beyond the stage of simple random nets (see Ward, 1950). In short, we

are still severely hampered in any effort to evaluate the areal differences as to their

functional significance and any subdivision of the cortex can, therefore, be only

tentative.



Chapter II : Growth and Weight of the Brain

Since the babe is born with a forebrain almost entirely devoid of myelin, hence chemically

very different from that of the adult, man begins his pilgrimage on this earth without

cerebral hemispheres.

P. Flechsig (1S96)

In the young embryo, the cranial end of the neural tube is beyond that of the

notochord. It is known from numerous experiments that the notochordal tissue

acts as an organizer during the next stages of the development of the neural tube.

Obviously, the prechordal part of the neural tube will undergo a different develop-

ment than that of the epichordal part. To distinguish between an acrencephalon

and chordencephalon (Dalcq, 1946) appears, therefore, of greater significance than

the traditional distinction of three and, later, five vesicles. The acrencephalon is

identical with the primitive prosencephalon, the chordencephalon comprises the

mesencephalic and the rhombencephalic vesicles. Kingsbury (1922) held many
years ago that the acrencephalon never possesses a true floor plate and basal

plate but consisted exclusively of alar plate and roof plate. Even now, when it is

recognized that the differentiation into these components is brought about by the

notochord, Kingsbury's ideas still serve to demonstrate the futility of applying

the concepts of segmental anatomy to the forebrain.

That the differentiation of the prosencephalon into telencephalon and diencepha-

lon follows the development of optic vesicle and olfactory placode was shown

experimentally in amphibia. But one has only to glance at Hochstetter's (1919,

1929) or Retzius' (1896) figures to convince oneself that the telencephalon shows,

in man, a vigorous growth from the very beginning, much too vigorous to be ex-

plained by the influence of an olfactory placode alone. "The development of the

nervous system is the result of many factors. Among these factors some . . . are

inherent in certain regions of the embryonal nervous system, and are evidently

inherited " (May, 1945).

The differentiation of the telencephalon into pallium, basal ganglia, and rhinen-

cephalon is too well known to be retold here once more in detail. The formation

of the cortex within the pallium was studied by Vignal (1888), His (1904), and

Ziehen (1906). Vignal (1888) recognized the gradual change in the character of the

cells constituting the cortex. He saw the first appearance of the molecular layer at

the end of the first month and the differentiation of the white matter between the

second and third months. His (1904) appears to have been the first to put forward

the conception that the cells forming the cerebral cortex migrate from the ependyma

to their definitive position, a conception that was to be elaborated by M. Rose

(1926) and made the basis for a complicated system of cortical types (see p.

8). This migration begins at about eight weeks of embryonal life; it continues

—

with gradually diminishing density, one should expect—all through fetal life and

even a short time after birth (Melius, 1912). But the prenatal growth of the cortex

is not an approximately linear function of time. In the pig's fetus Flexner, Flexner,

13
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and Strauss (1941), who give excellent photomicrographs, observed from 55 to 61

days a rapid growth of the cortex. The cells increase in size, change from a round

to an oblong shape, and show an increase in Nissl substance. Then things appear

to settle down for a while, to be followed by another spurt between 90 and 108 days,

when the cells begin to assume the shape of adult neurons and when, a few days

later, fissuration of the cortex begins. In the fetal guinea pig Peters and Flexner

(1950) observed "a series of sharply defined morphologic and biochemical changes"

at a gestation period of 41 days. In man, Scammon and Hesdorffer (1935a) found

a "very rapid increase" of the cerebral surface in the fourth lunar month and

"a very vigorous increase" in the seventh and eighth lunar months. One is tempted

to generalize to all mammals. Koch's (1913) observations show, however, that the

time scale may vary widely from species to species. The newborn rat's cortex is,

as far as its chemical composition is concerned, as immature as that of a 100 mm.
pig embryo. Areal differences of the human cortex can be distinguished in the

seventh month (Lorente de No, 1934; Wen, 1933) and are well pronounced at

birth. But the cortex of the newborn (Conel, 1939) is still immature. Its cell density

is higher than it is later. The fibers of the white matter subjacent to the cortex as

well as those within the cortex are in many areas (see p. 7) still without stainable

myelin sheaths. Moreover, the areal differentiation has not yet attained its full

measure.

The increasing importance of cytochemical and similar studies makes it desirable

to review briefly some chemical investigations on the fetal cerebral cortex before

considering the growth after birth.

Hyden (1947) has recently pointed out that the outgrowth of axons during

maturation demands a tremendous increase of substance, e.g. an axon of an

anterior horn cell contains about one thousand times more volume than the peri-

karyon from which it stems. This order of magnitude may also be correct for the

cortical cells which give origin to the pyramidal tracts. From the very beginning,

the cytoplasm of nerve cells and their nucleoli are rich in polynucleotides. That the

increase in proteins as well as in lipids progresses unevenly has been known for

a long time and has recently been reviewed by Needham (1931) and May (1945).

As Koch and Koch (1913) pointed out, proteins and some phosphatids are the

main constituents of the brain during the early stages of development. After

birth, when medullation begins [Koch and Koch worked on the rat], phosphatid

formation flares up. During a concluding period of growth, the increase in all sub-

stances, excepting cerebrosides, slows down. These latter "come into view [in the

rat!] between the 20th and 40th day after birth. . . . They contribute a large share

towards medullation."

An increase in cerebrosides after birth was found in man by Schuwirth (1940) who

investigated the lipids of the growing human brain with modern methods.

Kluver (1944 a and b) showed that the white matter of the cerebral hemisphere

contains a coproporphyrin. Investigating growing rats he found that it appears first

in the spinal cord, and later at successively higher levels. The postnatal develop-

ment of the nervous system is characterized by an "ascending porphyrinization."

Some enzyme systems have recently attracted attention. Flexner and Flexner

(1946) investigated the fetal pig. At the first spurt of growth the content of succinic
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dehydrogenase increases and continues to do so until birth when it reaches the adult

level. At the same time, i.e., about the sixtieth day of gestation, the cytochrome

content, very low previously, begins to rise, to reach a little less than 50 per cent

of the "mature" level at birth (Flexner, Flexner, and Strauss, 1941). In the rat's

brain Potter, Schneider, and Liebl (1945) found a sharp increase of succinic de-

hydrogenase after birth, together with a similar, although not quite so sharp, in-

crease of adenosinetriphosphatase.

The human cerebral cortex is, as everyone knows, by no means "mature" at

birth. Conel (1939, 1941, 1947) has traced its histological differentiation up to the

third month after birth and Aldama (1930) investigated the brains of children of

one and of five years respectively. But we know, ever since Flechsig published his

myelogenetic studies (for a review see Flechsig, 1920), that the cortex is not fully

provided with myelinated fibers until long after birth. The third frontal convolu-

tion, i.e., Broca's area, appears to have been the favorite object. Its myelogenesis

was studied by Aranovich (1939), the cytoarchitectural changes were investigated

by de Leonardis (1948), who found an increase in cell size paralleled by a decrease

in cell density, up to three years of age.

Since the brain increases in mass, although less than many other organs, up to

about twenty-five years, when the basilar suture of the skull finally is obliterated,

there must be some slight further development of the cortex, although of a less

spectacular and profound character than during the prenatal period and early

childhood. Aldama (1930) found indeed that the cortex of the five-year-old still

showed a greater cell density than that of the adult and Kaes (1907) reported an

increase in myelinated fibers up to about the fortieth year of life (see Economo

and Koskinas, 1925, p. 22).

The increase of the brain in mass was analyzed on the basis of several series of

previous observations by Dunn (1921), Scammon and Dunn (1922), Pearson (1925),

Scammon and Hesdorffer (1935 a and b, and 1936) and Grenell and Scammon (1943),

who list most of the older literature. All authors studied the growth of the brain

as a function of time. This promises indeed to throw more light on the basic proces-

ses of growth than "allometric" formulae (also given by Dunn) representing

growth as a function of body weight, which itself depends upon those processes

within the different organs one sets out to elucidate. For prenatal growth, Dunn

(1921, Fig. 34) demonstrated for the brain as a whole as well as for its major parts

what has become known since as the "neural" type of growth (Scammon, 1930).

The curve rises very gently up to the third month. Between the third and seventh

month, increase becomes more and more rapid, to continue at an even pace for the

rest of the intra-uterine development. The brain appears serenely to go its way,

undisturbed by the disproportionate development of the liver, by the stormy events

in the kidney or by the hesitating progress of the intestinal tract.

A similar behavior was found for the postnatal development of the brain by Scam-

mon and Dunn (1922) on the basis of 2,951 observations recorded in the literature

but not cited explicitly in their short communication. They felt justified in pooling

males and females, and arrived at a smooth curve rising very steeply during the first

year or so, and then gradually flattening out. After five years of age, the increase

amounts to about 15 per cent.
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Pearson (1925) analyzed the German data of Wendt, Marchand, and Bischoff

as well as the English data of Boyd and found—evidently by inspection; details are not

stated—a growth curve which shows a "pubescent dip" which, to quote him ver-

batim, "is not a mere point of contraflexure but an actual depression." While Pearson

does not take issue with Scammon and Dunn, his conclusions are obviously in shaip

contrast to the concept of neural growth.

From the data of Wendt (1909), Marchand (1902), and Bischoff (1880), which

Pearson used, the means and standard errors given in Table 1 have been computed.

The graph of Figure 3 shows these results once more and shows also, as could be

proven arithmetically, that they are compatible with Scammon's conception of

neural growth. Pearson's "pubescent dip" appears to be merely a vagary of random

sampling.

Brain weight slowly decreases after the prime (twenty to twenty-five years)

with advancing age, as Pearl (1905) showed with all statistical refinement. His

results, so he stated, were "strong presumptive evidence of the essential correctness

of the conclusion reached." This regression of brain weight with age has been con-

firmed by Appel and Appel (1942) (See our Fig. 4).

Table 1

Brain Weights of Males (Pooled German Data).

Age Means
(years) (grams)

7-8 1320 ±25.0
9-10 1393 ± 45.0
11-12 1375 ± 37.2
13-14 1377 ± 25.3

15-16 1382 ±23.2
17-18 1393 ± 20.0

To weigh the human brain is not as easy as it sounds. The definition of "brain"

as everything cranial to the decussation of the pyramids might be considered as

agreed upon. But the decussation is not a point and different observers, with differ-

ent skills and perhaps different material, may sever brain from cord systematically

at a higher or lower level. When the probable error of a mean, based on a large series,

will be no more than a few grams, these differences in technique may become seri-

ous. How to treat the meninges and how to drain the cerebrospinal fluid are points

that might be considered settled; they are, in any event, under the control of

the observer and, therefore, can be standardized. What cannot be standardized,

however, is the time elapsed between death and removal of the brain, or the tem-

perature at which the cadavers are kept during that period. Chemical changes (in

the widest sense of the word) affecting the brain weight go on after death, tending

as Appel and Appel's (1942) curve (see Fig. 5) suggests, toward an equilibrium

reached after several days, that differs appreciably from the original weight.

The sampling process, too, is by no means above reproach. Almost all series are

based on the populations of large hospitals, and these are not true random samples

of the population at large, but only of the lower social strata. How economic con-

ditions can lead to changes in the dissecting room population—a much more highly

selected group, it is true—and can lead to considerable changes in estimates of

brain weight was dramatically told in a speech by the late T. Wingate Todd (1927).
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It is difficult, sometimes even impossible, to correct for all the factors just enu-

merated, and we generally have to accept the data as they are given. The older litera-

ture has been discussed and worked through by Pearl (1905); another American
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series was worked up by Appel and Appel (1942) who enjoyed Pearl's advice until

his death. Of late, interest in brain weight appears to have been lively in Italy

and in Japan, but very few contributions from other countries are available. The
male means and their standard errors, which could be computed, are given in Table
2. Males only have been given because they are for most series more numerous than
females. We have, furthermore, only given series based on more than fifty specimens.
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Fig. 4. Regression of brain weight with age at death (from Appel and Appel).
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Fig. 5. Curve of brain weight after death (from Appel and Appel).

146

There is no significant difference between Bavarian, full-blooded Negroes, Flor-

entines, Sardinians, Koreans, and Japanese. Higher than these are Hessians and
Swedes who do not differ significantly from each other. The grouping is queer and
reflects, one fears, differences in technique of measuring as much as differences due

to "race." To accept, for the species Homo sapiens at large, a male weight of 1,345

gm. appears justified. (The weighted mean of all series is 1,343.6 gm.)
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The surface of the cortex has been measured repeatedly and by several methods.

Wagner (1864) covered the surface (of brains which had been fixed in alcohol)

with gold leaf. He reports on the brain of the mathematician Gauss, the clinician

Fuchs and of a workman and a woman. His figures in cm.2 were 2,196, 2,260, 1,877,

and 2,041, respectively. Henneberg (1910) used tissue paper instead of gold leaf

and found an average of 2,226 cm. 2 for four brains. Calori (1870) was concerned

with the difference between brachycephalics and dolichocephalics. From nineteen

males of the former and sixteen males of the latter he obtained 2,438 ± 45 and

2,302 ± 40 cm. 2 (the difference, 136 =1= 60 cm. 2
, is barely, i.e., only on the 5 per

cent level, significant). Aresu (1914), who gives a detailed account, added four

males, with an average of 2,317 cm. 2
, as well as four females with an average of

2,065 cm. 2 Leboucq (1929) covered the brain with a sugar solution of known

concentration, determined quantitatively the amount of sugar used, and from these

data the surface covered. Once the constants are known, the method is rapid. Thus

Table 2

Brain Weights of Males.

Brain Weight

N (grams) Reference

Negroes (Kenya) 324 1276 ± 7.1 Vint, 1934

Americans (white) 2080 1305.3 ± 1.9 Appel and Appel, 1942

French 292 1325 ± 7.1 Blakeman, 1905

English II 117 1328 ± 9.6 Blakeman, 1905

English I 340 1335 ± 6.7 Blakeman, 1905

Negroes (American) 139 1354.8 ± 10.2 Pearl, 1934

Japanese 342 1359.5 ± 4.0 Kusumoto, 1934

Bavarians 559 1363.2 ± 3.3 Pearl, 1905

Koreans 136 1369.5 ± 5.9 Shibata, 1936

Florentines 100 1373.2 ± 6.5 Castaldi and Bray, 1934

Russians (Irkutsk) 74 13S3 ± 14.3 Chodos, 1929

Hessians 475 1391.7 ± 3.5 Pearl, 1905

Swedes 416 1400.5 ± 3.5 Pearl, 1905

Bohemians 372 1454.8 ± 4.0 Pearl, 1905

N = Number of individual observations.

for fourteen male brains, he obtained an average of 1,982 ± 26 cm. 2
, a value that

is significantly lower than that of Calori. Kraus, Davison, and Weil (1928) deter-

mined the cortical surface by measuring with a perimeter. Corrected for shrinkage

they gave 2,895.4 cm. 2 for the entire surface of both hemispheres, and 639.18 cm.2

for the visible surface (excluding the walls of the median longitudinal fissure).

The ratio of free to buried surface was given as 1:1.8-1:2.7 by Henneberg

(1910), as 1:1.97-1:2.21 by Jensen (1875), but works out as 1:4.53 from the data

of Kraus et al. if the surface in the walls of the median longitudinal fissure is ignored

or 1:2.83 if it is included.

The volume of the cortex was directly determined by Jaeger (1914) [cited by

M. Rose, 1936] using a planimeter on serial sections. He obtained 540-580 cm. 3 for

the cortex, and 400-490 cm. 3 for the white matter of both hemispheres.

The total number of cells in the cerebral cortex was estimated by Economo and

Koskinas (1925) as of the order of 1010
. Agduhr (1941) has given a critical review
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of their procedure and pointed out that the Viennese authors had not taken into

account the varying size of the nerve cells. To quote Agduhr: "The number of

cells with a mean transverse diameter of 1 mm. (at a magnification of 100X) is

to be multiplied with 0.8, those . . . with a diameter of 5 mm. by 0.333, etc."

Economo and Koskinas' estimate is, therefore, too high by a factor of 2 or 3.

Agduhr 's concluding remarks, "These . . . figures are impaired by such methodolog-

ical deficiencies that they cannot be accepted even as approximately accurate,"

are perhaps exaggerated. Nevertheless, the cell/gray coefficient, devised by
Economo (1929b) as a measure for the degree of organization of the cortex, and

given by him for the human brain, may be quite erroneous. We have not yet

determined it satisfactorily from brain HI.



Chapter III : Fissures of the Brain

A science which hesitates to forget its own history is bst.

A. N. Whitehead (1929)

With a few exceptions, the fathers of anatomy paid little attention to the cerebral

cortex and it has rightly been remarked that their drawings of the cerebral hemis-

phere "resembled more a plate of macaroni than the organ of the human mind."

Interest in the cerebral cortex began with Franz Josef Gall, of phrenological fame.

After the Napoleonic Wars the sulci and gyri of the cortex excited the intense

interest of many of the best minds among morphologists and neurologists. Leuret

and his pupil Gratiolet (1839-52), who made the first grand attempt at a compara-

tive anatomy of the cerebral cortex, set out to find a common type of fissures in

all mammals. The premise that all mammals exhibited in their cerebral fissures

only variations of a common theme, as it were, was tacitly accepted for a long time

and is perhaps still held by some workers. For it is only gradually and quite recently

realized that most classes of mammals, and among them certainly the primates,

evolved from ancestors which were quite small and had lissencephalic brains.

That these early ancestors were small can generally be directly demonstrated by
their fossil skeletons or teeth, that they had lissencephalic brains can be inferred

from the so-called law of Baillarger (1845) and Dareste (1852), pronounced first at

about the time when Leuret and Gratiolet published their monumental work. A
direct demonstration has only quite recently come forth in the case of the horse

(T. Edinger, 1948).

"The comprehensive conception of the problem which Leuret had was abandoned

by most subsequent workers," complained Meynert in 1877. More by instinct

perhaps than by clear reasoning, of the sort just indicated, most authors who tried

to elucidate the fissural pattern of the human brain by the comparative method

restricted their studies to primates.

The list of authors who studied large numbers of human brains is imposing, and

the job of describing the cerebral sulci appears to have been done with exhaustive

thoroughness.

Many of these authors searched for racial differences in the sulcal pattern. Our
knowledge of the racial anatomy of the human brain is still fragmentary, but enough

is known, as we hope to show, to make it abundantly clear that a description of a

few specimens is quite useless, that only longer series and the statistics deduced

from them can form the basis for a physical anthropology of the brain.

Many of the series we have been able to gather from the literature come from

Europe: Swedes (Retzius, 1896), Irish (Cunningham, 1892), Dutch (van Bork-

Feltkamp, 1930), Germans (Connolly, 1950), Poles (Weinberg, 1905), Esthonians

(Landau, 1910, 1911, 1914), Russians (Zernov, 1877). We are quite well informed

about the Chinese (van Bork-Feltkamp, 1930; Chi and Chang, 1941; Shellshear,

1926) [Kurz's (1924) biased report on only seven brains has not been used]. We
have some knowledge of the Negro's brain (Vint, 1934; Slome, 1932; Connolly,

21
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1950) as well as of that of the Australian (Shellshear, 1937). To these we can add

the Malay (Kohlbrugge, 1906). Some other accounts dealing with special features

will be mentioned as occasion arises.

Most of these descriptions give no more than frequencies of fissural types and it

is often doubtful, as will be seen, whether the interpretations of all authors were

the same. Encephalometry, as laid down by Ariens Kappers (1926) or by Economo
(1929c), has only recently been employed. To a man, the older authors did not

analyze their percentages statistically. With the information they had, they could

not. But it is not difficult, and long overdue, to add the sampling errors to their

data and thus to decide whether racial differences of fissural types exist or, when

several series of presumably the same racial stock are available, whether various

authors interpreted their material in a comparable manner.

The mathematical facts needed for such comparisons can be stated in a few

words. The standard error e of a percentage p, based on a sample of N individual

observations is

Vp(100 - p)

N

and the standard error e\ of a difference A between two samples having standard

errors ei and e 2 respectively is

eA = \/e? + e2
2

.

The significance of a difference is judged by the quotient A/eA . For samples in which

A > 30 a value of 2 may be considered suggestive, of 3 or more, significant. For

smaller samples, Student's t-test provides a more refined criterion (see R. A. Fisher,

1936).

The older anatomists followed Broca in distinguishing fissures from sulci. The

former, so it was stated, were folds of the whole pallium, having therefore a coun-

terpart in a ventricular eminence; the latter were merely indentations of the cortex.

But this distinction appears to be of no morphological or functional importance

and, moreover, breaks down completely in comparative anatomy. We shall therefore

not be consistent. To redefine fissures as those furrows which are found in all

gyrencephalic primates, and which we called primary fissures (Bonin and Bailey,

1947), and sulci as those furrows which we called secondary, might suggest itself but

engenders confusion.

Even a superficial acquaintance with human cerebral fissures makes it clear

that many of them are quite variable, that the first problem must therefore be to

enumerate those fissures which are constantly present and of fairly regular shape.

These fissures may be called the primary fissures.

To know the laws which govern the formation of cerebral sulci, or to know at

least which features of cerebral fissuration are determined genetically, should help

materially in directing our efforts. But the process of fissuration during ontogenesis

has only rarely been studied. Until the fifth month of fetal life there are no sulci

on the lateral surface of the human brain (Ecker, 1868). Previously described fur-

rows have been proven postmortem or fixation artifacts. On the medial surface,

however, a shallow groove appears in the third month which extends from the
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region of the olfactory bulb to the tip of the temporal pole (Hines, 1922). This,

Hochstetter (1924) says, is the sulcus parolfactorius posterior. Elliot Smith (1931,

p. 269) agrees that there is no fissura hippocampi.

At the end of the fourth month, or the beginning of the fifth, there is an elonga-

tion of the occipital region of the cerebral vesicle. There are no sulci on the lateral

surface of the cerebral vesicle at this age but the Sylvian depression is very evident,

outlining the island. On the medial surface appears first the calcarine fissure and

a couple of weeks later the parieto-occipital (Connolly, 1950).

At the beginning of the sixth month appears the central sulcus and, during the

sixth month, also indications of the precentral and postcentral sulci. On the medial

surface the sulcus cinguli appears.

At the beginning of the seventh month the intraparietal and parallel sulci de-

velop. By the end of the seventh month most of the principal sulci are evident. The

insula is beginning to be covered in its posterior portion. The anterior horizontal

branch of the lateral fissure is formed. The olfactory sulcus is well developed. The

fissuration of the brain of a human embryo thirty weeks old, from our collection,

is shown in figures 6 and 7.

Until about the middle of the eighth month the course of development is fairly

consistent. After that stage sulci appear rapidly in great confusion and inconstancy.

To take an example, three frontal sulci, as classically described, may appear on one

hemisphere, whereas the opposite hemisphere of the same brain may have an en-

tirely irregular pattern. The same irregularity is to be observed in the parietal,

temporal, occipital, and orbital regions and results in the obscuration of all but

the primary sulci which were laid down before the end of the seventh month. During

the eighth month the island is covered and the brain assumes its adult appearance.

The latest contribution by O. A. Turner (1948, 1950) summarizes the work

begun by the late T. Wingate Todd and Y. T. Loo. Todd's death and Loo's return

to his native China delayed the completion of this study. Turner had one fetal

brain, twenty-two from birth to two years of age ("early postuterine") and twelve

of individuals older than two years, i.e., of the "late postuterine" stage. We shall

frequently have to cite his findings.

Interest in the genetics of cerebral fissures is quite recent. Karplus (1905, 1921),

Sano (1916), Rossle (1937), Geyer (1939), and Higeta (1940) have reported on the

cerebral fissures in identical twins. They noted such features as the behavior of

precentral and of frontal sulci or the deep or superficial position of annectent

gyri. No efforts at encephalometry were made. Rossle who reported on twenty-

seven pairs of twins—whether identical or not was generally determined by exami-

nation of the twins, not of the fetal membranes or placenta—found that there was

no complete concordance between the brains of uniovular twins. "The important

dissimilarities can only be understood if we assume that the brain has a particularly

high degree of 'developmental freedom.'. . . The brain is the most individualistic of

all organs."

Higeta (,1940), after examining ten identical and six other pairs of twin fetuses,

came to much the same conclusion; his paper is the only one which gives concor-

dances in tabular form. They are, for the characters tested, peculiarly low.

In a short communication—hardly more than a note—Geyer (1939) states that
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the brains of identical twins differ no more than the right and left hemispheres of

the same individual. He evidently disregarded, or was ignorant of, the asymmetries

which exist between the two hemispheres.

The older anatomists attempted to define the primary fissures by other methods.

Wernicke's (1876) was the comparative approach, and later workers such as Broca

(1878), Kiikenthal and Ziehen (1895), W. Turner (1891), and many others chose the

same method. The ontogenetic approach was taken by His (1904), Cunningham
(1892), and Retzius (1896). As an exponent of the purely descriptive method
Zernov (1877) should be named, although his work, published in Russian, has not

received the ample attention it deserves.

In most cases these different methods confirm each other. We adhere as previously

(Bonin and Bailey, 1947; Bailey, Bonin, and McCulloch, 1950) to the comparative

method. Our interpretations will become clear from what follows, in the study of

which constant reference should be made to figures 8, 9, 10, 11, and 12.

I. THE PRIMARY SULCI

The primary sulci will be discussed in alphabetical order. Throughout, we shall

have frequent occasion to refer to Dejerine's (1895-1901) classical description.

ca, the calcarine fissure. The fissure runs from a point just below and a little behind

the splenium of the corpus callosum to the occipital pole where it generally ends

in a bifurcation. Its course is at first obliquely dorso-occipital to bend more or less

sharply ventro-occipital in its posterior third. At about its midpoint it fuses super-

ficially with the medial parieto-occipital fissure (pom, see p. 38).

At its origin the calcarine fissure is separated from the hippocampal fissure by
a narrow, sometimes submerged gyrus, the isthmus antecalcarinus of Dejerine

(1895), the pli temporo-limbique of Broca (1878).

Near the fusion with the parieto-occipital fissure there is another submerged

pli de passage. This pli, as Filimonoff (1932) explained, brings it about that the

parieto-occipital and calcarine fissures unite in the depth at a point (<p" of Fili-

monoff) appreciably anterior to that (<p') at which they appear to fuse on the

free surface. In Filimonoff's eight brains (thirteen hemispheres) the average dis-

tance between these two points was 1 cm.

Cunningham (1892) considered it of "deep morphological significance" to dis-

tinguish between an anterior and posterior calcarine fissure, divided by the point

of fusion with the parieto-occipital fissure. For the two parts arise from different

primordia, that of the retrocalcarine appearing later, and only the anterior calcarine

fissure has its counterpart in the calcar avis on the wall of the posterior horn.

Elliot Smith (1904 a and b) strongly supported Cunningham's conception after a

detailed study of the distribution of the striate area. He pointed out that the

retrocalcarine (as he called Cunningham's posterior calcarine) was an axial sulcus

of the striate area, while the anterior calcarine was a superior limiting sulcus to

that area (see also p. 227).

There are generally two submerged gyri within the retrocalcarine sulcus, namely

the anterior and posterior cuneolingual fold (Dejerine's w cla and x clp). The
posterior one, just behind the fusion of the parieto-occipital and calcarine fissures,

is more apt to become superficial than the anterior one. There appear to be no
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appreciable differences between right and left or between males and females. Ret-

zius gives 15 ± 3.6 per cent, Cunningham 15.7 ± 3.2 per cent for a superficial

posterior cuneolingual fold. The anterior was superficial in only 3 ± 1.7 per cent

in Retzius' one hundred hemispheres. Cunningham does not supply numerical

data. Van Bork-Feltkamp (1930) gives data for the occurrence of these pits de

passage but adds that they "were rarely on the surface." Zernov (1877) saw an

interrupted calcarine fissure (it is not clear whether the anterior or posterior fold

was involved) only once. From Shellshear's (1937) figures it would appear that a

posterior pli de passage is common among Australians. Inspection of his figures

leads to a frequency of 34 ± 8 per cent, not quite significantly higher than that of

other races yet certainly suggestive.

The shape of the bend or hook of the retrocalcarine sulcus varies evidently con-

siderably, but no correlation with cranial (i.e., cerebral) index or anything else

has been definitely established. Van Bork-Feltkamp (1930) stated that a hook

was more frequent in Chinese than in Dutch brains. Huard and Nguyen (1938)

report a hook in 32 ± 5.2 per cent among Tonkinese. In Chinese brains Wen (1933)

observed a pronounced hook in 44 ± 6.9 per cent on the left, and 13 ± 4.6 per cent

on the right hemisphere. This would indicate a significant asymmetry.

The calcarine fissure ends almost always (Zuckerkandl, 1906, gives 96 per cent)

in a bifurcation close to the occipital pole. In almost one-half of known cases (46

per cent in Zuckerkandl's European, 51 ± 5.6 per cent in Tonkinese) the two rami

end on the medial side. It is more frequent for the superior than for the inferior

ramus to encroach on the lateral side.

The course of the calcarine fissure in brain HI is atypical. The hook mentioned

a few times is not at Filimonoff's point <p' but within the course of the anterior

calcarine and, at the point of inflection, a short "processus acuminis" k is given

off dorsad. The posterior calcarine is wavy but ends in a typical bifurcation on

the medial side of the hemisphere.

ce, the central sulcus. According to Broca, Leuret was the first to call the central

sulcus the sulcus of Rolando. Symington and Crymble (1913) gave a detailed account

of the course of the sulcus. It throws an interesting light on the variability of

cerebral fissures that they found what they considered the typical form in only

55 ± 3.2 per cent of their 237 brains while they found a "fairly" typical form in

another 18 =fc 2.5 per cent. Roughly one out of four (27 ± 2.9 per cent) was therefore

atypical.

The authors describe the typical central fissure (see Fig. 13) as harboring two

buttresses in its anterior wall, causing two more or less pronounced concavities

looking frontad. They indicated the relation of these buttresses to the parts of

the motor area on the strength of Campbell's histological studies and Grunbaum
and Sherrington's stimulations of the brains of anthropoid apes. Figure 13

should be compared with those given by Penfield and Boldrey (1937) or Scarff

(1940) who stimulated human brains during operations.

The depth of the sulcus was measured in several places. There is a "fairly con-

stant" (87 ± 2.8 per cent) elevation "between trunk and arm field." In the light

of modern neurological results one might be inclined to shift this into the trunk

field proper. This elevation may be considered as a pli de passage, and may oc-



LEGENDS FOR FIGURES 8-12

Sulci and Fissures

Short, isolated dimples and sulci are given
letters from a to z.

Fissura lateralis (Sylvius) la

ramus horizontalis lah

ramus ascendens laa

Sulcus intraparietalis ip

Sulcus centralis (Rolando) ce

Sulcus subcentralis anterior sea

Sulcus subcentralis posterior scp

Fissura parieto-occipitalis po
pars medialis pom
pars lateralis pol

Sulcus praecentralis pre

Sulcus praecentralis superior prcs

Sulcus praecentralis inferior prci

Sulcus frontalis medius fm
Sulcus frontalis superior fs

Sulcus frontalis superior anterior fsa
Sulcus frontalis inferior fi

Sulcus frontomarginalis (Wernicke) fma
Incisura capitis ic

Sulcus orbitalis medialis orm
Sulcus retrocentralis transversus ret

Sulcus olfactorius olf

Sulcus orbitalis lateralis orl

Sulcus orbitopolaris orp

Sulcus orbitalis arcuatus ora

Sulcus marginalis anterior insulae mai
Sulcus marginalis superior insulae msi
Sulcus marginalis inferior insulae

Sulcus postcentralis superior

Sulcus postcentralis inferior

Sulcus parietalis transversus (Bris-

saud)

Sulcus parietalis intermedius (Jen-

sen)

ramus anterior

ramus posterior

Sulcus praeoccipitalis (Meynert)
Sulcus occipitalis anterior (Wer-

nicke)

Gyrus supramarginalis (Gratiolet)

Gyrus centralis anterior

Lobulus paracentralis

G}rrus frontalis superior

Gyrus frontalis medius
Gyrus frontalis inferior

pars orbitalis

pars triangularis (cap de Broca)
pars opercularis sive pedalis

(Broca)

Gyrus centralis posterior

Lobulus parietalis superior

Praecuneus (Foville)

Gyrus parietalis inferior intermedius

Gyrus angularis (Huxley)

Gjtus occipitalis superior

Gyrus occipitalis medius
Gyrus occipitalis inferior

Cuneus
Gyrus lingualis

Sulcus occipitalis superior (Ecker) os

Sulcus occipitalis transversus su-

perior otrs

Sulcus occipitalis transversus in-

ferior olri

Sulcus temporalis superior Is

Sulcus temporalis medius anterior tma
Sulcus temporalis medius posterior imp
Sulcus temporalis inferior ti

Sulcus occipitotemporal ol

Fissura collateralis col

Fissura calcarina ca

Sulcus rhinalis rh

Sulcus intralimbicus il

Sulcus corporis callosi cc

Sulcus cinguli, sive supramarginalis ci

Sulcus cinguli, pars marginalis cim
Sulcus suprarostralis sro

Sulcus paracentralis pac
Sulcus subparietalis sp

Sulcus cunei cu

Sulcus rostralis superior ros

Sulcus rostralis inferior roi

Sulcus limitans operculi lo

Sulcus supratemporalis transversus

anterior stta

Sulcus supratemporalis transversus

medius stlm

Sulcus supratemporalis transversus

mil posterior sttp

pocs Sulcus centralis insulae cins

poci Sulcus intraopercularis oper

Sulcus arcus intercuneati aic

pt Sulcus radiatus

Sulcus occipitotemporalis acces-

ra

vi sorius ota

Via Sulcus temporopolaris ip

V3V Sulcus polaris anterior pa
ipo Sulcus polaris posterior pp

Sulcus parainsularis pins

oa Fissura hippocampi

Gyri

h

Sm Gyrus temporalis superior Ts
Ca Gyrus temporalis medius Tm
Pare Gyrus temporalis inferior Ti
Fs Gyrus fusiformis Fus
Fm Uncus U
Fi Gyrus orbitalis medialis Orm
Fiorb Gyrus orbitalis lateralis Orl

Fit Gyrus rectus R
Gyrus limbicus (sive cinguli) L

Fiop pars anterior La
Cp pars posterior Lp
Ps Area parolfactoria Broca AB
Pc Gyrus temporopolaris Tp
Pirn Gyrus supratemporalis transversus

Aug primus (Heschl) Sltp

Os Gyrus supratemporalis transversus

Om secundus Stts

Oi Gyrus praecentralis insulae Ipr

Cu Gyrus postcentralis insulae Ipo

Lg Limen insulae Li
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ot

Fig. 8. Pattern of the sulci and g}-ri on the lateral surface of brain HI. For legends see p. 28.

casionally even rise to the surface, thus leading to an interruption of the central

sulcus. But we believe it is erroneous to base homologies of the central sulcus of

primates with the corona-ansata system of carnivores on this rare variation.
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h

Fig. 9. Pattern of the sulci and gyri on the medial surface of brain HI. For legends see p. 28.

Tricomi Allegra (1907) collected the data then available. An interruption occurs

in 1.05 ± 0.2 per cent.

The upper end of the central sulcus (Table 3) may be either on the medial or
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the lateral side of the hemisphere, or just at the margin. The first five lines of

Table 3 are consistent with each other within the error of sampling. The last two
fines show statistically significant differences. Are they due to the judgment of the

observers or to actual differences in the material?

Fig. 10. Pattern of the sulci and gyri on the inferior surface of brain HI. For legends see p. 28.

Anastomoses with other sulci—the subcentral, precentral, and postcentral (see

p. 49)—are fairly frequent. Weinberg reports a frequency of 56 ± 7 per cent,

Retzius of 59 ± 4.9 per cent of all his cases.

A connection with the Sylvian fissure, generally ascribed to an anastomosis of

the central with the anterior or posterior subcentral sulcus, has been observed by
Retzius in 23 ± 4.2 per cent, by Vint in 26 ± 4.4 per cent.

In brain HI the central sulcus ends dorsally at the margin and shows the two
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buttresses of Symington and Crymble very clearly. The sulcus has a short posterior

processus acuminis (1) in the arm region, an anterior one (2) at the bend be-

tween arm and face, and another anterior one (3) within the face region. There is

finally a spur (4) within the postcentral gyrus which connects the central with an

accessory postcentral sulcus, ret. One might in the case of spur 4 be in doubt,

Fig. 11. Pattern of the sulci and gyri on the superior surface of brain HI. For legends see p. 28.

when merely inspecting the hemisphere, which of the two branches represents the

"true" central sulcus. We have taken the presence of giant cells of Betz in the

anterior bank, and the presence of koniocortex in the posterior bank as our criterion

(see p. 175).

ci, the sulcus cinguli. Few sulci have been given so many different names: fissura
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Fig. 12. Pattern of the sulci and gyri on the island, supratemporal plane and frontoparietal

operculum of brain HI. For legends see p. 28.
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Fig. 13. Typical shape of left central sulcus. Redrawn after Symington and Crymble. Bl,
B2—buttresses. The figures indicate depth of sulcus in millimeters.

subfrontalis (Eberstaller, 1890), s. callosomarginalis (Huxley, 1861; W. Turner,

1891; Bischoff, 1868; Ecker, 1869; etc.), scissure limbique (Broca, 1878), to name



34 The Isocortex of Man

but a few. The sulcus courses on the medial side of the hemisphere, sweeping around

the rostrum of the corpus callosum, to end within the parietal lobe where it makes,

in a fairly sharp curve, for a point on the dorsal margin of the hemisphere about

8-12 mm. (Eberstaller) behind the central sulcus.

For few sulci can we point with such confidence to a factor responsible for their

formation. The sulcus cinguli reflects the pressure exerted by the growing corpus

callosum and the parieto-occipital lobe. The importance of the former factor is

proved by the cases of congenital absence of the corpus callosum (see Mingazzini,

1922); the importance of the latter factor is well illustrated by a comparison be-

tween the human brain and a brain which does not possess a posterior horn, e.g.,

that of an ungulate (Krueg, 1878).

Table 3

Sulcus Centralis Near Dorsal Margin, Frequencies in Percentage.

/ II III References

Chinese 75 ± 6.0 17 ± 5.3 8 ± 3.7 v. Bork-Feltkamp, 1930

Swedes 64 ± 4.8 16 ± 3.7 20 ± 4.0 Retzius, 1896

Irish 60 ± 6.8 21 ± 5.7 19 ± 5.4 Cunningham, 1892

Dutch 55 ± 5.4 25 ± 4.7 20 ± 4.2 v. Bork-Feltkamp, 1930

Chinese 52 ± 5.0 40 ± 4.9 8 ± 2.7 Chi and Chang, 1941

Tonkinese 50 ± 5.6 43 ± 5.5 7 ± 2.6 Huard and Nguyen, 1938

Poles 44 ± 7.0 48 ± 7.1 8 ± 3.8 Weinberg, 1905

Kenya Negroes 14 ± 3.5 52 ± 5.0 34 ± 4.7 Vint, 1934

I: reaching medial side; II: just reaching margin; III: stopping on lateral side.

Table 4

Frequencies of No or One Interruption of Sulcus Cinguli on
Right and Left Sides, in Percentages.

Eberstaller

R L
Retzius

R

no
one

80

19

3.0

3.0

56

42

3.8

3.8

40

38

7.1

5.8

41

49

6.7

6.9

The fissure may be a single long furrow, or may be divided into two or more

fragments. The most frequent interruption occurs within the frontal lobe (Broca's

pli de passage fronto-limbique) well forward of the "upper Rolandic point." Eber-

staller (1890) as well as Retzius (1896) give the frequencies of this interruption

separately for right and left hemispheres. The standard errors of Eberstaller's

percentages as given in Table 4 have been computed on the assumption that he

had 169 pairs, as he states on his page 13 for the Sylvian fissure. While Eberstaller's

figures suggest a significant asymmetry, Retzius' observations point to symmetry.

Pooling both sides leads to a difference of 27 ± 5.6 per cent between Retzius'

Swedes and Eberstaller's Austrians, clearly a significant difference which may,

however, reflect a difference in interpretation rather than a racial one.

The caudodorsal hook impressed van Bork-Feltkamp (1930) as being frequently

much steeper in Chinese than in Dutch brains.
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It is comparatively rare to find a bifurcation within the parietal lobe as is the

rule in that of the chimpanzee.

The sulcus is sometimes doubled, particularly in its anterior part. Weinberg

(1905) found such doubling in 32 ± 8.5 per cent on the right and in 68 ± 8.4 per

cent on the left side. The difference (36 ± 12.1 per cent) indicates a probability of

less than 1 per cent to have arisen merely by chance. As is well known, the anterior

part of the sulcus cinguli is the limiting sulcus of the anterior limbic area in many
primates. This seems to hold true in general of the human brain also (see frontis-

piece).

The brain HI has an accessory intralimbic sulcus (il) between the main sulcus

and the corpus callosum.

ft, the fissura hippocampi, is a constant fissure. There is nothing to add to the

textbook descriptions.

ip, the intraparietal sulcus. The sulcus was called interparietal by the Basle

Commission, but it is within the parietal lobe, not between two lobes. A single

fissure in some primates, it is frequently described as consisting in the human
brain of four distinct elements: the superior and inferior postcentral, the pars

horizontalis and the pars occipitalis (s. paroccipitalis of Wilder, 1886).

0. A. Turner (1948) described the intraparietal as continuous with the inferior

postcentral sulcus (p. 49) in fetal brains, and showed a continuous postcentral

sulcus in both early and late postuterine stages.

In most brains it is easy to distinguish between the pars horizontalis, i.e., the

intraparietal in the stricter sense, and the postcentral sulcus. Between them there

is a distinct angle even when they are continuous. The exact point where the pars

occipitalis begins may be much more difficult to recognize.

The different relations between intraparietal s. str. and postcentral sulci were

classified into five types by Cunningham (1892) whom most authors have followed.

Figure 14 shows these types diagrammatically, and Table 5 gives the frequencies

of these types in various series. A comparison between the various series shows one

widely divergent one, namely that of Jefferson (1912-13) who worked in Manchester

and examined "some eighty brains," presumably of Englishmen. The differences

between Jefferson's series on the one side, and Cunningham and Retzius' series on

the other (which belong to a presumably similar population) point, one may
assume, more to a difference in judgment than to one of facts. Weinberg's Poles

show a significantly greater frequency of type V than the other series. This, too,

may be due to differences in judgment. For racially quite divergent series, such as

Negroes and whites, or Australians and Chinese, when examined by the same

observer show no significant differences. One can conclude only that racial dif-

ferences for this character have not been demonstrated. A confluence of all three

sulci—the intraparietal, the superior, and inferior postcentral sulcus (type IV)—is

the most common occurrence; type III and II appear to follow, in that order

while type I is fairly rare, and type V very rare.

The posterior part of the intraparietal, the pars occipitalis, was claimed as a

"fissural integer" by Wilder (1886) who maintained that Ecker's (1869) original

description of the intraparietal had included the true parietal and the pars occipitalis.

Cunningham (1892) confirmed Wilder, for in older fetuses he saw the two sulci
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fused in 33.3 ± 10 per cent, but in adult brains in 63.7 ± 5.5 per cent. Retzius

found a fusion even in 95 ± 2.2 per cent of his hemispheres. In twenty-eight hemi-

Type I 12% Type II 20% Type HI 22%

pocs

ip

DOCS

IP

poci poci

pocs

IP

poci

TypeW 41% Type Y. 5%

pocs

Ip

pocs

IP

poci poci

Fig. 14. Intraparietal and postcentral sulci (redrawn after Jefferson). Weighted means of

Table 5 added.

Table 5

Relation of Intraparietal and Postcentral Sulci (Frequencies of types shown in Figure 14).

I // III IV V

Irish 6 ± 2.2 19 ± 3.5 13 ± 2.8 60 ± 4.4 2 ± 1.2

Swedes 9 ± 2.8 11 ± 3.1 21 ±4.1 55 ± 5.0 4 ± 2.0

English 35 ± 5.3 26 ± 4.9 25 ± 4.8 9 ± 3.2 5 ± 2.4

Poles 10 ± 4.2 16 ± 6.2 26 ± 6.2 26 ± 6.2 22 ± 5.9

Germans 7 ± 3.2 13 ± 4.4 25 ± 5.6 50 ± 6.4 5 ± 2.8

Negroes 8 ± 3.6 20 ± 5.1 28 ± 5.8 39 ± 6.3 5 ± 2.8

Australians 11 ± 4.8 11 ± 4.8 30 ± 6.9 41 ± 7.4 7 ± 3.9

Chinese (Southern) 9 ± 2.9 28 ± 4.5 27 ± 4.4 35 ± 4.8 1 ± 1.0

Chinese 16 ± 3.7 25 ± 4.3 17 ± 3.8 39 ± 4.9 3 ± 1.7

References: Irish: Cunningham, 1892; Swedes: Retzius. 1896; English: Jefferson, 1912-13; Poles: Weinberg, 1905;

Germans: Connolly, 1950; Negroes: Connolly, 1950; Australians: Shelfihear, 1937; Chinese (Southern): Shellshear, 1937;

Chinese: Chi and Chang, 1941.

spheres Cunningham found a fusion in 87.5 ± 6.2 per cent on the right but only in

58.4 ± 9.4 per cent on the left side. The difference (29.1 ± 11.2 per cent) is sig-

nificant.
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In regard to intraparietal and postcentral sulci, brain HI belongs to the most

common type IV. It is exceptional, however, in exhibiting a wide gap between

intraparietal proper and occipital part. The anastomosis between intraparietal

and superior temporal sulcus seen in brain HI appears to be rare. Shellshear's

(1937) brain Q2788, however, and Retzius' (1896) Plate XLII, Figure 2 (to pick

out two examples at random), show it.

la, the lateral or Sylvian fissure. This landmark, recognized as early as 1652 by
Francois de le Boe Sylvius, is generally described as having several rami. There is

the stem or vallecula Sylvii, seen on the ventral side between temporal and frontal

lobe; there are the anterior rami of which classical anatomy recognizes two a,

horizontal and an ascending one, and there is finally the long posterior ramus,

marking the boundary between temporal and frontoparietal lobes. The way in

Table 6

Anterior Rami of Sylvian Fissure. Asymmetries.

Negri

R
yes

L
Germans

R L
Irish

R(46) L(34)

I

Y
U
V

27 ± 8.0

13 ± 6.2

47 ± 9.1

13 ± 6.2

23 ±
60 ±
17 ±

7.7

9.0

4.6

23 ± 7.7

30 ± 8.4

23 ± 7.7

24 ± 7.7

6 ± 4.3

30 ± 8.4

27 ± 8.0

37 ± 8.0

41 ± 7.3

26 ± 6.5

33 ± 6.9

15 ± 6.1

41 ± 8.4

44 ± 8.5

References: Negroes and Germans: Connolly, 1950; Irish: Cunningham, 1892.

Table 7

Anterior Rami of Sylvian Fissure, Racial Data.

U,V orS
branches References

Germans 15 ± 4.6 30 ± 5.9 55 ± 6.4 Connolly, 1950

Dutch 18 ± 4.2 20 ± 4.3 62 ± 5.4 v. Bork-Feltkamp, 1930

Chinese 12 ± 3.1 16 ± 3.7 72 ± 4.5 Chi and Chang, 1941

Negroes 14 ± 4.5 18 ± 5.0 68 ± 6.4 Connolly, 1950

which the frontoparietal and temporal opercula grow over the insula and thus

form the lateral fissure has been described so often (see especially Anthony, 1928)

that we can forego a repetition. The anterior rami vary considerably. There may
be only one ramus (/), there may be two, forming the shape of the letter V, U, or

Y, and there occasionally may be three rami.

The information that could be gathered from the literature is assembled in

tables 6 and 7. Table 6 shows that a single ramus is more frequent on the right

than on the left hemisphere. In spite of the small samples, and the consequent large

sampling errors, the difference is statistically significant for Negroes, while for the

Germans the probability that the observed difference has been caused by chance

is between 10 per cent and 5 per cent. For the Irish, too, the difference is not

statistically significant. Table 7 compares the various races, both hemispheres

having been pooled. A U- or V-shaped arrangement of the anterior sulci is sig-
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nificantly more frequent in the Chinese than in the Dutch as well as in the German
series (.05>P>.02). That the behavior of the anterior rami is not an index for

the "higher" or "lower" development of the brain has been stressed by G. Levin

(1937).

The posterior ramus appears to be longer on the left than on the right side.

Eberstaller (1890) gives as the means 5S.2 and 51.8 mm., but no sampling errors

can be computed from his data. The statistical significance of this asymmetry,

however, can be estimated in a slightly different manner. Eberstaller states that

of 169 brains the right Sylvian fissure was longer in 55 cases, the left in 107 cases.

This leads to percentages of 32.5 ± 3.6 per cent and 63.3 ± 3.7 per cent, respec-

tively, and the difference, 30.8 ± 5.2 per cent is very unlikely to have arisen by
chance. Confirmation was provided by Cunningham and Shellshear. Cunningham
(1892) measured twenty-eight right and twenty-three left adult hemispheres and

convinced himself that Eberstaller's assertion "was fully borne out." No numerical

data were provided. Shellshear (1937) measured on Australian brains the distance

between the lower end of the central sulcus and the posterior end of the Sylvian

fissure. He found 20.7 ±1.0 mm. on the right, and 30.4 ±1.1 mm. on the left

side. The left Sylvian fissure is again significantly longer (by 9.7 ± 1.5 mm.).

The posterior ramus of the Sylvian fissure generally bifurcates near its end.

Retzius found this in 70 ± 4.6 per cent of his cases.

The direction of the posterior ramus, i.e., "the angle which is formed by the

posterior horizontal limb of the Sylvian fissure with a line drawn at right angles

to the longest anteroposterior diameter of the hemisphere" was measured by
Cunningham in sixteen right and fifteen left hemispheres. He found mean values

of 66.3° and 70.3° respectively, but failed to give any data by which his sampling

errors could be estimated. Whether the greater length of the left posterior ramus

is correlated with a "flatter" course cannot be asserted with confidence.

In brain HI, the anterior rami form the letter Y and the posterior ramus ends in

a pronounced bifurcation. There are several small indentations on the posterior

ramus. A fairly large sulcus cutting into the superior temporal gyrus is the con-

tinuation of the anterior transverse supratemporal sulcus (stta, see p. 56), two
shorter ones on the dorsal side may be labeled anterior (sea) and posterior (scp)

subcentral sulcus, respectively. Merely for purposes of orientation the end rami of

the posterior ramus have been labeled lapd and lapv (dorsal and ventral branch of

the posterior ramus of the lateral fissure).

olf, the olfactory sulcus. A meticulous description of this sulcus has been given by

Kanai (1938).

In its course toward the frontal pole the sulcus (observed in 216 hemispheres)

may veer mediad (69 ± 3.2 per cent), may run straight (24 ± 2.9 per cent), or

it may veer laterad (7 ± 1.7 per cent). Of the two posterior rami, the lateral

—

generally about 7.2 mm. long—anastomoses occasionally (in 12 ± 2.2 per cent)

with the sulcus orbitalis arcuatus, but fairly often (in 30 ± 3.1 per cent) with the

Sylvian fissure. Kanai observed brains from northern Japan. We found no other

data.

pom, the medial parielo-occipital fissure. The parieto-occipital fissure is as charac-

teristic for the primate brain as the central sulcus. In man and in all higher an-
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thropoids it shows a complicated system of submerged gyri and hidden secondary

folds which have been studied and interpreted by many authors since Gratiolet

(1854) first analyzed it.

Elliot Smith (1904) (see our Fig. 15) has described the parieto-occipital fissure as

a fossa which contains in its depth an intercuneate arcus (i.e., gyrus), previously

described by other authors, thrown into a semicircular shape by the parieto-

occipital incisure. The postero-inferior border of this arcuate gyrus is given by the

paracalcarine sulcus, the anterosuperior border by the sulcus limitans praecunei.

The parieto-occipital fossa generally closes up completely so that the intercuneate

arcus becomes buried and a continuous fissure appears to run from the parieto-

occipital incisure to the stem of the calcarine fissure. Occasionally (in 5 ± 2.2 per

cent in Retzius' material, in only 1 ± 0.9 per cent in Cunningham's material) the

intercuneate arcus remains on the surface. Cunningham reports "the absence of

the deep gyrus intercuneatus" in 47 ± 4.4 per cent of his cases.

Inc. par
;
occ^jj£ Arcu5 inTe rcuneat.

^.-—-Sulc. limitans
praecunei

Sulc.
paracalc

Gyrus
cunei

Fig. 15. Submerged gyri within the parieto-occipital fissure (after Elliot Smith).

Bianchi (1940) recognized five groups, exhibiting various degrees of development

of the intercuneate gyrus. He examined 102 brains (i.e., 204 hemispheres). The
standard errors of the percentages given by him have been added by us.

1. Parieto-occipital fissure not ramified, bordered laterally by the first lateral pli de passage

(36.7 ± 3.4 per cent).

2. Parieto-occipital fissure ramified close to the dorsal margin of the hemisphere. Gyrus
intercuneatus in the depth of the fissure (39.2 ± 3.4 per cent).

3. Gyrus intercuneatus largely on the surface, between two rami of the parieto-occipital

fissure (11.7 ± 2.2 per cent).

4. Gyrus intercuneatus almost longitudinal, fused with the first lateral pli de passage of

Gratiolet (6.8 ± 1.8 per cent).

5. Gyrus intercuneatus fused with adjacent gyri which do not properly belong to the

system of the parieto-occipital fissure (5.3 ±1.6 per cent).

Bianchi gives also the frequencies for right and left separately; the differences

are not statistically significant (non sono notevoli) as the author himself points out.



40 The Isocortex of Man

Cases in which the gyrus cunei (a submerged gyrus just dorsal to the point

where parieto-occipital and calcarine fissure merge) becomes superficial have been

occasionally observed, but seem to have no racial significance.

On the lateral side, the parieto-occipital incisure may be continuous, at least

superficially, with the intraparietal sulcus. Weinberg (1905) observed this in

32 ± 6.6 per cent in Poles and in 40 ± 9.8 per cent in Letts. The difference is

clearly insignificant.

In brain HI the parieto-occipital fissure represents a complicated pattern which

almost defies analysis. The gyrus cunei near the point <p' of Filimonoff (see p.

26) is submerged. As the parieto-occipital fissure is followed dorsally, it merges

with a sulcus on the cuneus. This has been labeled (3). Still nearer the dorsal mar-

gin, beyond a short unlabeled spur, the parieto-occipital fissure gives off a fairly

large sulcus, which we take to be the superficial sulcus limitans precunei (see Fig.

15). On the lateral side of the hemisphere, this sulcus unites with the intra-

parietal. A short fold within the arcus intercuneatus might be called the sulcus

arcus intercuneate.

rh, the fissura rhinalis. This is a small furrow on the lateral margin of the uncus

marking the boundary between the allocortex and isocortex. For brain HI, it is

shown on the basal aspect (Fig. 10).

ts, the sulcus temporalis superior, sulcus parallelis. With Shellshear (1927) the

parallel sulcus can be divided into an anterior and a posterior part. The former,

one of the oldest furrows of the primate brain, runs in the temporal lobe; the latter,

changing profoundly from macaque to man, runs in the parietal lobe. Near the

temporal pole, the anterior end may be in line with the rest of the sulcus or may be

bent ventrad so that the temporal pole appears as a continuation of the superior

temporal gyrus. Occasionally, as Blinkow (1938) observed, this anterior hook

may be an independent sulcus and the temporopolar region may be opercularized.

Submerged bridging convolutions within the anterior part have been described by
Blinkow. Within the angular gyrus the posterior part generally breaks up into three

rami. Connections with the sulci of both occipital lobe and inferior parietal lobule

are frequent. Shellshear reports that an interruption of the parallel sulcus between

anterior and posterior part is not infrequent. No anthropological observations

about this sulcus were found by us.

In brain HI the anterior part of the parallel sulcus shows several longer branches

labeled simply 1-4. The posterior part breaks up into two rami, an anterior one

(pj) and a posterior one (ts). The anterior branch connects by two subbranches

(pja and pjb) with the intraparietal sulcus. The posterior branch anastomoses with

OS.

II. THE SECONDARY SULCI AND GYM
The secondary sulci are less constant than the primary ones and presumably

genetically less fixed, as the studies of the brains of identical twins (see p. 23)

indicate. It is at present not possible to define them further. Some of these sulci

delimit gyri, others merely cut into a particular gyrus. We shall analyze them by
regions, and indicate for each region the gyri which these sulci delimit. We shall

adhere as closely as possible to the old subdivision of lobes, since this is still a con-

venient way to describe topographical relations.
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FRONTAL LOBE

The frontal lobe of classical anatomy bears the precentral, the frontal, the

orbital, and the rostral sulci, and contains the precentral gyrus, the three frontal

convolutions and the gyrus rectus. Its fissures have been reviewed by Kononova

(1938).

pre, the precentral sulcus. As a rule there is a superior and an inferior precentral

sulcus. The two may be continuous, or there may be even three sulci. The frequen-

cies of these configurations are given in Table 8. In all races, two sulci are most

frequently found. The difference between the Chinese on the one side, and the

Russians and Negroes on the other side is significant. Moreover, the Poles show

one sulcus significantly more rarely than any other group, while three sulci are

found more frequently in Negroes, Russians, and Poles than in Swedes or Chinese.

These are erratic findings, and one is tempted to think of observational bias as

much as of actual differences. A connection between the inferior precentral sulcus

Table 8

A. Frequencies of One, Two, or Three Precentral Sulci, in Percentage.

(Arranged in increasing frequency of two sulci)

Race One Two Three References

1.

2.

3.

4.

5.

Kenya Negroes
Russians
Swedes
Poles

Chinese

14 ± 3.5

13 ± 2.3

23 ± 4.2

4 ± 2.8

17 ± 3.5

69 ± 4.6

72 ± 3.2

73 ± 4.4

80 ± 5.5

83 ± 3.5

17 ± 3.8 Vint, 1934

15 ± 2.6 Zernov, 1877

4 ± 2.0 Retzius, 1S96

16 ± 5.2 Weinberg, 1905

Chi and Chang, 1941

B. Differences for Frequencies of Two Sulci.

8 S 4 5

1.

2.

3.

4.

3 ± 5.6 4 ± 6.3

1 ± 5.5

11 ± 7.2

8 ± 6.4

7 ± 7.1

14 ± 5.7

11 ± 4.7

10 ± 5.6

3 ± 6.6

and the lateral fissure was stated to be frequent by Giacomini (1878). Eberstaller

(1890) pointed out, however, that this connection was only indirect, namely by

intervention of either the sulcus subcentralis anterior or the s. diagonalis. Cunning-

ham and Retzius confirmed Eberstaller's conception.

In view of the variability of all secondary sulci, this argument may strike the

modern reader as largely verbal and devoid of meaning. In any event, the connec-

tion in question is fairly frequent in both Irish and Swedes (see Table 9).

A connection by means of the s. diagonalis appears to be more frequent in Swedes

than in Irish. The difference is barely significant.

The sulcus precentralis inferior (prci) courses from a point near the Sylvian

fissure dorsad and ends normally in front of, and a little below, the point at which

the superior precentral sulcus begins. Cunningham (1892) pointed out that fre-

quently the upper end of the inferior precentral sulcus branches and that the an-

terior branch courses for an appreciable distance in an almost horizontal direction.
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This ramus horizontalis is found "in complete and uninterrupted union with the

vertical stem" in 72 ± 6.3 per cent. Retzius confirmed Cunningham's observation;

he found this condition in 73 ± 4.4 per cent.

The superior precentral sulcus (prcs) is generally smaller than the inferior one.

In its simplest form it has the shape of a vertical furrow, to paraphrase Cunning-

ham. Its variations—being broken up, connected with the superior frontal sulcus,

exhibiting arciform shape—need not detain us here.

The sulcus precentralis medius when present may have become separated from

either superior or inferior precentral sulcus by an annectent gyrus emerging from

the depth. It is doubtful whether great stress is to be laid on its presence. 0. A.

Turner (1948) found it only in his late postuterine stage.

A small dimple may be found medial to the superior precentral sulcus. It was

called s. precentralis marginalis by Cunningham. Another furrow, cutting into the

dorsal margin a little anteriorly, is the s. precentralis medialis of Eberstaller. Both
sulci were found in the early postuterine stage by Turner, but not in the fetal stage.

On the ventral part of the precentral gyrus there is the anterior subcentral sulcus

(sea) normally a little behind the inferior precentral sulcus. Its length varies all

the way from an appreciable sulcus to a small notch on the lateral fissure.

Table 9

Inferior Precentral Sulcus and Lateral Fissure in Percentage.

Unconnected
Connected by s. diagonalis

Connected by s. subcentr. ant.

References: Irish: Cunningham, 1892; Swedes: Retzius, 1896.

/, the frontal sulci. Classical anatomy recognizes two longitudinal frontal sulci,

the inferior and superior. We name them in this order, for the inferior appears to

be the more constant and better developed of the two (see Retzius, 1896). One
additional middle frontal sulcus is frequent; two additional middle sulci are but

rare.

The inferior frontal sulcus (fi) arises in about three cases out of four (see Table

10) from the inferior precentral sulcus. This occurrence is, however, significantly

rarer in American Negroes than in Swedes, Russians, or Austrians. No other dif-

ferences are statistically significant. According to Eberstaller (1890), it rarely ex-

tends beyond about the middle of the pars triangularis; according to Weinberg

(1905) it runs generally as far as the latero-orbital margin. At the junction with

the precentral sulcus there is, as Eberstaller emphasized, almost always a sub-

merged gyrus. When it comes occasionally to the surface it seemingly separates

the inferior frontal from the precentral sulcus. Two other plis de passage, in the

middle of the inferior frontal sulcus and a little more anteriorly, have been de-

scribed, but in Retzius' material, at any rate, their frequency was not much greater

than that of the posterior bridge.

The superior frontal sulcus (/s) arises frequently from the superior precentral

sulcus (see Table 11), runs forward about two-thirds of the frontal lobe, gradually

Irish (SO) Swedes (100) A

58 ± 7.0

22 ± 5.9

20 ± 5.6

53 ± 5.0

39 ± 4.8

9 ± 2.9

5 ± 8.6

16 ± 7.6

11 ± 6.3
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nearing the dorsal margin of the hemisphere. The frequency of this behavior varies

more widely from race to race and shows more significant differences than any
other character thus far discussed. Within the errors of sampling, it appears to be

of about equal frequency in Russians, Poles, and Chinese, but it is significantly

more frequent in Swedes and significantly much less frequent in Tonkinese. Again,

Table 10

A. Frequency of Confluence of Inferior Precentral and Inferior Frontal Sulcus, in Percentage.

Race Frequency References

1. Swedes 77 ± 4.2 Retzius, 1896

2. Austrians 76 ± 2.6 Eberstaller, 1890

3. Russians 69 ± 3.3 Zernov, 1877

4. Germans 68 ± 6.0 Connolly, 1950

5. Poles 62 ± 6.9 Weinberg, 1905

6. Negroes (American) 53 ± 6.0 Connolly, 1950

B. Differences between Races.

1. 1 ± 5.0 8 ± 5.3 9 ± 7.3 15 ± 8.0 24 ± 7.3
2. 7 ± 4.3 8 ± 6.6 14 ± 7.3 23 ± 6.6
3. 1 ± 6.9 7 ± 7.6 16 ± 6.9
4. 6 ± 9.2 15 ± 8.5
5. 9 ± 9.2

Table 11

A. Frequencies in Percentage of Confluence of Superior Precentral and
Superior Frontal Sulcus.

Race Frequency References

1. Swedes
2. Poles

3. Chinese
4. Russians

5. Tonkinese

86 ± 3.5

70 ± 6.5

64 ± 4.8

63 ± 3.4

33 ± 5.3

Retzius, 1896

Weinberg, 1905

Chi and Chang, 1941

Zernov, 1877

Huard and Nguyen, 1938

B. Differences between Races.

1. 16 ± 7.3 22 ± 5.9 23 ± 5.6 53 ± 6.3

2. 14 ± 8.1 13 ± 7.3 37 ± 8.4
3. 1 ± 5.8 31 ± 7.1

4. 30 ± 6.3

however, the grouping is queer. One would expect Russians, Swedes, and Poles to

form one group, and Chinese and Tonkinese another. In any event, the wide

variability in a region which is of recent phylogenetic origin is of more than passing

interest. Often (according to Eberstaller in 44 per cent) it anastomoses with the

middle frontal sulcus, to be mentioned presently.
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The superior frontal sulcus is frequently interrupted in its course. The informa-

tion gathered from the literature is tabulated in Table 12. In Negroes and Austral-

ians the sulcus is broken up into three parts more frequenthr than in Whites and

Tonkinese. Several differences are statistically significant.

Within the middle frontal gyrus there is frequently a fairly long middle frontal

sulcus (Jm), roughly parallel to superior and inferior frontal sulci. This sulcus was

considered as an important separate entity by Herve' (1888) and Eberstaller (1890).

The latter described it as a sagittal furrow, beginning with a transverse bifurcation

at about the middle between precentral gyrus and orbital margin, and ending

Table 12

A. Frequencies for Superior Frontal Sulcus Being in One, Two, or Three Parts.

Race One Two Three References

1. Germans 19 ± 5.0 54 ± 6.5 27 ± 5.7 Connolly, 1950

2. Irish 28 ± 6.1 49 ± 6.9 23 ± 5.7 Cunningham, 1892

3. Negroes 17 ± 4.8 40 ± 6.3 43 ± 6.4 Connolly, 1950

4. Tonkinese 42 ± 5.5 32 ± 5.2 16 ± 4.1 Huard and Nguyen, 1938

5. Australians 22 ± 6.2 27 ± 6.7 51 ± 7.5 Shellshear, 1937

6. Russians 66 ± 3.4 22 ± 2.6 12 ± 2.5 Zernov, 1877

B. Differences between Races for Sulcus to Be in Three Parts.

1.

2.

3.

4.

5.

4 ± 8.1 16 =fc 8.5 11 ± 7.0 24 ± 9.5 15 ± 6.2

20 ± 8.5 7 ± 7.0 28 ± 9.5 11 ± 6.2

27 ± 7.6 8 ± 9.9 31 ± 6.9

35 ± 8.5 4 ± 4.8

39 ± 9.5

Table 13

Middle Frontal Sulcus by Percentages.

Frequency Racz References

Absent 1 ± 1.0 Swedes Retzius, 1896

Anastomosis with fronto-marginal sulcus 76 ± 4.2 Swedes Retzius, 1896

In one part 33 ± 4.7 Swedes Retzius, 1S96

In two parts 37 ± 7.5 Australians Shellshear, 1937

In two parts 33 ± 7.7 Chinese Shellshear, 1937

frequently (see Table 13) near the orbitodorsal margin in a similar bifurcation,

evidently a part of Wernicke's frontomarginal sulcus. Most subsequent observers

(Cunningham, Retzius, Connolly, Shellshear, Kononova, etc.) commented upon

the great variability of this sulcus. "There is," as Connolly (1950, p. 197) said,

"every gradation between what is hardly more than a short stem of the fronto-

marginal and a highly developed and important sulcus." From Shellshear's (1937)

tabulation it appears that in both Chinese and Australians the sulcus is commonly
broken up into two parts and separated from the frontomarginal sulcus as well.

Turner (1948) observed a rather striking elaboration during the postnatal phase.

fma, the frontomarginal sulcus. The frontomarginal sulcus was first described by
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Wernicke (1876): "On the convexity above the orbital margin there is frequently

a deep furrow which runs parallel to the orbital margin and is generally restricted

to the second and third [nowadays, first and second] frontal gyrus. It is occasionally

already present in the fetus and corresponds to the frontomarginal sulcus men-

tioned in the orang." It was discussed as solco orbito-frontale by Giacomini (1884).

Eberstaller (1890) considered it as a "conglomeration of secondary sulci running

roughly along the dorso-orbital margin," while Connolly (1950) states that the

frontomarginal is "rather an important and constant sulcus." Shellshear (1937)

mentions the sulcus only incidentally. Fusari (1910) pointed out that Retzius had

observed the sulcus in six month-old fetuses, and called attention to the fact that

the frontomarginal sulcus is generally much deeper than that frontal sulcus of

which it might appear superficially to be a branch. On the other hand, 0. A.

Turner (1948) identified this sulcus only in his late postuterine phase.

On the opercular part there is "generally," according to Eberstaller (1890), the

diagonal sulcus. Eberstaller himself gives no exact data about its frequency or its

extent. "It may begin within the pars opercularis, separate from both precentral

and inferior frontal sulcus or it may be in continuity with the one or the other of

these sulci. The lower end of the diagonal sulcus may be separated from the Sylvian

fissure by a superficial bridge, or ma}' cut into the Sylvian fissure. . . . Sometimes

the fissure may even go as far as the insula but never into the sulcus of Reil."

Turner (1948) mentions the diagonal sulcus as a regular feature of the human brain.

Our observations lead us to believe that the sulcus is by no means a constant feature

of the human brain, but we have looked in vain for numerical data about its fre-

quency.

Near the frontal pole a radiate sidcus is often present, according to Eberstaller

in about one-third of all cases. It cuts into the triangular part of the third frontal

convolution ; its upper end may be united with the middle frontal sulcus. One branch

of this sulcus has been called the incisura capitis (ic) because it cuts into the pars

triangularis (cap de Broca); the other two branches are labeled in brain HI ral

and ra2.

The orbital sulci have to be described together. Figure 16 sketches, after Kanai

(1938), some of the more common types. The most conspicuous features of the

orbital surface are three sulci which together form Broca's incisure en H. The
transverse connecting link is the sulcus orbitalis arcuatus; the longitudinal fissures

are the medial and lateral orbital sulci. Between these two there is generally, near

the frontal pole, an intermediate orbital sulcus, and between the medial one and

the olfactory sulcus (see p. 31) there is the variable sulcus orbitalis fragmentosus.

In careful studies, Beccari (1911) and Kanai (1938) have collected data from the

literature. Kanai compared them with his own findings in sixty-six male and forty-

seven female Japanese brains. In what follows we draw mainly on that monograph;

the sampling errors have been supplied by us.

ora, the sidcus orbitalis arcuatus, was called s. orbitalis transversus by Weisbach

(1870); s. presylvius by Rauber (1886). Rauber considered it merely as the conflu-

ence of two apical processes, but most modern authors have recognized it as a

definite entity. It was found by Kanai in 95.2 ±1.4 per cent, and had in 90.5 ± 1 .9

per cent the typical shape, namely convex toward the frontal pole.
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Generally the sulcus anastomoses, as the term incisure en H indicates, with the

lateral and medial orbital sulcus. In the Japanese the former anastomosis is a little

more frequent than the latter (87 ± 2.2 per cent against 81.5 ± 2.5 per cent).

Occasional anastomoses with the Sylvian fissure, or the olfactory or the intermediate

orbital sulcus, have been described.

orf, the sulcus orbitalis fragmentosus, is generally a train of two (29.6 ± 3.0 per

cent) or three (17.3 ± 2.5 per cent) fragments. It is present only in about three out

of four cases (74.3 ± 2.9 per cent), and may anastomose with the medial orbital

sulcus.

orl, orm, ori, the lateral, medial, and intermediate orbital sulci. These longitudinal

furrows should be described together since the number of longitudinal orbital sulci

varies between one and six. Three furrows are most frequently found, but four

furrows are by no means rare (45.2 ± 3.3 per cent and 38.2 ± 3.2 per cent respec-

tively). Two or five sulci occur each in less than 10 per cent of all cases.

Brain HI shows the sulcus arcuatus to be connected only with the medial orbital

sulcus and with a sulcus (orp) which extends over the frontal pole to connect with

the frontomarginal sulcus.

ro, the sulcus rostralis. This sulcus, on the medial side of the hemisphere, runs

in an anteroposterior direction, beginning near the carrefour olfactif of Broca and

ending just short of the frontal pole. It was first described by Broca as incisure

sus-orbitaire. Eberstaller felt that the sulcus had little or nothing to do with the

orbital surface and adopted the name rostral sulcus which Krueg (1878) had given

to a sulcus in the brain of nonprimates, adding that "the homologies were at once

expressed."

The sulcus rostralis is almost invariably doubled in the human brain. Eberstaller

described the lower one as shallower, and called it accessory rostral sulcus. Beccari

(1911) merely called them superior and inferior. The relations between rostral sulci

and sulcus cinguli are quite variable. Beccari constructed three major groups (see

Fig. 17). The frequencies for sixty hemispheres are noted, after his data, in that

figure.

Many brains, as Beccari's figures show, exhibit a transverse rostral sulcus which

delimits Broca's carrefour olfactif from the gyrus rectus. In Beccari's material this

sulcus was present in 65 ± 6.2 per cent. Eberstaller does not mention the sulcus;

Retzius mentions it briefly, remarking that it could be considered as the endpiece

of the s. cinguli. It is missing in brain HI.

cr, the cruciate sulcus. Campbell (1905) called attention to a generally fairly small

and quite variable "fissuret" on the medial side of the hemisphere, on the para-

central lobule, which coincided with remarkable constancy with the lower boundary

of the gigantopyramidal area and which Campbell looked upon as the homologue

of the cruciate sulcus of carnivores. While we cannot fully share this latter view,

the relation of the cruciate sulcus to the motor area certainly deserves emphasis.

In brain HI the small dimple marked g might be this "fissuret."

The sulci mentioned thus far partition off the main gyri of the frontal lobe: the

g. centralis anterior or precentralis, the superior, middle, and inferior frontal gyrus,

the two orbital gyri, the gyrus rectus, the carrefour olfactif or subcallosal gyrus and

the lobulus paracentralis. To repeat the usual textbook descriptions is unnecessary;
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Fig. 17. Sulci around the rostrum of the corpus callosum (after Beccari).
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their location is sufficiently indicated on our figures. The inferior frontal gyrus, it

should be mentioned, is generally divided into a pars opercularis, triangularis, and

orbitalis. A "postorbital limbus," caused by the sphenoid bone, was described by

Spitzka (1903). Ariens Kappers (1929) mentions its frequent occurrence in Chinese.

PARIETAL LOBE

More than three score years ago Eberstaller (1884) wrote that "the brain of

man differs from that of the primates [sic!] not only by the large development of

the third frontal convolution but also by that of the inferior parietal lobule." Yet

the sulci of the parietal lobe have been studied much less thoroughly than those of

the frontal lobe. The reason for this neglect may have been the bewildering variety

of the sulcal patterns in this region, although it must be admitted that a similar

state of affairs was no detriment in the case of the occipital lobe ! Be that as it may,

we must be content to note the definitions and descriptions of the secondary parietal

sulci without benefit of statistics.

We begin in the postcentral region, gradually work our way toward the occipital

lobe, and end up on the medial side, in the precuneus.

pocs, poci, the superior and inferior postcentral sulci. These two sulci, which run

roughly parallel to the central sulcus, have been discussed with the intraparietal

sulcus and the frequencies of their fusion with each other and with the intraparietal

have been shown in Figure 14 and Table 5 (p. 36).

scp, the sulcus subcentralis posterior and ret, the sulcus relrocentralis transversus.

The former was first described by Marchand (1895), the sulcus retrocentralis trans-

versus by Eberstaller (1884). Retzius considered the two identical. Connolly (1950)

pointed out, however, that both Eberstaller's retrocentralis transversus and Mar-

chand's subcentralis posterior may be present in the same hemisphere, that the two

are therefore distinct sulci and that there is, moreover, a compensatory relationship

between them.

In brain HI both sulci are present, but the posterior subcentral is no more than

a small incision in the parietal operculum while the transverse retrocentral is a

fairly large element fused, by means of a spur (ceS), with the central sulcus (see

Fig. 8).

pt, the sulcus parietalis transversus. This sulcus was described by Brissaud (1893)

as taking its origin on the medial side of the hemisphere, crossing the dorsal margin

and ending on the lateral side. It thus divides the upper parietal lobule into an

anterior and a posterior part. How constant the direction and configuration of this

sulcus are, and whether it is the same as Retzius' sulcus parietalis superior (see

Retzius' text, pp. 122-23!), is not quite clear. From the published figures one

might assume it. Huard and Nguyen (1938) observed this sulcus in 65 ± 5.3 per

cent of their Tonkinese brains.

pja, pjp, the sulcus intermedius (of Jensen), anterior and posterior. A short sulcus

between lateral and parallel sulcus was first described by Jensen (1870). He gave

schematic lateral views of the brain, drew on the left side an isolated furrow, and

on the right side an intermediate sulcus fused with the intraparietal. Eberstaller

(1884) who divided the inferior parietal lobule into three "arcs," namely the

supramarginal and angular gyri and the posterior parietal arc, recognized two

intermediate sulci, "borrowing the term from Jensen, but understanding by it
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something quite different." Eberstaller pointed out that these sulci may anastomose

with the lateral or the parallel sulcus respectively. The sulcal pattern on the in-

ferior parietal lobule is so variable that hardly any two authors agree. Modern dis-

cussions, such as that of Ingalls (1914) are very much influenced by the cytoarchi-

tectural maps of Brodmann (whom Economo and Koskinas followed) where two
different areas 39 and Jfl are shown divided by the sulcus of Jensen. That areas

39 and 40 (or PG and PF) are actually indistinguishable (see p. 215) was widely

overlooked. Two intermediate sulci are shown by 0. A. Turner (1948) during post-

natal development.

sp, the sulcus sub-parietalis. The subparietal sulcus on the medial side is a very

variable sulcus showing sometimes several radii, being in other brains a simple

furrow in the prolongation of the mainstem of the sulcus cinguli. No data about

frequencies of the various patterns are available.

We can be brief about the gyri of the parietal lobe : precuneus and a part of the

paracentral lobule on the medial side, superior parietal lobule or gyrus, and the

inferior parietal lobule, consisting of supramarginal and angular gyrus complete

the list.

In brain HI the two postcentral sulci are confluent. The transverse parietal sulcus

has a fairly long anterior spur (ptl) running parallel to the intraparietal sulcus.

Somewhat further occipitad, the sulcus limitans precunei (see below) joins the

intraparietal. There are two intermediate sulci, pja and pjp, arising from the

intraparietal, anastomosing further ventrad. The stem thus formed joins the parallel

sulcus ts. Two lesser sulci have been labeled m and o respectively merely for identi-

fication in the sections.

OCCIPITAL LOBE

Of all parts of the hemisphere, the so-called occipital lobe has been the most

difficult to analyze morphologically. This is especially true of its lateral side which

neither offers clear landmarks for its boundary nor exhibits an even tolerably con-

stant pattern of fissures. To explain the very variable fissures, almost all authors

have had recourse to comparative anatomy, and this led, naturally, to such con-

cepts as higher and lower development, pithecoid and anthropine types, etc., etc.

Since "lower," i.e., colored races, actually showed pithecoid characters with higher

frequency than the "higher," i.e., the "white" race (whatever that may mean),

there was no obstacle to accepting this line of reasoning.

But the way to evolutionistic synthesis leads through morphological analysis,

i.e., through objective description. We shall, therefore, not discuss orangs, spider

monkeys, or macaques, but confine ourselves to Swedes, Chinese, and Fellahin.

The schemes given by various authors and reproduced in Figure 18 illustrate

that one can, perhaps with little justification, bring the pattern of the human
occipital sulci into two types, frequently referred to as the pithecoid and the

anthropine type. From what has just been said, the reader will understand that we

do not quite approve of these terms. Let us, therefore, call the type given by Figure

18, left, the vertical, the one given by Figure 18, right, the longitudinal type.

For both types, the anterior boundary of the occipital lobe is given at the dorsal

margin by the parieto-occipital incisure, and on the ventral side by the inferior

preoccipital (ipo) sulcus of Meynert, 1877 (Giacomini's lateral occipitotemporal).
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Fig. 18. Sulcal patterns of lateral aspect of occipital lobe (after various authors). Left

—

vertical; right—horizontal types.
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This fairly small, but evidently quite constant, sulcus was first used by Bischoff

(1868) to delimit the occipital from the temporal lobe and, according to Meynert,

was also discussed by Wernicke. "Since it cuts in anterior to the occipital lobe,"

so continues Meynert, "it deserves the name sulcus praeoccipitalis."

In the longitudinal type all authors recognize a transverse occipital sulcus, fre-

quently represented as the accentuated two end-branches of Wilder's preoccipital

sulcus. This sulcus lies roughly on a line connecting the dorsal notch of the medial

parieto-occipital incisure with the ventral one of the inferior preoccipital sulcus of

Meynert. It varies in length, but runs rarely for more than the dorsal half of the

hemisphere and helps to mark the frontal boundary of the occipital lobe. Within

the lateral aspect of the occipital lobe proper there are two or more longitudinal

sulci. Giacomini (1878) distinguished between a shorter superior and a longer

inferior one; Eberstaller (1884) called occipitalis lateralis what is obviously

Giacomini 's inferior occipital sulcus and sulcus triradialis what may be Giacomini's

superior. Other authors have added to the confusion (see Economo, 1930, loc. cit.

Fig. 27, p. 448). The occipitalis lateralis of Elliot Smith (1904) is Economo's occipita-

lis lateralis superior, while the lateral occipital of Zuckerkandl (1905) is Economo's

occipitalis lateralis medius, and the lateral occipital of Holl (1907) is Economo's

inferior lateralis occipitalis and Gratiolet and Broca's inferior occipital. But none

of these is Giacomini's (1878) superior occipital, if its relation to the transverse

occipital is taken as a criterion.

lo, the sulcus limitans operculi. The vertical type is characterized mainly by
that much-debated furrow, the sulcus lunatus. An Affenspalte is, of course, an easily

recognized landmark in the brains of monkeys. The question which the anatomists

of the late nineteenth century attempted to answer was, in Mingazzini's (1893)

words, whether there existed a sulcus in the human brain which could be considered

as the equivalent of the so-called Affenspalte. Numerous writers, of whom Zucker-

kandl (1905) and Holl (1907) are the last (and perhaps the most voluminous) ones,

relied for the answer purely on gross morphological examination. They found an

operculated sulcus describing a curve concave occipitad near the occipital pole.

Its distance from the occipital pole, its length as well as its depth, may vary within

wide limits. To Elliot Smith (1904a) belongs the credit for introducing a cyto-

architectural criterion. He (1904b) found in the brains of Egyptian Fellahin very

frequently an operculated sulcus of semilunar shape which was the anterior limiting

sulcus of the striate area. This he called, to avoid confusion, "sulcus lunatus,"

pointing at the same time to the presence of a homologous sulcus in the brains of

anthropoid apes.

Economo's (1930) cytoarchitectural studies—unfortunately, of only three

brains—showed, however, that an operculated transverse sulcus is not always a

limiting sulcus of the striate area. Hence the Viennese author distinguished between

a sulcus limitans operculi and a sulcus lunatus proper. Shellshear (1926) had pre-

viously described Chinese brains, in which the operculated sulcus is not invariably

the limiting sulcus of the striate area (see Shellshear's Fig. 11). Since most of the

statements in the literature concerning the sulcus lunatus are based merely on

macroscopic inspection, they pertain, strictly speaking, to Economo's sulcus limitans

operculi. As we understand it, a sulcus lunatus is always a sulcus limitans operculi,

but a sulcus limitans operculi may or may not be a sulcus lunatus.



Fissures of the Brain 53

Turner (1948) found the sulcus limitans operculi fairly well developed in his

early postuterine phase, but rudimentary in the later postuterine phase. The
part of the cortex newly elevated from the fossa parieto-occipitalis is the dominant

feature in the developmental changes occurring in this part of the brain, to para-

phrase Turner.

The frequency with which the sulcus limitans operculi occurs in different races

is given in Table 14. Most authors called it "sulcus lunatus," but not all observers

may have understood that term in the same way, for there are borderline cases in

which the sulcus is broken up by a gyrus translunatus, or in which its operculari-

zation may be so poor, or its location so far forward, that it is hard to decide whether

one has to deal with a "lunate sulcus" or not. It may be for such reasons that the

information about the Chinese is so contradictory, or that Bianchi's (1936) Tuscans

are so far out of line. The Northern Chinese of Shellshear agree with Chi and Chang's

data, and Shellshear 's Southern Chinese agree with van Bork-Feltkamp's data.

Table 14

Frequencies of Sulcus Limitans Operculi in Percentages, Computed for Hemispheres.

Race Frequency References

Germans
Swedes
Chinese (Peking)

Dutch
Chinese
Chinese
Chinese (Northern)

Kenya Negroes ("A")
Koreans
Australians ("B")
Ken3'a Negroes ("B")
Chinese ("A")
Chinese ("B")
Chinese (Southern)

Tuscans

28

30

30

37

37

50

53

54

65

68

70

71

73

79

84

5.9

4.4

4.6

5.3

5.2

5.0

5.4

5.0

6.8

6.6

4.6

6.3

5.7

4.1

5.2

Kuhlenbeck, 1928

Antoni, 1914

Wen, 1933

v. Bork-Feltkamp, 1930

Shellshear, 1926

Chi and Chang, 1941

Shellshear, 1937

Vint, 1934

Nagai, 1933

Shellshear, 1937

Vint, 1934

v. Bork-Feltkamp, 1930

v. Bork-Feltkamp, 1930

Shellshear, 1937

Bianchi, 1936

But Wen's figures are far lower than any other. It appears justified, however, to

state that a sulcus limitans operculi is found in one out of three or four Euro-

peans, in about one out of two Northern Chinese, but in three out of four Southern

Chinese, Australians, and Negroes.

Frequently the sulcus limitans operculi sends one or even two spurs toward the

parietotemporal region which are known as prelunate sulcus, or superior and in-

ferior prelunate sulcus, respectively. As Bianchi (1936) remarked, these prelunate

sulci may be called lateral occipital sulci.

cm, the sulcus cunei. On the medial side, the cuneus, i.e., the region between

medial parieto-occipital fissure, calcarine fissure and dorsal margin, bears a varying

number of secondary sulci. Retzius described them as running predominantly in a

sagittal direction ; Shellshear, in his Australian brains observed frequently L-shaped

or triradiate sulci. As Elliot Smith (1904c) first pointed out, it is generally possible

to identify a usually rather shallow sulcus which runs approximately parallel to

the calcarine fissure and at least part of which forms the dorsal boundary of the
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striate area. He named it sulcus paracalcarinus or sulcus limitans areae striatae

dorsalis (see Fig. 15, p. 39).

In the dorsal part of the cuneus the sulci are apt to run roughly parallel to the

parieto-occipital fissure. Their behavior appears to be influenced by the gyrus

intercuneatus (see again Fig. 15).

On the lingual lobe there is quite constantly a sulcus limitans areae striatae or

sulcus paracalcarinus ventralis. The other fissures are best described in connection

with the temporal lobe.

Brain HI shows two well-developed transverse occipital sulci (otrs and otri). The
irregular sulcus near the occipital pole (labeled n) is not a lunate sulcus as a glance

at the cytoarchitectural map (frontispiece) will show. An anterior occipital sulcus

(oa) with two long end-branches can be recognized, and Meynert's inferior pre-

occipital sulcus (ipo) cuts into the ventral margin. The cuneus shows an irregular

triradiate sulcus in its ventral part, which we called sulcus cunei (cu). Its anterior

ramus corresponds to Elliot Smith's dorsal paracalcarine sulcus as another glance

at the frontispiece will verify. The branches of the medial parieto-occipital fissure,

1, 2, and 3, which occupy the dorsal part of the cuneus are difficult to identify with

Table 15

Bean's data.

Anteroposterior diameter of basal plane of temporal lobe:

(mm.)
Whites (53) 54.7 ± .79

Negroes (127) 51.8 ± .31

A: 2.9 ± .85

Transverse diameter

:

Whites (53) 49.3 ± .42

Negroes (127) 44.4 ± .26

A: 4.9 ± .49

(For definition of measurements, see Bean (1914)).

any other sulci. The ventral paracalcarine sulcus on the lingual lobe is the posterior

part of the collateral fissure (col).

TEMPORAL LOBE

The temporal lobe is, as everybody knows, a relatively recent phylogenetic

acquisition. As 0. A. Turner (1948) has shown, a forward growth of the temporal

pole is noticeable during postnatal development.

There appears to be some racial variation in the relative size of the lobe as a

whole. Connolly (1950), adhering closely to Ariens Kappers' encephalometry,

measured the distance from temporal to occipital pole, projected onto the fronto-

occipital diameter (= length of hemisphere), and expressed that distance as a

percentage of the length of the hemisphere. His figures showed a small but statisti-

cally significant longer temporal lobe in whites than in Negroes. Several years

previously Bean (1914) had stated that the temporal pole of the Negro brain was

more pointed and smaller than that of whites. Using his data in conjunction with

Pearson's tables of mean ranges of samples, the values shown in Table 15 can be

computed.
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Both differences are statistically significant. It is to be regretted that no more

anthropometric data concerning the temporal lobe are available.

Turning to the sulci of the temporal lobe, we shall start on the inferomedial sur-

face and proceed toward the first temporal sulcus which, it will be remembered,

has been discussed as a primary fissure.

col, the collateral sulcus. The sulci on the basal aspect of the temporal lobe show

a bewildering diversity (see, e.g., Retzius, Fig. XIII, p. 143). Yet in most brains

it is possible to recognize a collateral fissure. When well developed this fissure runs

over most of the inferior aspect of the temporo-occipital lobe. Posteriorly, it may
fuse with the calcarine fissure. A deep connection between these two fissures—still

marked, however, by a submerged gyrus rhinencephalo-lingualis—was seen by

Retzius in 6 ± 2.4 per cent of his cases. Landau (1911) observed it in his brains

of Esthonians in 13.3 ± 4.4 per cent. The difference is statistically not significant.

The collateral fissure is a continuous furrow about as often as it is interrupted.

Landau (1911) found in Esthonians the former condition in 45 ± 6.4 per cent, the

latter in 47 ± 6.5 per cent. The rest were irregular.

The posterior (i.e., occipital) end generally bifurcates. The two ends may assume

the aspect of a transverse sulcus, described by Arkin (cited after Genna (1924-25))

as a separate entity, the transverse occipitotemporal sulcus. Connecting branches

with the third temporal sulcus are present now and then. Landau found such

furrows well developed in 13.3 ± 4.4 per cent of his cases. Adding seven cases in

which only a very narrow gyrus intervened, a frequency of 25 ± 5.6 per cent

might still be acceptable.

Near the temporal pole the collateral fissure may end in another transverse

sulcus, called s. collateralis transversus by Elliot Smith (1931, pp. 661, 665). This

sulcus had been described previously by Landau (1911).

When fully developed the collateral fissure divides the lingual lobe and the

gyrus hippocampi, both of which lie medial to it, from the fusiform gyrus lateral

to it. In the fusiform gyrus, i.e., between the collateral and the third temporal

sulcus, there may be the sulcus sagittalis gyri fusiformis of Retzius. There may be

one straight sulcus, or there may be several smaller sulci, often fusing by oblique

or transverse branches with the collateral or the inferior temporal sulcus.

Concerning the inferior and middle temporal sulci we have found no utilizable

data. Blinkow studied the basal (1936) surface and lateral (1938) surface of five

brains but does not discuss the sulcal pattern systematically. The pattern of these

two sulci is so inconstant that it has probably defied description. In brain HI the

sulcus which we have labeled inferior temporal (ti) runs a long irregular course

from the basal surface posterolaterally to curve around the margin onto the lateral

surface anterior to the inferior preoccipital sulcus. Between it and the parallel

sulcus are two irregular configurations which we have labeled tma and tmp separated

by a long descending spur (4) of the parallel sulcus (is).

There is also an irregular configuration near the temporal pole which we have

labeled tp.

The analysis of the supratemporal plane is more easily carried out by paying

attention to the gyri than to the sulci. It was first brought to the attention of the

scientific world by Heschl (1878). He described the anterior transverse temporal
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convolution on the basis of 632 male and 455 female brains and pointed out that it

formed an arch with the superior temporal convolution significantly more frequently

on the left than on the right side (0.3 per cent right, 14.4 per cent left in males;

0.2 per cent right and 4.2 per cent left in females). He found in the cortex covering

this convolution "only rather small ganglion cells. . . so that the cell shape suggests

that this convolution belongs to the sensory parts of the brain." The earlier litera-

ture was reviewed and a detailed description added by Holl (1908). Flechsig (1908)

realized that "Heschl's gyrus" was the cortical end-station of acoustic impulses,

and he and his associates, among them Auerbach (1906-11), Klose (1920) and

Pfeifer (1936), studied this region and its individual variations minutely. Economo
and Horn (1930) also used both morphological and cytoarchitectonical methods in

analyzing this region.

Following Holl, we can divide the supratemporal plane into a planum temporale

and a planum polare. The latter, occupying the anterior part of the superior aspect

was called limes temporalis by Holl (1908). He described three small gyri, separated

by rather shallow sulci which so far have failed to evoke further interest. The planum
temporale contains as the most conspicuous element the transverse supratemporal

gyrus of Heschl. This is a slight misnomer for the gyrus runs always in an oblique

direction, from medio-occipital to laterofrontal. It is bounded on either side by a

sulcus. The frontal one was labeled by Holl the anterior limiting sulcus, the pos-

terior one was called by him the transverse supratemporal sulcus. Not infrequently

—we have no precise information—the gyrus of Heschl appears at least partly if

not completely doubled by a sulcus intermedius. Either the intermediate or the

transverse supratemporal sulcus may cut into the lateral aspect of the first temporal

gyrus. Niessl von Mayendorf (1911, p. 293) appears to have used the term "s.

acusticus" indiscriminately for any furrow cutting into the lateral aspect of the

superior temporal gyrus. Heschl's gyrus may run more or less obliquely. Pfeifer

(1936) speaks consequently of a steep or a gradually sloping type. The doubling

of Heschl's gyrus appears to occur more frequently on the right than on the left

side (Pfeifer, 1936).

INSULA REILII

The island of Reil has not received quite the same attention as the free surface

of the cerebral hemisphere. Guldberg (1887) and Eberstaller (1887, 1888) laid the

groundwork. Recently Kodama (1934) has made a detailed study of forty Japanese

hemispheres, and Grzybowski (1938) followed this up with an analysis of brains

of "Jews" [sic!] and Poles.

The insula forms a somewhat irregular quadrilateral pyramid with a generally

quite pronounced apex, the monticulus. The anterior surface of the island is covered

by the orbital operculum, its large laterosuperior surface by the frontoparietal

operculum. The posterior surface lies beneath the temporal operculum; the basal

side—the limen insulae—merges in the depth of the vallecula Sylvii with the

frontal and temporal parts of the rhinencephalon.

On the laterosuperior surface, dividing it into a larger anterior and a smaller

posterior moiety, there runs the sulcus centralis insulae. It begins dorsally almost

always at the circular sulcus; it ends frequently beyond the monticulus on the
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basal side of the insula (in Kodama's material in 60 ± 7.8 per cent, in "Jews"

in 82 ± 5.4 per cent and in Poles in 64 =t 8.7 per cent). Retzius found this sulcus

"well developed" in 94 out of 100 cases, i.e., in 94 ± 2.4 per cent.

The anterior part bears two sulci breves. Additional sulci, either between the

two or in front of the anterior one, occur in Japanese in 60 ± 7.7 per cent, and in

Jews in 32 ± 6.6 per cent. The posterior part bears a sulcus longus. Here, too,

additional sulci may be found.

Whether the sulcus centralis or the sulcus longus was the "main" sulcus of the

the insula, whether the insula was a Bogenwindung around the sulcus longus,

as Marchand (1895) argued, or around the central sulcus as Retzius (1902) con-

tended, has lost much of its scientific interest. It implies homologies between

primates and other classes of mammals. Such questions are, as we saw, meaningless.

Table 16

Encephalometric Indexes (see Fig. 19).

Chinese Sardin-

Zulu Tuscans A Dutch Sicilians ians

Callosal index 268 ±5 349 ± 10 3S0 ±8 302 ± 8 317 ± 5 328 ± 5

General index of

height 467 ± 11 485 ±6 537 ± 7 464 ± 6 447 ±4 472 ± 9

Occipital index 1106 ± 45 1003 ± 40 1232 ± 45 1029 ± 28 1180 ± 13 1410 ± 43

Index of temporal
depth 150 ±6 172 ± 6 132 ± 5 144 ± 3 155 ±2 181 ± 5

Index of temporal
length 767 ±6 741 ± 6 757 ± 4 751 ± 3 741 ±2 772 ± 8

Index of frontal

height 449 ± 12 470 ±7 513 ± 6 448 ± 6 433 ±3 434 ± 8

Index of frontal

length 393 ±4 383 ± 8 374 ± 5 364 ± 3 308 ±1 299 ± 7

Index of rostral

depth 89 ± 6 80 ± 5 64 ± 3 65 ± 2 64 ± 2 47 ± 3

Central index 439 ± 10 409 ± 12 398 ±6 396 ± 8 425 ± 3 404 ± 10

References: Zulu: Bianchi, 1934; Tuscans: Castaldi, 1936; Chinese v. Bork-Feltkamp: 1930; Dutch: v. Bork-Felt-
kamp, 1930; Sicilians: Bianchi, 1939; Sardinians: Castaldi, 1936.

Kodama (1934) gives as the length of the insula—projected onto the sagittal

plane—56.4 ± 0.64 mm. on the left and 52.8 ± 0.52 mm. on the right side, and for

the height 38.1 ± 0.45 mm. on the left and 37.5 ± 0.38 mm. on the right. Ob-

viously the left insula is significantly longer than the right one. The greater length

of the left Sylvian fissure (see p. 37) appears as but another expression of the same

fact.

ON RACIAL DIFFERENCES

The reader may well have despaired of scrutinizing all the tables informing him

about the frequencies of this or that feature. Indeed, most of the significant dif-

ferences seemed rather between the "personal equations" of the observers than

between human races.

The superior frontal, the lunate sulcus, and the relative size of the temporal

pole are almost the only characters for which racial differences may exist. But the
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Fig. 19. For legend see opposite page.
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last of these is not borne out by encephalometry (see below). The safest conclusion

to be drawn appears, therefore, still to be that all human brains look essentially

alike. This conclusion is neither startling nor new, as we learned in the introduction

to this chapter. A few significant differences crop up here and there, but they fail

to lead to any consistent grouping, and one is therefore led to suspect the methods

of observation.

Sufficient data on the fissures of the brain have been amassed to convince us of

the futility of further macroscopic examinations.

Several authors attempted to put the anthropology of the brain on the same

precise numerical footing as the anthropology of the skull or other parts of the

skeleton by devising systems of encephalometry. The method of Ariens Kappers

(192(i) has been tried out in several instances, while that of Economo (1929b) has

been employed by one of us in a short study of primate brains (Bonin, 1941).

Ariens Kappers measures on photographs of the medial and lateral aspects of

the hemisphere and computes several indexes. His technique is explained in the

legends for Figure 19. Unfortunately most collections of brains are quite small

so that there are but few series of even reasonable length available. What could be

Fig. 19. Some encephalometric points according to Ariens Kappers. Redrawn after Ariens

Kappers (unmodified except that the original was not lettered).

lateral side: The lateral horizontal a = F O: a line drawn through the most ventral point

of the orbital operculum and the base of the occipital lobe.

The parietal perpendicular d = V P: a line drawn perpendicularly to F O, from the highest

point of the dorsal margin.

The occipital length o = O P.

The temporal perpendicular c = T T' : the perpendicular from the lowest point of the tem-

poral lobe to the line a.

The temporal length t = O T' (not lettered in figure).

The chiasma perpendicular (not shown in the figure) : a line drawn through the optic chiasma

at right angles to the line a. The distance from dorsal margin to the line a along this chiasma

perpendicular is the frontal height b. The distance of the point F from the point at which the

chiasma perpendicular crosses the line a is the frontal length f.

The frontal perpendicular is the line dropped from the most anterior point of the frontal

pole to the line o. The distance r - R F: the rostral height.

The central perpendicular p (not shown in the figure) is the line dropped from the point at

which the central fissure cuts into the dorsal margin onto the line a. It cuts the line a at the

point P'.

The insular perpendicular i is the height measured along a line tangential to the temporal

pole and at right angles to a.

medial side: The callosal length ( = GS: the distance from splenium S to genu G, meas-

ured parallel to the callosal base-line connecting the basis of the genu with the basis of the

splenium.

The callosal height h is the perpendicular on the line G S dropped from the highest point of

the dorsal contour of the corpus callosum.

The indices in Table 16 are defined thus:

Callosal index: 1,000 h/1

Occipital index: 1,000 d/o

Index of temporal depth: 1,000 c/a

Index of temporal length: 1,000 t/a

Index of frontal height: 1,000 b/a
Index of frontal length: 1,00 J f/a

Index of rostral depth: 1,000 r/a

Central index: 1,000 p/a

The factor 1,000 has been introduced, contrary to the usage of Ariens Kappers, to get rid

of the zeros after the decimal point in the sampling errors.
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found in the literature has been put into Table 16. The data of Huard and Nguyen
(1938) had to be omitted since no sampling errors could be computed. Several of

the indexes, such as the general height index and the frontal height index reflect,

so one must assume, merely the varying configuration of the skull. Keenan's

(1934) short note is not adequate for proving or refuting this assumption. Some
other indexes such as the occipital index and the index of temporal length vary in

an entirely haphazard manner and seem, therefore, rather unsuited to arrange the

races in any intelligible order. We are left with five indexes, namely, the index of

the corpus callosum, of temporal depth, of frontal length, of vertical depth and of

the central fissure, for an arrangement of the various races. To visualize that

arrangement is not easy. We can use the method of Pearson and Bell (1919). The
interracial standard deviation for each index is determined, the deviation for each

index of each race is computed in terms of the respective standard deviation and

the sum for each race is found, once in absolute terms A{n) and once having regard

Z.ULU

SARDINIANS

DUTCH TUSCANS

Fig. 20. Arrangement of races by encephalometry.

to the sign of the deviation S(n). The value of S(n) gives the distance from the point

of origin, the quotient . . gives the cosine of the angle in a diagram of polar co-

ordinates.

The races are then arranged as shown in Figure 20. It is certainly not what would

be expected. The wide distance between the two Italian samples, the position of

the Zulus between them, the close relation between Chinese and Sicilians are

inexplicable features, hardly encouraging further laborious measurements and com-

putations. The absence of racial peculiarities in the human brain remains still the

most plausible hypothesis. We do not share Castaldi's (1936) hope for important

results from this method.



Chapter IV: Cortical Types

We recognize, willingly that researches carried out with the aid of simple methods such

as those ofNissl and Weigert have the appreciable result . . . of demonstrating the existence

of a large number of areas different in structure and function, as well in the cortex of

projection as of association. But the progress is reduced to little more than that.

S. Ram6n y Cajal (1911)

The description of the cortical types, which is about to be given, follows Brod-

mann and Economo insofar as it is based primarily on the cell picture. This, as

everybody knows, goes back to Nissl, who used material fixed in alcohol, cut without

previous embedding, and stained in hot methylene blue solution. We no longer use

his original method. We embed formalin-fixed material in celloidin, and stain with

thionin, cresyl violet, toluidin blue, or still some other stain. But these are, after

all, minor modifications. Nissl's original intention, to obtain an equivalent picture

of the cell, holds good also for the architectural picture of the cortex as a whole and

is achieved by any one of the stains just mentioned. Hence it seems only historically

just to allude to the results of any of these methods as Nissl preparations.

We realize that Nissl preparations are incomplete and give no real insight into

the intimate structure of the cortex. The Nissl method stains also the nuclei and a

variable amount of the cytoplasm of the glial cells, but they all—neuroglia, oligoden-

droglia, and microglia—are evenly distributed throughout the thickness of the

isocortex (0. H. Schroeder, 1935) and do not confuse the stratification as they

may (Lorente de No, 1934) in the allocortex. This is revealed only by the Golgi

method, which we could not use effectively (see p. ix). Of the results of the Golgi

method we have at our disposal only the old studies of Ram6n y Cajal (1911) on

the brains of infants about one month old, and then only of the precentral, post-

central, and superior temporal gyri, and of the striate area. The recent description

of Lorente de No (1949) is based on preparations of the mouse's cortex. The situa-

tion was clearly stated by Ramon y Cajal (1911, p. 598):

We recognize willingly that researches carried out with the aid of simple methods such
as those of Nissl and Weigert have the appreciable result, already remarked by us, of demon-
strating the existence of a large number of areas different in structure and function, as well

in the cortex of projection as of association. But the progress is reduced to little more than
that; since there cannot be any question of using such methods to reveal to us the very
interesting details of the morphology of the cerebral cells, the course of their expansions, their

connections in the various regions of the gray matter. The neurofibrillary methods, which we
have used to fill these lacunae, have not given satisfaction, in spite of the works of Bethe,

Cajal, Bielschowsky, Brodmann, van Gehuchten, Marinesco and others. They could not,

because of the considerable number of the elements which they impregnate, the thinness of

the sections which they necessitate, and their incapacity to disclose the ultimate terminations

of dendrites coming from the pyramidal cells and the axial arborizations of the neurons with

short axones. These defects, and many others also, more marked in the technic of Biel-

schowsky than in ours, oblige us to come back to the method of Golgi. So long as we have not
found another technic capable of furnishing isolated and partial colorations of dendrites and
the terminal ramifications of the axis cylinders, so long as we have not invented a more

61
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faithful and reliable method, the method of Golgi remains, in spite of its inconstancy which

lias been erroneously exaggerated, the only one which can inform us concerning the morpho-

logical types of the cortical neurons and their intercellular connections, on condition, be it

said, that we use as much as possible brains of men recently dead or of sacrificed animals.

To do otherwise is to condemn ourselves to ignorance of all that is more interesting and
typical in the structure of the gray cortex; it also is to retard, if not to arrest, the progress

of our knowledge of the intimate mechanism of the organ of thought.

We have supplemented our studies by the examination of silver impregnations

(Cajal's method for unmyelinated fibers, Conel, Bielschowsky, Bodian) and prepa-

rations stained for myelin (Kultschitsky), but did not find them of much assistance.

Golgi preparations did not succeed, as is usual, for the adult brain. The modifica-

tion of Bubenaite (1929), used by Bonin in previous studies, impregnates only

dendrites but fails to show axones and their collaterals.

In the following pages there will be found many times such vague expressions

as "about" (e.g. equal in size), "relatively," etc. Such vagueness has been, as we

are well aware, the bugbear of the literature on cortical architecture. "About equal"

refers to the impression one has under the low-power microscope. We have used

routinely a binocular dissecting microscope, with a magnification of 32.5X as meas-

ured by ocular micrometer. (The manufacturer wants us to believe we work at

45X .) For finer work we used oil immersion at a magnification of 390 X . "Relative"

means relative to the typical isocortex (p. 69). "Dark" and "light" (band) refer

to the appearance under the microscope or on the photograph. "Dark" does not

necessarily mean rich in cells, since neurones are not stained equally heavily by

thionin. The terms "thick" and "thin" refer to extensions perpendicular to the

surface, "broad" and "narrow" to extensions parallel to the surface. It is to be

regretted that other authors have used these terms interchangeably.

After the hemisphere had been cut into serial sections, over three hundred loci

were chosen for photographs, without examining them under the microscope, taking

care only that they were scattered fairly evenly over the exposed surface and were

on the crests of gyri. An exception had to be made, however, for the supratemporal

koniocortex which is nowhere to be found on the surface of the brain. These photo-

graphs were pasted on cardboards and shuffled like playing cards. Only those whose

provenience we could recognize were retained. Of these, we chose for reproduction

(see Plates) the photograph which was most nearly parallel to the radiation. We
could easily have made photographs which would show more clearly characteristics

of interest to us, but we preferred our random photographs as more accurately

portraying the average structure.

We shall not always describe the layers in the orderly sequence from the surface

down, but frequently turn to the most conspicuous or most important one first.

As everyone knows, the fourth, or inner granular, layer (see Fig. 21) contains most

of the outer stripe of Baillarger and receives the specific afferents when they exist.

Layers ii + Hi will be referred to as the outer main layer, layers v + via as the

inner main layer, not quite in accord with the usual manner. We propose, in our

descriptions, to follow the system first employed by Lewis (1878) and adopted by

Brodmann and by Economo, which recognizes six fundamental layers in the iso-

cortex. This means that we shall recognize one layer (vi) which includes vi + vii
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of the Vogt school. There seems little to be gained by noting all the different numera-
tions of the layers adopted by various authors; we might note, however, that Cajal

(1911) makes two layers (3 and 4) of Economo's 777, so that his internal granular

layer is numbered 5. Lorente de N6 (1949) labels iva what Economo calls IIIc,

Fig. 21. Cross section of postcentral cortex stained by different methods. From left to

right—Golgi, Nissl and Weigert: redrawn and modified after Cajal, Campbell, and Brodmann
respectively.

Economo's IV becoming ivb. He does this because he believes that the afferent

terminal plexus includes not only the granules of IF (which he calls star cells) but

also the pyramids of IIIc (which he calls star pyramids).

The deeper boundary of layer vib is so vague in many regions as to make figures

of the total thickness of the cortex very uncertain. The boundary between via and

vib is much more evident. Even though Lorente de N6 states (1949) that the
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boundary between ivb and v is the only sharp boundary in the cortex, we have
found it possible to draw with reasonable accuracy the boundaries between i and
ii, Hie and iv, iv and v, and between via and vib. We shall, therefore, give measure-
ments of the outer main layer (ii + Hi), and of the inner main layer (v + via)

as defined above.

The correspondence of the layers of the typical isocortex, as shown by the

various methods, is to be seen in Figure 21. All pictures were drawn from the

postcentral gyrus. The Weigert picture is much too schematic; the inner stripe of

Baillarger is too sharply outlined and the outer stripe should shade off more into

the third layer; the stripe of Kaes-Bechterew is absent in many parts of the cortex,

and the stripe in the first layer much less evident.

Numerous illustrations have been published of various parts of the cerebral cor-

tex, both drawings and photographs, usually without accurate information of their

exact location. Brodmann (1910, 1914) reproduced a few drawings; and a series of

excellent drawings, presumably of Brodmann's areas, are given by Marinesco
(1910b); one might note that his drawing of "area 22" looks suspiciously like

parakoniocortex and should probably have been labeled 42. Other drawings by
van't Hoog are to be found in Ariens Kappers, Huber, and Crosby (1936, vol. 2).

In the great atlas of Economo and Koskinas (1927) the position of each photograph

is carefully indicated. We have followed the same plan (see Fig. 120, p. 269).

In the present chapter we are concerned with the types of cortical architecture

which we recognize, not with the number of areas which it is possible to distinguish.

There are, e.g., several areas widely separated which belong to the parakoniocortical

type, not to speak of the wide extent of the typical isocortex. To locate these areas

will be the topic of the next chapters.

I. THE ALLOCORTEX (A)

To define the allocortex means also to define the isocortex. As is well known,
"allocortex" is the term introduced by the Vogts (1919) for Brodmann's heterogene-

tic cortex. Brodmann (1909) had given merely a negative definition; the hetero-

genetic cortex comprised those parts which did not pass ontogenetically through a

six-layered stage. The attempts to define the allocortex by its embryological history

in a positive way, as M. Rose (1926) and Filimonoff (1929) had done, were sharply

criticized by Eduard Beck (1940) and Lorente de No (1934) and we shall, there-

fore, not employ M. Rose's or Filimonoff's scheme (see p. 8).

The allocortex is roughly identical with Ariens Kappers' (1909) archicortex and

paleocortex. The former comprises the hippocampus and its related structures, such

as the fascia dentata; the latter comprises the pyriform lobe. Both were considered

as olfactory in function.

On the basis of Brodal's (1947) critical review, and M. Meyer and Allison's

(1949) investigations, one might suggest a division of the "allocortex" into the

prepyriform and the hippocampal region. The former contains, in its first layer,

fibers from the olfactory tract and is, therefore, identical with Meynert's white

cortex; the latter comprises the hippocampus and the adjacent subicular cortical

areas among which the entorhinal area (Economo's HD, HE ) appears to predomi-

nate. The hippocampal system has many other than olfactory afferents. To de-
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scribe the histological characteristics of the hippocampus seems superfluous; the

stratification of the subicular areas has been explained in detail by Lorente de N6
(1934). Perhaps one might add the retrosplenial areas (Economo's LD, LE) to the

hippocampal system. The structure of these areas has recently been analyzed by
Eduard Beck (1940). It is realized that this scheme leaves us entirely in the dark

concerning the significance of the koniose and agranular cortices in the retrosplenial

and presubicular regions which have always been thought to be the cortical centers

for smell, perhaps also of taste. But this matter is not pertinent to our present

theme. We shall give only one photograph of the allocortex to show the charac-

teristics which we wish to mention in those parts of the isocortex which abut on the

allocortex.

Plate I brings Economo's area HA, a part of the human prepyriform area (Allo-

cortex praepiriformis, Aprp). The architecture of this area has been described in

great detail by Ramon y Cajal (1900-03, 1911), where the older literature can be

found. It can be divided into six layers, and thus resembles superficially the iso-

cortex.

The first layer is, just as in the isocortex, a molecular layer, in Nissl preparations

almost devoid of cells. Conel preparations show a wealth of fibers in this layer,

while Weil preparations show a lesser number of thin or medium myelinated fibers.

Most of the fibers course, at least approximately, parallel to the surface.

The second layer is thick, and contains the "islands of Calleja." These are clumps

of densely packed cells, of about 0.5 mm. in diameter. Two types can be recognized;

islands consisting of larger, and others of smaller cells. They contain, as Calleja

and Cajal showed, cells of very different shape, preponderantly stellate in the

islands of large cells, preponderantly fusiform or pyramidal in the islands of small

cells. While there remains a vague impression that the long axes of the large cells

are approximately parallel to each other and perpendicular to the surface, the small

cells show no such regularity in their arrangement.

There follows a third layer, somewhat thicker than the second one, which con-

tains a sparse population of not very large cells. Plate I shows them rather irregularly

strewn about. In Economo's Figure 55 (1927), area HA exhibits (particularly

toward the left) a columnar arrangement, the columns being slightly curved.

There is no size gradient in this layer. Indeed, the cells in the lowest reaches of

Hi are perhaps a little smaller than those nearer to the islands of Calleja.

There follows a thin zone almost devoid of cells, except for a few scattered small

or medium-sized p3^ramidal cells, which we may call la3rer iv.

Layer v is a little thicker than layer iv, and contains densely packed, medium-sized

pyramidal cells. Most of them stain very darkly, but lighter ones are interspersed.

The right-hand side of our Plate I exhibits traces of columnization.

The last layer (vi) can, just as in the isocortex, be broken up into two sublayers,

a denser upper, and a scarcer lower one. The cells look pale in comparison with

those of layer v, are of medium size, and show a fairly pronounced columnar arrange-

ment. Between layer via and vib there is a barely discernible light zone, reminiscent

of layer iv. The sixth layer blends fairly gradually into the white matter.

It is not possible to distinguish radii which are such a conspicuous feature of the

isocortex. Instead, all the layers are filled fairly evenly by a feltwork of ground
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fibers, which do not stain in Weigert or Weil preparations and appear uniformly

thin in silver preparations.

The most important difference between the allocortex, just described, and the

isocortex appears to be that the former receives its (olfactory) afferents through the

tangential layer, while the latter, as we shall see in greater detail, receives its affer-

ents, from a thalamic nucleus or elsewhere, through the white matter.

II. ISOCORTEX (/)

The isocortex, which covers the largest part of the human cerebral hemisphere,

exhibits typically six layers. There are some areas in which this pattern is obscured

in the adult, either by a lessened or by a more intense differentiation. This led

Brodmann to speak of homotypical and heterotypical cortex. The latter comprised

the agranular areas of the precentral motor cortex, as well as the striate area;

the former comprised all the rest of the cortex. Economo and Koskinas, to whose

scheme we shall return (see p. 229), emphasized that several "sensory" areas contain

rather small cells in great density and coined for them the term koniocortex. They
recognized the somesthetic area PB, the acoustic area TC, and the visual area

OC. The first two were considered homotypical by Brodmann.

To elaborate slightly on these schemes, we shall call the "typical" cortex

eulaminate (Fig. 22C), and distinguish from it two heterotypes: the agranular

(Fig. 22A) on the one hand, and the koniocortex (Fig. 22B) on the other. We shall

also describe three limitrophic variants, of which the juxtallocortex is represented

in Fig. 22D. Within each type there are minor variants, but they resemble each

other more closely than do the main types.

We will give names to the various types of cortex which we wish to recognize.

In the illustrations, however, symbols are necessary, and we have adopted the

following scheme: the allocortex is indicated by the heavy capital letter A, the

isocortex by the similar letter /. The various histological types—such as agranular,

koniose, eulaminate—are indicated by smaller capitals, thus a, k, e, etc.; lower

case letters indicate merely positions.

In myelin preparations (see Fig. 21) the general pattern of the eulaminate

cortex shows characteristically the two stripes of Baillarger, with a variable amount
of myelinated fibers in the first layer and radii of myelinated fibers extending from

the subcortex perpendicular to the stripes of Baillarger up to the outer zone of the

third layer. In addition, one finds a less evident stripe of Kaes-Bechterew in the

second layer and the outer part of the third layer. The ground fibers form a fairly

uniform feltwork of fibers running in all directions. Heavy oblique fibers, generally

believed to be either thalamocortical fibers or axons of cells of Martinotti, are

found in varying numbers. The diagram of the myeloarchitecture, given by Vogt

(see our Fig. 23) is excessively schematized; the inner stripe of Baillarger is too

clearly drawn and the outer should spread diffusely upward to include iiic; the

stripe of Kaes-Bechterew is rarely very definite; the tangential fibers of layer i

are often almost imperceptible.

Cajal (1911) derived his account of the general structure from preparations of

the posterior central gyrus which is covered by parakoniose cortex. We have chosen

rather to base our description of the general eulaminate cortex, shown in Plate II,
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Fig. 22. Cross sections of different areas of the isocortex. Drawn under the camera lucida

from Nissl preparations at a magnification of 450X and reduced to 75X

.

A. Simple precentral agranular cortex (/Axprc); HI; block XI, section 990, posterosu-
perior wall of the superior frontal sulcus.

B. Postcentral koniose cortex (/Kpoc) ; HI, block XI, section 100; posterior wall of the
central sulcus.

C. Eulaminate parieto-temporo-occipital cortex (lEpto) ; HI, block X, section 500; posterior

wall of the superior temporal sulcus.

D. Temporal juxtallocortex (Ijt); HI, block XV, section 899; medial wall of the occipito-

temporal sulcus.
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on a preparation from the inferior parietal lobule. Economo and Koskinas' areas

FD, FE, PF, PG, TA show so few and such small differences between one another

that these are rather topographical designations than architectural distinctions.
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Fig. 23. Diagram of cross section of the isocortex: left, Nissl; right, Weigert (from O. Vogt).

The typical eulaminate cortex about to be described has been studied in preparations

taken from the anterior half of the second frontal, inferior parietal, and posterior

half of the first and second temporal convolutions. In our experience, any statements

of differences to be found in these are true only statistically and are of no aid to

the identification of any particular locus, since sections from various parts of any
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given gyrus may differ from one another more than they do from sections of the

other gyri. Any attempt to identify cortex removed from these regions at operation,

such as was recently made by Mettler (1949), is doomed to failure.

Isocortex eulaminatus parietalis inferior (lEpi, Plate II).

The division into layers is clear, the cells of layers vi, v, iv, and Hi are arranged

in columns.

Layer i contains only a few cells, most of which are glial or mesenchymal.

The second layer has a slightly wavy upper boundary and contains a dense

population of small cells. Many of them are pyramidal cells but "granules" of

irregular spiny contour, in our silver preparations, appear to make up perhaps 30

or 40 per cent of the total cell population. The lower boundary of layer ii is fairly

sharp.

The thick third layer contains mostly pyramidal cells which are the larger, the

deeper their position. Those in the deepest reaches of layer Hi dip, with their basal

dendrites, into the fourth layer. These large cells are more conspicuous in some
locations than in others, and similarly vary somewhat in size. Yet throughout they

appear to be within the upper looser part of the outer stripe of Baillarger.

The fourth layer, broken up into "pleiades," as Economo expressed it, contains

a wealth of small cells as well as some larger ones. The former are "granules," with

irregular scanty cytoplasm; their exact shape can be recognized only in Golgi

preparations. Among the latter, large star cells, as well as true pyramidal cells, are

found.

The fifth layer contains a sparser population of medium-sized pyramidal cells,

as well as small cells of other types. The pyramidal cells are relatively less numerous
here than they are in layer Hi.

The boundary between layer v and vi is not particularly conspicuous. Yet layer

vi shows a more uniform cell size, somewhat below that of the large pyramidal cells

of layer v and, as seen with higher magnification, exhibits fusiform cells which are

absent in the higher layers.

The fibers form, in the lower strata, bundles which present, in optic cross section,

8 to 12 fibers and should, therefore, as a simple computation shows, be composed

of from 50 to 110 fibers. Bodian or Conel preparations show a number of heavier

oblique, frequently tortuous, fibers on a homogeneous background of fine fibers,

running crisscross in every direction. Even in Kultschitsky preparations, the

stripes of Kaes-Bechterew and of Baillarger fail to stand out clearly, so that 0.

Vogt (1911) calls this region divisio propeastriata.

Plate II, Inpi, is taken from Vogt's area 90, Brodmann's 39, Economo's PG.

A. THE EULAMINATE VARIANTS

Minor variants of this eulaminate type have been described and their number
has reached a bewildering confusion. Many of them we have been unable to identify

in our brain HI, but four have seemed to us to have some validity, although even

the.v are tenuous, inconstant, and difficult to recognize.

1. Isocortex eulaminatus parietalis superior. /Eps (Plate III).

This variant is found principally on the superior parietal lobule, hence might be

called superior parietal variant. Layer iv shows an elaboration. The large cells in

iiic keep well above iv so that the inner granular layer exhibits two sublayers: an
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upper lighter, and a lower darker one. On the other hand, many of the cells of layer

v, particularly the pyramidal cells, are crowded against the lower border of iv so

that layer ivb + va forms a conspicuous dark band, in contrast to the light band

formed by layer vb. Hammarberg (1895) gives a drawing of our superior parietal

variant (his Tafel II, Fig. 3), in which the relatively empty iva and the crowding

of the layer va against ivb can be seen quite well, although Hammarberg's text does

not mention these features explicitly.

Layer via is darker than layer v and contains cells of medium size which stain

deeply; layer vib is thinner.

The outer main layer does not differ from that of the typical eulaminate cortex.

An}r differences are subtle and would hardly suffice by themselves to distinguish

this type.

The myeloarchitectural picture (0. Vogt, 1911) is less characteristic. Vogt's area

85, described as area subconjuncta bistriata is distinguished by a prominence of

5b (the inner stripe of Baillarger). It shows, in his photograph, a thick outer Bail-

larger in which an inner denser part (Vogt's layer 4) can be distinguished from an

outer looser one (Vogt's layer 3b). This latter is at the level of the large cells of our

layer iiic.

Silver preparations show these cells to send their basal dendrites toward the

fourth layer. Layer ivb contains, as our silver preparations show, scattered pyrami-

dal cells, sometimes in nests of three or four cells. Crinis (1933) using a silver method

of his own found peculiar "embracing" and "compass" cells in the superior parietal

lobule, but these were present also in the postcentral gyrus and have not been sought

for thoroughly elsewhere.

Economo and Koskinas remark (p. 558) on the similarity between their PE
(our /Eps) and FDm (/e/). The structure of iv and v affords, however, a precarious

means of distinguishing the two. Plate III, /Eps, is taken from Vogt's 85, Brod-

mann's 7, Economo's PE.

2. Isocortex eulaminatus praeoccipitalis. IEpro (Plate IV).

A rarefied fifth layer is found in the superior parietal lobule from the postcentral

koniocortex posteriorly as far as the occipital region. It is not to be found in the

inferior parietal lobule except in patchy fashion just below the intraparietal sulcus

and on its walls. However, it spreads in the occipital region in a ring throughout

the parastriate (Ipo) cortex and extends forward a variable distance toward the

parietal and temporal regions.

In this broad ring also, the cortex as a whole thins more and more as one goes

posteriorly toward and into the parastriate cortex, to become thinnest near the

striate margin. This thinning affects especially the fifth and sixth layers, and makes

layer iv appear relatively thick, although it is not so by absolute measurement.

Within the rarefied fifth layer large pyramids appear here and there throughout

this zone. Even more large pyramids are to be seen in the deeper reaches of Hi and

increase in number throughout the parakoniocortex as one approaches the striate

margin. There they form a conspicuous band called the limes parastriatus giganto-

pyramidalis (OBy) by Economo. (Elsewhere Economo used the symbol y for giant

cells in the fifth layer, for example PEy, PAy, FAy, PCy.)

Myeloarchitecturally, the preoccipital variant is, according to Lungwitz (1937),
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bistriate and the outer stripe of Baillarger shows an inner denser and an outer looser

zone. Even the difference between superior parietal and preoccipital variant is

slight, but that has not prevented Lungwitz, a pupil of 0. Vogt, from subdividing

the preoccipital variant into several subvariants since, as he states, its fibrous

structure is not uniform. According to 0. Vogt (1911), the entire occipital cortex,

apart from the striate area, is unitostriate.

Plate IV (lEpro) is taken from Brodmann's 19, Economo's OA, Vogt's Pro.

The two variations from the eulaminate type we have just described are agreed

upon by all authors, but they are the more tenuous the farther one progresses from

the parastriate margin; and the anterior boundary of the preoccipital variant is

impossible to fix, passing gradually over into the general eulaminate type. More-

over, as Economo insists, the structure within this zone does not show everywhere

its characteristic features with the same distinctness.

3. Isocortex eulaminatus frontalis inferior. lY.fi (Plate V).

This variant was first recognized by Betz (1881) (see p. 4). It is characterized

by unusually large cells in layers Hi and v. It covers the opercular and triangular

parts of the inferior frontal convolution. The transition from the agranular type

of the precentral sector to the granular eulaminate type of the frontal sector (see

p. 207) occurs as gradually along the inferior as along the other frontal convolutions

and it is, therefore, a matter of debate whether to put the cortex covering the

Rolandic operculum into the inferior frontal eulaminate variant, or into the dys-

granular limitrophic variant. However, on the triangular part, the fourth layer is

definite and about 0.15 mm. in thickness. The fanlike striation to which Economo

calls attention is due to the narrowness of the gyri in this region.

The unusual feature of the structure of the cortex in the inferior frontal gyrus

is the presence of large pyramids in iiic (also found elsewhere in the frontal lobe)

in association with less numerous very large cells in v, as shown in Plate V, which

is taken from its foot.

Large cells are found also in the pars triangularis, i.e., in Economo's FDT,

even in the posterior orbital cortex on the pars orbitalis of the third frontal convo-

lution, especially in the walls of the posterior part of the lateral orbital sulcus. They

are actually within the looser external stratum of the outer stripe of Baillarger, as

the study of our Weil preparations and a comparison with Strasburger's (1937)

illustrations of the myeloarchitecture show.

The fourth layer contains small cells, arranged in pleiades. Pyramids, some of

which may be fairly large, are encountered here and there as Conel preparations

show.

Bonin (1949) found that some at least of the large cells in layer v have asym-

metrical basal dendrites and that one dendrite may ascend to branch out within

layer iv, i.e., within the outer stripe of Baillarger.

Hammarberg (1895) gives a detailed description of Is.fi. His Tafel I (Figs. 3 and

4) depicts the large pyramidal cells in iiic and in v behind and in front of the as-

cending ramus of the Sylvian fissure, respectively. The slight difference in cell

size, which Hammarberg found between the cortex on either side of the ascending

ramus, does not, in our opinion, necessitate the recognition of two different variants.

The small pyramidal cells of layer iv are shown very clearly.
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0. Vogt (1910) states that the inferior frontal gyrus is unitostriate except for

the posterior half of Broca's convolution. Brodmann (1914) includes all of Broca's

convolution in the unitostriate area.

Plate V is taken from Brodmann's 44a , Economo's FCBm, Vogt's 56.

4. Isocortex eulaminatus temporalis inferior, lEti (Plate VI).

The inferior part of the temporal lobe, Economo's TE2 , shows a rather light

outer main layer. The rarefication of layer Hi impresses itself particularly, but

layer ii shows also a patchy rarefication. Most of the cells of the outer main layer,

even the pyramidal cells in the lower reaches of the third layer, are rather small.

The inner granular layer is not remarkable. Its cells are grouped in pleiades as

in so many other parts of the isocortex.

The fifth layer is richer in cells than the third layer. The cells attain about the

same size as the pyramidal cells in Hi.

The sixth layer has smaller cells, but via shows about the same cell density as v.

Layer vib shows a greater sparsity of cells and gradually fades into the white matter.

With the exception of the supratemporal plane a detailed myeloarchitectural

analysis of the temporal lobe is lacking. Our preparations show two stripes of

Baillarger, rather feebly developed and diffuse.

Plate VI, iMi, is taken from Brodmann's 20, Economo's TE2 .

We have not been able to identify in brain HI any area which resembles Economo's

FDA. Other such subdivisions in the frontal, temporal, parietal, and occipital

regions have seemed to us too inconstant and uncertain to detain us here.

B. THE AGRANULAR VARIANTS

In the adult brain, this variant differs from the typical isocortex by the tendency

of the granules to disappear and to be replaced by small pyramids. The cells of

the agranular cortex are relatively large; the inner granular layer is attenuated

and the laminar pattern is blurred. Brodmann stated that in embryonic life the

agranular cortex shows the same six layers as the rest of the cortex, and that the

fourth layer disappears only secondarily. What we know of the cortex of the new-

born and the baby (Aldama, 1930; Conel, 1939, 1941, 1947) supports Brodmann's

views.

The agranular cortex comprises two main variants, the precentral and the

anterior limbic. In the precentral region are two subvarieties : the simple precentral

cortex (Economo's FB) and the gigantopyramidal cortex (Economo's ^^7). The

second agranular variant is found on the anterior part of the cingulate gyrus

(Economo's LA).

1. Isocortex agranularis simplex praecentralis. lAxprc (Plate VII).

The cortex as a whole is thick; its lamination is blurred and the inner granular

layer (iv) consists of no more than a few lines of small cells, interrupted in several

places by pyramidal cells.

Layer ii is thin, contains small pyramidal cells as well as a fair number of granules,

and has a low cell density as compared with other parts of the cortex.

Layer iiia contains medium-sized pyramidal cells. Layer iiib contains larger

pyramidal cells. The transition is rather abrupt; there is no gradient in the proper

sense of the word.
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Just beneath layer iiib there are occasionally found granules—the last remnant

of layer iv. Silver preparations disclose also some short and medium pyramids.

The pyramids of iv rarely reach the size of those in iiic or v.

Layer v contains a relatively dense population of medium-sized pyramidal cells

throughout.

Layer via contains medium-sized fusiform cells. Its cell density is a little higher

than that of v, but its cells are smaller. Layer vib is thick and light; it gradually

fades into the white matter.

Columnization is, as always when the section is in the proper plane, well de-

veloped up to layer Hi, but becomes indistinct in layer ii.

In spite of its indistinct cytoarchitectural stratification the precentral agranular

cortex shows myeloarchitecturally two diffuse sparse stripes of Baillarger as Kawata
(1927) maintained. O. Vogt (1910) described this variant as bistriate in its ventral

and as propeunistriate in its dorsal part.

Plate VII, lAxprc, is taken from Vogt's 44, Economo's FB, Brodmann's 6.

2. Isocortex agranularis gigantopyramidalis praecentralis. lAGprc (Plate VIII).

This variant differs from the simple agranular cortex mainly by a lower cell

density and by the presence of the giant pyramidal cells of Betz in the fifth layer.

The first layer is much as in the simple precentral agranular cortex.

The second layer forms not much more than a few lines of fairly evenly spaced

small pyramidal and granular cells.

Layer Hi shows an increase in cell size in its deeper part. It contains mostly

pyramidal cells, which range up to about 50/z in length, but are slenderer than the

giant cells of layer v.

In places, the inner granular layer is represented by a few lines of small cells

(see left of Plate VIII). In other places (see middle and right of Plate VIII) there

are wide lacunae. These cells are, as silver preparations show, mostly short or

medium pyramids.

Layer v is very thick and contains, apart from small and medium-sized cells, the

giant pyramidal cells, located at various depths of that layer. The tendency to

form nests of Betz cells is not very pronounced in Plate VIII; elsewhere it can be

seen quite clearly. The size of the cells of Betz varies within wide limits and is larger

near the dorsal margin than toward the Sylvian fissure. Indeed, in the "face"-

region of the motor area true giant cells are quite rare. They are most frequent in

that part of the gigantopyramidal precentral cortex which covers the anterior

bank of the central sulcus.

Layer via contains a relatively sparse population of fusiform cells; layer vib has

a sharp boundary against the white matter in our Plate VIII, but elsewhere shows

a much more gradual transition.

The myeloarchitecture of the gigantopyramidal precentral cortex shows a diffuse

picture described by 0. Vogt as astriate. According to him, the two stripes of

Baillarger are embedded in a feltwork of ground fibers as dense as the stripes them-

selves, so that no distinction is possible. This is confirmed by Campbell (1905)

and by Kawata (1927).

Cajal (1911) has published a detailed description of the cells of the precentral

gyrus, based on Golgi preparations of the cortex of infants a month or so old.
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Plate VIII, lAGprc, is taken from Vogt's 4%, Economo's FAy, Brodmann's 4-

3. Isocortex agranularis juxtallocorticalis limbicus. IajI (Plate IX).

At first sight its strange appearance makes one doubt whether this is isocortex

at all. Indeed, M. Rose (1927), who studied the region in a large number of mam-
mals from monotremes to man, held that it was phylogenetically old, and was

not true isocortex. He proposed the name mesocortex for it. But even the cyto-

architectural picture does not necessitate the assumption inherent in the term

"mesocortex," as Bonin (1948) has previously argued.

The first (molecular) layer is of usual thickness.

The second layer is about as thick as layer i and contains pyramidal and other

cells of about the same size as layer iiia but differs from that layer in its greater

cell density and in its lack of columnization.

The third layer is filled with a homogeneous population of cells in its upper part

iiia while its lower part iiib contains a dense population of somewhat larger, deeply

staining, slender pyramidal cells. Many of them have, as silver preparations show,

a remarkably rounded perikaryon and a rather slender apical dendrite. The band

containing these cells is somewhat reminiscent of a similar band of large pyramids

in the parakoniocortex (see Plate XIII).

There follows a very thin zone in which (see the right side of Plate IX) some small

granules are found. Their density, however, is nowhere near that of the inner

granular layer in other cortical types.

The inner main layer is fairly homogeneous in Nissl preparations. Silver prepa-

rations show clearly, however, a layer of large pyramidal cells and another of

fusiform cells. The pyramidal cells are peculiarly "coarse" looking. Their perikarya

are angular and prolonged, without sharp boundary, into a stout, frequently bent,

apical dendrite gradually tapering off to "normal" caliber as it traverses the lower

reaches of the third layer. Presumably these are the corkscrew cells of Economo

and Koskinas. The boundary between v and via is barely visible on Plate IX.

Layer vib is sparser and gradually fades into the white matter.

This is essentially the lamination described by Nikitin (1909) from Brodmann's

laboratory. He noted that the fourth layer was inconstant and had been missed by

many authors.

Myeloarchitectural studies have led M. Rose (1927) to call the anterior limbic

area "infraradiate." The Vogts (1919) described the ventral part as infraradiate,

the dorsal part as mesoradiate. The radii are described to end below or in the

fourth layer. But whether the outer stripe of Baillarger is actually situated in

that layer, which these authors labeled iv, was never made quite clear. "In (the

anterior limbic area) the afferent messages play on a nerve net that is coarser and

composed of larger neurons than in most other parts of the isocortex" (Bonin,

1948). It may also be important that the large pyramidal cells in layer v, considered

to give rise to corticofugal fibers, are very close to the outer stripe of Baillarger.

C. THE KONIOSE VARIANTS

The general characteristics of the koniocortex are thick internal granular layer

and small size of the cells. The three variants which we shall describe are known to

be areas in which sensory radiations end. Of the three, the visual cortex varies
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most widely from the general eulaminate type and the auditory cortex least. More-

over, the visual cortex is sharply circumscribed, whereas the somesthetic cortex

has less sharp boundaries and the auditory cortex is found in patches with very

vague boundaries. J. Rose (1949) protests the use of the term koniocortex for the

somesthetic and auditory cortices.

1. Isocortex koniosus striatus occipitalis. Ikso (Plate X).

The occipital koniose cortex contains the stria Gennari and is, therefore, often

referred to as the striate area or cortex. It is thin but, owing to further differentiation

of some layers into sublayers, its appearance is more complicated than that of

other cortical areas.

Layer ii shows nothing characteristic containing, as it does, mostly small pyram-

idal cells.

Layer Hi shows very clearly a subdivision into a lighter iiia and a denser iiib.

In the former, pyramidal cells prevail ; the latter contains not only small pyramidal

cells, but also a comparatively large number of granules.

The inner granular layer is almost as thick as the outer main layer, and shows an

outer light and an inner dark sublayer. The former iva contains a sparse population

of "granules" as well as scattered rather large star pyramids—the solitary cells of

Meynert. Layer ivb is densely filled with granules. In brain HI one can frequently

(see left side of Plate X) observe a thin light band, suggesting a further subdivision

into ivba + ivb(3. This has never been described for man and may be an individual

variation.

The fifth layer is poor in cells. In its upper part it contains small (medium and

short ?) pyramidal cells which send their main axones in a sweeping half arch toward

the surface (Cajal, 1911). In its lower reaches, close to the sixth layer, there are

scattered fairly large pyramidal cells—the giant pyramidal cells of Meynert (not

to be confused with Meynert's star pyramids of layer iva)—which send their

axones, according to LeGros Clark (1942) to the roof of the midbrain.

The sixth layer consists of a dark via, rich in fairly large cells and containing a

few displaced large pyramidal cells of Meynert, and a light vib, which has a re-

markably sharp boundary with the white matter.

The myeloarchitecture of the striate area reveals a very broad outer stripe of

Baillarger, known for a long time as the stripe of Gennari or Vicq d'Azyr. The
stripe shows a sharp inner and outer boundary, in contrast to most other cortical

areas where the outer boundary is indistinct. The inner stripe of Baillarger shows

the same sharp outer boundary but is less dense than the stripe of Gennari.

Local differences in the structure of the striate area have been described by
Ngowyang (1934a) on the basis of a survey of one brain, and by Eduard Beck

(1934) who described such differences in detail for the macaque and promised a

second monograph on man, the publication of which the war evidently hindered.

We are not convinced by Ngowyang's subtle subdivisions nor have we attempted

a similar survey in our own series.

The analysis of the layers, just given, is essentially that of Campbell (1905), of

Cajal (1911), and was adopted by Bonin (1942). It differs from that given by Brod-

mann (1903), who considered our iiib as part of the fourth layer which he sub-

divided into IVA, B, and C. This scheme has found many adherents and Barany
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(1925) and Kleist (1926) even based an ingenious theory of binocular vision on it.

The fact, however, that the outer stripe of Baillarger is found only in our layer iva

and b makes Brodmann's conception unacceptable.

Plate X, /kso, is taken from Brodmann's 17, Economo's OC.

2. Isocortex koniosus postcentralis. iKpoc (Plate XI).

The koniocortex in the posterior wall of the central sulcus, and on the paracentral

lobule, shows a simpler lamination than the striate area, since neither layer iv

nor layer vi has a conspicuous subdivision. On the other hand, columnization is

much more pronounced than in the striate area.

Layers ii and iiia contain cells of about the same small size. They can be dis-

tinguished, however, by the greater cell density of layer ii. In layer iiib the cells

are larger, the pyramidal cells stain more darkly, and the columnization is more
pronounced.

The fourth layer is very broad and densely filled with cells. Most of these cells

are granules. Medium or short pyramids have been occasionally observed in our

silver preparations and there are, here and there, large pyramidal cells, as well as

star pyramids. The prevailing columnization breaks up the layer into pleiades.

The inner main layer consists of a slight fifth and a somewhat heavier via. The
fifth layer contains scattered large pyramidal cells.

Layer via contains relatively small but dark-staining fusiform cells. Layer vib

can hardly be made out.

In myelin preparations it is difficult to distinguish the stripes of Baillarger. O.

Vogt (1911) describes this area as "Area paradoxa internodensior," and calls atten-

tion to the unusually fiber-rich 5b (internal stripe of Baillarger).

Plate XI, Ixpoc, is taken from Brodmann's 3, Economo's PB, Vogt's 69.

On the parietal operculum, near the island, Gerhardt (1940) described an isolated

patch of koniocortex which she labeled 68IIgr. In its cytoarchitecture it differs so

little from the postcentral koniocortex that we see no reason to describe it separately.

3. Isocortex koniosus supratemporalis. IksI. (Plate XII).

This is the least evolved of the koniocortical variants. Our plate does not show

its most extreme form, for which Economo and Koskinas, Plate XCIV, should be

consulted.

The inner granular layer is only fairly thick; the outer main layer shows the

subdivision into layer ii and Hi tolerably distinctly, but the inner main layer does

not show the laminar pattern as clearly as the other koniocortices.

Layer ii is thin, densely filled with cells, but still exhibits a columnization,

although not as clearly as layer Hi.

Layer Hi, as well as all deeper layers, shows the columns remarkably clearly,

hence Economo called the supratemporal koniocortex "rainshower formation." The
cells in layer Hi are small but much sparser than in either occipital or postcentral

koniocortex.

The fourth layer contains, of course, mostly granules but it has here and there

larger cells displaced, as it were, from either Hi or v.

The fifth layer contains a fair number of medium-sized cells, irregularly scattered

over all levels of the layer, but always arranged in columns.
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The sixth layer shows about the same cell density as layer v, but its cells are

mostly fusiform and many of them stain less deeply than the pyramidal cells of

layer v. Layer vib is blurred; it appears to be more a transition toward the white

matter than a well-defined la3rer.

The supratemporal koniocortex is more thoroughly "mixed" with its parakonio-

cortex than any other koniocortex. Economo and Horn (1930) studied six hemi-

spheres and showed this in detail. They set up numerous subtypes to analyze this

phenomenon. Since these subtypes, and their arrangement, vary considerably from

brain to brain, there seems little point to include them in a standard description.

Cajal (1911) described, in the acoustic cortex, giant fusiform cells which he

thought to be characteristic. These cells were stated to be present in all the layers of

the cortex, except the first. Their prolongations ran mainly horizontally. Crinis

(1933) could find these cells only in the fourth layer. It is not certain, from their

descriptions, that either was writing of the auditory koniocortex. Cajal says merely

that he found them in all preparations of the first temporal convolution and of the

insula and considers them important for "mental audition."

The myeloarchitecture of the supratemporal plane has been analyzed in great

detail by Eduard Beck (1928). Beck states that over the transverse gyrus of Heschl

(his subregio temporalis transversa prima) the cortex is characterized by an espec-

ially thick and fiber-rich inner stripe of Baillarger. He calls it an outspoken "in-

ternodensioren Typ," thus relating its structure to that of Vogt's area 68.

Plate XII, IksI, is taken from Brodmann's 41, Economo's TC, Beck's tirl

.

D. THE LIMITROPHIC VARIANTS

Between any two regions of well-marked structure in the isocortex are to be

found zones of transitional structure which have been described as limitrophic

zones. Even between the agranular gigantopyramidal area and the postcentral

koniose cortex there is such a zone which Brodmann called a "Mischzone" and

Economo dignified as PA

.

About each koniocortex there is a limitrophic zone, or parakoniocortex, charac-

terized by unusually large pyramids in iiic. These cells are generally larger and

more numerous near the koniose margin. They disappear gradually farther away
from that margin.

We give, as an example of the parakoniocortices, the zone about the striate area.

1. Isocortex parakoniocorticalis occipitalis. Ipo (Plate XIII).

The whole inner main layer, not only layer v, is light and contains few cells.

The fourth layer is relatively thick; it contains mostly granules; only here and

there is a star pyramid encountered. Sublayers cannot be distinguished.

The outer main layer is relatively thick. The upper boundary of layer ii is rather

straight. The lower boundary of layer ii is a little difficult to distinguish because

both layer ii and layer iiia contain cells of about the same size. But the cell-density

diminishes, and a columnar arrangement becomes more apparent as one enters

iiia. Within layer Hi, the cell size increases rather abruptly as one comes to layer

iiic which contains very large pyramidal cells, so large that Economo spoke of

"giant cells." These large or "huge" pyramidal cells occur in irregular nests and
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are situated immediately above or even within layer iv. They appear to be within

the upper loose zone of the outer stripe of Baillarger.

Scattered, unusually large pyramids are found also in layer v.

Plate XIII, Ipo, is taken from Brodmann's 18, Economo's OB.

The postcentral parakoniocortex (Ippoc) and the supratemporal parakonio-

cortex (Ipst) are of similar structure. The dearth of cells in the fifth layer, the

large pyramidal cells of layer iiic, the preponderance of small granules in iv, and

the scarcity of pyramids in that \&yev are easily observed in all three variants,

especially when silver preparations are studied.

Near the allocortex, a series of limitrophic zones or juxtallocortical variants may
be seen and have been variously classified by different authors. We are concerned

only with those modifications which occur in what is recognizable as isocortex. The
distinguishing characteristics are usually a tendency of the cells of ii to be of rela-

tively large size and to group in glomeruli and a densification of v with its cells

crowding up toward iv.

We give, as an example of the juxtallocortical variants, the zone on the inferior

surface of the temporal lobe (Economo's TH).

2. Isocortex juxtallocorticalis temporalis. lit (Plate XIV).

Layer ii is very thin ; its cells are relatively large. A few rows of pyramidal cells

are arranged like palisades just beneath the first layer along a somewhat wavy front,

with irregular breaks here and there. The cells comprising these palisades are no

smaller than the pyramidal cells in layer Hi. The cell size, and the breaks between

the cell groups, reminiscent as they are of the gaps between the islands of Calleja,

are almost sufficient in themselves to call this formation juxtallocortical.

The third layer shows an almost uniform size of its pyramidal cells. There is a

faint columnar arrangement but the gaps appear to blur this pattern which, how-

ever, can be easily seen in the inner main layer.

The fourth layer is thin and contains some larger cells.

The fifth layer is the heaviest of all. Apart from interspersed granules, it contains

numerous, fairly large, pyramidal cells which fill it with almost uniform density.

Layer v is fairly thick and has a sharp lower boundary.

Layer vi is much lighter and is composed of much smaller cells than layer v.

Layer via is compact ; vib impresses the observer more as a transitional zone to the

white matter than as a distinct layer.

Other juxtallocortical variants are found around the anterior limbic cortex, over

the anterior wall of the island, spreading onto the inner side of the temporal tip, up

to cover a part of the frontal operculum and anteriorly over the gyrus rectus

(purple in the frontispiece).

Plate XIV, lit, is taken from Brodmann's 36, Economo's TH.

3. Isocortex dysgranularis frontalis. Ivf (Plate XV).

Anterior to the frontal agranular cortex is a zone of variable width which extends

from the cingulate sulcus over the medial and dorsolateral surface onto the opercu-

lum, the posterior part of the orbital surface of the frontal lobe and the tip of the

temporal lobe. In this zone the inner granular layer is very attenuated, hence it is

generally referred to as dysgranular.
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It varies somewhat in its various parts, merging into the juxtallocortex over the

anterior part of the island, the orbital surface of the frontal lobe and the temporal

pole; it also develops large cells in iiic and v over the inferior frontal gyrus.

On the inferior frontal convolution the isocortex dysgranularis thus overlaps, as

it were, the horizontal zone of large cells in iiic and v, to which Betz called attention.

This overlapped zone might be reckoned to belong either to the dysgranular or

the inferior frontal eulaminate variant. Campbell looked upon this region as a part

of his intermediate precentral cortex; Brodmann gave it the status of a separate

type; Economo compromised by describing it as a transition between dysgranular

and simple agranular cortex (FCBm).

The dysgranular cortex on the first and second frontal convolutions may be

considered typical for this limitrophic variant. It shares with the simple agranular

cortex a poor differentiation into laminae but it tends toward the eulaminate type

by virtue of an inner granular layer, although a poorly developed one.

This limitrophic variant was not recognized by Strasburger (1937) in his myelo-

architectural studies. According to Kawata (1927), Vogt's areas 36, 47, and 46 are

"very probably" identical with Economo's FC. It differs little, according to Kawata,

in its myeloarchitecture from the simple agranular cortex. There are two horizontal

strata (outer and inner stripes of Baillarger) but they vary within the "area"

(sit venia verbo) in their wealth of fibers showing, on the whole, a looser texture. The
radii are described as a little farther apart than in FB. Kawata 's own figures hardly

bear this out.

Plate XV, Iof, is taken from about Brodmann's 8, Economo's FC, Vogt's 48.

In spite of the variations we have just described, one fundamental pattern is

readily identifiable throughout the isocortex even though we lack intimate knowl-

edge of the intrinsic structure of the frontal regions (Lorente de N6, 1949). The
reasons for this arrangement of the cells in six layers are obscure. It is so constant,

however, since the appearance of the cortex in the monotremes, that it is difficult

to escape the conclusion that it has some fundamental significance.

Since the areas of the cortex to which specific sensations radiate (touch, sight,

hearing) tend to become koniose, one could suspect that the granular layers [ii

and in) might be sensory end-stations and it is known that the specific thalamic

afferents end principally in layer iv (see Chap. VIII) ; other afferents reach also layer

ii. Since motor cells in the spinal cord and the large Betz cells of the motor cortex

have prominent Nissl bodies, one could suspect that the corticofugal fibers might

arise from the large pyramidal cells of layer v, and it is known that many of them
do arise there (see Chap. VIII). Yet afferent fibers end also in other layers, and so do

efferent fibers arise from other layers. The literature pertinent to this theme of

the functional significance of the cortical layers has been collected by Ariens Kap-
pers, Huber, and Crosby (1937, pp. 1564-72); that the conclusions therein reached

are too dogmatic has been pointed out by Lorente de No (1949) who concludes

that "it is obvious that there is no basis for considering the cortex as composed of

several layers with specific primordial functions: reception, association and pro-

jection." Nevertheless, Lorente de No makes a sharp distinction between an ex-

ternal lamina (i — ivb) and an internal lamina (v + vi) and calls attention to the
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sharp boundary between them. He notes that, "The axons of the pyramids and

star cells of LAYERS I to IV have their ramifications chiefly within the gray

matter, although a number of axons of pyramids, especially of the large star pyra-

mids, reach the white substance and form association and callosal fibers."

Although the structure of the cortex in six layers is probably functionally sig-

nificant, in any attempt to understand its functioning the vertical arrangement

of its cells in columns must also not be forgotten. "From the functional point of

view it is a unitary system composed of vertical chains of neurons, among which

anatomically the most important are those starting at the articulation of the

specific afferents and the cells of the external lamina (Lorente de N6)."

Much more information is necessary, especially concerning the intrinsic structure

of the human cortex, before we can gain much insight into the relation of its struc-

ture to its manner of functioning. So far, only in the case of the striate cortex

(O'Leary, 1949) has any systematic attempt been made with modern methods to

study this problem.

However important the laminar structure of the cortex may be, there is ample

evidence that it functions as a whole. Its intimate structure is compatible with

such a conclusion. "Since the impulse conducted by a fiber necessarily passes into

its collaterals, and branches of the descending axons are distributed in the same

territories as the cortical afferents, there can be no doubt that the effect of the

impulses entering the cortex depends largely upon the impulses at that moment
circulating through the descending axons as a result of the existing cortical activity

(Lorente de N6, 1949)." O'Leary (1949) remarks also that the alpha-rhythm of the

electroencephalographers is a function of the entire thickness of the cortex and not

of its individual laminae and, moreover, this cortical mechanism has an intrinsic

activity even when isolated from the rest of the organism (Bremer, 1950).



Chapter V: Serial Sections

J should not be surprised if some readers were, at the first glance, to think the subject

recondite and its treatment heavy.

Thudichum (1884)

After photographing the brain from all aspects, we cut it, before embedding it in

celloidin, into twenty-one blocks as shown in Figure 24. These blocks were sec-

tioned at 24 )i and the sections stained with thionin. Every fifth section, without

exception, was mounted. We have adopted a procedure intermediate between that

of Vogt (1950), who sectioned whole hemispheres, and that of Economo and Kos-

kinas (1925) who made numerous small blocks. We found, in our work on the

macaque and chimpanzee, many advantages in having several gyri on the same slide,

but large sections of whole hemispheres are unwieldy. The blocks were carefully

planned to permit sectioning as nearly as possible perpendicular to the surface.

The descriptions were written from inspection of the cross sections under a binocu-

lar microscope. Measurements of cortical thickness were made at a magnification

of 32.5X with a micrometer scale in the ocular. These measurements are given for

what they are worth—in our opinion very little. They vary greatly in different parts

of the same gyrus as will be apparent. Also the measurements may vary greatly

from one brain to another, of analogous loci of the precentral gyrus from 4.5 mm.
to 3.6 mm., and of the gyrus supramarginalis from 3.7 mm. to 2.9 mm. (Economo
and Koskinas, 1925, p. 40). Kraus, Davison, and Weil (1928) estimated that the

brain changed insignificantly in size during fixation in 10 per cent formalin but

shrank about 27 to 29 per cent during dehydration and embedding; the loss in

volume was estimated at 12 to 13 per cent and the loss in surface area about 8 to

9 per cent. The size of cells was measured in the same manner under oil immersion

at a magnification of 390 X. The influence of fixation and embedding on cell size,

studied by M. Rose (1929) and Sarkissov (1930), has not been taken into account.

The actual dimensions are not of much importance for our theme. It is impossible,

anyway, to measure accurately the size of cells as branched as nerve cells. The fig-

ures given are important only for comparative purposes.

Measurements of the total thickness of the cortex are made from the outer

margin of the second layer to the inner margin of via, the inner boundary of vib

often being too vague to determine. Even so, our measurements are often only

rough approximations since these boundaries are not smooth lines. Since it is also

often impossible to determine the limit between ii and iiia, the measurements will

usually include only the outer main layer ii -f- Hi, the inner granular layer iv, and

the inner main layer v + via. Nonetheless our measurements are somewhat smaller

than those given by Economo and Koskinas.

All measurements, unless otherwise stated, are made only from zones in which

the section is parallel to the columns as nearly as possible. Unfortunately the

columns do not always run perpendicular to the surface, nor do they always run

in straight lines through the cortex but are variously curved; one may, therefore,
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see the columns well in the inner main layer only or in in, iv, v, but not in vi. No-
where in the isocortex are there no columns. When cut diagonally to the columns

the cortex has a blotchy look; when cut parallel to them it is streaked.

The thickness of the cortex varies continuously, being usually, but not always,

thicker over the crowns of the gyri and thinnest at the bottoms of sulci. Along the

walls of sulci the cortex usually decreases in thickness as one progresses toward the

depth. For this reason, whenever measurements are given from cortex within

sulci, they have been made halfway down the wall.

On a narrow gyrus the thickness of the crown is exaggerated, usually also the

thinness of the walls. It is advisable to make all measurements from the crowns of

broad gyri. Even this has a disadvantage in that each gyrus, when it reaches a

certain width, tends to buckle inward in the middle to form another sulcus. The first

indication of this is a comparative thickening of in. Such thickenings have some-

times been described by others as separate areas. The influence of these factors on

cytoarchitecture and the exact way in which the cortex is bent over the inner

granular layer, as it were, has been analyzed by Bok (1929).

On the crowns of narrow gyri the cells tend to be elongated. At the bottoms of

sulci the cells are broader and shorter. At the bottoms of sulci the inner main layer

is relatively thinned; over the crowns of the gyri the inner main layer is relatively

thickened.

Whenever possible, photographs reproduced herein have been made from the

crowns of flat broad gyri, or halfway down the walls of deep straight sulci.

Because of the impossibility of writing out in full the names of the various types

of cortex distinguished, we have been obliged to use, in the accompanying illus-

trations, the symbols described on page 66. Since we are here interested only in the

isocortex, the general symbol / for the isocortex is omitted. The capital letters refer

to the type of cortex as follows:

A—agranular K—koniose

D—dysgranular P—parakoniose

E—eulaminate S—striate

G—gigantopyramidal X—simplex

J—j uxtallocortical

The lower case letters refer to topographic location as follows:

f—frontalis poc—postcentral

fi—frontalis inferior pop—parietalis opercularis

fm—frontalis medialis pre—praecentralis

fo—frontalis orbitalis pro—praeoccipitalis

fop—frontalis opercularis ps—parietalis superior

fs—frontalis superior rs—retrosplenialis

i—insularis st—supratemporalis

1—limbicus t—temporalis

la—limbicus anterior ti—temporalis inferior

o—occipitalis tm—temporalis medialis

op—opercularis to—temporo-occipitalis

p—parietalis tp—temporopolaris

pi—parietalis inferior ts—temporalis superior

All cross sections are drawn at a magnification of 2X.
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block i (Fig. 25)

Section 100. Fig. 26.

The cortex of the cuneate sulcus is of parakoniose type (see Plate XIII), measur-

ing 1.25 mm. on the posterior and 1.4 mm. on the anterior wall, and this type

continues over the cuneus as far as po?nl , after which it changes so that the cortex

on the anterior wall of this posterior side-branch, although no thicker (1.4 mm.),

has smaller pyramids in iiic and more cells in v and the large cells in v are scarcely

larger than the others. On the crest of the small gyrus between poml and pom the

radiations are very broad and the cortex measures only 1.4 mm. but the cells of iiic

are small and v fairly well rilled. On the posterior wall of pom the cortex measures

1.7 mm., the pyramids of iiic are large, up to 29 x 18 ^; the outer main layer meas-

Fig. 25. Position of sections of Block I.

ures 0.84 mm., the inner 0.74 mm. This cortex thins in the depth of the sulcus to 1.1

mm., outer main layer 0.7 mm., inner 0.3 mm.; the radiations are very broad and
the large pyramids in iiic very numerous, up to 39 x 24 yu, with equally large cells

in v. Only on the crest of the small gyrus is this cortex not of parakoniose type.

On the anterior wall of pom the cortex is much thicker (1.9+ mm.), outer main
layer 0.7 mm., inner 1.0+ mm. The thickness of the inner main layer is difficult to

determine because the cells of iv are very small near iiic but become heavier in the

deeper portion of the layer so that they are difficult to distinguish from the outer

cells of v. The deeper part of v contains fewer cells so that the impression is of a dark

band formed by ivb + va in which it is impossible to draw a boundary line between

iv and v. The boundary of vib against the subcortex is very indefinite. The cells

of iiic are pyramids measuring up to 34 x 18 /j. This cortex is clearly eulaminate

of the type which we have called superior parietal (see Plate III).
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The cortex over the surface anterior to pom cannot be read because it is cut

tangentially.

Section 200. Fig. 26.

cu
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Fig. 26. Cross sections of Block I.

The cortex on the anterior wall of the cuneate sulcus (cm) is of parakoniose type

measuring about 1.45 mm. It seems to be much the same in the depth of pomS,

which is the only short stretch where it can be read until the posterior wall of pom

is reached. Here the cortex varies from 1.4 mm. to 1.5 mm. in thickness. It contains

many large cells in iiic and v, up to 32 x 18 p, some of them in iv also. A typical

measurement is outer main layer 0.6 mm., inner 0.8 mm.; the columns are broad,
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the fifth layer fairly well filled. The cortex varies from typical parakoniocortex

mainly in the thicker inner main layer and the relative filling of v.

The cortex on the anterior wall of pom is of the superior parietal type previously

described in section 100. The same cortex can be seen on the surface anterior to pom
where it measures 1.7 mm. and has the characteristic light iva and vb.

Section 300. Fig. 26.

The anterior wall of the cuneate sulcus (en) is covered by cortex of parakoniose

type, measuring 1.2 mm. The cortex of the cuneus is very similar, measuring 1.3

mm. The same cortex continues down the posterior wall of pom wherever it can be

read.

The anterior wall of pom is covered by eulaminate superior parietal cortex,

measuring 1.8 mm., with the characteristics already noted in section 100. This

cortex continues over the surface anterior to pom but thins to 1.5 mm., outer main

layer 0.65 mm., inner 0.75 mm., if measured from the outer margin of ivb. Layer vb

is characteristically light.

Section 400. Fig. 26.

Although cut very irregularly, the cortex over the cuneus can be seen to be of

parakoniose type to about its middle and then abruptly turns into striate cortex

which continues into the posterior wall of pom only to become again of parakoniose

type.

A deep dorsal shelf of the calcarine fissure is completely covered by striate

cortex.

The cortex on the surface anterior to pom is characteristically eulaminate superior

parietal, but that on the anterior wall of the fissure is not. It measures here 1.54

mm.; outer main layer 0.7 mm., inner 0.68 mm. The pyramids of iiic are small, not

over 21 x 13 n, and the heavy ivb + va is not very evident.

Section 500. Fig. 26.

The cuneus is entirely covered by striate cortex which extends a way down the

posterior wall of the parieto-occipital fissure (pom). The superficial cortex anterior

to pom is eulaminate superior parietal in type, but that on the anterior wall of the

fissure is of the transitional character previously described in section 400.

Section 600. Fig. 26.

The cortex posterior to ca is all striate, that anterior is eulaminate superior

parietal in type.

block ii (Fig. 27)

The description of this block begins at the tip of the occipital pole and progresses

forward.

Section 700. Fig. 28.

The entire occipital pole is covered by striate koniocortex which is so character-

istic that it can be recognized even when cut tangentially. In this section there is

only one small segment, medial to the lo sulcus, which is covered by parakoniose

cortex. Where it is cut perpendicularly in the extremity of the calcarine fissure the

striate cortex measures 1.54 mm. in thickness. The parakoniose cortex measures

approximately the same.
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The striate koniocortex (cf. Plate X) has been so often described that it is un-

necessary to do so here. The parakoniose cortex has an outer main layer which

measures 0.65 mm., the inner granular layer 0.12 mm., and the inner main layer

0.77 mm. It is impossible to draw a line between ii and iiia. The outer margin of ii

Block II

Fig. 27. Position of sections of Block II.

is quite smooth. The cells of ii + iiia are small and rather uniformly distributed

although delicate radiations can be seen passing entirely through them in places.

The cells of iiib are slightly larger pyramids and those of iiic reach as much as

26 x 18 ix. These large pyramids of iiic are numerous and are divided into columns

by broad clear radiations which project from the subcortex through vi, v, and iv.
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ota

'otr-i

II 400
Fig. 28. Cross sections of Block II.

Layer iv has rather sharp limits and is uniformly filled with small granules arranged

in broad columns; occasionally a medium-sized pyramid is seen in it. Layer v is

relatively empty. It contains mostly small pyramids with scattered large cells,

almost round, about 26 x 32 n- Layer vi has an outer via with larger fusiform and
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pyramidal cells and a thicker vib with smaller, more scattered fusiform cells. The

boundary with the subcortex is, in this section, very diffuse. The limits of the

parakoniose cortex against the striate are quite abrupt.

Section 600. Fig. 28.

The striate cortex covers the calcarine fissure (ca) and the cortex above it to the

superior margin of the section; below the fissure it reaches to the upper lip of otri

where it abruptly gives way to the parakoniose cortex. The latter extends to the

inferior margin of the section.

The striate cortex varies in thickness on the crowns of the gyri from 1.3 to 1.8

mm. and in the depths of ca thins to 0.8 mm. The parakoniose cortex over the

crown of the gyrus below ca is cut too diagonally to measure. On the walls of otri

it varies from 1.7 mm. on the inferior lip to 1.0 mm. in the depth.

The cells of the parakoniose cortex vary in size somewhat in different parts but

in general this cortex conforms to the description given for section 700.

Section 500. Fig. 28.

The striate cortex covers the calcarine fissure (ca) and extends below it to the

upper lip of otri; above, it extends about halfway down the lower wall of the postero-

inferior extremity of the cuneate sulcus (cm). It begins again at the upper lip and

stretches onto the superior surface of the lobe.

Above and below the striate cortex (also in the depth of the cuneate sulcus) the

cortex is typical parakoniose with the exception of the most inferior gyrus where

the cortex contains smaller cells in iiic and no large cells in v. The radiations are

also finer here and the cortex assumes the appearance of the preoccipital regions.

There are here no pyramidal cells larger than 24 x 10 y. in iiic and most of them are

much smaller.

Section JfiO. Fig. 28.

The striate cortex, as usual, covers the calcarine fissure (ca) and stretches upward

to the lower lip of the cuneate sulcus (cu), where it gives place to typical parakoniose

cortex as far as the last gyrus on the superior surface of the lobe. Over that gyrus

the cortex measures 1.54 mm.; its radiations are finer and the cells of iiic smaller;

there is one large cell in v but in general v is better filled than is typical for para-

koniose cortex and the inner main layer measures 0.74 mm. The cortex between

otri and ota is cut too diagonally to measure, but below ota its inner main layer

measures only 0.46 mm., and continues as typical parakoniose cortex until it reaches

the lateral part of the crown of the last gryus where the cortex thickens (1.7 mm.),

inner main layer 0.77 mm., the cells of iiic are much smaller and v is better filled.

Section 300. Fig. 28.

The striate cortex covers the walls of the calcarine fissure. Above, it does not

quite reach the lower lip of the cuneate sulcus; below, it reaches about an equal

distance from the fissure where it abruptly assumes the parakoniose form. The

striate cortex below the fissure measures 1.45 mm., above 1.54 mm. The parakoniose

cortex near the striate measures about 1.4 mm., but its layer vib is so light that it

looks much thinner. The cortex on the superior surface of the lobe measures 1.54

mm.; both v and vib are here much better filled and the cells of iiic smaller. The

cortex on the inferior surface of the lobe is quite similar; there is no definite line

where this change occurs.
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Section 200. Fig. 28.

The calcarine fissure here has an accessory sulcus projecting into its upper wall;

it is entirely covered by striate cortex which extends above, about halfway to the

cuneate sulcus; below, it reaches into the upper wall of the collateral sulcus (col).

Below the calcarine fissure, the striate cortex measures scarcely 1.54 mm.; above, it

reaches 1.70 mm. The parakoniose cortex above the striate measures 1.40 mm.;
below, about the same. It stretches in this section over the superior wall of ota;

above, it gradually undergoes the changes noted in the previous section. However,

in the depth of the sulcus on the lateral (cm) margin, the cortex, although it meas-

ures 1.60 mm. and its radiations are rather fine, has the typical numerous large

pyramids in iiic and the empty v characteristic of the parakoniose zone. Below ota,

the pyramids of iiic are smaller and v is better filled.

Section 100. Fig. 28.

The depth of the calcarine fissure spreads out to form an island. It is covered

by striate cortex which extends, above, about halfway to the cuneate sulcus, below,

onto the upper wall of the collateral sulcus {col). Above the fissure, the striate

cortex measures 1.75 mm.; below, it thins to 1.3 mm. The parakoniose cortex above

measures 1.6 mm.; below, 1.45 mm. On the inferior surface of the lobe, the cortex

thickens to 1 .75 mm. ; the same is true of the superior surface. In both instances the

radiations become finer, the cells of iiic smaller, but v remains relatively empty
and the inner main layer measures about 0.6 mm. This has become eulaminate

cortex of more generalized type and is labeled Epro.

block in (Fig. 29)

Section 100. Fig. 30.

The cortex over the superior surface, lateral to aic, measures 1.85 mm., outer

main layer 1.0 mm., inner 0.7 mm. The margin between i and ii is irregular. The
margin of ii and iiia is difficult to establish since many small pyramids are scattered

among the granules. The pyramids of iiib are slightly larger and sparser. The pyra-

mids of iiic are larger, ranging up to 39 x 26 n. The granules of ivb are heavier

and, with va, make a dark band, vb is lighter; via is well filled. This is superior

parietal eulaminate cortex with unusually large cells in iiic.

Between aic and pt the cortex measures 1.85 mm.; also, outer main layer 0.7 mm.,
inner 1.0 mm. Although the ratio of outer to inner main layer is reversed, the

cortex otherwise has the characteristics just described.

Between pt and sp the cortex is different. It measures 1.54 mm., outer main layer

0.83 mm., inner 0.53 mm. The border between i and ii is smoother, iiib is emptier,

the pyramids of iiic do not surpass 24 x 16 ix. There are more cells in vb and iv is

more uniform, but these changes are slight and do not warrant giving it a special

designation. The adjacent cortex in Block I was labeled Eps.

Just below sp the cortex is irregular but varies toward the cortex above pt.

The cortex below the small short sulcus again resembles the cortex between pt

and sp. It measures 1.6 mm., outer main layer 0.7 mm., inner 0.68 mm.
The cortex above cc is retrosplenial allocortex, agranular above and granular

below.
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Section 200. Fig. 30.

The cortex over the dorsal surface resembles that described in section 100. There

are numerous large cells in iiic, about 39 x 26 n.

*Q

Block III

500 1000 1500

Fig. 29. Position of sections of Block III.

Between aic and pt the cortex is much the same as described in section 100 but

the cells of iiic are slightly smaller.

Between pt and sp the cortex is as described in section 100 but has thickened

from 1.5 mm. to 1.7 mm. and the dark band of ivb + va is much more distinct and

the pyramids of iiic a little larger. This cortex is now clearly superior parietal

eulaminate.
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Between sp and sp3 the cortex is irregularly constructed but averages about

1.7 mm. and looks much as it does above sp.

Above cc the cortex is retrosplenial in its lower part; the upper part is cut too

diagonally to read.

Ill 100

III ZOO

Fig. 30. Cross sections of Block III.

Section 300. Fig. 30.

The cortex lateral to aic is irregularly constructed but, in its medial wall, the

cortex is superior parietal eulaminate with numerous large pyramids in iiic up to

39 x 26 n in dimension and a few equally large ones in va.

Over the crown between aic and pt the pyramids of iiic and va are much smaller,

but in the walls of pt they are again large and all this cortex is of superior parietal

eulaminate type.



Serial Sections 93

Below pt the cortex measures 1.54 mm., outer main layer 0.7 mm., inner 0.65 mm.
The pyramids of Hie and v are not above 24 x 16 n, but the heavy band of ivb + va

is present.

Below ptl the cortex is irregularly cut but probably of the same type as the cortex

above.

Ill 600

Fig. 31. Cross sections of Block III.

Above cc the retrosplenial formations reach about halfway to sp where they go

over into eulaminate isocortex measuring 1.65 mm., outer main layer 0.77 mm.,
inner 0.74 mm., which is cut too diagonally to identify.

Section 400. Fig. 31.

The cortex on the dorsal surface is typically superior parietal eulaminate as
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previously described, total thickness 1.7 mm., outer main layer 0.71 mm., inner

0.77 mm. This cortex continues to about the middle of the gyrus between sp and sp2

where the dark band of ivb + va gradually fades out and v fills evenly with small

and medium pyramids.

The retrosplenial formations scarcely extend out of cc.

Section 500. Fig. 31.

The cortex is typical eulaminate superior parietal all down the medial surface as

far as sp wherever it can be read, but there are no very large cells in either iiic or v.

Just below sp the cortex is veiy much the same, total thickness 1.65 mm., outer

main layer 0.68 mm., inner 0.74 mm. The pyramids of iiic are not above 21 x 13 it,

iv is thick and a darker ivb is visible, but the cells of va are sparse and dispersed so

that a dark band is not very evident.

Just below cil the cortex is very similar.

The retrosplenial formations are visible only within cc. Above cc the cortex

cannot be read.

Section 600. Fig. 31.

On the dorsal surface the cortex is of superior parietal eulaminate type but there

are no large pyramids in either iiic or va. This cortex continues on the medial

surface as far as the ventral section of sp.

Between sp and cil the cortex is irregularly built, iiic, iv, and va looking like a

rail fence. On the upper lip of cil the fourth layer is very thick (0.2 mm.).

Below cil the cortex measures 1.85 mm. or more, outer main layer 0.77 mm.,

inner 0.8 mm. or more. The pyramids of iiic do not surpass 21 x 13 ll. The inner

granular layer is very thick (0.25-0.3 mm.) and uniformly filled by granules. The
pyramids of v are evenly distributed and about the size of those in iiic with an

occasional slightly larger one. The cells of via are slightly smaller.

Section 700. Fig. 32.

The cortex on the dorsal surface is cut too diagonally to read. On the medial

surface the cortex is of superior parietal eulaminate type at first, then cannot be

read until one nears cil where it has the irregular structure described in section 600.

Below cil the cortex is cut too diagonally to read.

Section 800. Fig. 32.

On the dorsal surface the cortex is typically eulaminate superior parietal, the

pyramids of iiic reaching 28 x 16 li. This cortex continues down the medial surface,

where one sees a few larger pyramids, as far as cil.

Below cil the cortex is not much different above the small abortive sulcus but,

below it, the cortex measures 1.7 mm., outer main layer 0.7 mm., inner 0.9 mm.
Layer iv is thin with no heavier ivb; layer v is thin and its cells well dispersed;

layer via measures 0.55 mm. We have labeled this eulaminate limbic posterior

(Elp).

On the upper lip of cc the inner granular layer disappears entirely.

Section 900. Fig. 32.

On the dorsal surface the cortex is eulaminate superior parietal, but only a few

pyramids in iiic are above 26 x 16 n. Total thickness 1.85 mm., outer main layer

0.9 mm., inner 0.77 mm.
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On the medial surface the cortex is constructed in the same way but thinner

(1.54 mm.), outer main layer 0.68 mm., inner 0.68 mm.
Just below cil the structure is much more rugged. Throughout the cells are larger

and those of v better dispersed. The remainder of the cortex cannot be read.

Section 1000. Fig. 33.

The cortex on the dorsal surface is identical with that just described in section 900.

Fig. 32. Cross sections of Block III.

As one goes down the medial surface the cortex is cut diagonally but seems much
the same until one gets into cim where one begins to see much larger pyramids in

both iiic and v. This is evident also on the opposite wall of cim in spite of the diagonal

section.

Below cim one encounters large numbers of very large cells in both iiic and v

ranging from 37 x 26 y. to 45 x 32 ju. Throughout this region there is a prominent iv
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measuring 0.2-0.3 mm., with often very large cells interspersed among the granules.

Below ci the cortex measures 1.7 mm., outer main layer 0.7 mm., inner 0.86 mm.
The pyramids of iiic and v are of moderate size up to 26 x 16 /* and well dispersed.

Ill 1000

III 1300

III 12.00

Fig. 33. Cross sections of Block III.

Section 1100. Fig. 33.

The cortex on the dorsal surface lateral to cim is of superior parietal eulaminate

type with a few very large pyramids (39 x 26 fi) in v. The pyramids of iiic are mostly

not larger than 23 x 13 p but a few reach 32 x 21 p.
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On the medial wall of cim begins the formation ppoc previously described in

section 1000 containing huge pyramids in iiic and v.

Just as one passes over to the medial surface is a small patch of koniocortex,

beyond which the parakoniocortex continues almost to ci. Near ci the internal

granular layer disappears.

The cortex below ci cannot be read.

Section 1200. Fig. 33.

The cortex lateral to cim is cut too diagonally to read. It contains, however, no
very large cells.

On the medial wall of cim can be seen the big-celled formation previously

described.

On the crown, going over to the medial surface, the cortex becomes koniocortex

and is followed by the eulaminate big-celled area again. The inner granular layer

disappears just above the shallow short sulcus and is followed by typical precentral

agranular cortex with Betz cells measuring 66 x 39 n.

Section 1300. Fig. 33.

The cortex over this small section is quite variegated.

Lateral to cim it looks much like what has been seen over the dorsal surface

posteriorly. Total thickness 1.7 mm., outer main layer 0.8 mm., inner 0.7 mm.
There are some fairly large pyramids 26 x 16 n in both iiic and v.

Between cim and ce the cortex over the crown and extending down the medial

wall of cim measures only 1.4 mm., outer main layer 0.6 mm., inner 0.68 mm.
Layer vb is relatively empty but there is no dark band of ivb 4- va. Many pyramids

of both iiic and v reach 32 x 19 n- This cortex looks like the postcentral parakonio-

cortex farther down the gyrus.

On the lateral wall of ce the cortex measures only 1.1 mm. and is granulose. This

entire wall is koniocortex. One sees occasional large pyramids about 30 x 19 n in

the light band where layer v should be.

The lower part of the medial wall of ce is agranular cortex with huge Betz cells,

but the outer part, over the crown and part way down the medial surface, is covered

by cortex with very large cells in iiic and v not reaching the size of Betz cells, how-

ever. This looks very much like the cortex labeled ppoc in section 1100 on the medial

aspect; it soon loses its inner granular layer and becomes again agranular with

Betz cells.

Section llfiO. Fig. 33.

All of the cortex medial to ce is agranular with Betz cells.

The lateral wall of ce is koniocortex.

The crown of the postcentral gyrus is covered by parakoniocortex, total thick-

ness 1.54 mm., outer main layer 0.68 mm., inner 0.71 mm. The pyramids of iiic

are numerous, as big as 32 x 18 /z, occasionally larger ones up to 45 x 24 /i in the

relatively empty v.

Lateral to cim the cortex measures 1.85 mm. and there is a huge pyramid 66 x 39

fi in v.

Section 1500. Fig. 33.

Medial to ce is only agranular cortex with Betz cells and occasional smaller

pyramids in iiic about 36 x 24 n.
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On the lateral wall of ce is koniocortex.

On the crown of the postcentral gyrus is parakoniocortex as described for section

1400.

1500 1000 500

1500 1000 500
Fig. 34. Position of sections of Block IV.

Block IV

block iv (Fig. 34)

We shall begin where we left off with block III and proceed anteriorly.

Section 1800. Fig. 35.

Medial to the central sulcus (ce) the cortex is thick (2.15+ mm., the inner bound-

ary being very vague). It is agranular with numerous giant cells (about 63 x 39 fx)

as well as numerous other large pyramids (up to 37 x 26 y) at about the level of



Serial Sections 99

what would be v in eulaminate cortex. There are also scattered large pyramids

(39 x 26 n) at about the level of iiic.

Lateral to ce the cortex is postcentral parakoniocortex on the surface. Within the

sulcus, on its lateral wall, there is koniocortex measuring only 0.93 mm.
Section 1700. Fig. 35.

IV 1300
IY 1600

IY 1400
1Y1700

IY 1500
1Y1800

Fig. 35. Cross sections of Block IV.

Anterior to the central sulcus the cortex is agranular with Betz cells throughout

and scattered pyramids about 36 x 22 ju at about the level of iiic.

Behind ce there is koniocortex on the posterior wall to the lip and then para-

koniose cortex which is cut too diagonally to describe.

Section 1600. Fig. 35.

The precentral gyrus is covered by agranular cortex as described in the previous
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sections which contains numerous Betz cells except on the crown, where there is

none larger than 39 x 26 ^. Average thickness about 1.9 mm.
Section 1500. Fig. 35.

The cortex on the medial surface is agranular with numerous Betz cells, and
pyramids in iiic about 39 x 24 n. On the dorsal surface medial to the small sulcus

(b) the large pyramidal cells are more elongated, about 58 x 26 m, and the columni-

ation of the cortex finer. Lateral to b the cortex is agranular, measures about 2.0

mm. and contains large pyramids in the medial regions of the cortex but none over

42 x 21 n.

Section lJfiO. Fig. 35.

The cortex is all agranular. On the medial surface there are Betz cells below g

only in the lower wall of the small sulcus. Just above g there are a few deep large

pyramids, up to 60 x 39 n in layer v but, in the remainder of the cortex between g

and b, there is no pyramid above 39 x 26 n in layer v. A few large pyramids, around

39 x 26 n, are seen in iiic.

Lateral to b the cortex measures only 1.7 mm. It is agranular but there is only

one large pyramid. It lies about the level of v and measures 39 x 26 fi.

Section 1300. Fig. 35.

The cortex on the medial surface measures 1.7 mm. There are a few large cells

of the stature of Betz cells. Above them is a vague layer of very small pyramids

which may correspond to iv. Above this are a few scattered large pyramids up to

39 x 26 m- On the dorsal surface there is no pyramid of Betz caliber. Nor is there

any in the walls of the sulcus.

Section 1200. Fig. 36.

The cortex below ci is eulaminate, measuring 1.17 mm., outer main layer 0.61

mm., inner 0.46 mm. There are a few medium pyramids in iiic and the larger

pyramids of v are crowded against iv so that vb is very empty. Layer vi is well filled

with small irregular cells.

The remainder of the cortex is agranular. On the dorsal wall of ci is seen a very

large cell, deep in the cortex, measuring 52 x 45 n. There is only one large cell, on

the dorsal surface, which reaches 47 x 39 n and seems to be in layer v. A few scattered

cells reach 36 x 26 m and seem to be in iiic. The cortex measures 2.0+ mm. on the

dorsal surface.

Section 1100. Fig. 36.

On the dorsal surface there is one large cell, 39 x 32 /z, which seems to be in v.

No other cell exceeds 32 x 24 /*• On the posterolateral wall of pac there are two

large cells in v. On the superior wall of ci there are a few more. All of this cortex

is agranular, but otherwise varies greatly as is customary in sulci. Total thickness

2.0 mm. on the dorsal surface.

On the medial surface, below /, there is nothing which could be called a Betz

cell, nor is there on the anteromedial wall of pac. All this cortex is, however, cut

very diagonally. Total thickness over 2.0 mm.
Section 1000. Fig. 36.

On the dorsal surface between pox and prcs2 the cortex is cut parallel to the

columns. They extend almost up to the i layer. The cortex is agranular, but the

pyramids near i are very small and there is a faint layer deeper, near the middle,
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of very small pyramids, above and below which lie the largest pyramids in the

section, which do not, however, surpass 32 x 16 m- Thevi layer is distinct by the size

and shape of its cells, measuring more than 0.62 mm. The total thickness is more

than 1.85 mm.
The cortex on the medial surface between prcs2 and / is similarly constructed

IV 1000

pros 2.

ac

IY 1100

IV 12.00

Fig. 36. Cross sections of Block IV.

but measures only 1.7 mm. The largest pyramids are about where one would expect

iiic and they do not surpass 32 x 16 m.

Below / the cortex is much the same until the upper wall of ci is reached, in which

two cells are seen in v which reach a size of 53 x 37 y..

Below ci the cortex has a faint internal granular layer and a dense band of cells

in va, with a relatively empty vb.

Section 900. Fig. 37.
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The cortex on the dorsal surface, lateral to prcs2, measures 1.85+ mm. It is

agranular and contains no pyramids measuring above 34 x 18 n- Above / on the

medial surface the cortex is entirely similar.

Just below the small sulcus / on the medial surface is the same agranular cortex

--.cc
IV 700

r-..
IV 800

CS2.

IV 900

Fig. 37. Cross sections of Block IV.

but, in the depth of the dorsal spur of the cingulate sulcus, are a few deep-lying

cells measuring about 53 x 47 ix.

On the lower wall of the cingulate sulcus ci there is a thin internal granular

layer. The cortex measures 1.6 mm., outer main layer 0.65 mm., inner 0.8 mm.
Layer v is divided into a dense va, which contains cells much larger than any in

Hi; layer vb is relatively very empty. Layer vi is filled with smaller cells, more lightly

stained. There is scarcely any cell gradient in Hi; none of its cells is above 26 x 16 p.
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The inner granular layer gradually fades until, before the callosal sulcus is reached,

it entirely disappears.

Section 800. Fig. 37.

The cortex on the dorsal surface is identical with that described in section 900.

It measures 2.0+ mm.

IV 400

r^^cc IY 500

IY 600

Fig. 38. Cross sections of Block IV.

The cortex just below / measures 1.85 mm. The largest pyramids, which do not

exceed 26 x 16 /*, lie in the middle part of the cortex. The pyramids externally, and

the fusiform cells internal to them, are smaller and more lightly stained. There is a

faint, irregular stratum of small cells within the larger celled middle zone, but

examination under high magnification shows them to be mostly small pyramids.

On the dorsal wall of ci no cell is seen large enough to be suspected of being a

Betz cell.
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The cortex in the ventral wall of ci is as described in section 900. Over the surface

of the limbic gyrus the cortex is agranular. In thickness it measures only 1.25 mm.
Most conspicuous is a band of medium pyramids, about 32 x 18 n, closely packed

together in its outer half, loosely scattered in its inner half. Beneath the loose

streak is a band of about equal width, evenly filled with smaller irregular cells. Just

outside the dense band of larger cells is another light streak containing scattered

pyramids about 29 x 16 fi and mostly smaller irregular cells. Outside this light

streak is a layer about 0.52 mm. thick containing evenly distributed smaller pyra-

mids, growing slightly smaller and more numerous toward i. This agranular anterior

limbic cortex we have labeled Ajla.

Section 700. Fig. 37.

The cortex above ci does not differ from that described in section 900. Thickness

1.85+ mm.
The cortex on the lower wall of ci and over the limbic gyrus is as described in

section 800, except on the lower half where the outer light streak disappears and the

inner one becomes much less evident. This is clearly agranular anterior limbic

cortex Alia.

Section 600. Fig. 38.

The cortex on the dorsal surface and on the medial surface above ci measures 1.7

mm. to 1.85 mm. It is typical agranular precentral cortex without Betz cells. There

are many pyramids which are 29 x 21 ju and a few which reach even 39 x 26 p. These

pyramids lie in what should be the iiic. There are no very large cells which lie

deeper.

The cortex below ci looks much as in section 700. There is still an inner granular

layer in the lower wall of ci. The crown of the limbic gyrus is entirely covered by
agranular anterior limbic cortex.

Section 500. Fig. 38.

The conditions in this section do not differ from those in section 600.

Section IfiO. Fig. 38.

The cortex on the dorsal surface and on the medial surface above ci is simple

agranular precentral cortex without Betz cells as previously described. Total

thickness 1.85+ mm.
Below ci the cortex is the same as in the previous section.

Section 800. Fig. 39.

The cortex is unchanged from the previous section.

Section 200. Fig. 39.
,

The cortex on the dorsal and medial surfaces is still simple agranular precentral

down to ci. Thickness 1.7 mm. to 2.15 mm.
On the lower wall of ci there is still a thin light band filled mainly with very small

pyramids with a few granules. This disappears on the surface of the limbic gyrus.

Section 100. Fig. 39.

The cortex over the dorsal surface and down the medial surface to ci looks much
the same, but there is here and there a patchy, thin zone of granules in the middle

of the cortex with the largest pyramids just external and internal to it. Thickness

1.55 mm. to 1.7 mm. This is the first appearance of dysgranular cortex.

The cortex over the limbic lobe is unchanged.
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block v (Fig. 40)

We shall begin at the frontal pole, which is covered by general eulaminate cortex,

and proceed posteriorly.

Section 1700. Fig. 41.

On the orbital surface the cortex measures 1.7 mm., outer main layer 0.7 mm.,

inner granular layer 0.15 mm., inner main layer 0.85 mm. The largest pyramids are

IV 300

Fig. 39. Cross sections of Block IV.

in iiic and v but do not exceed 26 x 13 ii. Layers iiib and vb are relatively empty;

layer iv is evenly filled with granules. Just within i many granules are mixed with

small pyramids.

On the medial surface the cortex is of the same fundamental general eulaminate

pattern.

Section 1600. Fig. 41.

On the crown of the narrow gyrus above c the cortex measures about 1.3 mm.
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Below c it thickens to 1.4 mm., outer main layer 0.58 mm., inner granular 0.15 mm.,

inner main layer 0.65 mm.
On the orbital surface, medial to orm, the cortex measures 1.7 mm., outer main

layer 0.95 mm., inner granular 0.15 mm., inner main layer 0.6 mm. The outer

granular layer ii is definite, Hi has scarcely any gradient, the cells of iiic rarely

Block V
Fig. 40. Position of sections of Block V.

surpass 21 x 13 y., the cells of v are slightly larger and more numerous. Layer iiib

is fairly well filled so that Hi has an even look throughout. This cortex shows

juxtallocortical characteristics.

The cortex lateral to orm is of ordinary eulaminate generalized type.

Section 1500. Fig. 41.

Above c on the medial side, the cortex is of general eulaminate type measuring
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Fig. 41. Cross sections of Block V.

1.4 mm., outer main layer 0.55 mm., inner granular 0.15 mm., inner main layer

0.7 mm.
Between c and olf the cortex is cut diagonally but appears to be quite similar.
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On the crown just at the orbitomedial margin the cortex thins to 1.2 mm., outer

main layer 0.4 mm., inner granular 0.12 mm., inner main layer 0.68 mm.
Between olf and orm the cortex is as described in section 1600.

Lateral to orm the cortex is again of general eulaminate type, outer main layer

0.58 mm., inner granular 0.15 mm., inner main layer 0.62 mm., total thickness

1.35 mm. The pyramids of iiic and va are definitely larger than the cells of the other

layers.

Section 1400. Fig. 41.

The cortex of this section does not differ from that of 1500. Above c on the

medial surface it measures 1.4 mm. Below c it varies from 1.25 mm. to 1.54 mm.
Just lateral to olf on the orbital surface the cortex thins to 1.15 mm., but is con-

structed on the same model as more laterally where it measures 1.7 mm. The

regularity of the border between i and ii is striking, reminding one of the

parakoniose cortex.

Section 1300. Fig. 41.

The cortex does not differ from that of section 1400.

On both walls of olf and extending out of it on the orbital surface laterally, vb

is very dense. This may be more apparent because of the thinness of the cortex.

Lateral to orm the cortex is of general eulaminate type.

Section 1200. Fig. 41.

On the medial surface the thickness varies from 1.2 mm. at the orbitomedial lip

to 1.7 mm. near roi. It resembles now the cortex lateral to olf on the orbital surface

in that it has a good outer granular layer and almost no gradient in Hi. Also va is

heavier. At about the middle between roi and olf the cortex measures 1.45 mm.,

outer main layer 0.83 mm., inner granular 0.15 mm., inner main layer 0.47 mm.

At about the same distance lateral to olf the cortex measures 1.55 nun., outer main

layer 0.75 mm., inner granular 0.19 mm., inner main layer 0.61 mm.
On the lateral wall of orm the cells of iiic are larger and iv is thinner, as in the

inferior frontal gyrus.

Section 1100. Fig. 41.

The cortex above roi measures 1.54 mm. and is of general eulaminate type, outer

main layer 0.58 mm., inner granular 0.15 mm., inner main layer 0.8 mm.
The cortex on both sides of olf is unchanged from section 1200 but is cut diagonally

on the orbital surface.

The cortex lateral to orm is as described in section 1200.

Section 1000. Fig. 41.

The cortex just above roi is of general eulaminate type measuring 1.54 mm.,

outer main layer 0.7 mm., inner granular 0.15 mm., inner main layer 0.68 mm.
The remainder of the cortex is of the juxtallocortical type previously described

with heavy va, empty vb, and no gradient in Hi. It measures generally about 1 .4 mm.

Lateral to orm the pyramids are again much larger in iiic.

Section 900. Fig. 41.

The cortex above ros has almost no granules and a heavy thick band of big cells

in the middle. It is anterior agranular limbic cortex.

Between roi and 70s the cortex measures 1.7 mm. It resembles the superior

frontal cortex but has a heavier va. Outer main layer 0.75 mm., inner granular 0.15

mm., inner main layer 0.8 mm.
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Fig. 42. Cross sections of Block V.

The cortex on the lip medial to olj measures 1.4 mm. and is of the juxtallocortical

type, outer main layer 0.55 mm., inner granular 0.15 mm., inner main layer 0.7

mm. This cortex continues over the entire orbital surface but thickens laterally

to 1.65 mm.
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Lateral to orm the cells of iiic are much larger. The cortex is here clearly of

inferior frontal type.

Section 800. Fig. 42.

Above ros is agranular limbic cortex which develops an inner granular layer as

one follows into the upper wall of ros. The remainder of the cortex is all of the type

we have called juxtallocortical, but below roi there is less distinction between ii and

Hi and somewhat smaller cells in v.

Section 700. Fig. 42.

Conditions in this section are identical with those in section 800.

Section 600. Fig. 42.

Identical with section 700.

Section 500. Fig. 42.

Above ros is agranular anterior limbic cortex.

Between roi and ros is juxtallocortex.

On the orbital surface medial to olf the cortex is irregularly constructed; par-

ticularly the cells of v are patchy, but otherwise as before.

Lateral to olf the internal granular layer is less conspicuous, the cells of v are

smaller and better distributed.

Section 400. Fig. 42.

The cortex above ros is veiy thin and its cells irregularly distributed in patches.

Between roi and ros the cortex is of our juxtallocortical type, measuring 1.7 mm.
The cortex between roi and olf is very irregularly constructed but has a good

internal granular layer everywhere until the medial wall of olf is reached, when it

almost completely disappears and remains absent over the lateral wall also and

lateral to olf on the surface. This is dysgranular cortex.

Section 300. Fig. 42.

The cortex between roi and ros is thinned, measures 1.5 mm., but is otherwise

unchanged from section 400, except that vb is more filled.

The cortex beyond roi has no inner granular layer and is very irregularly con-

structed.

Lateral to olf the cortex is very thick, measuring more than 2.2 mm. Its cellular

population is nearly uniform throughout so that it is difficult to recognize layers.

There is a faint suggestion of an internal granular layer.

Section 200. Fig. 42.

The cortex on the medial surface measures only 1.15 mm. There are no granules

under i and the cells here are bunched. There is scarcely any gradient in Hi. Layer

iv measures 0.15 mm. and is well filled with granules. Layers v and vi form a dense

band measuring about 0.31 mm. which is very conspicuously darker than Hi.

On the medial half of the orbital surface the cortex is agranular. The lateral half

is anterior perforated substance.

Section 100. Fig. 42.

On the medial surface the cortex is still very thin and has lost its internal granular

layer; unfortunately most of it has been cut off the section. In the intermediate

sections it can be seen that the internal granular layer present in 200 rapidly dis-

appeared.
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Block VI

Fig. 43. Position of sections of Block VI.

block vi (Fig. 43)

Sections lJflO, 1300, 1200, 1100.

These sections are cut too tangentially to read so they are not shown in the

figures.
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Section WOO. Fig. 44.

The cortex on the dorsal surface varies in thickness from 1.54 mm. to more than

1.85 mm. At a place where the total thickness is 1.7 mm., the outer main layer

measures 0.95 mm., inner granular layer 0.15 mm., inner main layer 0.6+ mm.
Under i is a band of small cells, mostly small pyramids with a few granules, measur-

ing about 0.15 mm., in which the cells are relatively closely packed together. There

is then a thick (0.8 mm.), lighter zone in which the pyramids gradually increase in

size inward but rarely surpass 26 x 13 li. Layer iv is uniformly filled with granules

and an occasional pyramid. Layer v measures about 0.31 mm. and has two definite

sublayers, an outer va containing numerous cells, slightly larger and fatter than

those of iiic, and an inner vb which is relatively empty. Layer vi shades off gradually

into the subcortex and is filled with fusiform and irregular cells. Delicate columns

extend almost to i. This is eulaminate cortex of generalized type.

Section 900. Fig. 44.

The entire cortex of this section is essentially similar to that described in section

1000. It varies in thickness over the crowns from 1.54 mm. to more than 2.0 mm.

r;;~w, f«sa3
lateral

fsa4

VI 800 cl5
VI 000

Fig. 44. Cross sections of Block VI.

VI 1000

In the depth of fsa are large cells on the border between iiic and iv measuring

up to 45 x 32 ix.

Section 800. Fig. 44.

The cortex on the dorsal surface, where it can be read, is of the type described

in section 1000. It measures about 1.7 mm. in cross section and continues without

essential change over the medial surface.

There is an occasional very large pyramid in iiic or the outer part of iv. These

are especially numerous in the superior frontal sulcus (fsa). They could almost

qualify as giant cells, reaching 50 x 26 ft. There is even an occasional one 34 x 21

n in v.

Section 700. Fig. 45.

The cortex of this section is all of the generalized type described in section 1000.

The pyramids measure mostly about 26 x 13 ll with many larger ones in iiic, es-

pecially in the buried part of the superior frontal sulcus ; those in v never exceeding

32 x 18 ix. Over the crowns, wherever cut parallel to the fine columns, the cortex

measures about 1.7 mm.
Section 600. Fig. 45.
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VI 400
Fig. 45. Cross sections of Block VI.

The cortex is identical in type with that of section 700. It varies in thickness over

the surface from 1.4-1.8 mm.
Section 500. Fig. 45.

Same as in section 600, varying in thickness from 1.4-1.8 mm.
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Section JfiO. Fig. 45.

Same as before, varying in thickness from 1.4-1.8 mm. Between sro and roi the

cells are particularly small, but the relative size in the various layers is the same.

Total thickness 1.4 mm., outer main layer 0.6.5 mm., inner granular 0.15 mm.,
inner main layer 0.6+ mm.
The cortex posterior to ci is cut too tangentially to read.

Section 300. Fig. 45.

block VII

Fig. 46. Position of sections of Block VII.

Cortex unchanged in type. Lateral to a1 measures 1.54 mm., outer main layer

0.6 mm., inner granular 0.15 mm., inner main layer 0.8 mm. On the dorsomedial

margin it measures 1.4 mm., outer main layer 0.62 mm., inner granular 0.15 mm.,

inner main layer 0.62 mm. Between roi and sro it measures 1.4 mm., outer main

layer 0.65 mm., inner granular 0.15 mm., inner main layer 0.6 mm.
Medial to ci the cortex has a thinner iv and denser va. This is juxtallocortex (jfl).

Section 200. Fig. 45.

The cortex, wherever cut parallel to the columns, is identical with that of the

section 300 anterior and lateral to roi.
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Posterior to roi there are more and larger cells in va, and iv is thinner, measuring

not more than 0.12 mm.
Posterior to ros the cortex has almost lost its internal granular layer. Although

it approaches anterior limbic agranular cortex, it is still labeled j/L

Section 100. Fig. 45.

Identical with section 200.

block vn (Fig. 46)

Section 100. Fig. 47.

The cortex above the posterior spur of the precentral sulcus (prcsl) is cut tan-

gentially, but it can be seen that it is agranular and contains no giant cells.

Over the precentral gyrus the cortex measures 1.7 mm. in thickness. It is

agranular, most of the cells of the ii layer being small pyramids. There are no small

cells in the position of an inner granular layer. Over the crown there are no giant

cells, the largest pyramid measuring 37 x 16 p.

Beginning at the anterior lip of the central sulcus (ce) giant cells are numerous

in the deeper parts of the cortex, measuring about 47 x 26 n, which lie at approxi-

mately the same level in the cortex and extend to the depth of the sulcus.

As the cortex rounds the bottom of the sulcus it thins to 0.85 mm. and a thin

internal granular layer can be seen, but occasional giant cells also in v and numerous

large pyramids in Hi up to 34 x 16 m in dimension. This cortex soon changes rather

rapidly, but without sharp margin, the large cells disappearing from Hi, and v

becoming empty, so that in the middle of the posterior wall of the central sulcus

the cortex looks quite different.

Here the cortex measures 1.25 mm., outer main layer 0.6 mm., inner 0.5 mm.
The outer main layer is almost of uniform appearance, consisting of granules and

very small pyramids which are only slightly larger in iiic. Layer iv is thick and

evenly filled with granules and a few small pyramids. Layer v consists of two sub-

layers, an outer va containing small pyramids about the size of those of iiic, measur-

ing usually less than 18 x 13 n, and an inner vb which is almost empty. Layer via

contains small irregular and fusiform cells smaller than those of iiic and va, and vib

is very thin and almost empty. This is evidently postcentral koniocortex (Kpoc).

As one approaches the posterior lip of the central sulcus the cortex thickens to

1.4 mm. over the crown of the postcentral gyrus, outer main layer 0.63 mm., inner

0.63 mm. The pyramids in iiic become larger, up to 39 x 24 n; vb remains empty. On
the posterior wall of the postcentral gyrus the large cells in iiic seem more numerous

and a few reach 48 x 26 m, but it is cut here very diagonally. This is postcentral

parakoniocortex (ppoc).

Below the anterior spur of the inferior postcentral sulcus (pocil) the size of

the cells in iiic decreases gradually until they reach scarcely 21 x 13 /i. The cortex

also thickens to 1.54 mm. and vb fills. This has become generalized eulaminate

cortex (Epi).

Section 200. Fig. 47.

The cortex above the central sulcus (ce) is agranular, measuring 2.0 mm. in

total thickness, with giant cells extending upward to the incipient posterior spur

from prcsl and down to the bottom of the central sulcus.
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The deepest part of the posterior wall of ce is covered by the thin transitional

cortex described in the preceding section 100. Then follows koniocortex (Kpoc) also

described in 100.

Just within the posterior lip of ce the koniocortex gives place to postcentral

parakoniocortex which here measures 1.54 mm., outer main layer 0.6 mm., inner

0.6 mm. The pyramids of iiic reach as much as 42 x 26 n. Layer v is relatively empty

prcsl

pi-csl

pOCi

vn zoo

Fig. 47. Cross sections of Block VII.

and contains rarely a large pyramid; most of its cells are about the same size as

those of via. Occasionally a very large pyramid may lie in the middle of iv. On the

anterosuperior wall of poci the cortex is identical and measures 1.6 mm. The cells

of iiic are neither larger nor more numerous than on the crown.

On the inferior wall of poci the cortex thickens to 1.8 mm. The pyramids of iiic

are smaller and v fills with medium and small pyramids. The cortex here is of general-

ized type (Epi).

Below poci the cortex is cut so diagonally it cannot be read.



Serial Sections 117

Section 300. Fig. 47.

Above the central sulcus the cortex is cut very tangentially but giant cells can be

seen throughout.

On the postero-inferior wall of ce lies koniocortex, also cut very tangentially.

On the crown of the postcentral gyrus and over its postero-inferior wall the cortex

does not differ from that described in the preceding section.

Below poci the cortex measures 1.7 mm. in total thickness, outer main layer 0.7

mm., inner 0.85 mm. Layer iiib is relatively empty. The pyramids of iiic are not

above medium size, about 24 x 13 y. on an average. The pyramids of v are about the

same size, more numerous near iv. The cells of via are slightly smaller but more

numerous. The boundaiy with the subcortex is vague. This is generalized eulaminate

cortex except for the relatively empty vb.

Section IfiO. Fig. 47.

On the crown above poci the cortex is typical postcentral parakoniocortex in

type, measuring 1.45 mm., outer main layer 0.6 mm., inner 0.68 mm.
The cortex in the posterior spur from ce is koniocortex on both walls.

At the upper extremity of the section the cortex is again postcentral (ppoc).

On the upper wall of poci the cortex is cut diagonally but appears to be parakonio-

cortex. The inferior wall is cut too tangentially to read.

Just below poci the cortex measures only 1.3 mm. Layers iiib and vb are rather

empty. The cells of iiic are not of more than moderate size.

At an inferior extremity of the section the cortex measures 1.85 mm. The cells of

iiic measure about 21 x 13 fi. Layer v is well filled by cells of about the same di-

mensions.

Section 500. Fig. 48.

The cortex between the two branches of pocs is typical postcentral parakonio-

cortex (ppoc). It measures 1.2 mm., outer main layer 0.46 mm., inner 0.6 mm.
Large pyramids in iiic, empty vb, occasional large pyramid in va. This cortex covers

also the anterior wall of pocs where it is thicker (1.4 mm.) but is cut diagonally.

On the postero-inferior wall of pocs the cortex thickens to 1.7 mm., outer main

layer 0.83 mm., inner 0.7 mm. Layer vb is still rather light but the pyramids of iiic

are smaller. This cortex continues to cover both pocs and ip and the cortex immedi-

ately below the latter. On the narrow gyri both above and below ip one can see a

heavy band formed by the cells of the deeper part of iv and the outer part of v. This

is characteristic of the superior parietal lobule.

Below o the cortex cannot be read.

Section 600. Fig. 48.

Between pocs and ip the cortex measures 1.54 mm., outer main layer 0.6 mm.,

inner 0.77 mm. It is difficult to separate ivb and va which, together, form a dense

band between lighter iva and vb. This cortex covers also both walls of the gyrus.

Just below ip the cortex narrows to 1.23 mm., outer main layer 0.5 mm., inner

0.6 mm. Layer v is better filled and the dark band is not nearly as evident.

Below lal the cortex measures 1.6 mm., outer main layer 0.65 mm., inner 0.8

mm . Layer v is evenly filled with pyramids about 21 x 13 m- Those of iiic are but

little larger. Layer iv is evenly filled with uniform granules. This is generalized

eulaminate cortex.
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Fig. 48. Cross sections of Block VII.

Section 700. Fig. 48.

Above the posterior spur of the superior postcentral sulcus (pocsl) the cortex

measures 1.4 mm., outer main layer 0.54 mm., inner 0.71 mm. The pyramids of

iiic range up to 39 x 19 /u. In v are two huge pyramids, one 52 x 32 n and the other

52 x 39 ix. Layer v is otherwise relatively empty. This is parakoniocortex.
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Below pocsl the cortex is uniformly about 1.4 mm. There is a definite dark band

formed by ivb and va beneath which is a light vb. But the pyramids of iiic are not

above 26 x 16 n in size and there are no large cells in v. Outer main layer 0.58 mm.
This is eulaminate superior parietal cortex.

Just below ip the cortex measures 1.54 mm., outer main layer 0.58 mm. The dark

band is not so evident and v is better filled. Farther down, the cortex measures 1.8

mm., outer main layer 0.7 mm., inner 0.9 mm. Layer v is evenly filled by pyramids

very little larger than those of vi. The pyramids of iiic are slightly larger. The

columns are quite fine. This is generalized eulaminate cortex.

Section 800. Fig. 48.

In the fragment of cortex above pocsl can be seen a huge pyramid in v measuring

47 x 39 n.

On the gyrus below, the cortex is of eulaminate superior parietal type measuring

1.4 mm., outer main layer 0.5 mm., inner 0.75 mm.
Below ptl the cortex is irregular; below ip it is of the generalized eulaminate type

described in section 700.

Section 900. Fig. 48.

Above ptl the cortex is of superior parietal eulaminate type, measuring 1.4 mm.,

outer main layer 0.6 mm., inner 0.6 mm. The same type covers both walls of ptl.

Below ptl the cortex is irregular and cut diagonally.

Section 1000. Fig. 48.

This fragment is of superior parietal eulaminate type, measuring 1.5 mm., outer

main layer 0.65 mm.
block vin (Fig. 49)

Section 100. Fig. 50.

The cortex posterior to ts measures 1.54 mm. in thickness, outer main layer 0.77

mm., inner 0.6 mm. The boundary between i and ii is smooth. It is difficult to

distinguish ii from iiia except under higher magnification, since the pyramids of

iiia are but little larger than granules ; there are some pyramids also in ii. The pyra-

mids of iiib are slightly larger but scarcer. The pyramids of iiic are still larger,

mostly about 21 x 13 n but some as large as 26 x 16 jx. Layer v has scattered medium

pyramids. The cells of vi are distinctly smaller; a vib is hardly recognizable and the

boundary with the subcortex is relatively sharp. The columns are moderately

broad and extend up to iiia. This is eulaminate preoccipital cortex.

The cortex between ts and pjp is distinctly lighter and measures 1.7 mm. The

border between i and ii is less regular. Layer ii is more clearly demarcated from iiia

which contains sparser cells and is more like iiib. The cells of iiic are hardly ever

larger than 21 x 13 m- The pyramids of v are smaller than those of iiic. Layer via

contains more cells than v and there is a distinct vib. This is eulaminate parietal

inferior cortex. The outer main layer measures 0.77 mm., inner 0.77 mm., except

in the middle of the gyrus, where one sees the phenomenon always found in the

middle of a broad gyrus. Here the outer main layer thickens to 1.1 mm. and the

inner thins to 0.6 mm. This is the sign of an incipient sulcus.

On the crown of the gyrus anterior to pjp the cortex cannot be read but, on the

gyrus anterior to pja, the cortex is similar to that just described. Its thickness is

1.7 mm., outer main layer 0.74 mm., inner 0.8 mm. The cells of iiic and v are perhaps

slightly larger.
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On the gyrus just posterior to lal the cortex is cut diagonally but is thicker, outer

main layer 0.68 mm., inner 1.0 mm., inner granular 0.18 mm. Layer iiia contains

more and larger pyramids. The pyramids of v are larger also and vib is very thick.

Fig. 50. Cross sections of Block VIII.

Anterior to lal the cortex is very similar, measuring 1.82 mm., outer layer 0.9

mm., inner 0.77 mm., inner granular 0.15 mm. Layer iiib seems a little less empty

and via thinner.

Anterior to poci the cortex is still thicker (2.15 mm.), outer main layer 0.9 mm.,

inner 1.1 mm., the extra width being largely in via.



122 The Isocortex of Man

On the whole one has the impression that all the cortex represented in this

section is essentially similar except for the most posterior gyrus whose cortex has

some parakoniose traits.

Section 200. Fig. 50.

The cortex at the posterior extremity of the section is dense, thickness 1.62 mm.,

outer main layer 0.8 mm., inner 0.7 mm. The boundary between i and ii is smooth,

ii and iiia form a rather homogeneous band. The pyramids of iiic often measure

26 x 16 n The pyramids of v are sometimes almost as large. Layer via is better filled

and thicker than v and there is almost no vib. This is eulaminate preoccipital cortex.

Anterior to ts the cortex lightens ; there is here a more definite vib, outer main

layer 0.77 mm., inner 0.68 mm.
Anterior to pjp the cortex is cut diagonally and cannot be read.

Anterior to pja the cortex measures 1.65 mm., outer main layer 0.63 mm., inner

0.85 mm., of which v accounts for only 0.31 mm.
Just behind lal the cortex measures 2.16 mm., outer main layer 0.84 mm., inner

1.18 mm. Layer iiib is well filled with medium pyramids and v with pyramids of

about the same size. Only a few pyramids of iiic reach 26 x 16 /*• Layer vib is very

thick and v only 0.34 mm. or less. The columns are rather slender.

Anterior to lal the cortex is cut too diagonally to read, but, anterior to poci, it

measures 2.0 mm. and is indistinguishable from the cortex just back of lal, outer

main layer 0.83 mm., inner 1.1 mm. It gives the impression only of being somewhat

denser.

Again the cortex of this section is essentially similar except for that over the

posterior gyrus. The thinness of the cortex just anterior to ts seems without sig-

nificance.

Section 300. Fig. 51.

The cortex posterior to osl measures 1.55 mm., outer main layer 0.77 mm., inner

0.63 mm. It looks very much as previously described for section 200.

Anterior to is the cortex thickens to 1.7 mm. but is otherwise quite similar;

outer main layer 0.85 mm., inner 0.7 mm.; iiib and v relatively fight, almost no

vib, boundary between i and ii smooth.

The cortex just anterior to pj is cut too diagonally to read. Just posterior to la

it measures 1.95 mm., outer main layer 0.7 mm., inner 1.1 mm. Layers iiia and ii

are with difficulty distinguished from each other and v from via.

The superficial cortex anterior to la is essentially similar, outer main layer 0.85

mm., inner 1.23 mm., inner granular layer 0.15 mm. The pyramids of iiic and v do

not exceed 21 x 13 fi, the columns are rather narrow.

The cortex anterior to poci is a little denser but otherwise very much the same,

measuring 1.92 mm., outer main layer 0.77 mm., inner 1.0 mm.
Within the lateral fissure, about halfway down the posterolateral wall (the more

superficial portion is cut too diagonally to read) the cortex becomes thinner, total

thickness 1.54 mm., outer main layer 0.74 mm., inner 0.68 mm. There are numerous

very large pyramids in iiic, measuring up to 47 x 26 ju. This is supratemporal

parakoniocortex pst.

The cortex over the buried isolated gyrus contains also the very large pyramids

in iiic, total thickness 1.54 mm., outer main layer 0.9 mm., inner 0.46 mm., with a

very light v. This is also supratemporal parakoniocortex.



Serial Sections 123

Section 400. Fig. 51.

The cortex posterior to ts is of the type previously described for these gyri, total

thickness 1.54 mm., outer main layer 0.62 mm., inner 0.68 mm.

Fig. 51. Cross sections of Block VIII.

Anterior to ts the cortex thickens to 2.17 mm., outer main layer 1.05 mm., inner

0.95 mm., but ii + iiia form a dense band and v is still lighter than vi. The pyramids

of iiic range up to 26 x 21 ^ in size. A few pyramids in v are also of this size. Never-

theless it resembles more closely the generalized inferior parietal cortex.
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Posterior to la2 the cortex measures 1 .95 mm. The cells of both iiic and v are smaller

although larger than those of iiib and vi, measuring about 21 x 16 ll. Outer main
layer 0.7 mm., inner 1.1 mm. Anterior to la2 the outer main layer measures only

0.65 mm., the inner 1.23 mm. There are a few large pyramids (26 x 21 ^u) in iiic.

We shall return to this region presently.

As soon as the cortex passes into the postero-inferior wall of la, the large pyramids

increase considerably in number and reach as much as 39 x 26 ll. These large pyra-

mids continue to the depth of the fissure and over onto the buried gyrus. Over the

posterior wall of this buried gyrus (the anterior is cut too diagonally to read) the

cortex measures 2.0 mm., outer main layer 0.77 mm. Some of the large pyramids are

displaced into iv and others lie considerably above the outer margin of iv. It is

difficult to determine also the inner margin of iv since the cells of v are small and

sparse. The cells of via are larger and more numerous than those of v, which looks

empty in comparison. This cortex, which has the characteristics of the supra-

temporal parakoniocortex, extends outward over the postero-inferior lip of the

lateral fissure onto the exposed surface of the superior temporal gyrus.

Section 500. Fig. 52.

The cortex on the crowns of the two small posterior gyri cannot be read, but on

the walls of the intervening sulci it can be seen to be typically parakoniose, measur-

ng 1.15 mm., outer main layer 0.55 mm., inner 0.46 mm.
Anterior to pol the cortex measures 1.54 mm., outer main layer 0.63 mm., inner

0.77 mm. The pyramids of iiic do not exceed 26 x 18 m; the pyramids of v are gener-

ally smaller. Layers v and iiib are relatively empty and appear as light bands.

Layer vib is thicker than v. The columns are only moderately broad.

On the posterior wall of ts the cortex measures 1.7 mm., outer main layer 0.65

mm., inner 0.9 mm. The boundary between i and ii is irregular. Layer iiia is lighter

and rather easily distinguished from ii; layer iiib is relatively empty, containing

mostly small pyramids. The pyramids of iiic measure mostly 21 x 13 ll, a few

reaching 26 x 18 li. Layer v is well filled with medium pyramids and is easily dis-

tinguishable from via which is about of equal density. There are a few scattered

small cells in an indefinite vib. This is preoccipital eulaminate cortex.

Anterior to ts the cortex is cut too diagonally to read. Only in the deeper parts of

the walls of ts and pj is the cortex cut parallel to the radiations. Here the cortex

measures more than 2.15 mm., outer main layer 0.9 mm., inner granular layer 0.15

mm., inner main layer more than 1.1 mm. The pyramids of iiic are mostly of moder-

ate size but a few are as much as 24 x 18 ll. The pyramids of v are well distributed,

of moderate size, so that v can with difficulty be distinguished from via at low mag-

nification. Layer via is as broad as v. This is generalized eulaminate cortex.

The cortex just anterior to la2 is of generalized eulaminate type but, farther for-

ward, in spite of its diagonal section, numerous large pyramids in iiic are seen.

Again in the depth of la the cortex is cut parallel to the radiations at two places.

Here it measures 1.85 mm., outer main layer 0.83 mm., inner 0.77 mm. Layer iiib

is better filled with medium pyramids. In iiic are many large pyramids up to 39 x 26

p. The pyramids of v are very small, few of them more than 18 x 10 n, smaller even

than the cells of via and sparse so that v forms a band scarcely distinguishable at low

magnification from iv and via except by the sparseness of its population. This cortex

is clearly supratemporal parakoniocortex.
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Section 600. Fig. 52.

The cortex occipitad to pol is of parakoniose type.

Fig. 52. Cross sections of Block VIII.

The cortex between pol and os measures 1.45 mm., outer main layer 0.55 mm.,
inner 0.68 mm. The boundary between i and ii is smooth, ii and iiia almost in-

distinguishable, iiib empty, iiic containing many large pyramids, the cells of v

about the size of those of iiib, the columns broad all the way up to iiia. It differs

from typical parastriate cortex largely by the thickness of the inner main layer and

the filling of v.
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Anterior to os the cortex thickens to 1.85 mm., outer main layer 0.93 mm., inner

0.77 mm. There are many more small pyramids in iiib so that it no longer looks

so empty, and there are no large pyramids in iiic.

The cortex around the branches of ts is cut very irregularly. Where it can be

read it is very thick, measuring more than 2.3 mm., outer main layer 0.9 mm.,

inner difficult to measure since the borders with iv and with vib are difficult to

determine. Layer iiia and parts of iiib are well filled with small pyramids. Layer

iiic contains almost exclusively medium pyramids with occasionally one as big as

24 x 21 fi. Layer v contains mostly medium pyramids about 21 x 13 n, but there is

an occasional huge pyramid measuring 47 x 29 m-

Just anterior to ts there are very large pyramids in both iiic and v, reminding one

of parakoniocortex.

At the anterior extremity of the section, the cortex over the superior temporal

gyrus measures about 1.7 mm., it being difficult to determine the inner boundary

of via. The outer main layer measures 0.63 mm. The boundary between i and ii

is ragged. Layers ii, iiia, iiib, and iiic are clearly recognizable, iiib is fairly well

filled with small pyramids. Those of iiic are of moderate size up to 24 x 16 n. The
pyramids of v are much smaller and evenly distributed so that from Hi inward the

impression is one of considerable uniformity in which the boundaries of the layers

are blurred. This superior temporal cortex is of general eulaminate type.

At two places on the sulci which project into the supratemporal plane the cortex

can be read. On the more lateral one the cortex is parakoniocortical as previously

described with huge cells in iiic.

On the more medial one, its posterior wall, even though cut diagonally, can be

recognized as parakoniocortex because of the very large cells of iiic. On its anterior

wall the cortex narrows to 1.4 mm. The layers can, with difficulty, be distinguished.

The cells of iiic are slightly larger. Measuring from the inner margin of these cells,

the outer main layer measures 0.95 mm., inner main layer -\-iv, 0.43 mm. The cells

of v are no larger than those of iv and sparser. The cells of via are also very small

but more numerous. The cells of ii, iiia 4- b are almost the same size and uniformly

distributed. This is evidently supratemporal koniocortex.

Section 700. Fig. 53.

Posterior to os are huge pyramids in iiic.

Anterior to os the cortex measures 1.6 mm., outer main layer 0.6 mm., inner

0.86 mm. There are numerous large pyramids in iiic, up to 39 x 26 /j. Layer v has

mainly medium pyramids with an occasional large one, and is relatively empty.

It is reminiscent of parastriate cortex but clearly cannot be so diagnosed, and is

labeled Epro.

Otherwise the cortex posterior to ts cannot be read. Only in one small stretch is

it cut parallel to the radiations and even here the structure is disturbed by an

incipient sulcus.

Anterior to ts the cortex is clearly legible. It is quite thick, measuring 1.85 mm.
or more, outer main layer 0.95 mm., inner 0.7 mm. or more. There are numerous

small pyramids in iiia which is of about the same density as ii. Layer iiib has pyra-

mids only slightly larger but sparser than those of iiia. Among the cells of iiic are

numerous large pyramids, 39 x 26 ju- The pyramids of v are small, up to 21 x 16 /i
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at most, and sparse so that v looks empty. In v is an occasional larger pyramid, about

26 x 18 m- Again this reminds one of parakoniocortex.

tmpi

Vffi 800

Fig. 53. Cross sections of Block VIII.

Section 800. Fig. 53.

At the posterior extremity of the section the cortex measures 1.85+ mm., outer

main layer 0.65 mm., inner 1.05+ mm. The columns are of moderate thickness.

The cells of iiic are mostly of moderate size but some reach as much as 47 x 21 p.



128 The Isocortex of Man

The pyramids of v are nearly all small, even smaller than the cells of via and sparser

but there is occasionally a very large one, 47 x 26 n. This is not clearly parakonio-

cortex.

Just posterior to tmpl the cortex measures 1.85 mm., outer main layer 0.7 mm.,

inner 0.95 mm. The cells of iiic are smaller with few large ones. The pyramids of

v are larger than the cells of via and v is better filled. This temporo-occipital cortex

is of generalized eulaminate type.

Between tmpl and ts the cortex cannot be read.

Anterior to ts the cortex measures more than 1.85 mm., outer main layer 0.83

mm., inner 0.93+ mm., it being difficult to determine the boundary between

via and vib. Layer v is well filled with cells of practically the same size as those of

via so that at low magnification it is difficult to distinguish v from vi. The cells of

iiic are mostly of medium size with some reaching 39 x 24 y.. There are no large

pyramids in v. This is generalized eulaminate cortex.

Section 900. Fig. 54.

The cortex posterior to tmpl cannot be read.

Anterior to tmpl the cortex measures 1.85 mm., outer main layer 0.93 mm.,

inner 0.74 mm. The outer boundary of ii is irregular. Layer iiia is evenly filled with

small pyramids only slightly larger than the granules of ii. Layer iiib contains

sparse pyramids very little larger than those of iiia. The pyramids of iiic are small

or medium, not surpassing 26 x 18 /u. The pyramids of v are sparse and not above

medium size, scarcely surpassing those of via. Layer v is not readily distinguished

from via throughout this region, except by its lightness. This is generalized eulami-

nate cortex.

Section WOO. Fig. 54.

The cortex cannot be read, either behind tmp2 or on its walls.

Anterior to tmp2 the cortex measures 1.85 mm., outer main layer 0.74 mm.,

inner 0.96 mm. The boundary is irregular. Although iiia is about the same density

as ii, it is readily distinguished from it by its small pyramids. The pyramids of

iiib are slightly larger but sparser. The pyramids of iiic are of only medium size,

not surpassing 26 x 18 /j. The pyramids of v are about the size of those in iiic and

well distributed, via is slightly denser than v. Layer iv is well filled uniformly with

granules and a few small pyramids. The columns are of moderate width. The bound-

ary with the subcortex is blurred. This is eulaminate cortex of generalized type.

Section 1100. Fig. 54.

The cortex posterior to ti measures 1.85 mm., outer main layer 0.8 mm., inner

0.9 mm. It is practically identical in appearance with that described in section 1000

as eulaminate temporal. Layer v is of equal density with via, but its cells are more

pyramidal so that they are readily distinguished.

Section 1200. Fig. 54.

The cortex on the surface is cut too diagonally to read but in the posterior wall

of ts4 it measures more than 2.15 mm., and is of the type described in section 1000.

The outer main layer measures 0.86 mm., inner granular layer 0.18 mm. The bound-

ary with the subcortex is vague.

Section 1S00. Fig. 54.

The cortex anterior to ts4 is of the type just described, outer main layer 0.8 mm.,

total thickness about 2.0 mm.
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VIII 900

ts^vin izoo

fe ts4

VIII 1300

VILT 1100

ts4

Fig. 54. Cross sections of Block VIII.

block rx (Fig. 55)

Section 1000. Fig. 56.

We will begin at the posterior extremity and move forward.

Medial to ota the cortex is irregular and cannot be read.

Just lateral to ota the cortex measures 2.1 mm., outer main layer 0.85 mm.,
inner 1.05 mm. The boundary between i and ii is irregular, ii contains small pyra-
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mids as well as granules. Layer iiia is filled by very small pyramids. Layer iiib

has slightly larger pyramids, sparse and scattered irregularly. The pyramids of

iiic are still larger but do not surpass 24 x 16 fi. The granules are evenly distributed

throughout a broad iv in thick columns. Layer v is evenly filled with pyramids about

the size of those in iiic. The cells of via are slightly smaller, those of vib still smaller

and scattered. The cortex is of this generalized type throughout the remainder of

the section. There is nothing in it to remind one of the parastriate cortex. This

temporo-occipital cortex (eIo) is of generalized eulaminate type.

Section 900. Fig. 56.

The cortex medial to ota is a thin cortex (1.36 mm.). The outer main layer meas-

ures 0.68 mm., inner 0.55 mm. Layer ii + iiia measures 0.15 mm. The cells of iiib

and c are larger, slightly scattered and sparse. The pyramids of v are also scattered

Fig. 55. Position of sections of Block IX.

and sparse, about the same size as those of iiic. The cells of vi are smaller. This

cortex is eulaminate preoccipital in type (Epro).

Lateral to ota the cortex is of the type described in the preceding section 1000,

but not quite so thick (1.9 mm.).

Section 800. Fig. 56.

The cortex medial to ota is thicker (1.54 mm.) but is cut so diagonally as to be

unreadable. The same is true of all the rest of the cortex over the crowns of the gyri.

On the medial wall of oal the cortex can be seen to be eulaminate.

Section 700. Fig. 56.

The cortex medial to ota2 still cannot be read. Lateral to ota2 the cortex measures

1.7 mm. The clumps of cells distributed throughout give it a moth-eaten appearance.

This appearance seems to be due to the fact that the cortex is cut diagonally through

a region with very broad columns which extend through to iiia. Nevertheless, the

larger pyramids seem to be shifted upward into iiib so that there is a clear zone

above iv where ordinarily the larger pyramids form iiic. This cortex is very unusual.

Section 600. Fig. 56.
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Fig. 56. Cross sections of Block IX.

The cortex over the narrow gyrus medial to ota2 measures only 1.2 mm. but, on

the wall of the sulcus medial to it, it measures 1.45 mm. and is here cut parallel to

the columns which are thick like those of the parastriate cortex. But the boundary
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between i and ii is ragged, ii + iiia measures 0.31 mm. The pyramids of iiic are

not above 21 x 16 m- The boundary between iiic and iv is ragged. There is a lighter

iva and a darker ivb. Layer v is well filled with pyramids about the size of those in

iiic, and measures 0.37 mm. in thickness. Layer vi is only about half as broad. This

is eulaminate preoccipital cortex (Epro).

Between y and ti the cortex is thinner and has the moth-eaten appearance noted

in section 700.

Between the two parts of ti the cortex is cut diagonally, but can be seen to be

of general eulaminate type.

Section BOO. Fig. 56.

The cortex of the narrow gyrus medial to ota2 is thin and looks as previously

described in section 600.

Lateral to y the cortex has the moth-eaten appearance previously described and

is cut irregularly as far lateral as the inferior temporal sulcus (ti). On the medial

wall of ti the cortex is of the type described in section 1000. Over the lateral-most

gyrus the cortex is similarly constructed and measures more than 1.85 mm.
Section 400. Fig. 56.

The cortex over the fusiform gyrus measures 1.54 mm.; it is the same on both

sides of the intrafusiform sulcus (y). It has a patchy appearance. Layer iv is built

like a rail fence with iiic and v projecting alternately into it from either side. The

border between i and ii is fairly smooth. Layer ii shades gradually off into iiia

and b with medium pyramids scanty and only in iiic in patches. The cells of v are

of the same size of those in iiib and can, with difficulty, be distinguished from those

of v except at a high magnification. There is almost no vib. The columns are thick.

It is eulaminate generalized cortex, poorly constructed.

The cortex lateral to ti is of the type described in section 1000. It measures 1.85

mm., outer main layer 0.8 mm., inner 0.9 mm. The columns are of moderate thick-

ness.

Section 300. Fig. 56.

The cortex on both sides of the intrafusiform sulcus (y) is the same as that de-

scribed in section 400. In addition, one sees in places a tendency for the pyramids

of v to arrange themselves in a dense layer in the middle of v. This cortex measures

1.6 mm., outer main layer 0.84 mm., inner 0.63 mm.
The cortex lateral to the inferior temporal sulcus (ti) measures 2.0 mm. and is

of the type described in section 1000.

Section 200. Fig. 56.

The cortex over the fusiform gyrus remains as described before, but the appearance

is more regular.

The cortex lateral to ti is unchanged from the previous section.

Section 100. Fig. 56.

The cortex over the fusiform gyrus has thickened and is cut irregularly. Its inner

main layer has thickened to 0.93 mm. and its whole appearance is more regular,

resembling that lateral to ti which is cut very obliquely but seems of the type pre-

viously described, measuring 2.0 mm. or more in thickness. Perhaps the columns

are a bit broader and the whole structure looser.
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Block X

BlockX
Fig. 57. Position of sections of Block X.

BLOCK X (Fig. 57)

Section 100. Fig. 58.

The cortex over the posterior part of the section is definitely parakoniose, meas-
uring a scant 1.22 mm. in thickness, outer main layer 0.6 mm., inner main layer

0.5 mm. Between os and oa the cortex is thicker (1.7 mm.) but the cells of me are

quite large, many of them 26 x 42 n; the fifth layer is, however, better filled than
posteriorly, with medium pyramids, and contains no large cells. This is eulaminate

preoccipital cortex.
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Anterior to the anterior occipital sulcus (oa) the cortex measures only 1.6 nun.,

outer main layer 0.63 mm., inner main layer 0.82 mm. The outer margin of ii

is smooth, and ii cannot be demarcated from iiia. v is quite evenly filled with medium
pyramids. This temporo-occipital cortex is of generalized eulaminate type.

Section 200. Fig. 58.

medial

X400

Fig. 58. Cross sections of Block X.

Most of this section is cut too diagonally or tangentially to read but between

otrs and oa the cortex is the same as the corresponding cortex in section 100 and

measures full 1.85 mm. in thickness.

Section 300. Fig. 58.

This section is similar to section 100 and needs no special description. The cortex

over the narrow gyrus between otrs and oa2 resembles the parastriate type but

the pyramids of iiic are rather small and v better filled. It is eulaminate preoc-

cipital.
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Section 400. Fig. 58.

The cortex at the posterior extremity of the section is definitely of parastriate

type with very large pyramids in iiic and an occasional large cell in v. Over this

posterior gyrus it measures 1.35 mm. in thickness. Over the next gyrus anteriorly

between nl and n3 the cortex is very similar and measures 1.4 mm., but beyond

the shallow sulcus nl the cortex has changed. Here it measures 1.7 mm., the pyra-

midal cells of iiic are smaller and v is better filled. On the next small gyrus between

ot^

sdial

otri

*»* x 500

X700

stal

KSo

X800
X600

Fig. 59. Cross sections of Block X.

otrs and oa2 the cortex is much similar but over the gyrus on the angle between

the lateral and inferior surfaces of the lobe, just posterior to sulcus praeoccipitalis

(ipo), the cortex is very thick (2.0 mm.) and has the characteristics described in

the preceding section for the corresponding location.

Section 500. Fig. 59.

At the posteromedial extremity the cortex is of pronounced parastriate type,

thickness 1.35 mm. On the second gyrus beyond it, between n and oa2, the cortex

is still definitely parastriate and measures 1.45 mm. On the next gyrus it measures

1.54 mm. but is still parastriate, although the pyramids in iiic are smaller and v
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has more cells but no large spheroidal ones. Over the gyrus at the angle between

the inferior and lateral surfaces, between oa2 and ipo, however, the cortex is quite

different. It measures 2.0 mm. in thickness, outer main layer 0.7 mm., inner granular

layer 0.1 mm., inner main layer 1.2 mm. The pyramids of iiic are larger than those

of iiia and b but do not exceed 26 x 16 n; most of them are about 21 x 13 n. There

are numerous pyramids of v of approximately the same size which tend to accumu-

late in the middle of v, giving it an appearance of three sublayers of which va and

c are relatively empty. The fusiform cells of via are as large and numerous as the

pyramids of iiic and vb. This is temporo-occipital cortex of general eulaminate

type.

Section 600. Fig. 59.

At the posteromedial extremity of the cortex in this section is a small bit of

unmistakable striate cortex. It gives way abruptly to cortex of pronounced para-

koniose type measuring only 1.25 mm. in thickness. This cortex continues on the

other gyri measuring at various places when cut parallel to the columns, 1.4, 1.2,

1.45, 1.6, 1.7, 1.4 mm. At both extremities of the section the cortex is clearly of

parakoniose type. In the intermediate zone the cortex is cut rather diagonally or

frankly tangentially and cannot be surely identified.

Section 700. Fig. 59.

Most of this cortex is clearly of parakoniose type but at the anteromedial ex-

tremity beyond ota the cortex measures 2.0 mm. in thickness, the pyramidal cells

of iiic are small, the radiations are slender and v is better filled. This we have labeled

Epro. Except for this gyrus, the cortex, wherever it is cut parallel to the radiations

on the crowns, measures 1.54, 1.60, 1.70, 1.45 mm. In the sulci it measures 1.54,

1.30, 1.35, 1.60, 1.40 mm. The pyramidal cells of iiic are large, up to 42 x 26 m
and there are some large rounded cells also, 29 x 18 p, in the relatively empty v.

Section 800. Fig. 59.

Most of this section is cut too tangentially to read but in places it can be seen

that the cortex approaches parastriate type. At the posteromedial extremity it

measures 1.52 mm. in thickness, the outer main layer 0.65 mm., the inner granular

0.12 nun., and the inner main layer 0.75 mm. The inner granular layer is sharply

defined and filled by columns of granules of uniform size. There are occasional large

cells in the rather empty v. The radiations are coarse up to iiia.

block xi (Fig. 60)

Section 1000. Fig. 61.

The cortex posterior to prcs2 is of simple agranular precentral type, measuring

more than 2.45 mm. in total thickness. It contains pyramids measuring up to 39

x 21 /x. Some of these large pyramids are about where one would expect iiic and

others lie deeper.

Between prcs2 and/s the cortex is entirely similar, measuring more than 2.45 mm.
Over the gyrus between fs and fs2 the cortex is cut diagonally but can be seen

to have a faint internal granular layer about 1.0 mm. below i. It measures about

2.15 mm. in total thickness.

Anterior to fs2 the cortex has a well-developed internal granular layer. Just

anterior to this sulcus the cortex measures 1.85+ mm., outer main layer 0.77
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mm., inner granular layer 0.15 mm. The boundary between i and ii is not sharp.

There is no definite external granular layer but, just under i, there is a dense layer

of small pyramids mingled with numerous granules. This we may call ii + iiia.

Layer iiib and iiic contain more scattered larger pyramids, those of iiic being often

as large as 32 x 18 m- Layer iv is well filled with granules, plus scattered small pyra-

mids and those near v are more heavily stained. In v the pyramids reach a size

equal to those in iiic and are more numerous near iv which produces a light vb

and a tendency to a dark band formed by ivb and va. This band is, however, not

Block XI

Fig. 60. Position of sections of Block XI.

so definite as in the superior parietal lobule. The cells of vi are smaller and more

irregular than those of v. This is general eulaminate cortex (e/s).

Further forward the inner granular layer is slightly thicker and the pyramids

of iiic and v slightly smaller but the cortex still measures 2.0 mm. or more, outer

main layer 0.8 mm.
Section 900. Fig. 61.

The cortex posterior to fs is of the simple agranular precentral type described in

section 1000, except that, in the posterior wall of fs over the buried gyrus, there is

a faint discontinuous inner granular layer.
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Between fs and/sS the cortex is cut parallel to the columns in places. It measures

about 1.85+ mm., outer main layer 0.9 mm., inner granular layer thin (0.06-0.1

mm.) but continuous, v in two sublayers, va with most of the cells and vb relatively

empty, vi also in two layers with most of the cells in via, inner main layer 0.77+
mm. The inner margin of vib is vague. The largest pyramids are in trie, many of

them up to 29 x 16 ju, those of v generally slightly smaller. This is frontal dysgranular

cortex (d/).

Between fs2 and fml on the narrow gyrus the cortex differs only in the slightly

thicker iv (0.12-0.15 mm.).

Between fm and fsal the cortex measures 1.7 mm., outer main layer 0.7 mm.,

inner granular layer 0.18-0.25 mm., otherwise unchanged.

All of the cortex anterior to fs2 is of general eulaminate type (e/s).

Section SCO. Fig. 62.

The cortex behind the tip of fiS is simple agranular precentral beyond which a

faint internal granular layer begins and gradually increases in thickness until it

measures 0.1 mm. on the posterior lip and wall of fs2. Anterior to fs2, iv thickens

still more. Between fs2 and jm2 the inner granular layer measures 0.12 mm., total

thickness 1.7 mm., outer main layer 0.86 mm.
Anterior to fm2 the cortex is much the same. Between fm and fmS the total thick-

ness is 1.54 mm., outer main layer 0.6 mm., inner granular layer 0.15.

All of this cortex anterior to fs2 is of general eulaminate type but the thickness

of iv increases anteriorly.

Section 700. Fig. 62.

Behind fiS the cortex is agranular precentral, measuring 2.5+ mm. There are

occasional large cells at about the level of iiic measuring 47 x 24 m and one deeper

lying, measuring 66 x 24 ju, just back of ce2. On the anterior wall of ce£ there are

three large cells measuring 47 x 24, 47 x 31, and 45 x 24 n at about the level of

iiic and one deeper lying, measuring 53 x 26 m- On the crown between pre and fiS

there are no cells of' this caliber but, on the posterior wall of pre, there are scattered

big cells of this type. This is gigantopyramidal cortex (AGprc).

Anterior to pre the cortex measures 1.85+ mm. There is only one large cell,

47 x 34 ii on the anterior wall of fiS and another, about the same size in its anterior

Up. Both appear to be about the level of iiic. The other pyramids, both of Hi and v,

do not surpass 34 x 24 /x. This is simple agranular precentral cortex (AXprc).

Between fiS and fs2 the cortex is of the same type over the posterior half of the

crown but anteriorly thins to about 1.7 mm. and develops a feeble internal granular

layer which becomes more definite on the posterior wall of fs2. This is dysgranular

cortex (d/).

On the anterior wall of fs2 the cortex measures 1.85 mm., outer main layer 1.11

mm., inner granular layer 0.12 mm., inner main layer 0.62 mm. On the crown of

the narrow gyrus between fs2 and fm£ the cortex measures 1.54 mm., outer main

layer 0.65 mm., inner granular layer 0.15 mm., inner main layer 0.74 mm. The pyra-

mids of iiic do not exceed 26 x 15 m, those of v are generally smaller and sparse.

Between fm2 and ra2 the cortex is identical. Between ra2 and fm it is the same

except that the pyramids of iiic and v seem slightly smaller. Between fmS and fsa/+

the cortex is practically identical except that iv is slightly thicker. This is all general

eulaminate cortex (e/s).
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Section 600. Fig. 63.

Posterior to ce2 the cortex contains numerous deep lying giant cells of Betz.

The thickness of the cortex varies from 3.1-1.4 mm. at the bottom of ce2. There is

only one large pyramid on the anterior wall of ce2 measuring 58 x 31 m and none

anterior to it until one reaches the posterior wall of pre where there is a solitary pyra-

mid of about the same size.

Anterior to pre the agranular cortex continues to fiS with pyramids not exceeding

37 x 24 it.

Anterior to fiS a thin discontinuous internal granular layer appears.

Anterior to fi2 the internal granular layer is definite and continuous.

Between jm2 and ra2 the cortex is of the superior frontal type described in section

1000, total thickness 1.85+ mm., outer main layer 0.93 mm., inner granular layer

0.21 mm., inner main layer 0.7+ mm.
Between fm and fso4 the cortex thins to 1.54 mm. but is not otherwise different.

Section BOO. Fig. 63.

The cortex posterior to ce is cut too tangentially to read.

Anterior to ce it is agranular as far forward as/i'S. On the crown there is only one

Betz cell about halfway between ce and pre. Numerous Betz cells are contained in

the buried cortex under the postcentral blob but on the anterior wall of ce, there

is only one and that near the bottom. On the anterior wall of ce are also the only

two large pyramids about the level of iiic; they measure 47 x 32 /i.

Anterior to fiS a faint inner granular layer appears.

Anterior to fs2 the cortex is of general eulaminate type. Between fs2 and fm£

it measures 1.4 mm., between fm2 and ra2 as much as 2.8 mm., but is cut diagonally;

between ra2 and fm it varies from 1.2-1.85 mm.; anterior to fm it measures 1.7

mm. Throughout this zone the cortex is of the same type but the cells are smaller

and iv relatively thicker as one progresses anteriorly. The cortex is often thinner

over the crowns than on the walls of the gyri.

Section 400. Fig. 64.

The superficial cortex behind ce is covered by parakoniocortex (vpoc). It is cut

diagonally over the crown which measures 1.66 mm., outer main layer 0.74 mm.,

inner granular 0.18 mm., inner main layer 0.74 mm. There are large pyramids in

iiic and v measuring 43 x 32 /*.

The posterior wall of ce is covered by koniocortex (Kpoc) measuring 1.4 mm.
Anterior' to ce is agranular precentral cortex with Betz cells in the anterior wall,

numerous in the depth, scattered up to the anterior lip.

The simple agranular cortex extends as far forward as pre. Throughout this area

there are scattered large pyramids, up to 47 x 32 p, in both iiic and v but there is

no zone in which large pyramids are conspicuous in iiic, nor is there any point where

the cortex suddenly becomes thinner and the columns finer. The cortex measures

2.45 mm. on the crown of the gyrus.

Anterior to pre the cortex narrows to 1.6 mm. and a faint internal granular layer

is present.

Anterior to fit the cortex thins at one point to 1.4 mm. and the internal granular

layer is more distinct.

Anterior to fs2 the cortex is much the same and measures 1.54 mm.
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Anterior to fm2 the cortex varies in thickness from 1.2-1.85 mm. but is not

otherwise different.

Anterior to ra2 one sees the same variation in thickness from 1.4-2.0 mm.
Anterior to fm the cortex cannot be read.

Throughout this zone from fil forward the only change seen is that the cells

of iiic and v become somewhat smaller (39 x 26 n, posteriorly; 26 x 18 n anteriorly)

and iv thicker (0.12 mm. posteriorly; 0.18 mm. anteriorly).

Section 800. Fig. 64.

On the posterior wall of ce the boundary between koniose and parakoniose cortex

has shifted inward. In the depth of ce are numerous Betz cells which do not extend

up to the tangentially cut thickening of the anterior wall. Deep in this thickening

the cortex measures 2.3 mm. Over the crown of the precentral gyrus the cortex

measures 2.15 mm. The simple agranular cortex extends to pre. Within the agranular

zone are numerous large pyramids in iiic and v but none above 39 x 21 fi and there

is no zone in which large pyramids in iiic are conspicuous either by their size or

number.

Just behind fil the cortex narrows to 1.6 mm. and a faint internal granular layer

is seen. This is more distinct anterior to fil (where the cortex measures barely 1.54

mm.), and grows thicker as one goes forward, measuring 0.1 mm. just posterior to

fi. Between fi and ra2 the cortex measures 1.4 mm. Anterior to ra2 it measures

1.7 mm., outer main layer 0.74 mm., inner granular 0.12 mm., inner main layer

0.84 mm. The cortex here seems also more densely populated and v more evenly

filled.

Section 200. Fig. 65.

Posteriorly conditions are essentially similar to those in section 300. Both the

koniocortex and the Betz cells are entirely buried in ce and do not reach out to the

lips. There are two conspicuously large pyramids in iiic, widely separated, about

39 x 21 fi, on the crown of the precentral gyrus. The simple agranular cortex extends

as far forward as prc4- The internal granular layer develops gradually in the com-

plicated irregular cortex between prc4 and fil . On the surface between fil and fi

the internal granular layer is well developed, also in all the cortex anteriorly.

Between ra2 and fm the cortex is slightly different. Not only are the cells of

iiic and v smaller but seem more numerous. Those in v are also better distributed.

These changes give the cross section a more uniform and better populated appear-

ance. Total thickness 1.85 mm., outer main layer 0.74 mm., inner granular layer

0.18 mm., inner main layer 0.93 mm. This is perhaps the vague variant which

Economo called FDA. We have still labeled it e/s.

Section 100. Fig. 65.

The koniocortex extends out to the posterior lip of ce as in section 400. The Betz

cells fall just short of the anterior lip. The simple agranular cortex extends forward

to prc4- Over the small gyrus between prci and fH a faint internal granular layer is

visible; it developed somewhere in the depths.

Just posterior to ic the cortex measures 1.4 mm., outer main layer 0.6 mm., inner

granular 0.18 mm., inner main layer 0.62 mm. The pyramids of iiic and v do not

exceed 26 x 16 m; those of v tend to concentrate near iv. This is the typical eulaminate

cortex.
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Between ic and ral the cortex is cut diagonally but seems to be of the same type.

Anterior to ral the cortex is cut too irregularly to be read clearly but seems

consistent with the description given for section 200.

block xn (Fig. 66)

Section 1200. Fig. 67.

All of the gyrus behind and below the calcarine fissure (ca) is covered with striate

cortex measuring about 1.2 mm. in thickness; it covers also the posterior wall of

the fissure but not the anterior.

The superficial cortex anteriorly is covered by a cortex 1.85 mm. in thickness,

outer main layer 0.6 mm., inner 1.1 mm. The pyramids of iiic are only of moderate

size (21 x 16 m)- Layer v is well filled with many pyramids equal to those of iiic.

Block XII

Fig. 66. Position of sections of Block XII.

There is a lighter iva and darker ivb but not much tendency for v to subdivide. This

is certainly not parastriate cortex, nor is it definitely superior parietal. It is called

preoccipital (Epro).

Section 1100. Fig. 67.

The posterior gyrus is covered by cortex of parastriate type but quite thick

(1.7 mm.), outer main layer 0.53 mm. There are many large pyramids in iiic and

also in v which is unusually thick (0.32 mm.) and relatively empty. Anterior to

col begins striate cortex which extends about halfway down the postero-inferior

wall of ca where it gives way to parastriate cortex.

On the anterosuperior wall of the calcarine fissure the cortex is again quite

thick (1.85 mm.), outer main layer 0.64 mm., inner 1.1 mm. The margin between

i and ii is smooth, distinction between ii and iiia is impossible, the cells of iiic

are small, there is a distinct iva and ivb but iva + va form a broad band (width

0.32 mm.) followed by a relatively empty vb and a better filled iva. The columns
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are broad and the whole cortex gives one an impression of poverty. This is pre-

occipital cortex (Epro).

^N^U

XII 700

ot col col 2-—t-/a
XII 1000

XII 1100

XII 800

XII 12.00

XII 900 — ita-

Fig. 67. Cross sections of Block XII.

Section 1000. Fig. 67.

Between ot and the calcarine fissure (ca) there are three narrow gyri. The posterior

is covered by cortex of parastriate type, measuring 1.08 outer main layer 0.4 mm.,
inner 0.56 mm. There are large pyramids in iiic and v and coarse columns. The cortex

of the middle gyrus is cut obliquely but appears to be also parastriate, if one may
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judge by the large cells of iiic. In the middle of the third gyrus the cortex changes

to striate type which continues down the anterior wall around a posterior shelf

and then goes over onto parastriate cortex at its deeper lip which latter continues

into the depth.

The anterior wall of the calcarine fissure is covered by the cortex described in

section 1100, thickness 1.85 mm. Shortly after the cortex emerges onto the surface

anterior to ca it changes subtly, iiib becoming better filled, the cells of iiic still

smaller so that a cell gradient is scarcely discernible and v fills evenly with small

pyramids. This is posterior limbic eulaminate cortex (EZp).

Section 900. Fig. 67.

The cortex behind and on the posterior wall of ot is of parastriate type (thickness

1.4 mm.).

Between ot and the calcarine fissure (ca) are two gyri of which the posterior is

covered by parastriate cortex (thickness averaging about 1.1 mm.) and the anterior

with slightly thicker (1.3 mm.) parastriate cortex up to the posterior lip of ca.

The entire postero-inferior wall of the calcarine fissure (insofar as it is present

in this section) is covered by striate cortex; the anterosuperior wall is covered by

the cortex before described in section 1100 (at least in its more superficial portion

where it can be read).

On the surface, as described in the preceding section, the cortex changes gradually,

anteriorly becoming more uniform throughout, so that it is difficult to distinguish

the layers, and very thick (2.0 mm.), but the thickness may be due to the obliquity

of the section.

Section 800. Fig. 67.

The cortex in this section differs in no essential respect from that of the preceding

section in its retrocalcarine region. The striate cortex begins at the postero-inferior

lip of the calcarine fissure and extends to its depth.

The anterior wall of the calcarine fissure is covered by nondescript preoccipital

cortex in its deeper portion. In its outer portion it is covered by posterior limbic

cortex as described in section (1000). Over the surface anterior to ca the cortex

changes rather rapidly to become agranular with a dense layer of larger cells about

where v should be. This is now retrosplenial agranular cortex.

Section 700. Fig. 67.

Posterior to ca are two broad gyri, of which the posterior between ot and col

is covered with cortex of parastriate type but with a rather thick inner main layer

(0.77 nun.). The anterior gyrus is covered by thinner parastriate cortex (inner main

layer 0.56 mm.). The posterior wall of ca is covered by parastriate cortex in which

are huge cells in iiic. On the anterior wall of ca the cortex measures 1.7 mm., outer

main layer 0.56 mm., inner 1.0 mm. Layer v is well filled and the pyramids of iiic

are small. But iiib is relatively empty and there is a distinct cell gradient in Hi.

It cannot be called limbic cortex; we have labeled it Epro.

Anterior to ca are the retrosplenial formations, becoming granulous toward the

splenium.

Section 600. Fig. 67.

The posterior wall of the calcarine fissure and all the retrocalcarine surface is

covered by parastriate cortex. The cells of iiic, however, in the gyrus posterior to

col are larger than those anteriorly.
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If one begins at the splenium and goes backward the retrosplenial formations,

first koniocortex and then agranular cortex, give way on the anterior wall of ca

to nondescript cortex.

Section 500. Fig. 68.

The posterior wall of ca looks like parastriate cortex. The anterior wall is cut too

diagonally in its deeper portion to be read, but its outer portion and the cortex

anterior to it is covered by retrosplenial formations.

The superficial cortex behind ca looks somewhat like parastriate cortex but the

cells of iiic are of only medium size and v is well filled. The cortex measures 1.4

mm., outer main layer 0.53 mm., inner 0.71 mm.

XII 100

.rs

XII 400 ^a

rs

XII500

XII 300
ca

Fig. 68. Cross sections of Block XII.

On the most posterior gyrus the cortex is much thicker (1.54 mm.) with delicate

columns and a well filled v. The cells of v and vi are about the same size but can

be distinguished by shape. There is a cell gradient in Hi but the cells of iiic reach

only a medium size.

Section 400. Fig. 68.

Anterior to ca is retrosplenial formation, and on most of the anterior wall. On
the posterior wall of ca and over the surface posteriorly is a cortex of parastriate

type, very thin (0.77 mm.) with only medium sized pyramids in iiic.

The cortex posterior to col is as described in 500.

Section 300. Fig. 68.

The calcarine fissure ends. Anterior to it the cortex is retrosplenial. Posterior
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to it the cortex is thin (1.02 mm.), inner main layer 0.31 mm., outer 0.62 mm. Layer

ii is patchy and Hi is rather empty. Layer v is pale with most of its cells near iv,

which is poorly developed. Farther back the cortex is thicker (1.64 mm.) of the type

described in section 500.

Section 200. Fig. 68.

The anterior surface is covered by retrosplenial formations, the inferior by a

cortex which is thicker (1.4 mm.), outer main layer 0.58 mm. Layer ii is patchy,

Hi is lighter with scarcely any cell gradient. Layer ivb is darker and is combined

with va to form a dark band followed by a light vb. Layer via contains closely packed

cells larger and much more numerous than those of Hie forming another dark band.

Layer vib is much lighter. This is juxtallocortex (jt).

Section 100. Fig. 68.

The anterosuperior surface and the medial portion of the latero-inferior surface

almost as far as the spur of the fissura occip.-temp. (o(2) is covered by retrosplenial

formations. Lateral to the spur the cortex measures 1.6 mm., outer main layer 0.62

mm., inner 0.9 mm. The boundary between i and ii is ragged. Layer ii is patchy.

There is a cell gradient in Hi but the cells of iiic do not exceed 26 x 16 n. Layer

iiib is rather empty. Layer v is filled with pyramids about the size of those in iiic

and larger than the cells of vi.

block xm (Fig. 69)

Section 100. Fig. 70.

The cortex above the anterior spur of the transverse parietal sulcus (ptl) meas-

ures 1.6 mm. in thickness, outer main layer 0.68 mm., inner 0.77 mm., and is well

laminated. The margin between i and ii is sharp and rather smooth. Layers ii and

iiia are of about the same density but there are more pyramids in iiia and they are

slightly larger than the granules of ii. Layer iiib contains sparse pyramids of slightly

larger size. The pyramids of iiic are still larger, ranging up to 39 x 21 p. Layer iv

is clearly divided into iva with very small cells and a denser ivb containing many
small pyramids. Layer v is also divided into two sublayers of which va contains

more and larger pyramids about 24 x 13 /*, larger than the cells of via which are,

however, much more numerous. This structure makes noticeable a dark band

(ivb + va) bordered by two light streaks, characteristic of the superior parietal

lobule.

Between ptl and the intraparietal sulcus (ip) the cortex is cut diagonally but

appears to be of the same type. So are the walls of ptl. The walls of ip are also cut

diagonally.

The sulcus below ip is also cut diagonally but the cortex on the upper wall of

pja is cut parallel to the radiations. Here the cortex measures 1.64 mm., outer main

layer 0.86 mm., inner 0.62 mm. Its only difference from that previously described

above ip is that the band (ivb + va) is scarcely discernible. This band fades out

somewhere on the upper wall of ip.

The cortex on the lower wall of pja is identical. The remainder of the section

cannot be read.

Section 200. Fig. 70.

The cortex above ptl is of the eulaminate superior parietal type measuring 1.54
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mm. The outer margin of ii is rather irregular. There is a thin layer of small pyramids

just under ii and with difficulty can be separated from it so that there is a broad

clear band between it and the big pyramids of iiic which are mostly about 24 x 13 m,

but one huge pyramid is seen between iiib and iiic measuring 42 x 26 /x. The dark

band of ivb + va is definite and vb is clear, so it is labeled Eps.

Below ip the cortex is of the type previously described, measuring 1.9 mm. in

total thickness, outer main layer 1.0 mm., inner 0.77 mm. v is evenly filled with

medium pyramids.

Block XIII
Fig. 69. Position of sections of Block XIII.

Below pja the cortex cannot be read.

Section S00. Fig. 70.

The cortex above ip cannot be read.

The cortex on the crown of the gyrus between ip and j is of the generalized

eulaminate type but thinner than in the preceding section 200, measuring only 1.67

mm., outer main layer 0.77 mm., inner 0.74 mm.
On the gyrus below j the cortex is of the same type, total thickness 1.54 mm.,

outer main layer 0.65 mm., inner 0.74 mm. Layer v is evenly filled by small and
medium pyramids. Those of iiic are larger, up to 26 x 16 fi.
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Fig. 70. Cross sections of Block XIII.

Section 400. Fig. 70.

Above ip the cortex is cut somewhat diagonally but the dark band characteristic

of eulaminate superior parietal cortex can be seen. It measures 1.6 mm. in thickness.
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Below ip the cortex does not differ from that of the preceding section 300, averaging

about 1.54 mm. in thickness.

Section 500. Fig. 70.

Above ip the cortex measures 1.6 mm. and is of the eulaminate superior parietal

type previously described.

Below ip the superficial cortex can be read only at the inferior extremity of the

section. Here it measures 1.85 mm., outer main layer 0.86 mm., inner 0.86 mm.
Layer v is evenly filled with small and medium pyramids. The pyramids of iiic

range larger, up to 34 x 21 /u.

The cortex on the inferior wall of ip is identical.

Section 600. Fig. 70.

Inferior

XIII 1000
Fig. 71. Cross sections of Block XIII.

\ XIII 800

Above ip the cortex measures 1.85 mm., outer main layer 0.77 mm., inner 0.93

mm. The band formed by ivb + va is very evident.

The cortex below ip measures 1.7 mm., outer main layer 0.71 mm., inner 0.83

mm. It is impossible to discover any difference from the cortex above ip except

that the pyramids of v are a little smaller and better distributed.

Section 700. Fig. 71.

The cortex above ip measures about 1.5 mm., outer main layer 0.55 mm., inner

0.69 mm. The dark band of ivb 4- va is evident and vb is light.

On the crown of the g3
rrus below ip the cortex is cut too diagonally to read but

on the upper wall of pjp, the cortex lacks the dark band.

Section 800. Fig. 71.

Conditions in this section are unchanged from 700. Above ip the cortex measures

1.5 mm. and is of eulaminate superior parietal type. Below ip the cortex measures
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1.6 mm. and lacks the dark band of the superior region. Outer main layer 0.68

mm., inner 0.77 mm.
Section 900. Fig. 71.

Block XIV
Fiq. 72. Position of sections of Block XIV.

cnOO

The cortex below ip measures 1.74 mm., outer main layer 0.83 mm., inner 0.77

mm. It is of the generalized eulaminate type already described.

Section 1000. Fig. 71.

The cortex is cut too diagonally to read.

block xrv (Fig. 72)

We shall begin at the back and proceed forward.

Section 700. Fig. 73.
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XIV 500
XIV 600

XIV700

cc

Inferior
Fig. 73. Cross sections of Block XIV.

The cortex on the dorsal surface and extending on the medial surface to d measures

1.85+ mm. The largest pyramids, about 39 x 18 m, lie about 0.8 mm. from the inner

margin of i. Beneath i there are almost no granules. Beneath the layer of largest

pyramids are a few scattered granules, but we have labeled it Axprc.

The cortex between d and e is identical ; between e and ci are a few more granules

(D/).[
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The cortex over the limbic gyrus is agranular anterior limbic (xjla). That within

the cingulate sulcus (ci) is cut too irregularly to read.

Section 600. Fig. 73.

The cortex on the dorsal and on the medial surface above ci is much the same.

However, the thin internal granular layer is now distinct enough to justify labeling

it d/.

On the dorsal wall of ci the cortex changes. Here the cells just beneath i are not

so closely packed together and there is no deep layer of large pyramids so that the

cross section has a more uniform appearance. There is also a thin, but definite and

continuous internal granular layer. This cortex measures about 2.5 mm., outer main

layer 0.93 mm.
The cortex on the lower wall of ci and over the surface of the limbic gyrus is

agranular anterior limbic in type. It measures about 1.54 mm.
Section 500. Fig. 73.

In this section the cortex on the dorsal surface has a thin continuous internal

granular layer. It measures about 1.85 mm., outer main layer 0.86 mm., inner granu-

lar layer 0.09 mm. The pyramids of v are larger than the cells of vi, more heavily

stained and about the same size as those of iiic which measure around 32 x 21 yu.

There is a denser zone just under i in which granules are mingled with small pyra-

mids.

The remainder of the cortex above ci is much the same. Just above ci it measures

about 2.15 mm. but is cut somewhat diagonally.

On the upper wall of ci the cortex resembles that described in section 600, and

measures about 2.15 mm.
Over the crown of the limbic gyrus the cortex is anterior limbic agranular in

type but in the lower wall of ci, there is a lighter layer of very small cells above the

dense v.

Section JfiO. Fig. 74.

The cortex over the dorsal surface is of the same type as described in section

500, measuring about 1.85 mm. This type of cortex continues over the medial sur-

face measuring, between the two branches of d, 1.7 mm., between d and ci, 1.85-2.0

mm.
In the lower wall of ci there are scattered larger pyramids up to 32 x 21 fi in iiic;

the cells of v are larger and tend to concentrate just below iv. This is juxtallocortex

3fl.

The cortex over the crown of the limbic gyrus does not differ from that described

in section 500.

Section 800. Fig. 74.

The cortex of this section does not vary from that of section 400 except that the

cortex described in the lower wall of ci now extends also over the dorsal half of the

crown of the limbic gyrus, the agranular anterior limbic type occupying only the

lower half. This tendency had begun already in section 400 but is here much clearer.

Section 200. Fig. 74.

In this section the cortex lateral to fs can be seen clearly. It has a thick internal

granular layer. This cortex measures about 1.85 mm., outer main layer 0.93 mm.,

inner granular layer 0.15 mm., inner main layer 0.77+ mm. The largest cells,
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32 x 21 ix, are in va and there is a lighter, relatively empty vb. The cells of vi are

smaller and more evenly distributed. Just beneath i are many granules mingled with

XIV £00

XIV 100

XIV 400

\

Fig. 74. Cross sections of Block XIV.

small pyramids. The pyramids of Hi increase in size toward iv and those of iiic

reach about 29 x 13 n. This is generalized eulaminate cortex (e/s).

The remainder of the cortex on the dorsal and medial surface above ci is of the
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type previously described with the inner granular slightly thicker. Its total thick-

ness varies on the surface from 1.54-1.85 mm.
Below ci the anterior limbic agranular cortex is confined to the lower half of the

limbic gyrus below the shallow sulcus U2 and above it is the juxtallocortical variant

previously described.

Section 100. Fig. 74.

The cortex lateral to fs is of the type described in section 200.

The cortex on the remainder of the dorsal and medial surface above ci is much

the same, but the inner granular layer is thinner and the cells of iiic and v slightly

larger. There are also fewer granules just under i.

The surface over the lower wall of ci and the upper half of the crown of the limbic

gyrus is covered by cortex measuring about 1.85 mm., outer main layer 0.93 mm.,

inner granular layer 0.12 mm., inner main layer 0.8+ mm. The cells of v are about

the size of those in iiic but crowded up against iv so as to leave a lighter emptier

vb. The cells of vi are smaller and more evenly distributed. There is a tendency in

iv to a lighter iva and a denser ivb which reminds one of the superior parietal lobule

but is less clear because of the thinness of iv.

The lower part of the crown of the limbic gyrus is covered by agranular anterior

limbic cortex.

block xv (Fig. 75)

Section 100. Fig. 76.

The supratemporal plane is missing from sections 100 and 200.

The cortex medial to ts is cut too diagonally to read but, in the superior wall of

ts, it is cut parallel to the columns. Here it measures 1.64 mm., outer main layer 0.74

mm., inner 0.74 mm. Layer ii is clearly demarcated from iiia. The pyramids of

iiib are only slightly larger and scarcer. Those of iiic do not surpass 21 x 13 /x.

The pyramids of v are about as large as those of iiib and only slightly larger than

the cells of via. Layer v is as well filled as via. Columns of moderate width extend

up to iiib. The cortex on the inferior wall of ts is of identical width and appearance.

This cortex is of general eulaminate type.

On the crown between ts and tpl the cortex is cut very diagonally. It measures

1.64 mm. On the superior wall of tpl it is of equal width and looks identical to that

in the superior temporal sulcus.

On the crown between tpl and r the cortex is cut diagonally but measures only

1.7 mm. and looks no different.

Below r the cortex measures 1.8 mm., outer main layer 0.93 mm., inner 0.7 mm.

The cells of iiib and c are sparser than usual and the columns coarser than above.

The size of the cells is about the same.

Just lateral to rh the cells of ii become heavier and form a dark band. In the

lateral wall of rh these cells begin to form clumps, a tendency which increases as

one goes deeper in the sulcus. The internal granular layer thins and the cells of v

become heavier. This is temporal juxtallocortex {st).

On the medial wall of the sulcus the internal granular layer disappears and al-

locortex begins.

Section 200. Fig. 76.
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Block XV

stta

BlockX

Block XV
Fig. 75. Position of sections of Block XV. Heavy dots—covered by frontal operculum.

Parallel lines—covered by island. Light dots—transected white substance. Superomedial sur-

face as though seen through the lobe.
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Medial and above ts the cortex measures 1.7 mm. and is of the type described in

section 100. This cortex continues to the depth of tpl.

izrior

XV ZOO

IU12

XV 400

Fig. 76. Cross sections of Block XV.

On the crown of the gyrus below tpl the cortex is cut very diagonally but on its

upper and lower walls it can be seen that the columns are very broad and the cells,

particularly of Hi, are sparse. The cortex below the small accessory sulcus (r) is

similar, measuring 1.6+ mm. in total thickness, outer main layer 0.65 mm.,

inner granular layer 0.18 mm., inner main layer 0.8+ mm. Layer ii is easily sepa-
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rated from iiia although the pyramids of iiia are scarcely larger than the granules

of ii. The cells of iiib and c are sparse and those of iiic do not exceed 21 x 13 n.

Layer v is well filled with pyramids about the size of the cells of via. These two layers

are about of the same thickness. The inner border of vib is indefinite. This cortex

continues to the lip of rh where the alteration begins which was noted in section 100.

Section 300. Fig. 76.

On the supratemporal plane which here appears for the first time, the cortex

measures only 1.5 mm., outer main layer 0.86 mm., inner granular layer 0.17 mm.,
inner main layer 0.46 mm. The cells of the outer main layer are scattered in patches

with scarcely any cell gradient. It is difficult to distinguish v from vi at low magni-
fication.

The cortex above ts is of the type previously described, total thickness 1.7 mm.,
outer main layer 0.68 mm., inner granular layer 0.18 mm. The outer boundary of

ii is ragged. Layer iiia is distinguishable from ii although its pyramids are scarcely

larger than the granules of ii. The pyramids of iiib are slightly larger and sparser.

Those of iiic are more numerous and slightly larger still, but do not surpass 21

x 13 ix. Layer v is evenly filled with pyramids the size of those of iiib. Layer via

is evenly filled by irregular and fusiform cells but slightly smaller than those of v.

The boundary of vib against the subcortex is vague.

Between ts and tpl the cortex is slightly looser and its columns wider. It measures

about 1.7 mm. on the crown below ts, outer main layer 0.68 mm., inner 0.83 mm.
Below tpl the cortex measures 1.54 mm., outer main layer 0.68 mm., inner 0.74

mm. Throughout there is a great poverty of cells but the layers are as readily dis-

tinguished as over the superior temporal convolution. The cells of iiic and v do

not surpass 21 x 13 li. The columns are very coarse. This is the eulaminate inferior

temporal variant (see p. 72, Plate VI).

Between ot and rh the cortex is again different. The transformation occurs grad-

ually on the inferior wall of ot. On the crown the cortex measures 1.85 mm., outer

main layer 0.9 mm., inner 0.8 mm. The cells of ii tend to be grouped in clumps and
are larger and denser than granules. The cells of iiic are fatter, up to 26 x 21 ii.

The cells of v have the same fat appearance, are of about the same size and more
numerous. Those of vi are distinctly smaller. These characteristics are accentuated

on the lateral wall of rh. On the medial wall of rh the internal granules disappear

and the uncinate type appears.

Section 400. Fig. 76.

The cortex on the inner part of the supratemporal plane is of the type described

for section 300. Total thickness 1.54 mm., outer main layer 0.8 mm., inner 0.62

mm. Layer iv is thin and inconspicuous because of the smallness of the cells

throughout. The cells of v and vi are very numerous, especially of v, so that these

layers make a dense band.

The cortex over the outer half of the supratemporal plane, continuing over the

crown of the superior temporal gyrus and the dorsal wall of the superior temporal

sulcus is of the type previously described in this region. Total thickness 1.85 mm.,
outer main layer 0.77 mm., inner 0.93 mm. The pyramids of iiib and c are sparse,

those of iiic being the largest in the section but not surpassing 21 x 13 ll. The cells

of v and vi are more numerous than those of iiib -\- c.

On the lower wall of ts the cell population is perhaps somewhat sparser. On the
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crown of the middle temporal gyrus the cortex cannot be read. The cortex between

the two branches of tm is practically identical with that above ts, total thickness

1.7 mm., outer main layer 0.68 mm., inner 0.86 mm.
Between tm2 and ot the cortex has a sparser cell population and the columns

are coarser. Total thickness 1.64 mm., outer main layer 0.68 mm., inner 0.8 mm.
Below and medial to ot the cortex undergoes the transformation described in

section 300.

On the medial wall of rh the cortex becomes definitely allocortex.

Section 500. Fig. 77.

On the inner portion of the supratemporal plane the cortex is of the type de-

scribed in section 300. Total thickness 1.54 mm., outer main layer 0.77 mm., inner

0.65 mm., outer main layer patchy, inner denser, especially v.

On the outer part of the supratemporal plane and continuing over the crown and

undersurface of the superior temporal gyrus, the cortex is as previously described,

total thickness 1.85 mm., outer main layer 0.77 mm., inner 0.93 mm.
Below ts the total thickness is 1.85 mm., outer main layer 0.9 mm., inner 0.8

mm. The general appearance is practically identical with that above the sulcus.

Below tma the cortex measures 1.54 mm., outer main layer 0.83 mm., inner

0.55 mm. The cell population is sparse, the columns broad as before described.

Below and medial to ot is juxtallocortex as previously described, total thickness

1.85 mm., outer main layer 0.93 mm., inner 0.77 mm.
On the lateral wall of rh the cells of iiic and v become larger and the internal

granular layer thinner to disappear at the depth of the sulcus.

Section 600. Fig. 77.

The entire supratemporal plane is covered by the thin patchy cortex previously

described on the inner portion. It varies from 1.3-1.5 mm. in thickness. The outer

main layer is consistently thicker than the inner; total thickness 1.4 mm., outer

main layer 0.7 mm., inner 0.58 mm. The cells of the outer main layer are arranged

in patches, those of iiic scarcely larger than those of the other layers. The pyramids

of v are numerous, about 21 x 13 /*. The cells of vi are distinctly smaller.

Over the crowns of the two small superior gyri the cortex is of general eulaminate

type; total thickness 1.54 mm., outer main layer 0.55 mm., inner 0.80 mm.
Over the crown of the second temporal gyrus, between ts and tma, the cortex

measures 1.54 mm., outer main layer 0.63 mm., inner 0.77 mm. Its appearance is

quite similar to that above ts.

Below tma the cortex measures also 1.54 mm., outer main layer 0.65 mm., inner

0.74 mm. The cell population is much sparser and the columns coarser.

Between otl ard ot the cortex cannot be read.

Between ot and rh the cortex measures 1.7 mm., outer main layer 0.83 mm.,

inner 0.74 mm. Layer v is broad and densely populated with pyramids as large as

those of iiic which do not surpass 26 x 16 p. This is juxtallocortex.

The internal granular layer is absent on the lateral wall of rh. The medial wall

and the cortex remaining is allocortex.

Section 700. Fig. 77.

On the medial part of the supratemporal plane is the same patchy cortex pre-
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tffia

tma tma

XV 800 ot
v

Fig. 77. Cross sections of Block XV.

viously described. Total thickness 1.4 mm., outer main layer 0.7 mm., inner 0.53

mm.
On the lateral half the cells begin to be larger in iiic and v + vi thickens until, on

the crown above tsl, the cortex measures 1.54 mm., outer main layer 0.56 mm.,
inner 0.83 mm.



164 The Isocortex of Man

On the upper wall of tsl the cortex again thins to 1.1 mm., outer main layer

0.53 mm., inner 0.43 mm.
On the crown between tsl and stta the cortex again measures 1.54 mm., outer

main layer 0.53 mm., inner 0.86 mm.
On the crown between stta and ts the measurements are the same.

On the upper wall of ts the cortex thins to 1.2 mm., outer main layer 0.6 mm.,
inner 0.5 mm. In all this stretch from the medial margin to ts the variations in this

cortex seem to us haphazard.

Between ts and tma the cortex is cut parallel to the columns. It measures 1.95

mm., outer main layer 1.05 mm., inner 0.71 mm. Layers iiib and c are rather evenly

populated with pyramids of which those in iiic reach 24 x 18 fi. Layer v contains

pyramids of about the same size, more densely congregated, often in va so that an

irregular light band appears in vb.

The cortex between tma and otl is irregular but, above and below, it measures

1.6 mm., outer main layer 0.74 mm., inner 0.71 mm. The cell population is sparser

and the columns broader.

The cortex between otl and ot is cut diagonally and cannot be read. On the

inferior wall of otl the cortex measures 1.85 mm., outer main layer 0.8 mm., inner

0.9 mm. The pyramids of iiic do not exceed 21 x 13 /i. Those of v are smaller and

evenly distributed ; they are no larger than the cells of vi

.

Over the medial wall of ot one sees the patchy ii and heavier v which signifies

juxtallocortex.

The internal granular layer continues almost to the inferior lip of ot where al-

locortex begins.

Section 800. Fig. 77.

On the medial part of the supratemporal plane the cortex has the patchy ap-

pearance previously described but measures about 1.54 mm. in total thickness,

outer main layer 1.0 mm., inner 0.4 mm.
In the middle of the supratemporal plane is an eminence where the cortex thick-

ens to 1.85+ mm., the margin between vi and the subcortex being very vague.

It is difficult to distinguish the layers in this region because all the cells are very

small, those of iiic being largest, about 18 x 10 n- Fine columns reach all the way up

to iiia. Outer main layer 0.77 mm., internal granular layer 0.25 mm. This is supra-

temporal koniocortex (Kst).

Lateral to this patch the cortex thins again to 1.4 mm., outer main layer 0.57

mm., inner 0.68 mm., internal granular layer 0.15 mm. The cells of iiic are larger,

up to 24 x 13 fi. Layer v is relatively empty and contains scattered large pyramids

26 x 18 ii. This is supratemporal parakoniocortex (vst).

On the crown of the two narrow gyri above ts the cortex is of generalized eulami-

nate type. Total thickness 1.54 mm., outer main layer 0.65 mm., inner 0.75 mm.
on the upper gyrus; total thickness 1.62 mm., outer main layer 0.83 mm., inner 0.65

mm. on the lower.

The cortex between ts and tma measures 1.7 mm., outer main layer varies from

0.65-0.85 mm. and vice versa. Layer v is evenly filled with pyramids about the

size of those in iiic.

The cortex between tma and otl is irregular. The total thickness varies from 1.4-
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1.7 mm. In general the outer main layer is thicker. The cell population is sparse

and the columns thick.

Below and medial to otl the cortex is cut too diagonally to read. On the lateral

wall of ot the cortex measures 1.6 mm., outer main layer 0.86 mm., inner 0.58 mm.
The pyramids of iiib and c are slightly larger than those of iiia and sparser. The
pyramids of v are about the same size as those of iiic and evenly distributed.

On the medial wall of ot the cells of ii are bunched and larger; those of v more

numerous. The internal granular layer disappears before the lower lip is reached to

give place to allocortex.

Section 900. Fig. 78.

Now there are two eminences on the supratemporal plane covered by koniocortex

with a narrow stretch between containing big pyramids in iiic measuring 29 x 21 /*.

Lateral to the lateral eminence is a stretch of the same cortex measuring 1.6 mm.
with big pyramids in iiic. Over the crown above stta the cortex is cut too diagonally

to read. It thins again to 1.54 mm. in the superior wall of stta; there is good lamina-

tion and the pyramids of iiic are small. The lower wall of stta is quite similar,

very thick (2.0+ mm.), outer main layer 0.86 mm., inner 1.0+ mm. Near the lip

are nests of very large pyramids in iiic, up to 39 x 21 n, as is so frequently seen near

sulcal lips.

The cortex on the crown between stta and ts measures 1.7 mm., outer main layer

0.8 mm., inner 0.74 mm. The largest pyramids are in iiic but not above 26 x 18 n.

The cells of v are smaller, about the same size as those of vi and evenly distributed.

Between ts and tma the cortex measures 2.0 mm., outer main layer 1.0 mm.,

inner 0.8 mm. The cells of iiic are not above 21 x 13 p.

Between tma and otl the cortex measures 1.85 mm., outer main layer 0.68 mm.,

inner 1.0 mm. The cells of iiic reach 26 x 18 /n and those of v are also larger. Layer

v is evenly filled.

The cortex immediately below otl is cut too diagonally to read but just above

ot the cortex measures 1.54 mm., outer main layer 0.77 mm., inner 0.62 mm. The

cell population is less and the columns coarser.

In the deeper part of the lateral wall of ot the cortex measures 1.85 mm., outer

main layer 1.0 mm., inner 0.71 mm. Layer Hi has two sublayers, an outer with very

small pyramids and an inner with slightly larger ones. Layer v is well filled with

pyramids often larger than those of iiic, mainly in the deeper part of v.

On the medial wall of ot the cortex measures 1.54 mm., outer main layer 0.8

mm., inner 0.62 mm. The cells of ii are bunched and larger, those of v larger, more

numerous and making a dense band of v.

Just before reaching the lip the inner granular layer disappears and the cortex

goes over into allocortex.

Section 1000. Fig. 78.

The irregular patchy cortex now occupies only a short stretch near the medial

border of the supratemporal plane. The cortex then thickens to 2.0 mm. and the

cells become of almost uniform small size throughout but the layers are recognizable,

outer main layer 1.05 mm., inner 0.74 mm., inner granular layer 0.21 mm. This is

koniocortex. Lateral to this there is another less evident eminence, but mostly, the

remainder of the supratemporal plane is covered by cortex measuring 1.6 mm. or
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thinner, outer main layer about 0.8 mm., inner 0.65 mm. The cells of iiic range up
to 26 x 18 ix. The cells of v are much smaller and sparse. Layer vi is better filled.

This all looks more like parakoniocortex and continues on over the small gyrus and

-ma

g-tt-a.

tma3

XV 1000

Fig. 78. Cross sections of Block XV.

down the superior wall of slta. Near the depth of this sulcus the large pyramids in

iiic reach 36 x 26 n. Such large pyramids are found scattered also on the lower wall

and over the upper part of the crown between stta and ts.

Below ts the cortex measures 2.0 mm., outer main layer 1.0 mm., inner 0.83 mm.
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The pyramids of iiic do not surpass 26 x 16 m- Those of v are smaller and well dis-

tributed. This is generalized eulaminate cortex.

Below tma4 the cortex is irregular and difficult to read. Only just below tma4

is the cell population sparse and the columns coarse. Farther down on either side

of the beginning of ti the cortex measures 2.15 mm. The radiations are very fine.

The inner granular layer is thin (0.1 mm.), outer main layer 0.77 mm. The pyramids

of iiic reach 26 x 16 ix. Those of v are of equal size. Layer v is very thick (0.68 mm.)

and its cells are more numerous in its outer half.

Below ti the cortex is equally thick; outer main layer 1.0 mm., inner 1.05 mm.
Otherwise it is constructed much as above ti. This cortex continues down the lateral

wall of ot to the depth where it becomes juxtallocortex.

The cortex medial to ot is all allocortex.

Section 1100. Fig. 78.

On the supratemporal plane there is only one eminence laterally with thick

(2.0 mm.) cortex and nearly uniform cellular composition (Kst). Except for a short

irregular stretch near the medial border, the plane is covered by cortex measuring

about 1.45 mm., outer main layer 0.77 mm., inner 0.53 mm. Layer iiic contains

large pyramids, up to 34 x 24 ju. Layer v contains mostly very small pyramids with

a rare large one measuring about 32 x 21 y.. The cell population of v is also less than

of vi. This cortex continues over the crown between stta and ts where the thickness

increases to 2.0 mm., outer main layer 0.93 mm., inner 0.93 mm. The cells of iiic

are more uniformly about 26 x 21 n, those of v slightly smaller. Layer v is better

filled. This cortex continues on the upper wall of ts, measuring here 1.85 mm. in

total thickness, outer main layer 0.93 mm., inner 0.77 mm. The lower wall of ts

is cut too irregularly to read.

On the crown below ts the cortex averages about 1.85 mm., outer main layer 0.9

mm., inner 0.8 mm. The cells of iiic are smaller.

On the buried gyrus above tma4 the cortex measures 1.85 mm., outer main layer

0.68 mm., inner 1.08 mm. The cells of iiic are larger, those of iiib and v also. Layer

v is very thick (0.68 mm.) and well filled.

Below ti the cortex measures 1.85 mm. and resembles that just described; outer

main layer 0.77 mm., inner 1.0 mm. It is difficult to distinguish v from vi.

On the medial half of the fusiform gyrus, between y and ot, the cortex is thinner

(1.54 mm.) but cut too diagonally to read. On the lateral wall of ot it measures 1.7

mm., outer main layer 0.77 mm., inner 0.77 mm.
On the medial wall of ot the cortex is thinner (1.1-1.2 mm.), outer main layer

nearly twice as thick as the inner. Juxtallocortex begins about its middle and goes

over into allocortex at the medial lip.

block xvi (Fig. 79)

Section 100. Fig. 80.

Most of this section is cut too diagonally to read except on both sides of the tem-

poropolar sulcus (tpS). Here the cortex measures 1.54 mm., outer main layer 0.62

mm., inner 0.86 mm. The inner granular layer is thin and inconstant. The cells of

ii are large and tend to concentrate in clumps. Layer v is thick and densely filled

with cells larger than those of iiic. This is juxtallocortex.
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Section 200. Fig. 80.

The cortex on the walls of rh is of the type just described in section 100. That on

the walls of tp3 also. The cortex on the crowns is cut very diagonally but seems to be

Block XVI

Block XVI

Fig. 79. Position of sections of Block XVI. Superomedial surface as though seen

through the lobe.

of the same type. The cortex on the medial surface is agranular allocortex of un-

cinate type.

Section 300. Fig. 80.

The cortex posterior to tp3 is cut too diagonally to read.

The cortex on both walls of tpS is of the type described in section 100.

The cortex on the crown anterior to tp3 measures 1.7 mm., outer main layer 0.68

mm., inner 0.93 mm. Layer ii is distinct from iiia and is patchy. Hi contains mostly



Serial Sections

Medial

XVI 400

XVI 700

Fig. 80. Cross sections of Block XVI.

very small pyramids. Layers iiib and c contain scanty pyramids about 21 x 13 ft.

Layer iv is thin. Layers v and vi are about equally filled with cells about the size of

those in iiib + c but much more numerous. It is difficult to distinguish v from via
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at low magnification. The inner border of vib is vague. This is dysgranular temporo-

polar cortex (fitp).

Medial to tp4 the cortex measures 1.85 mm., outer main layer 0.86 mm., inner

0.93 mm. The inner granular layer is very thin. There is a very dense layer of cells

in vb.

On the medial surface the inner granular layer disappears and the cortex becomes

agranular allocortex.

Section 400. Fig. 80.

The cortex posterior to tp3 measures 1.9 mm., outer main layer 0.86 mm., inner

0.96 mm. Layer ii is difficult to distinguish from iiia at low magnification. The

pyramids of iiib are slightly larger and sparser. Those of iiic are still larger but do

not surpass 21 x 13 /u. Layer iv is thin. Layers v and via are evenly filled with cells

about the size of those in iiib but more numerous.

The cortex on the lateral wall of tp3 measures 1.85 mm., outer main layer 0.93

mm., inner 0.8 mm. It is very difficult to distinguish ii from iiia. The cells of iiia

are only slightly larger than the granules of iv. The pyramids of iiib are larger and

sparser. Those of iiic are slightly larger but do not exceed 21 x 13 /x. The cells of

v and via are about the size of those of iiib but more numerous and evenly dis-

tributed.

The cortex anterior to tp4 measures 1.85 mm., outer main layer 0.86 mm., inner

granular layer 0.12 mm. Layer v measures 0.55 mm. and contains closely-packed

cells as large as those of iiic in its deeper half, which forms a dark band.

Shortly after the cortex passes onto the medial surface the inner granular layer

disappears and agranular allocortex begins.

Section 500. Fig. 1 0.

The cortex posterior to tp measures 1.62 mm., outer main layer 0.9 mm., inner

0.65 mm. Layer ii is irregular and patchy. The cells of iiib + c are sparse with a

slight cell gradient. The pyramids of iiic do not surpass 24 x 16 /x. Layer iv is thin

(0.12 mm.) and divided into columns. Layer v is less dense than via.

The cortex anterior to tp is thicker, measuring more than 2.0 mm., outer main

layer 0.8 mm., inner granular thin and irregularly developed, varying from 0.03-0.1

mm. in thickness, inner main layer consisting of a light va with small pyramids

followed by a broader denser vb with medium pyramids, then a varying via with

slightly smaller cells not clearly separated from v. The margin of vib with the sub-

cortex is vague. This is the temporopolar dysgranular formation.

Shortly after rounding the tip onto the medial surface, the inner granular layer

disappears and allocortex begins.

Section 600. Fig. 80.

The cortex just posterior to tp measures 1.6 mm. and resembles that described

above tp in section 500, outer main layer 0.59 mm., inner 0.93 mm.
Anterior to tp the conditions are as described in section 500.

Section 700. Fig. 80.

The cortex posterior to tp is cut so tangentially that it cannot be read.

Anterior to tp the cortex is as described in section 500.

Section 800. Fig. 80.

The cortex posterior to tp2 cannot be read.
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Anterior to tp2 the cortex is of the polar type described in section 500, very

thick, measuring more than 2.3 mm., outer main layer 0.93 mm., inner granular

layer very scanty and irregular, with fine radiations clearly visible through vi, v,

and iv.

On the medial surface the cortex thins to 1.54 mm., or less, and has an internal

granular layer throughout. Layer ii is bunchy and v is thick and dense. This is

juxtallocortex.

Section 900. Fig. 80.

Between ts and tp2 the cortex measures 1.85 mm., outer main layer 0.7 mm.,

inner granular 0.12 mm. and regular, inner main layer 1.0 mm. The cortex here is

of general eulaminate type.

Anterior to tp2 the cortex measures also 1.85 mm., outer main layer 0.93 mm.,

inner granular layer 0.15 mm., inner main layer 0.77 mm. There is here a tendency

for v to have a dense inner sublayer.

Section 1000. Fig. 80.

The cortex on the lateral surface of the tip is cut diagonally but seems of the dys-

granular polar type with a slight and irregular iv.

On the medial surface the cortex measures 1.7 mm., outer main layer 1.02 mm.,

inner 0.53 mm. The inner granular layer is regular and well formed (0.15 mm.). It

is difficult to distinguish v and via. The cells of iiia are very small and often cannot

be distinguished from those of ii even with high magnification. There are very few

granules in either layer.

Section 1100. Fig. 80.

The cortex on the medial surface is of the type just described. The remainder

cannot be read.

Section 1200. Fig. 80.

This section is too tangential to read, and therefore not sketched.

block xvn (Fig. 81)

Section 100. Fig. 82.

The cortex is cut too tangentially to read until the lip of the sulcus ret is reached.

Here it measures 1.54 mm., outer main layer 0.65 mm., inner 0.75 mm. The cortex

has medium columns. The pyramids of iiic do not surpass 24 x 16 /*• Those of v,

which is well filled, are about the same size. This is general eulaminate cortex.

The cortex in the lower wall of ret, although cut diagonally, seems to be of the

same type. On the infraparietal plane the cortex can be read at a couple of spots

and seems essentially identical.

Section 200. Fig. 82.

The cortex above ret measures 1.4 mm., outer main layer 0.5 mm., inner 0.74

mm. The pyramids of iiic reach 32 x 21 n. Layer v is rather empty but contains some

large cells as big as those in iiic. This looks like postcentral parakoniocortex.

Below ret the cortex is cut too irregularly to read until just above scp. Here the

cortex measures 1.85+ mm., outer main layer 0.74 mm., inner granular layer 0.15

mm. Layer ii is clearly differentiated from iiia. iiib is relatively empty. Layer iiic

contains mostly small pyramids which do not exceed 21 x 13 fi. Layer v is uniformly
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filled with pyramids about the same size. The boundary of vi against the subcortex

is blurred. This is general eulaminate cortex (Epz).

At two points on the opercular surface, where the cortex can be read, it seems

to be of the same type.

Section 800. Fig. 82.

Block XVII

Block XVII

Fig. 81. Position of sections of Block XVII. Dotted-
heavy dots—limit covered by temporal lobe.

-transected white substance. Row of

The upper margin of the section passes through the central sulcus ce, on the

postero-inferior wall of which can be seen koniocortex. Anterosuperior to ce the

cortex is cut tangentially but seems to be agranular.

The cortex between ce and ret is of the postcentral type described already in sec-

tion 200. The pyramids of iiic reach even larger dimensions. Total thickness 1.2

mm., outer main layer 0.6 mm., inner 0.46 mm.
Below ret the cortex measures 1.54 mm., outer main layer 0.68 mm., inner 0.71

mm. The pyramids of iiic are quite small and almost disappear as the Up is ap-

proached.
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Near the medial margin of the infraparietal plane the cortex is again cut parallel

to the columns. Here it measures 1.54 mm. iiic, iv, and v zigzag like a rail fence

but the outer main layer is relatively thin, about 0.5 mm. on an average. The most

striking characteristic of this region is the numerous large pyramids in iiic measur-

ing about 39 x 26 m. This looks like parakoniocortex (see section 500).

Section 400. Fig. 82.

)uperior

XVII 100 XVII zoo

ce

ret

ce.

ret

XVII 300 XVii 400

Fig. 82. Cross sections of Block XVII.

This section is essentially similar to section 300.

Anterior to ce the cortex measures at least 2.15 mm. There is no internal granular

layer. In the deeper regions of the cortex are numerous very large cells reaching

66 x 39 m- This is precentral agranular cortex with Betz cells. Broad columns can

be clearly seen in the layers above the Betz cells.

After a narrow transitional zone in the depth, the posterior wall of ce is covered

by koniocortex measuring about 1.1 mm., almost to the lip of the postcentral gyrus.

The crown of the postcentral gyrus is covered by parakoniocortex previously
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ce

XVII 600

Superior

ce.

XVII 800

--]

cz 4

XVII 900 XVII 1000

sea
Fig. 83. Cross sections of Block XVII.

described, measuring 1.4 mm., outer main layer 0.62 mm., inner 0.62 mm., v rela-

tively empty. Many big pyramids in iiic.

Below ret the cortex is of general eulaminate type varying in thickness from 1.54-

1.85 mm.
Near the medial margin of the opercular surface can be seen the formation before

described with the zigzag layers and big pyramids in iiic (ppop).
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Section 500. Fig. 83.

Essentially similar to section 400, except that on the opercular surface near the

medial margin is an area which is relatively uniform throughout the cross section.

The cortex measures 1.54 mm. The pyramids of iiic and v are scarcely larger than

granules. Layers iiib + c and v can be recognized by their lightness and iv is very

thick (0.28 mm.). This cortex is obviously differentiated toward koniocortex (Kpop).

Section 600. Fig. 83.

The cortex anterior to ce is cut very tangentially but contains Betz cells reaching

58 x 34 ix.

There is now only a small patch of koniocortex on the operculated depth of the

central sulcus. On both sides it is surrounded by cortex with large pyramids in both

iiic and v. This cortex covers the postero-inferior wall of ce and extends a short dis-

tance over the surface.

The remainder of the external surface is covered by general eulaminate cortex

measuring 1.54 mm., outer main layer 0.74 mm., inner 0.68 mm. The pyramids of

iiic and v rarely exceed 24 x 16 m- This cortex rounds the lip to the opercular surface,

most of which is cut too tangentially to read.

Section 700. Fig. 83.

Anterior and above ce is agranular cortex measuring more than 2.5 mm. but con-

taining no Betz cells until the operculated depth of the sulcus is reached.

There is a very small patch of koniocortex on the floor, which is covered other-

wise by parakoniocortex. This cortex extends out on the lip and there changes

subtly.

The cortex of the lip measures 1.4 mm., outer main layer 0.5 mm., inner 0.77

mm. The pyramids of iiic and v are smaller but yet larger than is customary in gen-

eral eulaminate cortex. Layer v is better filled than in typical parakoniocortex and

the inner main layer is relatively thicker.

On the undersurface of the operculum the cortex thickens to 1.85 mm. and has

the characteristic structure of the inferior parietal region, except near the medial

border where it measures 1.7 mm. and has the irregular construction and big cells

in iiic before mentioned.

Section 800. Fig. 83.

The cortex above the inferior extremity of the precentral sulcus (prci) cannot be

read. Over the gyrus between prci and ce4 the cortex is agranular with Betz cells

only near the depth of ce4- The cortex on the inferior wall of ce4 is cut very diago-

nally but can be seen to contain an internal granular layer. It is not koniocortex

but appears to be of postcentral type (ppoc).

On the lip of the operculum the structure of the cortex is of general eulaminate

type (tvop), but on the superior wall of the lateral fissure the cells of v become larger

and more numerous, forming a conspicuous dark band in va. This is a juxtallocor-

tical characteristic (jop).

Internal to sea the cortex is again of general eulaminate type (Epop).

Section 900. Fig. 83.

The cortex above ce4 is agranular without Betz cells.

Below eel), the cortex over the external surface measures 2.0 mm. It has only a

very thin and inconstant inner granular layer until it rounds the lip when the inner
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granular layer becomes continuous but thin (0.09 mm.). The pyramids of iiic and

v are also smaller. The superficial cortex might be essentially precentral agranular

but does not extend below the lip.

The cortex on the superior wall of the lateral fissure is cut too diagonally to read.

Section 1000. Fig. 83.

Block XVIII
Fig. 84. Position of sections of Block XVIII. Dotted—transected white substance. Row of

heavy dots—limit covered by temporal lobe.

This is all essentially agranular cortex without Betz cells, measuring 2.0 mm.
Below the lip an inner granular layer is present.

block xviii (Fig. 84)

Section 100. Fig. 85.

The cortex posterior to prci is simple agranular precentral cortex without Betz

cells. In the posterior wall of prci it varies from 1.85-2.8 mm. in total thickness.

It contains no pyramids larger than 45 x 26 fi. On the anterior wall of prci the cor-

tex is thinner, 1.2-1.85 mm. Again there a*e no pyramids larger than 42 x 26 fi.
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Lateral

XVIII 100
Medial

XVIII 100

Medial
XVIII 500

XVIII 300

XVIII 600

Fig. 85. Cross sections of Block XVIII.

On the posterior wall oifi4 the cortex measures about 1.85 mm., the pyramids

of iiic range up to 47 x 24 /*, and one sees only a few scattered granules at the level

of. the internal granular layer.

On the anterior wall of/z'4 the cortex measures about 1.7 mm., outer main layer

0.93 mm., inner granular 0.09 mm., inner main layer 0.68 mm. ii + iiia form a
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dense band measuring about 0.3 mm. There are only a few granules in ii. The larg-

est pyramids are just above iv measuring about 37 x 21 ju. The pyramids of v are

grouped in patches. Layer via is filled with smaller cells about the size of those in

iiib. Layer vib has much fewer cells and an indefinite inner boundary. This is the

inferior frontal variant of the eulaminate cortex.

The cortex over the surface anterior to/z'4 measures 1.7 mm., outer main layer

0.87 mm., inner granular 0.15 mm., inner main layer 0.68 mm. The pyramids of

iiic do not surpass 37 x 21 y.. It looks much like the anterior wall offH except for

the thicker internal granular layer.

On the posterior wall of ic there are larger pyramids in iiic measuring 47 x 32 n.

On the opercular surface the cortex measures 1.7 mm., outer main layer 0.77

mm., inner granular 0.09 mm., inner main layer 0.84 mm. The margin between

i and ii is sharp. There is a definite ii with many granules, very little cell gradient

in Hi with a few slightly larger pyramids in iiic, a very dense va and a relatively

empty vb. This is juxtallocortex (j/op).

Section 200. Fig. 85.

The cortex on the posterior wall of prci is agranular precentral cortex without

Betz cells and no large pyramids. On the anterior wall of prci the cortex is the same

except that a thin irregular internal granular layer begins near the crown of the

narrow gyrus.

On the posterior wall offH the cortex has a thin but continuous internal granular

layer. On the anterior wall of}H this is slightly thicker. Over the crown between

fi4 and laa the cortex measures 1.54 mm. and looks much the same, except that the

internal granular thickens to 0.15 mm. This continues unchanged down the poste-

rior wall of laa up the anterior wall and across the crown to ic. Throughout this ex-

tent iiic contains numerous pyramids measuring 39 x 24 ju. Since the cells of v are

much smaller this iiic is very conspicuous in the section. This is the inferior frontal

variant of the eulaminate cortex.

On the walls of ic the pyramids of iiic, although no larger, are more conspicuous

because of the generally smaller size of the other cells of Hi and v.

On the opercular surface the cortex is as described in section 100 but, as one passes

posteriorly, the heavy va becomes more evident and the cells of iiic smaller.

Section 800. Fig. 85.

The cortex behind prci is agranular precentral without Betz cells, measuring 2.15

mm.
Over the anterior wall of prci the cortex measures not more than 1.85 mm. It

contains a faint internal granular layer.

On the crown of the gyrus between prci and laa the cortex measures more than

2.0 mm. It not only contains a thin internal granular layer but numerous large

pyramidal cells in all layers from iiia to via. The cell in via measures 47 x 32 ft.

There are numerous cells of equal size in all the layers, being most numerous in Hi.

The cortex anterior to laa does not differ from the preceding section 200.

The cortex on the opercular surface is identical with that described in section 200.

Section 400. Fig. 85.

The cortex behind prci has now a thin internal granular layer (0.09 mm.) and

beneath it the cells of v are heaped in a dense band of small heavily stained cells.



Serial Sections 179

On the operculated bottom of the sulcus there is almost no iv and the large cells of

v are where one would expect iv. This appearance continues to the anterior wall of

prci where the iv is very scanty and discontinuous. On the crown of the gyrus just

behind laa there are numerous large pyramids in iiic, a few in v and one large one

in via and a distinct iv.

On the posterior wall of laa there is a thin internal granular layer. Just outside

it is a row of large pyramids measuring about 39 x 26 y,. The other pyramids of Hi

are much smaller, as are those of v which are crowded up towards iv.

On the anterior wall of laa the cortex is much the same, although the pyramids

of iiic do not form so definite a line, and the internal granular layer is thicker (0.12

mm.).

Anterior to laa the cortex measures 1.85 mm. and is of general eulaminate type,

outer main layer 0.74 mm., inner granular 0.15 mm., inner main layer 0.96 mm.
The pyramids of iiic do not exceed 24 x 13 n.

The opercular cortex is of the type previously described. The heavy va grows

less conspicuous as one passes outward over the posterior wall of laa and the pyra-

mids of iiic larger.

Section 500. Fig. 85.

The cortex posterior to prci measures about 1 .85 mm. It contains the same dense

band in v noted in section 400. This band continues anterior to -prci, down the poste-

rior wall of laa and across the opercular surface, everywhere lying just beneath a

faint internal granular layer. Anterior to laa the cortex cannot be read. The cortex

on the opercular surface differs only in a lesser cell gradient in Hi, a more distinct

ii with more granules and a sharper margin between i and ii as previously described.

This entire section seems to be on the margin between the juxtallocortex of the

opercular surface and the dysgranular cortex of the lateral surface.

Section 600. Fig. 85.

The cortex cannot be read.

block xix (Fig. 86)

Section 100. Fig. 87.

Anterior to orp the cortex is of general eulaminate type, total thickness 1.7 mm.,

outer main layer 0.82 mm., inner granular layer 0.18 mm., inner main layer 0.7 mm.
Just posterior to ora the cortex is of the same type but measures only 1.54 mm.

The cortex is then cut too diagonally to read until one reaches the plica falciformis

(p/), where it measures 1.85 mm., outer main layer 0.62 mm., inner granular 0.09

mm., inner main layer 1.14 mm. There is an irregular outer boundary between i

and ii. There is a definite outer granular layer ii which contains also some small

pyramids. The cells of Hi are rather evenly distributed but the size varies in patches

;

in places there is a gradient, at others the larger pyramids extend out to ii, none,

however, exceeds 26 x 16 fi. Layer iv is thin and irregular. The pyramids of v reach

about the same size as those of vi and are thickest nearer iv. vi is very thick. This

is dysgranular cortex.

On the opercular surface the cortex has a thin granular layer below, which be-

comes almost imperceptible above, but this cortex is cut too diagonally to read

clearly.
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Section 200. Fig. 87.

The cortex anterior to orp is now cut too diagonally to read. Between orp and

ora it measures about 1.54 mm., where cut parallel to the columns, and can be

seen to be of general eulaminate type. In the depths of ora there are numero s

large pyramids in iiic which reach as much as 39 x 26 /i.

As one passes backward from ora the internal granular layer decreases in thickness

gradually.

sOt Marcjo anterior insulae

Block XIX

Fig. 86. Position of sections of Block XIX. Lines—transected white matter. Dotted—area

covered by temporal lobe. Row of crosses—margin of island.

Above the plica falciformis, on the opercular surface, the cortex measures 1.85

mm. and is of the dysgranular type described in section 100. Cortex of this type

covers the entire opercular surface.

Section 300. Fig. 87.

The cortex anterior to orl is cut too diagonally to read except just anterior to

orl where it measures 1.7 mm. and is of general eulaminate type. Again in the depths

of orl can be seen the big pyramids of iiic measuring up to 39 x 26 /*. This cortex

is of inferior frontal type.

Posterior to orl the internal granular layer thins and the cells of v are larger and

more numerous. This type of cortex is continuous over the opercular surface.
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XIX 100

"

p XIX zoo

XIX 300
Fig. 87. Cross sections of Block XIX.

Section 400. Fig. 88.

The cortex anterior to orl is still cut too tangentially to read. In the depth of the

posterior ramus of orl are the large pyramids in iiic before mentioned.

Posterior to orl the cortex is thin, measuring less than 1.54 mm. and is cut diago-

nally. One can see, however, that iv is thin and va heavy.
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XIX 400

XIX 500

XIX 700

Fig. 88. Cross sections of Block XIX.

On the opercular surface the cortex measures about 1.7 mm. and is of the dys-

granular type described in section 100, except above the deep sulcus lah where

there are numerous large pyramids in iiic up to 42 x 26 /j, and those of v are much
smaller and sparser. Layer iv is also thicker and evenly filled with granules.
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Section 500. Fig. 88.

Near the anterior margin of the section the cortex at one short stretch is cut

parallel to the columns. It measures 1.85 mm. and is of general eulaminate type.

Just anterior to orl it is somewhat irregular but definitely of the same type. In the

depth of orl one sees again the big pyramids in iiic. There are none in v but occa-

sionally one is dislocated into iv.

Posterior to orl on the orbital surface the cortex is too irregular to read.

On the opercular surface the cortex is of the dysgranular type already described

up to the deep sulcus lah. In its depth are large pyramids in iiic but, above, the

pyramids of iiic do not exceed 21 x 13 ll and the cortex is of general eulaminate type.

Section 600. Fig. 88.

Anterior to /ma the cortex measures 1.7 mm. and is of general eulaminate type.

Anterior to ral it is cut diagonally but measures 1.85 mm. and seems to be of the

same type. Between ral and orl the cortex looks much the same except that the

inner granular layer is a little thinner. In the depth of orl the cells of iiic are dis-

tinctly larger, ranging up to 39 x 26 ju.

Block XX
Fig. 89. Position of cross section of Block XX.

Over the opercular lip the cells of iiic are not above 24 x 16 m but in the depth

and upper wall of lah the large pyramids of iiic again become numerous. This cor-

tex is of inferior frontal type.

Section 700. Fig. 88.

This section is covered entirely by eulaminate frontal cortex which varies only in

the size of the cells of iiic. On the anterior surface they are small, not exceeding

24 x 16 n. Over all the rest of the cortex the cells of iiic are much larger, ranging

up to 42 x 26 ix.

Section 800. Fig. 88.

In the one short stretch where the cortex can be read it is of frontal inferior type

with well developed inner granular layer and large pyramids in iiic.

block xx (Fig. 89)

Section 100. This section is not figured.

Over the limen insulae (li) is allocortex (A) with no trace of lamination.

Posterior to the limen is a narrow bit of cortex with a very poor lamination, no

definite iv and bunchy ii which might be called juxtallocortex.

Section 200. Fig. 90.

Anteriorly there is some sketchy indication of lamination but the cortex is cut

very diagonally for the most part.
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Above there is a thin stretch of nondescript cortex which has no lamination and

the cells under the plexiform layer are collected in large bunches.

Behind this thin stretch begins a cortex well laminated with definite inner and

outer granular layers, measuring about 1.85 mm. in total thickness, outer main

Fig. 90. Cross sections of Block XX:

layer 0.93 mm., inner granular 0.15 mm., inner main layer 0.77 mm. The outee

granular layer is distinct from Hi, which has a definite cell gradient although the

largest pyramids in iiic do not exceed 24 x 16 At. The pyramids of v are about th-

same size as those of iiic. Layer iv is well filled with granules ; there is a slight tend

ency for those in the deeper sublayer to be more deeply stained.
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Section 800. Fig. 90.

Anteriorly the cortex is cut most diagonally but where it can be read, it has an

irregular it, a thin inner granular layer and very little cell gradient in Hi. It is of

juxtallocortical type. There is a tendency for the cells of v to accumulate just be-

low the scanty iv.

There is a narrow thin stretch of nondescript isocortex behind cins followed pos-

teriorly by the eulaminate cortex previously described in section 200.

Section 400. Fig. 90.

The juxtallocortex extends from the anterior extremity posteriorly to the pos-

terior lip of the sulcus centralis insulae (cins) before giving way to the eulaminate

cortex previously described.

Section 500. Fig. 90.

Juxtallocortex anterior to cins, eulaminate cortex posteriorly.

Section 600. Fig. 90.

Same as before, except that the eulaminate cortex now extends anterior to cins.

The anterior cortex contains throughout the thin iv and heavy va before described.

Section. 700. Fig. 90.

Only the posterior short gyrus is covered by eulaminate cortex.

Section 800. Fig. 90.

There is no good eulaminate cortex anywhere on this section. On the anterior

wall the cortex is thicker, has a thicker internal granular layer and the cells of v

are better distributed.

Section 900.

Cannot be read, and so is not figured.

block xxi (Fig. 91)

Section 100. Fig. 92.

Anterior to the intraparietal sulcus (ip) the cortex measures 1.8 mm. It is cut

slightly diagonally to the columns but it can be seen to be of the superior parietal

type. The outer main layer measures 0.8 mm., the inner main layer about the same,

the iv layer is about 0.15 mm. and one can distinguish a lighter iva from a darker

ivb which merges with va. Layer vb contains fewer and smaller cells. The pyramids

of va are about the same size as those of iiic which do not surpass 26 x 16 p.

The angular gyrus between ip and pol is cut too tangentially to read but in the

depth of the lateral parieto-occipital fissure (pol), the cortex is reminiscent of the

parastriate type on the anterior wall. The cortex measures here 1 .43 mm., outer main

layer 0.8 mm., inner 0.46 mm. ii cannot be separated from iiia, the pyramids of

iiic are larger (up to 37 x 24 y), iv is quite distinct and uniform, v is relatively empty,

vi is thin and sharply bounded against the subcortex, the columns are broad and

extend through iiib.

There is a buried gyrus which is cut tangentially but seems to be covered by simi-

lar cortex.

The cortex over the two narrow gyri posterior to pol also resembles the para-

koniose type. It measures 1.3 mm. over the anterior and 1.24 o\er the posterior

gyrus. Both contain very large pyramids in iiic, up to 34 x 21 y. but scattered in

patchy fashion.
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Section 200. Fig. 92.

The cortex anterior to po is of superior parietal type measuring 1.64 mm . The
cortex over the next gyrus posteriorly measures 1.85 mm., being cut diagonally to

the columns but resembles superior parietal cortex, outer main layer 0.68 mm.,

inner 1.0 mm.; the dark band made by ivb 4- va is, however, not very evident, and

the pyramids of iiic are large. On the anterior lip of -poll the cells of iiic are very

large, many of them measuring as much as 58 x 31 /x; some in v are 39 x 13 /j.

Block XXI

Fig. 91. Position of sections of Block XXI.

Posterior to poll the cortex thins to 1.49 mm., outer main layer 0.83 mm., inner

0.55 mm. The boundary between ii and i is smoother than it is anterior to po, the

cells of iiic are larger, the columns broader, v emptier, vi thinner and more sharply

separated from the subcortex.

All of the cortex behind poll is of parakoniose type. The transition occurs on the

anterior lip through a zone of thicker cortex with huge cells in iiic and v.

Section 800. Fig. 92.

Anterior to po the cortex, measuring 1.85 mm., is very unusual. The cells of iv,

v, and vi are almost of a uniformly small size so that the layers must be distinguished

largely by their density, va and via being recognizable in this way because they are

more dense than vb and vib. Even the pyramids of iiic are unusually small and slen-
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der, scarcely reaching 31 x 13 /*. The lamination is quite evident in spite of the gen-

erally small size of the cells.

Posterior to po the cortex thins greatly to 1.08 mm., the transition occurring in

the depth of po. Here the cortex has an outer main layer of 0.46 mm., inner 0.49

mm., the columns broad, the pyramids of iiic larger (up to 34 x 31 n). The only

character reminiscent of the parietal cortex is the faintly evident band of ivb + va

XXI 100

Vent

XXI .300

rai

XXI zoo XXI 400
d11

XXI 500

Fig. 92. Cross sections of Block XXI.

The cortex over the posterior gyri measures about 1.5 mm., outer main layer 0.62

mm., inner 0.71 mm. The pyramids of iiic are smaller, as a rule, the columns are

thinner and v is better filled. There are occasional larger pyramids. The cortex here

is of eulaminate occipital type.

Section 400. Fig. 92.

The cortex over the posterior gyrus is of eulaminate occipital type, measuring

1.4 mm. in thickness.

The cortex of the narrow gyrus is less typical; it measures 1.54 mm., outer main
layer 0.53 mm. It is difficult to draw a boundary between vi and v which is well
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filled with very small pyramids, much smaller than those of iiic. Even the boundary

between iv and v is not clear.

The remainder of the cortex in the posterior wall of po is similar to that just de-

scribed but in the depth the cells of iiic become again very large as previously de-

scribed for section 200 in the anterior lip of poll.

The cortex in the anterior wall of po measures 1.54 mm. also, but differs from that

of the posterior wall in the definite heavy band made by ivb and va. The cortex here

is of superior parietal type.

Section 500. Fig. 92.

The cortex anterior to po is cut too tangentially to read.

In the posterior wall of po it measures 1.3 mm., outer main layer 0.58 mm., inner

0.56 mm. The pyramids of iiic are mostly small with a few of medium size. Layer

v is rather well filled.

Over the top of the broad gyrus the cortex is similarly constructed but measures

1.54 mm. It does not become definitely occipital in type until one reaches the pos-

terior small fragment of gyrus. Here the cortex measures only 1.3 mm., outer main

layer 0.56 mm., inner 0.58 mm. Layer v is relatively empty, the cells of iiic large

and vi rather abruptly bounded from the subcortex.

Section 600.

The cortex is cut too tangentially to read, and so is not reproduced.

The frontispiece and figures 95 and 96 have been drawn on the basis of data

contained in this chapter.



Chapter VI: The Brain Map

Unless the criteria are clearly stated and objectively verifiable . . . architectonic charts

of the cortex represent little more than the whim of the individual student.

Lashley and Clark (1946)

After long and careful study of the human isocortex the main impression we have

retained is that vast areas are so closely similar in structure as to make any attempt

at subdivision unprofitable, if not impossible. We have, in the frontispiece, sum-

marized the main facts of cortical differentiation in such a manner as to show not

only the extent of certain structural peculiarities but also their nature. In this

map each color represents a definite feature. Blue is used for the allocortex and red

represents granules in the isocortex. Usually at the boundary between isocortex

and allocortex we find juxtallocortical transitions which are represented in purple—

a

mixture of red and blue. Granulose areas, called by Economo koniocortices, are deep

red and the eulaminate isocortex, which contains fewer granules, is pink. The

agranular cortex is yellow and the dysgranular becomes orange, since it contains a

tenuous inner granular layer. The anterior limbic area, which is agranular but has

allocortical traits, becomes green. Areas containing large pyramids in iiic add black

to the pink of the eulaminate cortex and become brown. Since the gigantopyramidal

area of the precentral agranular cortex contains also large pyramids in iiic, it

becomes grayish. Minute variations in the eulaminate isocortex are ignored; not

only are they so tenuous as to defy recognition but any significance that they might

have is totally unknown.

The drawing of sharp areal boundaries, on the basis of many structural peculiari-

ties of varying distinctiveness and significance, is the fundamental defect of most

maps and has been carried to absurd lengths by the Vogt school. Another defect

of all published black-and-white maps, which attempt to combine the delineation

of many structural features, is the failure to represent transitional areas. The result

is that such maps as those of Campbell (our Fig. 2), Brodmann (our Fig. 93), and

Economo (our Fig. 94) give a false impression of sharpness of areal boundaries and

fail to distinguish subdivisions, based on important and distinct differences, from

tenuous and inconstant variations.

Areas recognized early by Meynert, Betz, and others as having distinctive struc-

ture had proven also to be related to different functions. Brodmann (1914) lists

them as: (1) regio praecentralis, (2) regio postcentralis, (3) area striata, (4) regio

supratemporalis, (5) regio hippocampica, (6) regio insularis, (7) regio infrafrontalis,

and (8) regio retrosplenialis. He called them the physiologically most important

(wichligste) areas, although it is evident that he did not know what function the

insular and retrosplenial regions might subserve. But that must have left students

of cytoarchitectonics, operating (as pointed out in the Introduction) on the hy-

pothesis that the cortex is a mosaic of discrete organs, distressed at the vast unsub-

divided territories in the frontal, temporal, parietal, and occipital regions.

Hence they attempted to isolate, in the remaining cortex, areas of distinctive

structure which might also prove to be organs of special function. Unfortunately

189
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Fig. 93. Map of the cytoarchitectonic areas of the human cerebral cortex (from Brodmann).
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Fig. 94. Map of the cytoarchitectonic areas of the human cerebral cortex (from Economo).

the remainder of the cortex was of such uniform structure that the results, as

Brodmann says (1905), were somewhat gratuitous (etwas willkurlich) . Unfortunately

the purely tentative results of Brodmann (for the human brain he never published
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his data so that it is impossible to check them) have been accepted by physiologists

as of divine authority and a vast superstructure has been built on this shaky founda-

tion which is now being extended to the human brain by the neurosurgeons.

We shall now attempt to describe the distribution of the isocortex and its struc-

tural variations as they were defined in chapters IV and V.

The larger portion of the cerebral cortex has the typical eulaminate structure (/e)

to be seen in Plate II. This cortex covers vast areas of the frontal, parietal, and

temporal regions, proportionately a larger area of the cortex than in either the

monkey or chimpanzee. We told (p. 62) how we made photographs from divers

parts of this vast expanse, pasted them onto cards, and then shuffled them like

playing cards. It is true that, if any two photographs are placed side by side,

differences can be described between them but these differences are rarely greater

than those to be found on different parts of the same gyrus. Only when we were

able to teach ourselves to recognize differences, without knowing the provenience

of any section, have we taken such distinctions seriously. The following pages will

give examples showing how previous authors have struggled with tenuous differ-

ences. Let us begin with the frontal lobe.

We have never been able to find any account of the data on which Brodmann
(1907) established his subdivisions and only brief descriptions of areas 1,3, 4, 6, 17,

and 18 (Brodmann, 1914). We may note, therefore, the general resemblance of

his map to that of Economo and confine our attention to the latter's account.

Economo distinguishes many areas denoted by the capital letter F followed by
other alphabetic signs as follows: FA, FB, etc., up to FM. He designates areas of

intermediate structure thus: FBA, FC(B), FDC, FHL, etc. Further subareas are

denoted by adding small letters thus: FDm, FCBm, FAop, or capital Greek letters

as in FDT or FDA.
All authors agree that, within the frontal lobe of classical anatomy, two regions

can be distinguished: an agranular precentral and a granular frontal or, as some

authors prefer to say, "prefrontal" region. These two regions differ not only in their

intrinsic structure but also in their afferent connections (see Chap. VIII, especially

Fig. 115) and can therefore be considered as belonging to two different "sectors."

The precentral region was divided by Economo into three or four areas. Begin-

ning at the central sulcus these were FAy, FA, FA{B), and FB. Bonin (1949)

followed him and, adopting Brodmann's numerical system, called these areas

4y, 4a , 4s , and 6. In area 4s Bonin described particularly large pyramidal cells in

layer Hi. He identified this area with the suppressor area of Hines (1936) and of

Dusser de Barenne and McCulloch (1941). Economo and Koskinas (1925) had

previously published a map (their Fig. 74, p. 131) showing a band of large cells in

Hi at the anterior margin of their FA . This we cannot find in brain HI and it seems

unlikely that such a conspicuous band could have been missed by Betz, Campbell,

Brodmann, Ngowyang, and Kononova.

The criteria used for distinguishing the two major areas FB and FA (not FAy)
are:1 (Economo, 1929a, p. 34) "FB shows, as compared with FA, (1) a general

1 All quotations from Economo are from the English translation by Dr. S. Parker
(Economo, 1929a) unless otherwise noted but, after comparison with the original German
text," we have sometimes changed the wording of Parker's translation.
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narrowing of the cortex, (2) a finer more regularly radiate arrangement, and (3) an

abrupt [sic:] thickening of layer III." One may object that the layers are not distinct

so that measurement of their thickness is dubious and that it is not clear whether

what Economo calls 77/ (II) and III (IV) are included; if they are, then on his

figures 11 and 13 the thickness of 77/ is identical. His own figures show neither this

thickening of III nor the general thinning of the cortex as a whole; if both are true,

777 should be comparatively much thicker in FB. All these criteria should make a

conspicuous boundary which we cannot find in brain HI.

We see no reason, therefore, to distinguish an FA free of Betz cells from the rest

of the simple frontal agranular cortex (FB) . We are left, therefore, for the moment
with an area containing Betz cells and a simple agranular area in front of it. The
former is our isocortex agranularis gigantopyramidalis

—

L\Gprc— (see Chap. IV,

p. 73, Plate VIII), the latter our isocortex agranularis simplex

—

lAxprc—(see

Chap. IV, p. 72, Plate VII).

If, now, we attempt to define the boundaries of the isocortex agranularis giganto-

pyramidalis praecentralis (lAGprc, Plate VIII), we become aware that there is no
generally accepted definition of a Betz cell. The largest cells in layer v of the pre-

central cortex are situated on the medial surface of the hemisphere and they de-

crease in size as one passes over onto the superior and down the lateral surface of

the hemisphere until, near the inferior extremity of the central sulcus, one finds cells

which, although larger than their neighbors, would scarcely qualify if situated in the

paracentral lobule. Again, if one depends on the fact that these cells are con-

spicuously larger than their neighbors, then one finds such cells in layer v of the

postcentral, occipital, and inferior frontal regions. These last were described also by
Betz (1881). Economo (1929a, p. 62) attributes their discovery to Herv6, but the

latter merely refers to Betz in a footnote; there is nothing in his thesis to indicate

that he himself had ever seen them. We must restrict the term Betz cells to con-

spicuously large pyramids in layer v of the precentral agranular cortex. As such

their area of distribution is broadest on the medial surface of the hemisphere and

rapidly narrows as one passes over the lateral surface until, in the region which

can be shown by electrical stimulation to serve the arm, it does not cover the entire

precentral gyrus and, in the "face" area, it is entirely hidden on the anterior wall

of the central sulcus.

Since, by definition, the anterior margin of the gigantopyramidal area is marked
by the most anterior Betz cells, one must conclude that this margin is very irregular

since isolated, conspicuously large, pyramids are often found far forward of the

others; there is no neat anterior boundary. One can establish this boundary only for

the particular section which is being examined. But any accurate boundary drawn
on the map of the brain would be very irregular and, if one is to judge from the maps
of Brodmann (1903a), Economo (1929a), Campbell (1905), and others, would

vary for each individual brain. There is, however, general agreement that the area

is broadest on the medial aspect of the hemisphere and gradually recedes into the

central sulcus as one passes lateral and inferior (Fig. 95).

Within the gigantopyramidal area one finds conspicuously large pyramids also

in iiic. In the map given by Economo and Koskinas (their Figs. 74 and 75), these

cells are represented only in the posterior zone of what in their figures 92 and 93
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is labeled FB but, in the text, they state that such cells are more numerous in the

anterior parts of FA. Economo (1929a, p. 29) mentions these cells only in his

description of FA . In brain HI we have found them throughout the gigantopyramidal

area. Their anterior extent differs little from that of the Betz cells. Where there are

no Betz cells they are more conspicuous but they are equally distributed throughout

the gigantopyramidal area (Fig. 96). The map of Economo and Koskinas, therefore,

gives a false impression of the distribution of these cells and one, moreover, in

contradiction with their own description. From what has just been said about the

large pyramidal cells in iiic, it should be clear that an "area 4s" can no more be

recognized.

Medially the gigantopyramidal area extends almost to the cingulate sulcus.

Large pyramids are found within layer v in the walls of the posterior portion of the

cingulate sulcus but always accompanied by an internal granular layer. The pos-

terior margin of the area corresponds closely with the depth of the central sulcus,

throughout most of its course. At the mediosuperior extremity the boundary leaves

the sulcus and runs anterior to it; at the latero-inferior extremity the boundary

ends on the anterior wall.

Anterior to the gigantopyramidal area is, therefore, only the simple agranular

frontal cortex (/Axprc) which Campbell (1905) called intermediate precentral.

Just as the gigantopyramidal area, it is broader on the medial aspect of the hemi-

sphere and narrows laterally and inferiorly. Its posterior margin, in its boundary

with the gigantopyramidal area, is irregular; this has been described with sufficient

length. This simple agranular cortex extends medially to the depth of the cingulate

sulcus and latero-inferiorly to the opercular lip. In brain HI it does not extend onto

the upper wall of the lateral fissure but in others, according to Economo (1930b),

it may do so.

The inferior boundary of the frontal agranular cortex is vague and so is its

anterior border. As one passes anteriorly, granules become progressively more

numerous until they form a distinct inner granular layer. At no point does this

begin abruptly. The zone with indistinct tenuous internal granular layer is by

definition Economo's FC. It extends from the upper lip of the cingulate sulcus to

the frontal operculum but has no definite anterior or posterior margin. Not only

does the number of granules vary continually in this dysgranular zone but it has

other local variants. Near the cingulate sulcus, the number of cells in v increases,

hence Economo calls this region FCL. Over the inferior frontal gyrus there are

larger cells in iiic, also often in v, to produce a variant which was recognized by

Betz, Hammarberg and practically all later authors and which we have called

Ivfi. The dysgranular zone continues over the operculum onto the anterior part of

the island (Economo's IA) and the posterior portion of the orbital surface of the

frontal lobe, i.e., the pars orbitalis of the inferior frontal convolution where it is

called FF by Economo.

Ngowyang (1934b) says of this dysgranular zone, "Brodmann has not extended

these weakly granular formations far enough below; for, as we could determine in

our case and as Riegele had already seen in another brain, not only our area 55

(the lower part of Brodmann's area 9) is weakly granular, but also the area 56

(homologous with the posterior part of his 44) and the area 41 (the lowest part of
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his area 6) or the ventral parts of FB of Economo and Koskinas. This difference

may be only caused by individual variation." (See Fig. 97).

Beyond this transitional zone, to which we shall have to revert later, we enter

the frontal or "prefrontal" sector. We shall begin with its lateral aspect. A com-

parison of the map in our frontispiece with the map of Campbell (1905, our Fig. 2),

will reveal a marked resemblance, especially in regard to the large undifferentiated

areas of the frontal, parietal, and temporal lobes; the original description of Betz

(1881) is not much different. Campbell subdivided the frontal cortex into "frontal"

and "prefrontal" but, as he remarks, their structural differences are of a "subtle

description." Economo (1929a) states that the structure of the frontal pole differs

essentially only in its greater thinness and the smaller size of its cells, and this is a

gradual change which progresses from the precentral cortex to the frontal pole, a

statement with which Campbell agrees. Jakob (1943) says that the frontal lobe,

anterior to the precentral region, is of "perfectly uniform" structure. It is obvious

that the distinction made between "frontal" and "prefrontal" rests upon structural

differences of an entirely different order from those used to distinguish "frontal"

from "precentral."

In the frontal cortex anterior to the dysgranular zone Economo recognized FD
and FE as major types. Of FD he says (p. 39), "The structure of the area changes

frequently." He distinguishes FDm, FDp, FDA, FDop, FDT, FDL, and FDE. He
met the same difficulty in FE (p. 40). "The structure of FE is not the same every-

where." Consequently he distinguishes FEL, FEm, FEDm, and FEF. But even the

distinction between FD and FE is not very clear. In his own words: (p. 39) "the

typical frontal attenuation of the cortex becomes more pronounced in FE, the

reduction of cell size becomes more evident, the sharp distinction from the white

matter gets more striking, and II and IV become gradually more evident. But the

transition between the two is only gradual. The extension of FE and the breadth

of the gyri seem to have a connection in the sense that this area covers only the

quite narrow types of gyri." Economo notes (p. 40), "the marked [deutliche]

radiate striation just at the pole" although he had previously stated (p. 14) that

"In the frontal lobe there is almost no striation, traces of such an arrangement

being most easily found in the pars triangularis, and faintly at the base of all three

frontal gyri, occasionally also at the frontal pole." It has been our experience that

the cortex over narrow gyri is usually thinner and the radiations more evident.

Quite apart from the extreme variability of the pattern and size of the frontal gyri,

it is evident that the distinction between FD and FE is very precarious and based

on no feature which would seem from any viewpoint to be important.

The distinction of most of the subvariants of FE and FD seems to us even less

important. Economo (1929a) distinguishes an FDm from an FDp on the basis of

cell size. Since the cortex of the frontal pole differs little except in the small size

of its cells, he could just as well have written FDe instead of FE and the entire

"prefrontal" region would have been FD.
In the recent neurosurgical literature (Mettler, 1949) much is made of the results

of extirpating Brodmann's area 9. The term area 9 appears to be no more than a

topographical designation and corresponds roughly to Economo's FDm. Ngowyang
and Jakob were unable to find any such area. On the other hand, Kononova's

(1934) area 9 assumes even more bizarre shape than Brodmann's (Fig. 98).
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Economo distinguishes also a variant FDA, described as follows (p. 62) : "In its

circumscribed area the frontal granular cortex becomes thicker and distinctly

Abb. 1

Fig. 97A

Fig. 97 (Above and on opposite page). Ngowyang's map of the architectonic areas of the

frontal lobe.

richer in smaller, more compactly arranged cells. II and IV become considerably

broader and more densely supplied with cells than anywhere else in the frontal

brain. The pyramidal cells of III are moderately large, at best, but they are more
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Area recta profunda

tenuilaminaris

Area praetrigonalis

parvocellularis

Fig. 97B

numerous and densely placed than elsewhere, without forming a substratum IIIc.

V is also regularly and densely packed, and does not show two subdivisions as in

FD elsewhere. The border between V and VI is indistinct."

This variant FDA appears, on Economo's map, to occupy approximately the same

location as Brodmann's 46. Brodmann, as previously noted, never described the
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structure of his area 46, but Kononova (1938) has outlined on several frontal

lobes an area of bizarre and varying shape which she implies is Brodmann's area

by numbering it 46 (see Fig. 98). Her description follows: "It is characterized by its

width (3.22 mm.) mainly due to the III layer. Both strata are approximately

equally wide. The cells are of average size, more or less uniform. Their number is

very great. Fine radial markings, due to the regular orientation and arrangement of

cells, is found in all layers. The II and IV layers are well developed. The horizontal

striation is distinct. The boundary between the VII layer and the white matter is

not sharp."

Ngowyang (1934b) describes in great detail the regio frontalis granularis, com-

pares his description with that of Economo and Koskinas and tries to relate it also

Fig. 98. Kononova's map of the cytoarchitectonic areas of the frontal lobes of brain A32
(redrawn)

.

with the map of Brodmann (see Fig. 97). But he does not discuss FDA (Brodmann

46). It would seem that such an area should lie about in the situation of Ngowyang's

area 53c. If one reads the description of his area 58c and of the surrounding areas

51, 52b, 52c, and 53b and examines the photographs of them, one finds nothing

resembling Economo's description of FDA.

We have sought in vain for something resembling FDA in brain HI. There is, at

most, a very small spot in this general neighborhood which varies perceptibly in

the sense of FDA.
Let us turn for a moment to the medial and orbital surfaces. Economo makes a

series of distinctions of FF, FH, FHL, FFa, FI, FL, FM. Although he states that

FF and FH are very similar in structure, their "gradual metamorphoses . . . make
it impossible to give a general description." In other words, they are not fields but
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zones of transition to the allocortex lying posteriorly. The same is true of FFa, FI,

FL, and FHL. FM is allocortex.

If we turn for help to the studies from the Yogt school we fare no better. The

frontal regions have been studied by Ngowyang (1934b, Vogt's areas 4, 6, and 7),

M. Rose (1932b, areas 10-14), M. Rose (1927, areas 15-32), Ngowyang (1932b,

areas 1, 2, 3, 5, 8, 9, 44-55), Ngowyang (areas 33-43, see Ngowyang, 1934b, foot-

note on page 9 of reprint, never published to our knowledge), while Riegele (1931)

and Kreht (1936) studied areas 56-66. These studies describe the cytoarchitecture

of the areas distinguished by O. Yogt (1910) on the basis of myeloarchitecture.

Given any two parcels of the cortex it is always possible to describe differences

between them but, when these descriptions are analyzed, no clear distinguishing

characteristics emerge by which one can recognize them. This is not true, of course,

as between granular and agranular cortex, or as between limbic cortex and eu-

laminate isocortex, but, in the vast zone which Economo calls FD and FE, the

descriptions which Ngowyang (1932b, 1934b) gives of (Vogt's!) areas 1, 2,3, 5, 46,

49, 50, 51, 52, and 53 are to us mere paraphrases of identical findings. We might

conclude, from the authors cited above: that Vogt's areas 36, 37, 38b, 39b, 39c,

40, 42, 43, and 44 are agranular; that 41, 45, 47, 48, 54, 55, perhaps 57 (although

there is no photograph of this area) and 8 on the orbital surface are dysgranular.

If these are plotted on the frontal lobe the result is approximately Economo 's

FA + FB, FC + FF, and FD + FE. Areas 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 34,

35, 86, 37a, 39a are juxtallocortex and 15-32 anterior limbic which does not here

concern us. Ngowyang (1934b) himself has subdivided the frontal lobe, with the

exception of the gyms limbicus anterior (areas 15-32) into four principal regions.

The regio frontalis agranularis contains areas 36-40, 42, and 43- The regio frontalis

dysgranularis contains areas 44, 44a , 45, 47, 48, 48a, and 55 as well as areas 41 and

66, while the regio frontalis paralimbica contains only the areas 3, 33, 84, 35, and

86a. All the other fields (areas 1, 2, 4-12, 46, 49-54, and 57S5) belong to the

regio frontalis granularis. Area 14 is an allocortical field, and area 13 is a transi-

tional field to allocortex. Area 66 is a transition to the agranular anterior insular

cortex. Ngowyang states that the affinities of areas 56-66 are given in accord

with the studies of Kreht (1936).

Economo distinguished, on his orbital region (see Fig. 99C), an FF and an FH
which he says (p. 44), "would have formed a single and common field had not the

area FG separated them from front to back like a peg." Is this a sufficient reason

for increasing the number of areas? This FG, he goes on, is very similar to FE but

shows a less distinct separation of Ilia and b. Moreover, the cells of the fifth lamina

are "exceptionally crowded, almost bandlike in the walls of the gyrus—a circum-

stance which points to the proximity of the olfactory brain."

The last phrase is important. As Economo notes, and as is evident also in brain

HI, in the frontal and temporal lobes, the fifth layer becomes denser wherever the

allocortex is approached. This zone we have called juxtallocortical. Economo gives

it numerous designations

—

FCL, FDL, FEE, FHL. Logically he should have written

also FEE instead of FG but did not, we suppose, because he would then have had

FH intervening like "a laurel leaf" between the two parts of FEE.

The latest study of the orbital surface is that of Elisabeth Beck (1949). Her
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photographs show clearly those structural modifications on which there is general

agreement, namely the gradual disappearance of the inner granular layer, as the

posterior margin of the orbital surface is approached, and the gradual appearance

of allocortical characteristics as the gyrus rectus is approached. The overlapping of

these two tendencies makes possible numerous subdivisions. The resulting map
(Fig. 99A) looks more different from the maps of Brodmann and of Economo and

Koskinas than is really the case, since the alterations described have no sharp

boundaries. The great differences in the surface map introduced by the very varied

Fig. 99. Maps of orbital surface of the frontal lobe. A—after Beck. B—after Campbell.

C—after Economo.

gyral pattern on the orbital surfaces is evident from the maps of Knauer (1909),

Kreht (1936), Ngowyang (1934b), and 0. Vogt (1910). Moreover, because the

gyral pattern of the orbital surface is so variable (see Chap. Ill, p. 45) it is not

permissible to transfer Brodmann's and Economo's maps to the gyral pattern of

another brain, as Beck has done. It might be pointed out that she has used Brod-

mann's number 11 for an area which is not identical with his but that she has some

justification for extending Brodmann's area 18, which that author recognized in

Hapale and Lemur, to the posterior zone of the orbital cortex.
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The situation over the inferior frontal gyrus is somewhat different. If we super-

impose, on the general frontal agranular-dysgranular-granular series, a horizontal

band over the inferior frontal gyrus containing large pyramids in iiic we get the

FCBm, FDT, of Economo or 44, 45 of Brodmann, or even the 44, 44a, and 45 of

Brodmann's later map (1914). Is this important? Actually we do not know. At any
rate it is a little more striking than the FDm, FDp, FE sequence in the superior

frontal gyrus. In brain HI these large cells in iiic continue over the frontal oper-

culum onto the orbital part of the inferior frontal convolution. The same large-

celled area in the posterior orbital region was seen by Riegele (1931) and numbered
64- It might be noted here that there is also an area buried in the superior frontal

sulcus of brain HI (Fig. 96) with equally large pyramids in iiic.

The inferior frontal gyrus, covered by Vogt's areas 56-66, has been studied in

great detail by Riegele (1931) and by Kreht (1936). Riegele studied brain A4Sr
(Fig. 100A) and noted that areas 61, 62, and 63 on the posterior orbital surface had
scarcely any internal granular layer; they lie about in the position of Economo's
FF, stated by Economo to be dysgranular. He noted also that fields 60 and 64 had

a good internal granular layer and big pyramids in iiic; these would correspond to

Economo's description of FDT although the situation of this area in Economo's
brain would rather seem to correspond to Riegele's 59. We might add that such

large cells are found in brain HI also on the orbital surface in a situation closely

analogous to Riegele's 60 and 64- Kreht (1936) made an elaborate study of the left

hemispheres of brains A58, 61, 64, and 65 (see Fig. 100C and D). His photographs

are all at a low magnification (20 X) and taken at what he claims are boundary

lines between fields; no field is, therefore, shown clearly. He found the largest cells

in Vogt's area 65.

Although we are, in general, suspicious of the validity of myeloarchitectural

studies, we must mention the statement of Knauer (1909) (see Fig. 100B), repeated

by Brodmann (1914), by 0. Vogt (1910) and by Strasburger (1938), that the in-

ferior frontal convolution is "unitostriate," i.e., that the outer and inner stripes of

Baillarger are united into one horizontal band of fibers (see Fig. 111). Brod-

mann (1914) states that this structure covers the entire inferior frontal gyrus

and also the posterior half of the middle orbital gyrus. He adds that otherwise this

cortex has the usual six-layered structure and that it is much better characterized

by its myeloarchitecture than by its cytoarchitecture. Nevertheless, this is the zone

of large pyramids in iiic noted first by Betz (1881, see p. 4).

Betz (1881) divided the inferior frontal convolution into three parts, the posterior

extending from the lower extremity of the precentral sulcus to the ascending branch

of the Sylvian fissure, the middle extending to the beginning of the orbital surface,

and the third lying anterior to the pole of the insula. His account of the large cells

is as follows: "The first part sometimes shows, in its third layer, pyramidal cells

larger than those of the other convolutions of the frontal lobe. Here and there,

especially in the brains of older subjects, are found cells almost gigantic in size

which sometimes extend to the inferior extremity of the anterior central convolution.

In some brans they occupy a considerable part of that extremity, but this I have

never encountered in the brains of young subjects." The presence of these large

cells has been confirmed, as we said, by Economo and Koskinas (1925, cf. their
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Fig. 74), by Riegele (1931), by Kreht (1936) and also by the examination of brain

HI. We cannot, therefore, agree entirely with Jakob (1943) that the intimate

structure of the three frontal convolutions is perfectly uniform. As we have already

noted, if we superimpose this horizontal zone of large cells on the frontal series of

agranular, dysgranular, and granular cortex, we get something resembling Brod-

mann's 6, 44, 45 or Economo's FBop, FCBm, FDT.
Kononova (1935) accepts the division of the inferior frontal gyrus into three

parts which she calls, following Brodmann, 44, 45, and 47. Area 44 covers the oper-

cular part and area 45 covers the triangular part, while area 47 is almost totally

situated on the orbital part of the inferior frontal gyrus (Fig. 98). "The common
characteristics of all areas of the inferior frontal gyrus are a medium breadth of cells,

prevalence of medium sized cells, indistinctly marked radial striation (most clearly

pronounced in area 45) and especially horizontal striation; the division of layer

III into three sublayers according to the size of the cells, the innermost of the

sublayers possessing the largest cells. The fifth layer is divided into two sublayers

as to the number of cells, an outer richer in cells and an inner forming a pale band.

The sixth layer has many cells of diverse shape, of medium size, and gradually

passes into the white matter of the gyrus." It is obvious that this description would

apply to a large part of the eulaminate isocortex.

How, now, does she distinguish the three parts from each other? For area 44
she notes the large pyramids in iiic and the weak development of iv. This area 44
she states extends over the upper wall of the lateral fissure as far as the sulcus

marginalis superior insulae. Posteriorly it is bounded by the agranular cortex 6

and above by the richly granular cortex 9. Anteriorly it reaches to area 45.

Area 45 is said to cover the whole free surface of the pars triangularis and the

walls of the adjoining sulci, the upper wall of the horizontal branch of the sulcus

Sylvii and the lower wall of the inferior frontal sulcus. "Area 44 differs from it in

being thicker but less rich in cells. Its radial striation is weaker. Layer IV is less

developed. The large cells of IIIc are a little smaller. Layer VI is considerably

thicker; all the other layers differ only in the number of cells, which is larger in

area 45" One wonders how much of the difference is due to the fact that 45 covers

mainly sulci and narrow gyri. Of the long and detailed account of the variation

in structure in different parts of area 44 and 45 very little remains except the in-

crease in granules of layer IV.

"The area 47, as to its cytoarchitectonic structure, separates into five formations,

which differ from each other in their microscopical structure." Only 473
is said to

have very large pyramids in Hi. The subareas 1 and 2 lie on the posterior orbital

region, called by Economo FF, and are said to have a poorly developed inner

granular layer.

The study of Kononova is based on eighteen hemispheres and contains a vast

amount of detail concerning the extent and location of the areas and their cellular

constitution and variation in the individual hemispheres and a comparison of the

conditions in the two hemispheres of each brain. Such a study, of course, can yield

useful results only if it is possible to identify sharply the limits of the areas studied.

By the avowal of the author herself, this is not possible and she draws one valid

conclusion, namely, that "there is great variability in the structure of the inferior
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frontal convolution, not only in different brains, but also in both hemispheres of

the same brain. This variability shows not only macroscopically—in the shape,

size, and distribution of the sulci and gyri—but also microscopically in the cyto-

architectonic expansion of areas, their dimensions and correlation. Between two

different areas there is a variable zone of limiting adaptation, which may be quite

large and almost seems to be a new area or subarea." These conclusions apply not

only to the inferior frontal but to the entire frontal region (Kononova, 1938).

"The cortex of the frontal region has a very complex structure consisting of a great

number of areas. To determine their borders is very difficult, due to the vague limits,

presence of borderline adaptation and the vague differences in their structures.

The shapes of these areas vary greatly as one might expect from the exceedingly

varied sulcal pattern of the frontal lobe. Its exact dimensions, how far it will reach

forwards, upwards, backwards, its exact boundaries with the neighboring areas

—

all these questions cannot be answered without careful investigation." Microscopical

investigation is meant.

Concerning the frontal cortex in general, Ngowyang (1934b, p. 193), states:

"The thickness of the cortex diminishes gradually forwards from the central sulcus

as does also the size of the pyramidal cells of III and the ganglion cells of V. Con-

versely the number of cells, especially the granule cells of IV, increases progressively

as one goes forward. In general the size and the number of cells for all layers are

inversely proportional; the relationship of cell size and thickness of cortex is about

the same. In other words: in the thicker cortex one finds larger but fewer cells than

in the thinner fields, yet exceptionally one finds large-celled thin cortical layers."

When one reads through this long and laborious work, and the equally long and

laborious studies of the Russian school, one finds oneself agreeing with Jakob

(1943) that a precise cytoarchitectural map of the frontal lobe is impossible.

As Kononova (1938) puts it, "This variability in the size and disposition of the

fields (of the frontal region) makes it impossible to construct a cytoarchitectonic

map which will be applicable to each individual case." We cannot follow Jakob,

however, in denying any and all differentiations within the frontal lobe.

Betz's description of the third frontal convolution is valid, although the subdivi-

sions of this convolution are again to be rejected. These distinctions of minimal

differences in the inferior frontal convolution are due, so it would seem, merely

to the fascination of Broca and his speech center. Except for the limbic lobe there

are no precise limits anywhere, but only a gradual passage from the agranular

cortex posteriorly to the granular tip of the frontal pole. Even the anterior limbic

area is bounded by a transitional zone of varying width.

In the light of the preceding we may perhaps venture to describe the frontal

lobe as follows (see frontispiece) : The frontal pole is covered by typical eulaminate

isocortex with a thick internal granular layer which thins gradually, as one passes

posteriorly, and finally disappears. But, even as far back as the central sulcus, its

position is marked by a layer of pyramids which are smaller than those above and

below. Next to the central sulcus this agranular cortex contains scattered very

large pyramids in the deeper part of layer Hi and gigantic cells in v. This giganto-

pyramidal zone is broader above than below and extends onto the medial surface

of the hemisphere almost as far as the cingulate sulcus; over the lateral surface it
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narrows until, in its lowest portion, it is confined to the anterior wall of the central

sulcus which it does not depass. Anterior to the gigantopyramidal zone the simple

agranular cortex, without giant pyramids or very large pyramids in Hi, extends

forward, much broader above than below; it extends also onto the medial surface

to the depth of the cingulate sulcus. Over the lateral surface it also narrows markedly

until it is about a centimeter in width anterior to the lower extremity of the central

sulcus which it depasses usually to extend even, in some brains, onto the upper wall

of the lateral fissure to a variable extent. As one passes anteriorly from the agranu-

lar cortex (marked in yellow), at first scattered thin patches of granules appear and

then a continuous sheet which progressively thickens anteriorly (marked in pink.)

The zone with poorly developed internal granular layer (marked in orange) we
called the frontal dysgranular variant faf (Chap. IV, p. 79, Plate XV); it has no

definite anterior or posterior border and extends as a band from the cingulate

sulcus on the medial surface over the superior and lateral surfaces of the hemisphere

onto the upper wall of the lateral fissure and the orbital operculum to cover also

the posterior part of the orbital surface. Anterior to this dysgranular zone the frontal

cortex stretches without notable variation to the pole.

This progressive change affects all three frontal convolutions alike, but the cortex

of the inferior frontal convolution differs from that of most of the other two in

having larger pyramids in iiic (and sometimes in v) which occasionally reach gigantic

size. Principally for this reason the lower segments of the bands were described by
us as a slight modification of the eulaminate cortex (Chap. IV, p. 71) and labeled

lEfi (Plate V).

In addition, all around the posteromedial and inferior border of the frontal

cortex, where it borders on the allocortex, lies a narrow limit rophic zone (shown in

purple) in which the inner granular layer becomes attenuated and the cells of v

more numerous. Its main characteristics were described in Chapter IV, page 78; its

location in the frontal lobe is shown in detail in blocks V, VI, XIV (Chap. V).

Is it possible to distinguish the frontal eulaminate cortex from that in the parietal

and temporal regions? Economo begins his description of the frontal lobe as follows

(p. 40): "In general, the frontal brain has a broad well-developed cortex which is

not specially rich in cells." This statement would be equally true of the inferior

parietal lobule or the superior temporal gyms. It gives us no clue to identify the

frontal cortex. He proceeds: "The typical feature of this region of the cortex is the

presence of large well-formed and well-arranged pyramidal cells in the Hlrd and

Vth laminae, as they are hardly to be found anywhere else in the brain." By this

feature the frontal pole cannot be distinguished from the inferior parietal lobule or

superior temporal g3rrus. He has this to say about the inner main layer: "The
VIth layer is also well developed and reveals rather large and well-arranged spindle

cells, oriented perpendicularly, that is, in the direction of the incoming medullated

fibers." This is a good description of the Vlth layer of the inferior parietal lobule

or of the superior temporal gyrus. About the granular layers he says: "The Ilnd

and IVth layers are less well developed as a ride; their cells are usually small and

triangular, and are sometimes altogether missing." This statement is applicable

only lo the precentral subsector. It gives one no suggestion of the important fact

that the thickness of the IVth layer increases steadily from 0.0 to 0.3 mm. as one

progresses from the central sulcus toward the tip of the frontal pole.
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The entire first paragraph of Economo is misleading and too general to have

meaning. It illustrates well the futility of trying to make general statements con-

cerning the cortex of an entire traditional 'lobe of the brain. The lobes of the brain

were originally named from their relations with the bones of the calvaria and it is

time this terminology was abandoned.

Other authors are no more helpful. Kononova (1938) states (p. 271): "The cortex

of the frontal region is characterized by the presence of (1) the internal and external

layers (II and IV), (2) the clear zone in the depth of the Vth layer, (3) the large

pyramidal cells in the Illrd and Vth layers." Not very helpful, when one remembers

that v is very clear in the superior parietal lobule and that there are large pyramidal

cells in the postcentral cortex.

There is no characteristic of the eulaminate frontal cortex which will permit it

certainly to be distinguished from the eulaminate cortex of the other lobes.

At the posterior margin of the agranular frontal cortex the internal granular

layer again appears near the depth of the central sulcus, sometimes on its anterior

wall, at others on the posterior, but the giant cells of layer v persist for a variable

distance posteriorly to the granular margin to form a limitrophic zone which Brod-

mann calls a Mischzone and Economo dignifies by the term PA. It is important to

note that, even between two areas of such different functional and structural charac-

teristics as the precentral gigantopyramidal and postcentral koniocortex, there is

no sharp boundary.

Posterior to this limitrophic zone, just described, the cortex of the posterior

wall of the central sulcus becomes granulose; the giant cells of v disappear, the cells

of Hi become smaller and v becomes nearly empty excepting an occasional big pyra-

mid. This is the postcentral koniocortex marked Kpoc in the sections, denoted by

red on the frontispiece. It is almost entirely buried in the central sulcus. Only at

the dorsal margin of the hemisphere, where the central sulcus bends backward, it

passes onto the anterior wall of the sulcus and for a short distance then over the

medial surface of the hemisphere. Brodmann's Mischzone also comes to lie on the

free surface near the hemispheric margin and thereby suffers some changes in its

architecture. Economo states (1929a, p. 72): "In consequence of these differences

between the area in the valley of the central sulcus and the area on the paracentral

lobule one may call the latter PA2 and the former PAi." On the same basis one

would have to scatter such subscripts all over the brain. We do not see much excuse

for all the complications Economo makes around the upper medial end of the

central sulcus. Eulaminate cortex surrounds the postcentral koniocortex which he

subdivides (1929a, Figs, la and b) into PAU PA 2 , PC, and PCy. The differences

which he notes between these various subdivisions are very tenuous and probably

of no functional significance. At least PC and PB are both end-stations for incoming

somesthetic impulses (see Chap. VIII, p. 246), and their differences in structure are

greater than these around the end of the sulcus. It seems probable to us that PA,

PB, and PC constitute the somesthetic cortex of which only the central portion

{PB) is differentiated into koniocortex. We see in brain HI the eulaminate cortex

with big cells in the fifth layer surrounding the medial end of the central sulcus but

cannot distinguish the finer differentiations which Economo makes. Possibly there

are variations in this region of different brains as there are around the inferior

lateral extremity of the sulcus. We have contented ourselves with carrying PA
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around back of the sulcus as far as we can see giant cells in layer v. At the lower

extremity of the central sulcus the koniocortex usually ends on the posterior wall

but, depending on the configuration of the sulcus, it may encroach on the anterior

wall or may appear on the surface when the lower end of the sulcus is very shallow.

These variations around the lower end of the central sulcus have been studied in

a number of brains by Economo and Koskinas (1925) (see also Economo, 1930b).

Behind the postcentral koniocortex a parakoniocortical variant of the eulaminate

cortex begins. Over the crown and posterior wall of the postcentral gyrus layer v

is still somewhat pale but there are large cells in iiic and sometimes near the inter-

hemispheric fissure in v, which are also found, to a limited and variable extent,

over the superior margin of the superior parietal lobule, extending along the walls

of the cingulate sulcus onto the medial surface of the hemisphere. It is in this region

that Brodmann distinguished his areas 1, 2, and 5 and Economo PCy, PA 2 , and PD.
The giant cells in this region were seen already by Betz (1881). We see no purpose

to be served by these distinctions which are scarcely greater than those generally

found around narrow gyri and sulci. Especially is this true of Economo 's PD.
His description follows (p. 78):

"In the posterior wall of the postcentral convolution, the cortex, which was broad

at the crown of the gyrus, thins once more markedly. This attenuation exceeds that

which is usual elsewhere between the crown and the wall; so that, considering also

certain other structural changes in the posterior wall of the postcentral gyrus, we
may consider it also as a separate striated area PD." This exaggerated attenuation

is not present in brain HI. What are the "other structural changes?" He goes on to

say: "In contrast with the anterior wall of this convolution [But this is not the

point. The point is to differentiate it from the adjacent area PC on the crown]

the posterior wall is characterized by its large cells, especially by the dense, band-

like and multi-laminated stratum of pyramidal cells in IIIc." In brain HI the cells

of iiic on the posterior Avail of the postcentral gyrus are no larger or more numerous

than on the crown anterior to the postcentral sulcus. If they seem so, it is because

of the fanning out of the cortex over the crown of the narrow postcentral gyrus. To
hear Economo again: "This row of large cells also differentiates PD from all other

regions of the superior parietal lobe, which are in other respects similarly constructed

in their walls." This is not true of brain HI. In the anterior wall of the cingulate

sulcus, and to a lesser extent in many parts of the intraparietal sulcus, one finds

as numerous and large cells in iiic as in the posterior wall of the postcentral gyrus.

In the intraparietal sulcus they were seen also by Economo (p. 78) who remarks,

"In this caudal prolongation [of PD] the area does not retain its pure type, but

shows an admixture of the type of the neighboring area." It was not pure to begin

with. We can see no valid reason for making such an area as Economo's PD and

wonder whether he was not subconsciously influenced by Brodmann 's map and by

Elliot Smith's (1907) visuosensory band /3. We see nothing in the postcentral

sulcus which cannot be explained by the customary changes which occur when

passing from the crown of a gyrus into a sulcus.

Behind the postcentral parakoniocortex there stretches out a vast zone of typical

eulaminate isocortex. The authors entangle themselves inextricably trying to
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describe how this expanse differs from the similar one in the frontal region. Economo

(p. 69) gives a general description in these terms: "Both granule layers, II and IV,

usually consist of true granule cells, are especially distinct, broad and rich in cells;

so that the cortex here is much more markedly laminated than it generally is in

the frontal brain." As any silver preparation shows, the outer granular layer con-

tains just as many small pyramidal cells in the parietal as in the frontal lobe. Econ-

omo's statement concerning this layer is simply not true (see quotation from

Gerhardt below). A marked lamination, moreover, does not serve to differentiate

parietal cortex from the frontal pole. Economo then goes on: "A further important

characteristic is a fine, perpendicular striation which passes through all the laminae

of the cortex, and is most distinct in the Illrd layer." This is by Economo 's own
words (p. 40) characteristic of the frontal pole but is incorrect in any case since

lamina ii never shows perpendicular striation. "This type possesses more, but

smaller, cells than the frontal brain." This is not true of the frontal area called by

Economo FDA.
Other authors are just as disappointing. M. Rose (1935, p. 687) fails to give any

general description of the regio parietalis. He merely discusses the boundaries of

this undefined type. Gerhardt (1940, p. 385) writes (see Fig. 101):

All parietal fields (78-90) are more or less (the latter is especially true for marginal fields)

characterized in fiber preparations and in cell preparations by certain typical features :

Medium broad to broad cortex, accentuated horizontal demarcation, the radii being tolerably

distinct, of average breadth or fine; characteristic structure of II + III 1
. The latter always

has a dense population of nerve cells, contains very small corpuscles, is well delimited against

the neighboring strata while its boundaries are nonetheless relatively soft. The second layer

shows an admixture of small pyramidal cells, the layer IIP an admixture of corpuscles, hence

the two layers are strongly welded into a unit; II is always narrower than III1

; the rest of

the third layer shows a more diffuse arrangement of nerve cells, and can be subdivided only

with uncertainty or with great difficulty into IIP and IIP. The latter contains pyramidal

cells not above medium size, and always has a layer III"3
.

The fourth layer is very characteristic, with its very small granules. It is distinctly bipartite

in the fields on the precuneus and at least noticeably so in the fields on the convexity. The
granular layer, comprising III3|3-Vla often becomes remarkably dense in the dense IV2 and

V1"; layer V is of monotonous structure, broad to medium broad. Vla
is always present, gen-

erally quite dense, often bipartite,V with medium sized pyramidal cells arranged in more or

less irregular groups. V2
is more or less light, but generally hardly more so than IIP + 3

;

VI is of very characteristic breadth and density, especially VI1
; it is divided into several

sublayers. VII is also broad, gradually changing over into the white matter.

Let whoever will wade through this verbiage and then try to recognize the parietal

lobe. Perhaps such statements may have in the average some validity (this has

never been proven) but, in the identification of any particular section, they have

been of no assistance to us.

When it comes to distinguishing the various parts of the parietal lobe we are

on equally unsure ground. Gerhardt (1940, p. 385-86) writes:

"The fields of the upper parietal lobule are distinguished from the postcentral

fields (the marginal fields are 71, 75) by a greater scarcity of cells throughout,

especially in IIP + 3
, by a broader and looser arrangement of the radii, by a more

even, almost diffuse distribution of the nerve cells in IIP + 3
, by very constant ac-
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centuation of II + III 1
, IV and VI which, with little variation, impose themselves

as very dense bands of nerve cells. The VI is broader, especially the dense VI 1

and VII. There is a dense Vla hardly to be divided off from IV; V 1" and V 2 are as

light as III 2 and III3
, not as easily subdivisible, well delimitable from the dense

VI. The IV has a tendency to be bipartite. Cell laminae can be well delimited and

there is a far reaching evenness of the cross section as regards size, staining and

arrangement of the nerve cells." How can it be both ways?

Fig. 101. Gerhardt's architectural map of the parietal lobe, outer surface.

Gurewitsch and Khatchaturian (1938) write that "Microscopically the cortex

of the superior parietal region is of average thickness, possesses large enough cells

in layers III and V with a lighter band in layer V and has distinct radial stria-

tions." This is scarcely illuminating. They go on to say: "Thus it appears that, at

any rate, the architectonic structure of the regio parietalis superior is uniform

enough." Elsewhere they note the band formed by the heavier IVb and Va and

remark also that it is much less evident as the limbic gyrus is approached. They

study at great length a limitrophic band between the preoccipital (Brodmann's

19) and parietal cortices (Brodmann 7, 89, 87) which they call PEO and subdivide

into PEOs, PEOa, and PEOy (Fig. 102); the first subdivision is buried in the
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intraparietal sulcus and corresponds to Elliot Smith's visuosensory band 0, the

last to Economo's PEy. This limitrophic zone is said to have cytological charac-

teristics intermediate between the parietal and preoccipital formations.

Economo says (1929a, p. 80): "The entire superior parietal lobule is occupied

by a single area; within its extent it shows regional differences in thickness and cell

Fig. 102. Gurewitsch and Khatchaturian's map of the superior parietal lobule. Orthogonal
projection of the dorsal surface of brajn A29.

size." What is the difference between a single area with regional differences and

several areas he states nowhere. "PE is further characterized by the breadth of

the granule layers and a strikingly pale band in V which is visible to the naked eye."

This does not differentiate it from PC As Economo states further on (p. 80):

"It (IV) divides into an upper IVa stratum of less compactly placed round gran-

ules . . . and a deeper IVb stratum of more densely laid and usually triangular
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cells ... V ... is divided into an upper stratum, Va, containing more and larger cells,

and a deeper and paler Vb, which possesses smaller and fewer cells. This latter

stratum appears typically as a pale band in the cell picture under a very low

power."

Although not uniformly conspicuous throughout the superior parietal lobule,

this dark band made by ivb + va is at its outstanding characteristic, and has been

described as a eulaminate variant in Chapter IV (p. 69, Plate III). As we shall see

(p. 218) this agrees with Campbell's (1905) findings. In brain HI, tendencies to

form a band iva + ivb are observed here and there near the frontal pole, in the

inferior parietal lobule, and in the preoccipital regions so that, if poorly developed,

it does not serve certainly to identify the superior parietal cortex.

The cortex of the inferior parietal lobule has caused difficulties to all observers.

We turn again to Gerhardt and to Economo. We have mentioned the rarity of the

dark band ivb + va in the inferior lobule. That it may be present, however, is

evident from the description of Gerhardt.

Gerhardt says (1940, p. 393):

The fields of the lower parietal lobule, especially 88 and 89 can be distinguished from the

fields of the upper parietal lobule and of the postcentral gyrus by a tendency to greater

thickness—a clearer, although still medium broad, but a little finer radial arrangement of

the nerve cells, often up to IIP by a horizontal lamination which is only a little accentuated

by the denser and a little broader II + IIP on which often there follows a dense IIP, especially

on flat surfaces and on the walls of sulci, by the somewhat broader III, the less lighter IIP,

by a IIP, containing larger pyramidal cells in a little greater number, the IIP*5 of which shows

a medium wealth of granules and hardly any gaps, by a dense generally bipartite IV, a

broad, often bipartite V", the outer sublayer of which contains very dense granules and was
considered as a third sublayer of IV by Economo and Koskinas, by a broader V-VII, a much
less lighted V, the somewhat denser, not so well set-off, better subdivisible VI, the somewhat
broader VII, a II + IIP and IV + V1" quite prominent in cross section while the VI is less

prominent because of the denser V. This basic type is realized in 89, to a certain degree also

in 88 and 90. 90ti and its subfields group themselves around a type similar in many respects,

which however can also be deduced from the structure of the posterior part of the superior

temporal convolution: horizontal lamination recedes in favor of a stricter, often denser

columnization and a generally much looser arrangement of the nerve cells; II + IIP is nar-

rower and more clearly set off against IIP; IIP + 3
is a little denser in nerve cells, IV does

not contain as many nerve cells, just as II + IIP is not so accentuated, but still bipartite.

Va does not belong quite so much to IV, is not so dense in cells, and loses in distinctness

caudally. V as a whole contains less cells, is not easily subdivisible, VI-VII are also less dense

in cells, but can be well distinguished. 90ti + 90ti takes over the transition to the occipital

structures which are characterized in fiber preparations by the caliber of their fibers, their

astriate character, and in the cell picture by their greater cell density, the deeper staining of

their nerve cells, the much coarser, rigid arrangement of their radii, a slight narrowing of the

cortex, a broader more compact IV and a denser VI.

Economo (1929a, p. 83) characterizes the inferior parietal cortex as follows:

"All this inferior parietal lobule is clothed by a typical [of what?] broad, distinctly

laminated cortex, which is characterized not only by the two outstanding granule

layers II and IV, but also by the great development of III, while V and VI lose much
of their importance in the cell picture." Certainly V is much better filled with cells,

as Gerhardt stated correctly, than either in the occipital cortex or the superior

parietal cortex. This is another instance of Economo's inaccuracy in his general
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statements. "Another typical character of this cortex is a very fine, radiate, i.e.,

perpendicular striation." Again one might ask: typical of what? In any event, this

does not serve to differentiate this cortex from that of the frontal pole or superior

temporal convolution.

Economo's statement (p. 84) : "V [in PF] is neither subdivided into two distinct

sublaminae nor is it lighter stained as in the superior parietal lobe and in the post-

central gyrus," is usually true. But places can be found in the inferior lobule in

which this feature is present. When Economo goes on to say "Just as in IV of the

superior parietal lobe, although not so distinctly, we can discern more characteristic

granule cells in the superficial stratum IVa and numerous triangular cells in the

lower stratum, IVb," he seems unintentionally to demolish a distinction between

superior and inferior parietal lobule previously laboriously elaborated.

Of the inferior parietal lobule Economo states (p. 83), "The division of this

extensive district into areas is far more difficult than in the frontal brain." Heaven

help us then! (p. 84) "The delimitation of the areas is thus somewhat more arbi-

trary, and has to depend more on the macroscopic anatomical boundaries." Shades

of Brodmann's etwas mllkurlichl The gyral pattern, moreover, is so varied as to

be useless.

But let us hear more from Economo! (p. 86): "The cell structure [of PG] is

very similar to that of PF, with the exception that the deeper layers of III, which is

somewhat narrowed, become again larger celled, and there is also a tendency to

pallor of lamina V." In brain HI the cells of iiic are perhaps a little larger anteriorly,

but there is not much to choose between the anterior and posterior inferior parietal

region. Whether the lamination is better pronounced in the anterior or posterior

part of the inferior parietal lobule is not clear from Economo. When describing

his area PH he says (p. 88): "This field (PH) reveals much the same structure as

the area PF, i.e., in contrast to PG, a more distinct lamination. . .
." But, on page

86, he had stated: "The columnar arrangement of the cells [in PG] is somewhat

broader than that of PF, as a result of which the horizontal lamination is somewhat

more clearly visible." Since Economo himself cannot remember for the space of

two pages, we feel that this characteristic is not sufficiently clear to be important.

The inferior parietal lobule was studied in great detail by Stankewitsch and

Schewchenko (1935). They state, "The characteristics which separate the cortex

of the inferior parietal region from the neighboring regions are: The breadth of

the cortex, comparative density and small size of cells, regular fine radial striation

going throughout all the layers frequently even II, regular orientation of the basic

mass of cells pointing with their major axis towards the surface in fine long regular

streaks which gives a sharply marked regularity to the cortex, broad compact inner

strata, the V layer passing without sharp limit into VI layer, medium size of cells

of V layer, absence of pallor in V, broad VI and VII and vague transition to white

matter." They accept a subdivision into areas 40 and 39 but describe numerous

intervening subareas (Fig. 103) and state, "because of the fact that the portions

occupied by these interareal modifications are quite large and that they are more

or less regularly found in a series of hemispheres, we separated them as special

subareas." Concerning area Ifi, they write, "This compact character of the inner-

most layers together with the comparative uniformity in size and density of cells is
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the characteristic feature of the area 40." It might be remarked here that these

are essentially the features given by Economo as characteristic of his area PH
(Brodmann's 37).

A x iff.
Fig. 103. Map of the inferior parietal lobule (redrawn after Stankewitsch). Brain AU147.

Horizontal lines—area 40; regular dots—area 39; groups of dots and cross-hatchings—sub-

areas.

Concerning area 39 Stankewitsch and Schewchenko go into a long account of its

differences from area Jfi as follows:

Whereas in area Jfi the radial striation almost completely supersedes the horizontal lamina-

tion; in area 89 the horizontal stratification is a little more distinct. The longitudinal radii are

wider and coarser. The III layer in area Jfi is distinguished by its very great uniformity of

cell size, but the increase in cell size from III 1 to III3
is so gradual, that notwithstanding the

considerable size of the cells in IIP they do not stand out from the mass of cells. In area 89

the IIP with its very large pyramids stands out quite distinctly The merging together of the

V and VI layers is characteristic of the cortex of the whole inferior parietal region, only area

Jfi possesses it completely. In area 39 this solidity is somewhat lost. The V layer has larger

cells than in area Jfi, but less dense, and so the limit with the VI layer is more distinct. The
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II layer of area 89 is broad, but little narrower than that of area Jfi; also more loose. Its supe-

rior limit is less straight than in area Ifi. The inferior limit with the III layer is clearer. There

is less implantation of the granules of the II layer into the III layer. The broad III layer is

more clearly subdivided into three sublayers, than in area Ifi. IIP is paler than that of the

area 40. Ill3 has larger cells. The gradual increase in cell size, characteristic for area 40, is

not so gradual in area 89, and so the cells of IIP are standing out by their size over cells of

the IIP. The cellular columns several cells deep are separated from each other by wider spaces

than in area 40. The radial striation of the III layer is less fine than in area 40; the radii do

not reach II layer at all. The limits of III layer with the IV in area 89 are much more distinct

due to lesser implantation of cells from IV la}'er into the III and vice versa. The IV layer is

narrower in area 89. Its cells are arranged into separate columns of equal width; connected

with radii of the III layer. There are less pyramids in the lower portion of the IV layer as

compared with area 40. The limit between IV and V is clearer than in area 40. In the V
layer the area 39 possesses larger ganglia, but there are no especially large cells here. Lesser

cell density of the V layer gives it more pallor. The limit with the VI layer is more distinct.

The VI + VII layers consist mainly of spindle-shaped cells. In their mass they are regularly

oriented. The cells of the VII layer reach deeply into the white matter and so their boundary

is even more transgradient than in area 40. The structure of area 39 shows considerable local

changes, just as area 40, according to its position on the surface or inside the sulci. There are

also many focal modifications.

After this verbose comparison they say:

Notwithstanding the fact that in the inferior parietal cortex we distinguish two areas 40

and 39 differing from each other and even separate some variants inside their limits, still the

basic features characteristic of the inferior parietal formation are retained in the whole

inferior parietal region and so we can, on the basis of the complex of these characteristics,

always correctly distinguish areas limiting with the inferior parietal region and its neighbor-

ing regions. [We admit our inability to do so.] The basic differences of the superior parietal

formation are: Absence of regular striation, absence of regular orientation of cells, which are

specific of the inferior parietal cortex, attenuation of the whole cortex, prevalence of the outer-

most strata over the innermost strata, larger cells in III and V layers, distinctness of the limit

between V and VI layers due to the pale band in the lower portion of V. All of these charac-

teristics give the basis for the establishment of the boundary between the superior and the

inferior parietal formation.

We should like to add that the intraparietal sulcus is a big help!

Out of all this we may salvage again the clear band in Vb, which, although it is

present also in the postcentral and the occipital parakoniocortex, is generally less

evident in the inferior than in the superior parietal lobule. Regular striation and

orientation of the cells is not at all peculiar to the inferior parietal lobule. In direct

contradiction to Stankewitsch and Schewchenko, Economo states (1929a, p. 80)

of the superior parietal cortex, "There is also a distinct radiate striation." In fact

we know of no part of the eulaminate isocortex in which there is not a distinct radiate

striation. It may be more or less evident, depending on the plane of section.

The region ventral to the inferior parietal lobule was cons'dered by Economo as

a part of the parietal lobe, but he differentiated it from the rest stating (p. 89) that,

"The chief characteristic of PH is thus the fusion of V and VI into one single

lamina." To our eyes it is just as difficult to distinguish V from VI in the inferior

parietal lobule. The distinction of this basal region between parietal, occipital, and

temporal lobes is exceedingly precarious. When Economo states (p. 90), "this area

basalis reaches beyond the temporo-occipital fissure on the basal surface of the
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brain as far as the calcarine trunk. There, however, the area can no longer be clearly

distinguished from the area fusiformis of the temporal lobe, into which it passes,"

he depends here again on the macroscopical anatomical boundaries.

The eulaminate cortex of the inferior parietal region continues over the parietal

operculum and the posterior portion of the island. At the junction of island and

operculum is a small area of koniose cortex (called by Gerhardt, 1948, 68IIgr.),

surrounded by a narrow zone with large cells in iiic. This has been thought to be the

cortical center for taste (Ruch and Patton, 1946; Gerebtzoff, 1941) (see Chap. VIII,

p. 246).

After long study of the verbose literature concerning the parietal region we still

cannot consistently identify photographs taken from various parts of it. In general,

the cortex of the superior parietal lobule shows the dark band ivb + va and, with

it, a bipartition of the inner granular layer, distinctly enough. Moreover, the cortex

of the superior and inferior parietal lobules is generally thicker than that of the

preoccipital and postcentral regions but over many small gyri this is not true and

photographs from such gyri cannot be distinguished from others taken of the

postcentral gyrus. While it is true that, over the inferior parietal lobule, layer v is

generally better filled than in the superior parietal lobule, this is often not so in

its anterior and posterior parts. In the inferior part of the medial surface of the

superior parietal lobule, near the limbic gyrus, layer v becomes better filled and

photographs from this region cannot be distinguished from others taken of the

inferior parietal lobule. The laborious studies of the parietal cortex seem to us to

result in very little which is verifiable and constant. The structure of most of this

cortex is practically identical and practically identical also with that of the eulami-

nate frontal cortex.

How is it with the temporal cortex? Most authors agree that it is practically

impossible to determine the boundary between the parietal and temporal cortices.

Campbell (1905, p. 159) states of his temporal type III "in its upper part this area

of the cortex is contiguous with the field which I shall describe later under the desig-

nation 'parietal' and the dividing line between the two areas corresponds approxi-

mately but not absolutely with the disposition of the horizontal and occipital

rami of the intraparietal fissure."

A glance at Campbell's map (Fig. 104) will show that we are brought by this

definition into the inferior parietal lobule. The parietal type of Campbell is obviously

our variant lEps. He made no attempt to distinguish between inferior parietal and

temporal types. He continues: "The relation to the ramus occipitalis appears to

be more definite than that to the ramus horizontalis, for while temporal characters

usually reach up as far as the ramus occipitalis (so covering the angular gyrus)

they exhibit an inclination to stop some distance short of the ramus horizontalis;

at the same time I must mention that, all along the line, the change in type from

temporal to parietal cortex takes place gradually. The only points to be relied on

in deciding the transition are the appearance of fibers and cells of greater size than

those usually present in the common temporal cortex, and it is really impossible

to lay down a sharp line of demarcation.

"The anterior boundary is also an unsatisfactory one, but it to some extent follows

the sulcus postcentralis inferior and along this line the temporal gradually passes

into the postcentral arrangement."
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We might add that his Figure 15 (Fig. 104) shows the posterior half of the island

also to be covered by his Type III temporal cortex.

Brodmann strained hard at further subdivisions. He expresses his difficulties in

1907: "Slighter differential development is shown by the parietal and temporal

types; they are, therefore, more difficult to distinguish from each other and show

also less sharp localizing subdivisions." Nevertheless in 1909 he stated, "The regio

temporalis is a well circumscribed and uniform region which, apart from its posterior

border, is fairly well delimited on all sides." This is exactly the border which Camp-

bell said is readily defined.

Brodmann's discussion, moreover, is empty of concrete architectural data and

cannot be considered as anything but a revelation from on high. 0. Vogt also

Lower Border of Syhius

Fig. 104. Campbell's map showing the region around the island.

(1911, p. 383) states, "From an architectonic standpoint it seems much more

natural to unite fields 88, 89 and 90 [the inferior parietal lobule] with certain parts

of the temporal lobe."

Economo (1929a, p. Ill) makes at least an attempt to be of help and gives a

general statement concerning the temporal cortex (which we annotate in square

brackets). "The most striking characters of the temporal type are, shortly, the

following: The general thickness of the cortex [no thicker than the inferior parietal

region or the middle frontal gyrus], a peculiarly shredded or irregularly interrupted

appearance of II." [No more so than in the frontal region in brain HI] "A strikingly

columniated appearance of the cells of IV." [No more so than in the occipital region.]

"The Illrd layer of the temporal lobe is larger celled in general, but less rich in
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cells and thinner than in the parietal lobule." [This will certainly not hold for the

superior parietal lobule.] "This layer has also the peculiar character of becoming

not only relatively but also absolutely, thinner on the crowns than in the walls of

the convolutions." [This is not true of brain HI except over broad gyri within any

lobe.] "Laminae V and VI, on the other hand, increase remarkably, especially in

comparison with the same layers in the parietal and occipital lobes, where they had

lost much of their importance; so that in thickness, development and wealth of

cells, the Vth and Vlth laminae here excel the upper layers, and show most promi-

nently in the cell picture, a circumstance which immediately differentiates the

temporal cortex from the granular formations of the frontal brain." This remarkable

statement, in which frontal, parietal, temporal, and occipital are inextricably con-

fused is simply not true for brain HI, nor is it true of the brain of Economo and

Koskinas, as anyone can convince himself by consulting the photographs of their

atlas.

Stankewitsch and Schewchenko (1935), after noting that "there are difficulties

according to Campbell, Brodmann and Economo, in establishing boundaries with

the temporal cortex," go on to say that they do not share this opinion. They give

as characteristic of the temporal cortex "distinct division into columns, separated

by spaces, which go through all the layers; eroded II layer possessing empty spaces

having the character of nests; larger cells in III layer; sharp splitting of columns

of the IV layer, separated from each other by wide spaces; paler V with a distinct

inferior boundary and the absence of a continuous character of the innermost strata

(characteristic of the inferior parietal formation) give a possibility of an accurate

establishing of the areal limits." Note the "possibility." None of the characters

given is confined to the temporal cortex, and the nests in II occur only on the

boundary of the allocortex.

We might add also the following statements of Economo (p. Ill), "The cortex

of TA is . . . very similar in its formation to the cortex of the inferior parietal region;

but the radiate striation in TA is somewhat coarser and more striking than in

PF, for example." We cannot see this in brain HI. Page 112, "Posteriorly, the area

TA gradually passes into . . . the area PF which it resembled to begin with." In

fact the two resemble each other so closely that we are unable to distinguish them.

The columnization of the "IVth into perpendicular little columns" is seen equally

clearly in Economo's OH, PH, PF, and PE (p. 112). The rather uniform middle

size of the pyramids in the third layer "so that no IIIc is recognizable," is not true

for brain HI, nor is it true for Economo's brain as he, himself, admits, since he

labels iiic clearly enough (see his Fig. 42). The cells in layer v are "Of distinct pyram-

idal form, however, in contrast with the cells of the fifth layer of the inferior

parietal brain." In brain HI the cells of v in the inferior parietal brain are equally

distinctly pyramidal (see Plate II).

We may conclude that the cortex of most of the superior temporal convolution

and, as we have seen previously, of the posterior portions of the middle and inferior

temporal convolutions resembles that of the inferior parietal region so closely as to

be impossible of certain recognition. Campbell (1905) reckons all this territory to

his type III temporal cortex, as we have seen. Is this true of the remainder of the

temporal cortex?
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Blinkow (1938) distinguishes within the temporal cortex a regio temporalis

superior (RTS), regio temporalis media (RTM), regio temporalis basalis (RTB)

and regio temporo-parieto-occipitalis {RTPO). He states that the regio temporalis

media is the most typical of the temporal lobe. His figures show it to be situated in

the same general region as Economo's TEU but his RTM spreads also over a portion

of the polar region of Economo or of Brodmann. Blinkow states that "it is impos-

sible to find just one portion of RTM which would be representative of all the

other portions of this region." Nevertheless he ventures that "the structure of

RTM possesses individual characteristic features: the border of I with II looks

'fringy,' the transition of II into III is gradual, the larger cells of III are arranged

in groups, the radial striation goes throughout the whole lower stratum to the IV

Fig. 105. Blinkow's map of the regio temporalis media of brain A27. Right hemisphere

(left) drawn in mirror image.

layer inclusive, the V layer is very thick." Blinkow gives a long and detailed justi-

fication of his extension of RTM (Fig. 105) further over the temporal pole than did

Brodmann and Economo. We agree, from our study, that the characteristics of

Economo's temporopolar formation TG are found most clearly on the medial side

of the temporal pole. Economo states, moreover (p. 125), "The transition of this

area TG to the other areas of the various temporal convolutions is always a gradual

one, and not at all distinctly marked."

Concerning the differences between RTM and RTPO Blinkow says that in the

latter, "The II and IV layers are very distinct as dark bands, sharply demarcated

against the neighboring layers and sharply pronounced because of paler IIP and

V layers; in the V layer the largest cells are still smaller than the corresponding
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cells of RTM (especially in comparison with the largest cells of III) and are dis-

tributed more loosely." Later he says, "In our investigations the most persistent

characteristic of RTPO as compared with RTM was the distinct demarcation of

II and IV layers in RTPO." We would call attention to the absence of such state-

ment in Economo's description of his area PH concerning the II and IV layers

and the absence in Blinkow's description of any mention of fusion of V and VI which,

according to Economo, is the chief characteristic of PH.
Economo states (p. 120), "A very striking feature is the fine formation of the

pyramids in V of TE as compared with their irregular shape and small size in the

same layer of the neighboring parietal region, PH." This distinction is not evident

in our brain HI; in the zone which Economo calls PH the pyramidal cells of v are

well formed and larger than those farther forward.

Speaking of the region anterior to PH, which he calls TE, Economo says (1929a,

p. 119), "In this region the cortex is very thick (3.5 mm.). [Not true of brain HI.]

III is thin, rather poor in cells, but these are large in size. [True only of IIIc and

there not very large.] V and VI are enormously thick. [Not true of brain HI.] (p.

120) "In TE the cells are also collected in perpendicular columns throughout the

thickness of the cortex. This fact, and the preponderant thickness and cell wealth

of the lowest laminae, V and VI, serve, however, to differentiate TE from the frontal

formations. [But the perpendicular columns will not differentiate it from OA or

the thickness and cell wealth of V and VI from PH. These are not distinguishing

features]. A typical characteristic of TE is the fact that this IHrd lamina is often

not only relatively, but also absolutely, thicker in the walls of gyri than at the

crowns, i.e., an inverted relationship from that usually observed in other convolu-

tions." This characteristic is "often" observed elsewhere, "usually" over broad

gyri-

Page 122: "This preponderance of V and VI in the cell picture as against the

relatively slight development and paucity of cells in III, and the weak development

of II and IV are striking features of the true temporal formation." The weak de-

velopment of II and IV is not confined to TE and hence does not serve to identify

it. We cannot find a preponderance of V and VI in brain HI. The inner main layer

is not absolutely better developed than in the frontal or inferior parietal regions,

but only appears so in contrast to the poorly developed layer III. Indeed, this seems

to us the only distinctive feature of this relatively small region over the middle

portion of the second temporal gyrus.

We have the impression, from the examination of brain HI, that there is a region

about where Brodmann puts 20, Economo puts TE2 , or Blinkow RTM , which is

slightly different from the surrounding cortex in that layer Hi is relatively thin and

usually scarce of cells, but the region is vague and, as Blinkow says, not constant

in structure. We have given in Plate VI a photograph of this region, there labeled

Isocortex eulaminatus temporalis inferior (JMi, see Chap. IV, p. 72).

On the basal surface of the temporal lobe Economo distinguishes an area TF.

He states (p. 123), "The difference between TF and the latter [PH], however, lies

chiefly in the relatively good development of the Vth lamina, which shows beautiful

pyramidal cells in contrast to the stunted ones in the basal parietal region." The

"marked development of the efferent laminae, V and VI" was said (p. 122) to be
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typical of TE. We cannot see in our sections any difference in size of the pyramids

of v over the fusiform gyrus and over the temporo-occipital zone which Economo
calls PH. (p. 124), "Vb appears distinctly lighter than the above stratum [Va],

and thus differentiates the area TF from the other surrounding temporal forma-

tions." (p. 122) "Both its granule layers are somewhat more distinct than in the

two middle temporal convolutions, and this makes horizontal laminations more

distinct. The perpendicular striation is again quite narrow, resembling that of the

first temporal convolution, and the parietal formation posteriorly annectent."

Neither of these two characteristics is either prominent or constant in brain HI.

The distinctness of II and IV was given by Blinkow as characteristic of his RTPO
(Economo's PH).

Blinkow (1936) has studied this basal temporal region in detail (Fig. 106). His

regio temporalis basalis, RTB, includes Economo's TE2 , TF, TH, and a part of

TG. He divides this region into thirteen subfields. He states that, "The peculiar

morphological features of the basal temporal lobe are condensation of the ganglion

Fig. 106. Blinkow's map of the basal temporal regions of brain Apl8. The right hemisphere
has been drawn in mirror image.

cells of the Ilnd layer, a light stripe in the middle of III, and massive dark lower

layers." The light in is given by Economo as characteristic of his proper temporal

area TE and the heavy v as characteristic of TH whose (p. 125) "V also discloses

a very distinct horizontal cell-band consisting of some few rows of very compactly

arranged pyramidal elements. This is the structure which we have found typical

for all formations in the vicinity of the olfactory brain." In brain HI the cortex of

the basal temporal surface shows these changes in layer v on the medial side and

a lighter in and v where it approaches the middle temporal convolution. We can see

no reason to distinguish a separate area TF over the fusiform gyrus.

There remains the upper surface of the temporal lobe, on which Brodmann located

the koniocortex, although he doubted (1914, p. 236) its connection with hearing,

because he could not see it in the brains of lower primates. There is general agree-

ment now that this is the auditory sensory cortex. Economo (p. 116) describes this

cortex as follows: "This area TC is characterized by the smallness of the majority

of its cells ... by the thickness of the true granule layers, as well as by the narrow

perpendicular arrangement of its granule elements in fine narrow striae which we
have chosen to call rain-shower formation. The cortex is about 3.0 mm. thick, a
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little too thick for koniocortex. Other peculiarities, however, such as the pallor of

layer v characterize this area sufficiently as koniocortex." (p. 118) "It is strange

that the area TC does not form a completely closed territory of its own as, for

instance, the area striata does, but that frequent bands and islets of the surrounding

area TB reach over its boundaries far into its territory; many of these bands show

all degrees of transition from the granular structure of TB to the granulous struc-

ture of TC." This description was confirmed by the examination with Horn
of a number of brains.

Around and amongst the patches of koniocortex is a zone of parakoniocortex,

characterized as always by unusually large pyramids of iiic. This parakoniocortex

extends outward on the lateral surface of the superior temporal gyrus to a variable

extent. Medial to the auditory cortex is a narrow zone whose cells are, to quote

Economo, "strikingly irregular, as already noted in other opercular formations . . .

This cortex may be considered either as a less well differentiated granulous, but

cell-poor type, or else as a part of the cortex whose development has lagged behind."

In either case we see no reason to distinguish it, with Economo, as a separate

area TD.
The maps of the supratemporal plane given by Campbell, Brodmann, Economo

and Horn (1930), Kakeshita (1925) (see Fig. 107), Blinkow (1935), and Marinesco

and Goldstein (1910), differ only in details; the general plan is agreed, and the

examination of brain HI adds nothing new. The infinite myeloarchitectonic parcel-

lation of this region by Eduard Beck (1928) leaves us completely cold.

Toward the tip of the temporal lobe the fourth layer becomes thinner, the second

layer becomes bunchy, the columns less distinct and the fifth layer denser. Over

the tip, the cortex is quite thick. But these changes, as we saw, are very gradual

and become well marked only on the medial surface as the allocortex is approached.

In general we may say that the cortex of the temporal lobe, as a whole, differs

only in minute ways from that of the other lobes. It has a koniocortical area, a

parakonicortical zone about it, and juxtallocortical zones near the allocortex. For

the rest we can distinguish only a vague territory (see Plate VI) over the anterior

half of the middle temporal gyrus which has characteristics, however slight, which

enable it, in its extreme form, to be recognized, namely the thin and relatively

empty in together with a relatively thick v + vi.

We have already noted the zone posterior to this proper temporal cortex which

Economo calls PH and Blinkow RTPO. It may be a part of the band, lying all

around the occipital pole, to which Stankewitsch and Schewchenko (1935) called

attention. The occipital cortex they characterized as follows: "Thinner and denser

cortex with wide and coarse radial striation; considerable size of cells in IIP; thin

compact IV layer; pale small-celled V, sharply delimited from VI, which appears

as a dark distinct band due to its dense and large-sized cells and sharp limit with

the white matter." This is a fairly good description of Brodmann's 18 (Economo's

OB), which is a parakoniocortical zone immediately adjacent to the striate cortex.

As one passes anteriorly, however, the cortex loses these characteristics gradually

to form a vague zone which is called by Brodmann 19 and by Economo OA. Of

this zone (OA) Economo says (p. 98), "The broader external area, which resembles

the parietal cortex in many respects, lies all along the posterior border of the parietal
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lobe." Of OB, Economo says (p. 100): "the border against the latter (OA) generally

cannot be drawn very precisely." If anything, this is an understatement.

Economo describes OA in detail thus: "At the boundary towards lamina IV
one sees rarely single examples of larger pyramidal cells, here and there sporadically

Fig. 107. Kakeshita's map of the supratemporal planes of the same brain. Acoustic konio-

cortex represented by dashes.

even very large pyramidal cells, but these are so few that they make up no actual

substratum; so that there is no IIIc in fact." There is, as everywhere else, a size

gradient in III, the cells near IV being largest, yet they are smaller than the cor-

responding cells in the parakoniocortex or near the parieto-occipital fissure at the
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interhemispheric margin. Economo then remarks (p. 100), "The great pallor of V
in the occipital lobe is one of its characteristic features, as compared with the

structure of the inferior parietal lobe [but not of the superior parietal lobe] and the

cytoarchitectonic limits of the parietal and occipital lobe can be determined on this

basis." This is not true for brain HI; V fills gradually and in patchy fashion as one

goes forward from the striate margin.

Economo 's discussions abound with statements like these: "This picture of OA
is not everywhere precisely the same." "Nevertheless the structure of OA varies

from gyrus to gyrus." Precisely. And the differences are minimal in any case. As
Bianchi (1940, p. 371) states: "Examining the series of characters of the cellular

architecture of the two areas [OA and PE of Economo] it is easy to see how some

of them are so little typical that they are unable to be a precise guide for the recog-

nition of one or the other of these areas. Such, for example, as the thickness of the

first layer, the slight difference in thickness and concentration of cells in the second

layer, the thickness of the third, and such things; characters so slightly different in

the two cases as to be easily within the limits of individual variation." (p. 422)

"The characteristics of the zone of transition are, therefore, represented by a

gradual transformation, within the limits of individual variation. . .
." (p. 420)

"In general the vast area of transition corresponds to the walls, the depth and

all the immediate vicinity of the superior part of the parieto-occipital fissure. The
gyrus intercuneatus is covered by it, at least in large part, since it is constituted by
the emergence of the deeper, superior part of the fissure itself." Bianchi could find

the large-celled patch called by Economo PEy in only a few brains and says

(p. 423) : "At any rate these large cells are not characteristic of this transitional

zone."

Gerhardt (1940), p. 390, says of this zone: "The delimitation against the occipital

structures, against Brodmann's area 19, is difficult because area 19 is not a homo-

geneous field but consists of several areas (Eduard Beck, 1934; Lungwitz, 1937).

Moreover, there are here, at the transition between the two zones, as always,

numerous limitrophic adaptations. I have put them with the parietal or occipital

region according to the preponderance of their characters and in addition in such

a way that the most important boundaries are chosen for the construction of the

boundaries between regions. Boundaries perpendicular to the plane of section are

surprisingly sharp and noticeable. Toward the occipital pole the cortex becomes

suddenly thinner as compared with the parietal field; IV and VI become more promi-

nent, the boundaries between the laminae become harder, the radii broader, coarser

IIP and IIP can be better distinguished; V 1 characterized by small pyramidal

cells vanishes or is quite weakly and thinly sketched; V contains smaller and

fewer nerve cells but shows in certain parts isolated very conspicuous large pyram-

idal cells, can be better separated into V 1 and V 2
; VII is thinner, more sharply set

off from the white matter." Lungwitz's (1937) subdivisions of area 19 are based

on myeloarchitecture. In spite of his elaborate table (pp. 632-33) we remain unim-

pressed.

Although on the outer surface of the hemisphere we have found it impossible to

determine where the occipital parakoniocortex ends, or where one may properly

speak of parietal or temporal cortex; on the medial surface one is greatly aided by
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the medial occipitoparietal fissure. One can see that the cortex anterior and posterior

to that fissure is different and, if one wishes to call the one parietal and the other

occipital, one can see that in general the cortex behind the fissure is thinner, has a

sharper division between i and ii, less distinction between ii and iiia, smaller cells

in iiic, and denser vi. Much in the same way, in the chimpanzee and macaque

monkey, if one defines OB as the cortex posterior to the lunate sulcus, and OA as

the cortex anterior thereto, it is possible to describe their differences; unfortunately

the human brain has rarely a sufficiently definite lunate sulcus to help us (see p.

52). Attempts such as those of M. Vogt (1929) to state the differences between the

occipital parakoniocortex and preoccipital cortex in words leave us unimpressed

since they deal with nuances which vary from place to place in both regions. Under

the circumstances we would rather resign ourselves to stating that there is a gradual

transformation of the cortex anterior to the striate area during which it gradually

loses the parakoniocortical characteristics. Our description of the preoccipital

variant (Chap. IV, p. 70, Plate IV) will have made it clear that the differences

between fepo and /Eps are slight indeed and that no sharp boundaries can be

shown. It is interesting to note that Betz (1881) stated that "the structure of the

lobulus quadratus (praecuneus internus) is the same as that of the parietal lobe."

On the medial surface the extent of the distinct parakoniocortical zone about

the striate area varies in width. Because of the impossibility of defining this zone

accurately, comparative measurements such as are given in the studies of Filimonoff

(1932) are futile as pointed out by Bonin, Garol, and McCulloch (1942). In brain

HI the parakoniocortex seems to end anteriorly in the depth of the calcarine fissure

and does not emerge on the upper lip anteriorly to the medial parieto-occipital

fissure. Around the anterior extremity of the calcarine fissure the cortex is thin,

badly formed, of nondescript character, impossible to assign to parietal, occipital,

or temporal lobe. Anteriorly this ill-defined region merges into the retrosplenial

formations.

The extent of the striate cortex is easy to determine and we have many maps at

our disposal. Its relationship to the calcarine fissure is constant (Fig. 108) but its

extent on the surface varies from brain to brain (Elliot Smith, 1904a; Campbell,

1905; Brodmann, 1903b, 1909, 1912; Economo, 1930a; and Filimonoff, 1932).

Attempts to divide it into subareas such as those of Ngowyang (1934a) seem frait-

less. Anteriorly, it extends in the bottom of the calcarine fissure roughly as far as

the point where medial parieto-occipital fissure and calcarine fissure meet (Fili-

monoff point <p", see Chap. Ill, p. 26) but covers generally more of the ventral than

of the dorsal lip. In the opposite direction, it covers the occipital pole. Its extent

on the lateral aspect of the hemisphere varies. Its relations to the "sulcus lunatus"

were discussed in chapter III. Wen (1933) distinguished between an anthropine

and pithecoid type. The surface covered by the striate area was given by Economo

as about 24.5 cm. 2 From Filimonoff's data, Bonin, Garol and McCulloch computed

an area of 21.1 ± 0.3 cm. 2
, for the human brain. Popoff (1927) gives 45 cm. 2 for one,

and 20.4 cm. 2 for another brain and states that Brodmann found in seven hemi-

spheres an extent between 44 and 29.5 cm. 2 M. Rose (1935) gives for the volume

of the striate area 4.9 cm.3 or 3.2 per cent of the whole cortex.

On the posterior part of the cingulate gyrus is an extension of eulaminate cortex
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of the parietal region. Economo divides it into LCi and LC2 but admits that they

are sufficiently alike to be described together (p. 135):

The area LCi which borders on the region of the superior parietal lobule at the level of the

sulcus subparietalis, may be distinguished from the latter [LC2] by the somewhat slighter

development of III, as well as by the lack of the fine, radiate striation which characterizes

the parietal cortex.

The striation is visible when cut in the proper plane (p. 136):

IV. . .shows the characteristic division of the parietal lobe, which is a special feature of the
superior parietal lobule, i.e., an upper, looser IVa stratum and lower, denser IVb consisting

of compactly placed pyramidal cells. ... V. . .is divided, although not very clearly, into a
Va and Vb substratum. ... In the dorsal region [LCi] the larger pyramidal cells are found
compactly placed directly beneath IV.

Fig. 108. Maps of the striate area on the medial surfaces of the two hemispheres of the same
brain (redrawn after Filimonoff). Striate area cross-hatched; parakoniocortex dotted.

The differences from the eulaminate superior parietal cortex are so tenuous that

we see no cytoarchitectonic reason to emphasize them. We also agree with M.
Rose (1927) that there is no good reason to reckon the posterior limbic region with

the anterior limbic and retrosplenial formations. The posterior limbic area is

typical parietal cortex as Betz (1881) already remarked. The elaborate subdivisions

of Gerhardt (1940) we are unable to confirm.

The anterior limbic region is covered by an agranular cortex which, because of

its peculiar structure has been called mesocortex. It has been studied in detail and

minutely subdivided, especially near the sulcus corporis callosi, by M. Rose (1927)

to no purpose so far as we can see. Around it and its subcallosal allocortical ex-

tension, called by Economo FM, there is a variable juxtallocortical zone (Economo's

FL, FCL, FDL, FEL, FHL) to which we have, referred. It extends along the cingu-

late sulcus as far back as the agranular precentral cortex.
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We have discussed the inferior wall of the lateral fissure (see p. 224). On its superior

wall the cortex is eulaminate and resembles that of the inferior parietal lobule as

far forward as the lower end of the central sulcus; this cortex extends over the

posterior part of the island of Reil. About this region, Economo states (p. 91),

"The posterior part of the island . . . recalls the small-celled, compact structure of

the parietal type, with its characteristically broad granule layers." We agree.

Since identical cortex covers also a large part of the superior temporal gyrus there

seems no reason to make of it a separate area. Campbell (1905) reckoned it with

his type III temporal cortex (our Fig. 104). Finer cytological studies seem of little

help. Cajal (1911) found his characteristic auditory cells in the insular cortex.

Ngowyang (1932a), Crinis (1933), andBrockhaus (1940) have also described peculiar

"forked cells" (Gabelzelleri) . Before any conclusion can be drawn about the insular

cortex, the effects of post mortem autolysis must be ruled out.

Anteriorly the simple agranular cortex of the convexity may extend on to the

operculum whose anterior portion is dysgranular and resembles the cortex of the

anterior half of the island. According to Economo this is IA and is characterized

by "the density and the strikingly fine cell formation of the Vth layer, often so

marked as to appear even to the naked eye as a blue band in the stained prepara-

tion." The cortex of the island has been analyzed in detail by Brockhaus (1940).

There is clearly an anterior agranular and a posterior eulaminate part (Fig. 109)

divided by the sulcus centralis insulae (see Chap. Ill, p. 33). Its only unity lies

in the fact that it is underlain by the claustrum, which Brodmann (1914) calls

its Vic.

The limen insulae is covered by allocortex (Fig. 109). Surrounding this focus,

juxtallocortical zones can be recognized over the orbital operculum, the posterior

orbital surface, the inner surface of the temporal pole, as well as over the island

anterior to the sulcus centralis insulae and up onto the frontal operculum almost

to the lip of the lateral fissure. Throughout this zone the layer iv becomes more at-

tenuated and the layer v denser and better filled with large cells, as one approaches

the limen insulae. This zone bears various designations in Economo's text

—

FH,
FHL, FL, FG, FI, FIH, IA, TGa .

It seems unprofitable to divide the isocortex into the five fundamental types of

Economo (1926c, see our Fig. 110). The koniocortex (type 5) is, of course, clearly

enough defined. It always covers areas of primary sensory radiation. The agranular

cortex (type 1) varies considerably in structure from FAy to LA and probably also

in function. Nevertheless, it contains the area FA which, when stimulated elec-

trically, gives movements of various kinds. But when one comes to Economo's

types 2, 3, and 4 one is on much more dubious ground. Type 4 seems to have been

separated because of its thinness, but the frontal and occipital regions of type 4

(see his Fig. 9, a and b, 1929a) are very different otherwise; the frontal type 4 is

juxtallocortical and characterized by a heavy v, whereas the occipital type 4 has a

light v and big cells in iiic. The occipital type 4 resembles, in fact, closely the post-

central part of type 2 and is parakoniocortex in our sense. The differences between

Economo's types 2 and 3 are still more tenuous.

The same remarks might be made concerning the fundamental myeloarchitectural

variants of O. Vogt. They seem to have no more intimate association with any func-



Fig. 109. Maps of the island of Reil. A—after Brodmann: J. ant.—anterior area of island,

J. post.—posterior area. B—after Brockhaus: aio, aic—allocortex; all mi labels indicate

mesocortex.
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tional distinctions which might be related to internal cortical structure. Moreover,

the system used is illogical and inconsistent. For example, 0. Vogt (1910, Fig. 2)

gives as fundamental variations of the myeloarchitectural pattern 4 types—bistriate,

unistriate, unitostriate and astriate (Fig. 111). In discussing the frontal lobe, how-

ever, he lists six fundamental regions: I, Regio unistriata euradiata tenuifibrosa;

II, Regio unistriata infraradiata; III, Regio unistriata euradiata grossofibrosa;

Hlb
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Fig. 110. The five fundamental types of the isocortex according to Economo.

IV, Regio propeunistriata; V, Regio bistriata; VI, Regio unitostriata. The astriate

type appears only as a minor subregion under III.

The distribution of all these types, however, serves to emphasize a point to which

we have repeatedly recurred, namely, the practical impossibility of distinguishing

vast regions of the frontal, inferior parietal, parieto-occipital, occipitotemporal,

basal temporal, and superior temporal regions. If we take once more our photo-

graphs of these regions without identifying marks and shuffle them, we are still

unable to sort them by region. We are unable to distinguish surely a photograph
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of FDm from one of PG or TA , a photograph of PC from one of PEy, a photograph

of FDT from one of OA, a photograph of PF fom one of TF, etc . It is easyo take

the photographs, place them side by side, and describe differences between any two

Fig. 111. The four fundamental types of isocortex according to Vogt (see p. 231).

of them, just as it is easy to take two photographs of the inferior parietal lobule

200^ apart and describe differences between them, but that these differences are

either constant or important we do not believe. For this reason we reject the ex-
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cessive parcellations of the Vogt, Economo, and Filimonoff schools as misleading

and insignificant. As one reads through their prolix descriptions, and has the mis-

fortune to remember what he has read, one is either repeatedly shocked by contra-

dictions or suffers from what the French psychiatrists call le phenomene du dejd-vu,

description after description sounding merely like paraphrases of the preceding one.

The structural peculiarities which we have been able consistently to distinguish,

and which seem to us possibly important, are summarized in the frontispiece to

which reference was made at the beginning of this chapter.



Chapter VII: Intercortical Connections

During the process of differentiation of these more specific tracts they retain collateral

connections along the entire course, so that they continue to perforin integrative functions

similar to those of the less specialized ancestral pattern.

C. Judson Herrick (1948)

Cortical function depends not only on the intrinsic structure, but also on cortico-

cortical and extrinsic connections of the various areas. Nervous activity is the trans-

mission of signals from one set of neurons to other sets. These signals are trains of

impulses varying in frequency, in regularity, and in their distribution over the avail-

able pathways. The exact values of these parameters are, so we assume, a function

of the "cytoarchitecture" of the set of neurons emitting signals, the set receiving any
train of impulses is determined by the course of the pathways and the effect which

the signals have on the receiver set is a function of its cytoarchitecture.

While we do not subscribe to Meynert's Elementarorgane as they appear to have

been originally conceived, there is yet ample justification to look upon the cerebral

cortex as a multitude of sets of neurons distinguishable by their connections and/or

by their architecture. To treat cortical areas as separate entities is almost unavoid-

able if we wish to analyze the connections which tie them together, yet the develop-

ment of modern neurophysiology has revealed that such an enormous extent of

cortex is involved in almost any cortical functioning as to deprive an analysis on

this basis of any correlation with functional data.

Neurology, urged by the important task to define the sedes morbi to plan the

proper therapeutic measures, is apt to forget that "mind" or, for the matter of that,

"soul" is merely the totality of all judgments or statements and that, linguistically

as well as epistemologically, such judgments consist of relations between words or

concepts. The neurological correlate of the mind can, therefore, not be this or that

center but only the pattern of the connections between these centers. When Wern-

icke (1906) defined mental diseases as diseases of the association system he was

right, in a very modern sense, although he worked out details in a manner that ap-

pears to us decidedly old-fashioned.

A critical appraisal of what we know about the corticocortical (association)

fibers should be included in any monograph on the isocortex. This is all the more

timely because Dusser de Barenne and McCulloch's method of physiological neu-

ronography has furnished experimental evidence not yet checked against the earlier

anatomical and pathological observations.

Scientific interest in the white matter can be traced back as far as Descartes.

The plates illustrating his essay, UHomme, show schematic pathways from the

"conarium" (pineal gland) to certain parts of the brain, and Descartes refers to

them as tubes (tuyaux). Vieussens (cited after Soury, 1899), whose name was con-

nected until quite recently with the term centrum ovale, stated that "the white

substance consists of innumerable fibrillae, connected in several bundles, as can be

clearly seen when they are boiled in oil." However, failure to appreciate the active

234
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role of the cerebral cortex led Vieussens and the other anatomists of the century

of enlightment to regard the white matter as the seat of some faculty or other, and

not as a structure relating centers with each other.

It is surprising that, in spite of their obvious inability to understand, even in the

most general way, the function of the centrum ovale, much information was added

by anatomists who lived during the Napoleonic period. Among them Reil (see

Neuburger, 1913), who mentions Franz Joseph Gall with admiration, showed by

careful and methodical gross dissections several of the fiber tracts of the white

matter. Burdach (1822), in his famous book on the structure and the life of the brain,

frequently refers in his text to Reil's plates.

The modern period, made possible by Gall but ushered in by Baillarger's (1840)

demonstration that white and gray matter are in intimate contact with each other,

began seriously with Meynert (1884, 1892). Yet the number of workers trying to

disentangle the crisscross of fibers in the centrum ovale has never been very large.

The lack of suitable methods must have discouraged many students. Macroscopic

dissection, as it was used by Reil and by Burdach, was resorted to again and again,

in spite of the obvious fact that its possibilities must have been exhausted long ago.

Even in the twentieth century Elze (1929), Hultkrantz (1929), and Klingler (1935)

still took up forceps and orangewood stick. A better demonstration of the associa-

tion fibers was tried by "automatic internal dissection" (Rosett, 1933), but this

method appears more suited for the study of the short U fibers than for the deeper

long association tracts. The microscopical study of pathological material, of im-

mature brains (Niessl-Mayendorf, 1919), of nonhuman mammals (Redlich, 1903

and 1905), as well as of experiments on primates (Mettler, 1935), was pursued. The

schematic drawings given by such men as Monakow (1905) and Dejerine (1895)

have ever since gone from textbook to textbook without serious alterations or im-

provements.

The method of physiological neuronography offered for the first time a check on

the anatomist's work by observing—under controlled conditions—the behavior

of the living brain. Applicable in principle to the human brain during neurosurgical

operations, it has so far been systematically employed only in experiments on the

cat (Garol, 1942) and on two primates, the macaque (McCulloch, 1944b; Bonin

and Bailey, 1947) and the chimpanzee (Bailey, Bonin, and McCulloch, 1950). The

patterns in these two primates are remarkably similar, hence it appears permissible

to draw tentative conclusions about the human brain—verifiable by the neuro-

surgeon. What follows is essentially a summary of the human association systems,

as they were anatomically described, discussed in the light of these experimental

findings on nonhuman primates.

Many authors, such as Schnopfhagen (1890) and Rosett (1933) expressed with

some emphasis that association fibers end in the valleys or walls but not on the

crests of the gyri. Strychninizations, however, have shown time and again that

association fibers certainly emerge from that part of the cortex which is on the free

surface of the hemisphere. The more recent experiments by Chusid, Sugar, and

French (1948) have made it equally clear, of course, that fibers also arise from the

parts of the cortex buried within the cerebral folds. The view that the valley of a

sulcus has a preponderantly receptive function and the crest of a gyrus a prepon-
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derantly effective one was put forward on cytoarchitectural grounds by Economo
(1926a); a few years later Bok (1929) showed the fallacy of his argument. For, while

the inner main layer is indeed thinner in a valley than on a crest, as Economo ob-

served, the volume of a cortical unit is the same in both locations.

The detailed descriptions of the association bundles vary little from author to

author. We follow mainly Monakow (1905) and Dejerine (1895), who appear to

have been the last to write a "classical" account on the basis of personal observa-

tions.

Perhaps the least disputed is the uncinate tract which connects the orbital surface

of the frontal lobe with the temporal pole. Schnopfhagen (1890), after gross dis-

section, stated that it arose from the internal and external basal frontal gyrus,

"but not from that part which has been described as the basal part of the middle

frontal gyrus." The bundle runs, according to Schnopfhagen and other authors,

partly through the anterobasal part of the external capsule, and partly through the

adjacent corner of the claustrum which it breaks up into cell islands. Landau (1919)

states that it also runs through the capsula extrema. Monakow (1905) gives the

Hakenwindung (Temporal) as the other end-station of the uncinate bundle. The
term Hakenwindung is nowhere explained. Did Monakow mean the uncus? Anton

and Zingerle (1902) deduced from pathological cases (destruction of the orbital

gyrus) that many of the fibers of the uncinate bundle end in the lower part of the in-

sula. It is impossible to decide whether olfactory fibers (of the lateral root, toward

limen insulae and uncus) were involved or not.

The arcuate fasciculus consists of fine fibers which curve around the dorsal and

posterior margin of the insula. They are separated from the uncinate fascicle by

commissural (callosal?) fibers (Monakow, Schnopfhagen). Rosett devoted con-

siderable labor to its investigation. He found a bundle between frontal and temporal

cortex, of varying thickness, best developed in the temporoparietal region.

Physiological neuronography presents evidence for both uncinate and arcuate

bundles. That for the uncinate fascicle is particularly strong; orbital cortex and

temporal pole are connected with each other in both macaque and chimpanzee.

The firing between areas 47 and 38 in the macaque (McCulloch, 1944b) and between

FF and TG in the chimpanzee (Bailey, Bonin, and McCulloch, 1950) has been ob-

served in several experiments. Whether the firing of the inferior frontal gyrus and

the parietal operculum by strychninization of the first temporal convolution, that of

the inferior frontal gyrus from the second and of the middle frontal gyrus from the

inferior temporal gyrus (Petr, Holden, and Jirout, 1949) is due to conductions in

the arcuate or uncinate fascicle cannot be decided at present; that the last, if not

the latter two, observations should be ascribed to the arcuate fascicle seems more

plausible. The firing of the middle temporal gyrus from the inferior parietal lobule

as well as the firings of the inferior parietal lobule from the inferior frontal gyrus

3an be taken as further evidence for "arcuate" fibers.

A fronto-occipital bundle, running in the angle between corpus callosum and ven-

tricular ependyma, was described in a case of agenesis of the corpus callosum by

Dnufrowicz (1887) who worked in Forel's laboratory, by Kaufmann (1887) and

ubsequently by many other authors. The presence of long fibers in the stratum

subcallosum was confirmed by Muratoff (1893) in dogs by means of Marchi prepara-
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tions. But whether the impressive bundle of fibers present in malformed human
brains is homologous to the sparse and slender band of fibers seen in normal brains

or whether it is a heterotopic bundle has not yet been definitely decided. Mingazzini

(1922), after weighing the pros and cons, ended with the remark that "we are still

far from having reached a satisfactory result."

The question of the subcallosal fasciculus became further complicated when
Dejerine (1895) described an occipitofrontal fasciculus and identified it with the

bundle which Onufrowicz found in malformed brains. Monakow expressed his

doubts about this identification. Niessl-Mayendorf (1919) went even further and

denied altogether the existence of long fronto-occipital (or occipitofrontal) fibers,

calling Dejerine's bundle "merely an arbitrary pooling of some fragments of differ-

ent tracts." Mettler (1935) also does not consider Dejerine's bundle identical with

that of Forel-Onufrowicz, but admits the possibility of slight intermingling. Sev-

eral authors, among them Wernicke, considered the subcallosal bundle as an asso-

ciation system of the caudate nucleus. This enigmatic bundle has gained in interest

since McLardy (1950) showed that it had been severed in cases of delayed death

after frontal lobotomy.

Strychninizations merely show, of course, the presence of fibers, their begilffiings

and their endings but not their courses. Thus far the involved questions about the

subcallosal fibers just sketched have been brought no nearer their solution. Ex-

periments by Chusid, Sugar, and French (1948), however, show beyond any doubt

the existence of long association fibers between frontal and occipital cortex and

should definitely rule out the opinion of Niessl-Mayendorf (1919).

The cingulum is readily observed in frontal sections of the hemisphere as a bundle

of fibers cut in cross section just above the corpus callosum and just below the cor-

tex of the cingulate gyrus. Beevor (1890) divided the cingulum of the marmoset

into a horizontal part, just dorsad to the corpus callosum, an anterior part sweep-

ing around the genu of the corpus callosum and a posterior part extending beyond

the splenium. The difficulties ever since have been to determine the exact origin

and/or destination of the cingular fibers in the anterior and posterior parts and to

unveil the composition of the horizontal part, whether composed of association

fibers or of radiation fibers; whether, if the former were true, composed of shorter

interlaced fibers or of long fibers. Ramdn y Cajal (1911, p. 810), after studying the

brains of small mammals, stated that the anterior part of the cingulum descended

not to the olfactory region but into the corona radiata, that the cingulum, therefore,

is a projection pathway (une voie de projection), that the posterior part ends in the

subiculum and cornu ammonis and that it contains, apart from shorter fibers, also

very long ones (une voie fort longue) . In support of these views could be cited Flechsig

(1896) who depicted fibers from the internal capsule going far frontad and then

turning sharply mediad and occipitad to reach the cingulum (see his Fig. 9, fiber jj

and 5). Valkenburg's (1908) statement that the fibers in the cingulum run fronto-

caudally in the lateral portion of the horizontal part of the cingulum gives additional

support. Recently Krieg (19-16) stated that, in the rat, fibers from the anterior

thalamic nuclei "form the ventral end of the cingulum." However, all authors,

including Cajal, agree that the cingulum contains also association fibers. Most
older authors, probably under the spell of Broca's conception of the grand lobe
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limbique, thought of the fibers of the cingulum as rounding the splenium of the

corpus callosum to reach the subiculum or even the cornu ammonis. Only Elze

(1929) states that the precuneus receives the greatest part of the cingulum and adds

that the cuneus is almost completely devoid of cingular fibers. That the firing within

the "cingular belt" (Bailey et at., 1944) occurs through fibers of the cingulum has

not been proven. The observations made thus far would support Elze's statement

of fibers from cingulum to precuneus (LC fires OA !). Firing into the subiculum and

the cornu ammonis has thus far been observed only from the retrosplenial region

(Pribram, Lennox, and Dunsmore, 1950).

The inferior longitudinal fasciculus, known ever since Burdach dissected it out,

has been interpreted sometimes (e.g., Rosett) as an association bundle, and some-

times (e.g., Probst, 1901, or Niessl-Mayendorf, 1919) as but another—rather super-

fluous—name for the optic radiation. Most authors, however, such as Monakow,
Redlich (1905), Archambault (1906), Valkenburg (1908), and Davis (1921) con-

sidered the inferior longitudinal bundle as composed of both association and radia-

tion fibers. This problem is intimately connected with that of the strata sagittalia,

found in the lateral wall of the posterior horn of the lateral ventricle (see Bonin,

GafoT, and McCulloch, 1942). Whether in these strata optic radiation and associa-

tion bundle are clearly separated cannot be decided by physiological neuronography

and appears to be at present of purely academic interest in any case. Physiological

neuronography proves, in any event, that there are association fibers which run in

the direction of the inferior longitudinal bundle and shows that some of these fibers

are, contrary to the opinion of Rosett, fairly long, although never as long as the

whole bundle. These authors, who assumed association fibers in the inferior longi-

tudinal fasciculus, generally looked upon them as connections between the visual

and acoustic parts of the cortex. There is no proof for that, but there is good reason

to believe that the connections of the temporal with the optic sector subserve some

of the higher visual functions (see Potzl, 1928).

Some dorsoventral bundles have been described in the occipital lobe: the fasciculus

transversus lobi lingualis of Vialet (1893), the stratum transversum cunei of Sachs

(1892), and the fasciculus occipitalis lateralis verlicalis of Wernicke (1881). The last

one was first demonstrated in the brain of the macaque and later identified in the

human brain as the stratum verticale convexitatis by Sachs (1892). All three of them

have been verified by strychninization (Bonin, Garol, and McCulloch, 1942).

Apart from the systems thus far discussed, physiological neuronography has

demonstrated further connections (Fig. 112). The vertical fibers under both occipital

and parietal lobe appear to be richer than could be expected from purely anatomical

studies. Some of them should undoubtedly be considered to be the temporoparietal

fascicle of Monakow (1905). The connections between first and second motor area

found in the macaque by French, Sugar, and Chusid (1948) have never been dem-

onstrated by anatomists. The rich corticocortical afferents to the first motor area,

from postcentral, parietal, and frontal (or premotor?) region might have been sus-

pected from the varying topography of lesions which caused apraxia. Yet Monakow's

centroparietal fascicle (see also Katzenstein, 1930) was the only one discovered by

anatomists.

Commissural fibers between the isocortex of the two hemispheres course through
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the corpus callosum or the anterior commissure. The latter provides a pathway for

fibers connecting the two temporal lobes which appear to be restricted, if the

macaque and chimpanzee represent indeed small-scale models of man, to the second

temporal gyrus. The corpus callosum provides a pathway for all other fibers. We
have very little direct information about the origin and the distribution of the com-

missural fibers in man. Ramon y Cajal (1911) and Villaverde (1932), who studied

the brains of bats and rabbits respectively, considered the majority of callosal

fibers as collaterals of those axons which form the systems of projection. Pines and
Maimun (1939), who were the last to investigate the origin of the callosal fibers,

found, after lesions of one hemisphere, retrograde degeneration of scattered cells

in the third, fifth, and sixth layers. These were always found in homotopic fields;

the question of heterotopic fields was left undecided. Lorente de N6 (1949) states

that the fibers end in the inner stripe of Baillarger and the stripe of Kaes-Bechterew.

Ariens Kappers' (1947, p. 315) statement that the callosal fibers end principally

in the second and third layer is hardly borne out by Lorente de N6's figures. That

the commissural fibers are not equally densely distributed over the whole isocor-

tex is obvious. The lack of such fibers for most of the first and third temporal con-

volutions has just been mentioned. From our knowledge of the brain of the macaque
and chimpanzee, one would infer that the area striata (Bonin, Garol, and McCulloch,

1942), the fields for the extremities in the sensory and motor cortex, and fairly large

parts of the frontal region are also without callosal connections (Bonin and Bailey,

1947; Bailey, Bonin, and McCulloch, 1950). The fusion of the two halves of the

visual field, in spite of the absence of callosal fibers, is remarkable and suggests a

very close "collaboration" between striate and at least parastriate areas. It should

be remembered, however, that Gengerelli (1948) found Wertheimer's <p phenomenon
to occur more readily within one-half of the visual field than across the midline.

Sakurai (1939) has given the area of cross section of the corpus callosum in forty-

one Japanese. His mean, with the standard error added by computing the neces-

sary statistics from his data, is 6.1 ± 0.2 cm. 2 Schepers (1938) gives a mean sectional

area of 6.8 ± 0.5 cm.2 for Negroes of South Africa. If the average diameter of the

fibers is assumed to be 10 n, and the fibers are assumed to be densely packed, one

arrives at an estimate of 1.21 x 10 6 or 1.3 x 10 6 fibers in the corpus callosum. The
anterior commissure will add no more than a small percentage to this figure. The
fiber diameter may be smaller, but the fibers are not densely packed since there is

neuroglia and some mesenchymal tissue between them. It may be safe to assume

that the human brain contains about 10 6 commissural fibers. This should be com-

pared with Economo's estimate of 10 10 cells in the human isocortex.

Ariens Kappers (1926) and his followers computed a "callosal index" from its

height and length. This index is correlated, of course, with the general shape of the

brain (see p. 59). It varies between 380 (Northern Chinese of Bork-Feltkamp (1930)

and 280 (South African Negroes of Schepers, 1938). More interesting is the shape

of the corpus callosum. It is far from being of uniform thickness as some textbooks

and atlases like to portray it but is quite slim in its posterior third. It ends, however,

in a very massive splenium. This peculiar shape of the human corpus callosum may
be due to the scarcity of callosal fibers between the two pre- and postcentral areas.

The origin and termination of the corticocortical fibers in the cortex are not
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certainly known. Ariens Kappers, Huber, and Crosby (1936) state (p. 1571) that,

"the higher associative and receptive character of the supragranular layers is indi-

cated by the fact that the corpus callosum fibers terminate in the supragranular

layers, although, as has been seen, they arise from the infragranular layers." We
do not quite follow this argument which seems to involve as much the infragranular

as the supragranular layers. At any rate, it seems too dogmatic. This thesis had

been elaborated by van't Hoog (1920) who concluded that ii + Hi + iv are recep-

tive and associational and v + vi are efferent and commissural. Lorente de N6
(1949) found, in the mouse, that the callosal fibers arose from the star pyramids of

iiic as well as from the short pyramids of v and the upper stratum of layer vi. He
stated also that (p. 301), "the association fibers give off collaterals in the deep layers,

especially VI; but their main territory of distribution is in the layers I to IV, and

especially II and III."

The experimental approach to this problem of the origin and termination of the

callosal fibers has not been very fruitful (deVries, 1912; Valkenburg, 1913; Pines

and Maimun, 1939). We have repeatedly transected the corpus callosum in adult

macaque monkeys without finding sufficiently evident degenerations to justify

definite conclusions; perhaps experiments on newborn animals may give clearer

results.

In an attempt to evaluate the functional role of the association fibers, it must not

be forgotten that they are not the only means for conducting signals from one part

of the cortex to another. In physiological neuronography, Dial narcosis suppresses

the transmitter system of the intracortical feltwork, and makes the signals coming

in over the association fibers stand out more clearly, thus creating quite artificial

conditions. Physiological neuronography, as employed heretofore, tells, therefore,

only a part of the story (Rosenblueth and Cannon, 1942).

In Figure 1 12 we have drawn upon a schematic human brain some of the cortico-

cortical connections which have been demonstrated in the brain of the chimpanzee

by the method of physiological neuronography. For other details see Bailey, Bonin,

and McCulloch (1950).



Chapter VIII: Afferent and Efferent Connections

The normal functions of a gray mass . . . depend first and foremost on the afferent and

efferent long pathways.

C. AND 0. Vogt (1928)

A. AFFERENT CONNECTIONS

The cerebral cortex receives afferents or "radiations" from diencephalic nuclei.

AfTerents from other parts of the brain, such as the "direct lemniscus" or the rubro-

cortical tract (Monakow, 1905) have not been confirmed. Indeed, Monakow him-

self considered the rubrocortical tract which he described as "not quite certain."

Recently, however, Moruzzi (1949) found that the electrical activity of the cortex

is influenced by stimuli applied to the reticular substance of the brain stem. But
whether direct tracts exist has not been established. Most of the corticopetal fibers

arise in the dorsal thalamus, but the geniculate bodies ("metathalamus" of some

authors) certainly have to be included and the zona incerta of the subthalamus,

as well as some nuclei of the hypothalamus, may also send afferents to the cortex.

Anatomical (see Rose and Woolsey, 1949) and experimental (see Jasper, 1949) work

makes it clear that we have to distinguish between at least three types of afferent

impulses. The first two are "specific," i.e., they arrive from a specific thalamic

nucleus and go to a specific region of the cortex. They show, moreover, a subordinate

spatial organization. One class of specific impulses arises from extrinsic thalamic

nuclei (Rose and Woolsey, 1949), i.e., from nuclei which receive impulses from

"lower" centers in the cord, in the brainstem or in the retina. A second class of

specific impulses arises from intrinsic thalamic nuclei, i.e., from nuclei thought to

receive messages from the extrinsic thalamic nuclei but perhaps also from the stri-

ate body. These two types of afferents go to different parts of the cortex. A third

class of impulses arrives over the "diffuse" system or, as Lorente de No (1949)

called it, the nonspecific afferents. These fibers, still insufficiently studied in man and

other primates reach by way of collaterals fairly large regions of the cortex.

Specific and unspecific afferents of thalamic origin were described histologically

by Lorente de No (1949) in the mouse (Fig. 113). The former run a wavy, oblique

course in the inner main layer to split up into telodendria within the outer stripe

of Baillarger, the latter enter the cortex within the radii to end by means of col-

laterals mainly in the sixth layer; anatomically these unspecific afferents of thalamic

origin have not been demonstrated in the primate cortex.

Most of our knowledge of these systems has been gained experimentally on ani-

mals. The scanty observations on human material fall into three classes: (1) It is

possible to trace the radiations from the extrinsic thalamic nuclei in immature brains

where they are myelinated earlier than those from the intrinsic nuclei. This myelo-

genetic method has been employed by Flechsig, Pfeifer and others. (2) The study

of retrograde degenerations which follow cortical lesions was begun by Monakow
(1895) and Dejerine (1901) but has not been very actively pursued since. The pit-
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falls inherent in the study of pathological material are indeed numerous. In vascular

insults or in porencephalic defects it is never certain beyond doubt that the pri-

mary lesion was strictly confined to the cortex or the white matter, nor can in cases

Fig. 113. Cortical afferents (from Lorente de N6). At left side a diagrammatic Nissl pic-

ture of parietal cortex of adult mouse stained after Nissl. Cell layers are marked with Roman
numerals. Except between IVb and Va there is no sharp boundary between layers. At the

center, bodies and dendrites of representative types of cells with descending axons; to avoid
complication of drawing, axons have not been included. At right the main types of cortical

afferent fibers. 1, pyramids of layer II; 2 and 3, pyramids of layer III; 4, large star pyramids;

5, star cells; 6, small star pyramids; 7, 8, 9, long deep pyramids; 10, short pyramids; 11, me-
dium pyramids; 12, 13, short pyramids of layer Via; 14, long spindles; 15, medium spindles;

16, short spindles; 17, deep star cells; a, b, specific thalamic afferents; c, d, unspecific or

pluriareal afferents; e, f, association fibers. Cells have been reproduced from two consecu-

tive sections through the brain of| an adult mouse, stained after Golgi-Cox, and the fibers

from section through brains of 11-day-old mice stained after Golgi. In examining this draw-
ing, it must be considered that cells of each type appear at the same level at more or less

regular intervals, so that dendrites of all cells form a dense plexus, articulated with fibrillar

plexuses such as that formed in layer IV and lower part of layer III by afferent fibers a and
b. It must be noted that dendrites of cells of each type are distributed only through special

zones of cortex, e.g., cells 5 have dendrites only in layer IV, cells 10 only in layer V, and cells

17 only in layer VI, while other cells like 14 have dendrites in all layers. Cells with dendrites

in several layers have a number of dendrites concentrated in one layer, e.g., the side branches
of shaft and basilar dendrites of cells 4 are located in layer IV, those of cells 7, 8, and 9 in

layer V, etc.

of Pick's disease the cortical defect be always precisely delimited. (3) Only quite

recently, the introduction of frontal lobotomy or leucotomy by Moniz (1936) made
it possible to examine now and then retrograde degeneration after well defined

surgical lesions in the frontal lobe of otherwise "normal" brains. However, these

lesions are usually made by section of the centrum ovale so that it is often uncertain
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which areas of the cortex have been disconnected (Meyer and McLardy, 1948).

Very few brains have been examined after removal of restricted portions of the

cerebral cortex (gyrectomy, topectomy) (Mettler, 1949).

The pattern of the specific thalamocortical radiation from the extrinsic nuclei

is fairly well known for the two geniculate bodies. The optic radiation emerges from

the lateral geniculate body, streams through Wernicke's field into the internal cap-

sule, curves around the "stalk" of the inferior horn of the lateral ventricle, then

spreads out into a thin lamella in the lateral wall of the posterior horn and ends in

the striate area, mostly on the medial aspect of the hemisphere. Pfeifer's myelo-

genetic studies (1925) form the basis of this description. The relation of the optic

radiation to the strata sagittalia and the inferior longitudinal fasciculus have been

a matter of much debate (see p. 238).

The topological correspondence of retina, lateral geniculate body and striate area

has been worked out experimentally in the macaque (see Marshall and Talbot,

1942) and is known from clinical observations (Brouwer, 1936; Holmes, 1918;

Chacko, 1948) to be the same in man, at least in broad outlines. Brouwer's figure

suggests a little larger representation of the macula in man than in the monkey.

The acoustic radiation goes from the medial geniculate body into the posterior

part of the internal capsule, then swings lateral and a little ventral to clear the

lentiform nucleus and moves finally dorsal into the supratemporal plane. Its close

relation to the fibers of the anterior commissure and to the inferior insular sulcus

has been demonstrated by Pfeifer (1936). On the basis of his myelogenetical stud-

ies, Flechsig (1908) emphasized that the acoustic radiation ends preponderantly

in the medial two-thirds of the supratemporal convolution. There is a point-to-point

correspondence between cochlea, thalamic nucleus, and cortical area in the monkey,

probably also in man, with the result that the low tones are conveyed to the latero-

anterior, and the high tones to the medioposterior part of Heschl's gyrus. Nothing is

known in man about a second acoustic area. The statement of Monakow that there

are two acoustic radiations, one arising in the external geniculate body, the other

in the posterior quadrigeminal body, was refuted by Henschen (1917) and by Pfeifer

(1936).

The somatic radiation forms part of the radiation of the ventral thalamic nucleus.

The afferent fiber systems to this nucleus will, therefore, have to be discussed first.

Following Walker (1938), Papez, Bull, and Stotler (1940), and Hassler (1949b),

we include among them the spinothalamic tract, the medial lemniscus, the two

trigeminal lemnisci, the brachium conjunctivum and the pallidothalamic fibers

(Fig. 114). Both spinothalamic tract and medial lemniscus end in the posterior part

of the ventral nucleus of the thalamus. The spinothalamic ti'act could be studied in

a few cases of cordotomy by the Marchi method (Foerster and Gagel, 1932; Walker,

1940). Walker felt that no statement could be made regarding the topical ending of

the tract. In the monkey, Walker (1938) had found that the fibers from the leg end

near the external medullary lamina, those from the arm in an intermediate region

and those from the spinal nucleus of the trigeminal nerve in the medially located

arcuate nucleus (ventralis posteromedialis).

The medial lemniscus has not been well studied in human material. From the
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available scanty observations, generally made on the basis of staining methods which

would now be considered antiquated, one gathers that the lemniscal fibers and those

emerging from the main sensory nucleus of the trigeminus end respectively in the

same nuclei in which the spinothalamic, and the fibers from the spinal nucleus of the

trigeminus, end. This is in any event what is found in the macaque (Walker, 1938).

The brachium conjunctivum was studied in the human brain by Uemura (1917)

and Kornyey (1926). It ends at least partly in the thalamus. Its other ending in the

small-celled part of the nucleus ruber and in the reticular substance does not con-

cern us here directly. The fibers destined for the thalamus stream past the red

Motor * if n
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Fig. 114. Schematic representation of the ventral thalamic nucleus and its connections

(after Papez, Bull, and Stotler).

nucleus, in its capsule or perhaps even straight through the nucleus, into ForePs

fields H and Hi, to reach the ventral nucleus and the median center of Luys. This

tract consists in man of both gross and fine fibers. Kornyey (1926) considered the

former to be fibers from the brachium conjunctivum, the latter to be axons of the

small cells in the neorubrum. The ventral nucleus relays messages to the agranular

areas of the cerebral cortex through the prelemniscal radiation.

The pallidothalamic fibers were described by Hassler (1949b) and by Papez,

Bull, and Stotler (1940). Through fields H2 and Hi axons of pallidal cells reach the

anterior part of the ventral thalamic nucleus. Another system which, according to

Hassler, breaks through the internal capsule to end in the oral part of the reticular
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zone of the thalamus will be alluded to presently. Direct thalamostriatal connections

have been described in lower mammals (Gerebtzoff , 1940) but remain to be proven

for man (Clark and Russell, 1940).

The three systems, i.e., the somesthetic tracts in the narrower sense (from both

spinal cord and brainstem), the cerebellothalamic and the pallidothalamic systems,

appear to end in different parts of the ventral nucleus. Hassler (1949b), a pupil of

C. and 0. Vogt, distinguishes them as ventrocaudal, ventro-intermediary and ventro-

oral parts. Sheps (1945) enumerates ventralis anterior, ventralis lateralis, and ven-

tralis posterior and states that in respect to the ventral nuclei, the scheme of Walker

(1938) which he adopted and that of the Vogts "agree in general."

It does not seem to be feasible, however, to subdivide these nuclei much further.

The somesthetic nucleus proper may perhaps be divided in a mediolateral sequence

into ventralis posterolateralis and ventralis posteromedialis, but the elaborate

scheme of Hassler, a part of his endeavor to match the 150-odd cortical fields with

150-odd thalamic regions is, in our opinion, too ambitious. That there is a topo-

graphical correspondence between cortical regions and thalamic regions does not

mean that there must be a microscopically distinguishable cortical area for each

microscopically distinguishable thalamic area or vice versa. Meyer, Beck, and Mc-
Lardy (1947, footnote p. 25) are careful to point out that they "distinguish nucleus

anteromedialis from nucleus anteroventralis not in virtue of any cytoarchitectural

differences but simply in accordance with the topographical description of Sheps."

The radiation from the ventral nucleus enters the internal capsule and makes for

the post- and precentral convolutions as well as, one must assume, the parietal

operculum. But only the former has been studied anatomically.

The distinction into three systems, which we recognized earlier, remains valid

for the thalamocortical radiation: the somesthetic impulses are relayed to the post-

central gyms, in the macaque monkey to the entire breadth of the postcentral gyrus

(see Woolsey, Marshall, and Bard, 1942) and, according to Foerster, to the superior

parietal lobule; the cerebellar impulses are relayed to the precentral agranular cor-

tex; the pallidal impulses reach the simple agranular and, according to Freeman

and Watts (1947), the dysgranular cortex. The precise manner of ending of the

somesthetic fibers is not known (Walker, 1940). In spite of its importance for the

understanding of sensation in the cerebral cortex even such an astute critic as Walshe

(1948) deals almost exclusively with the lower levels.

It should at least be noted in passing that the secondary pathways for taste are

generally assumed to end also in the ventral nucleus of the thalamus. They appear

to run with the trigeminal lemniscus, and to be relayed to the ventral part of the

postcentral convolution or to the parietal operculum (Gerhardt's area 68IIgr?,

see p. 218). These problems have been discussed with great thoroughness by Gerebt-

zoff (1939-40) who based his conclusions about the human brain mainly on the cases

of Adler (1934) and Strauss (1925). The location of the radiation of gustatory im-

pulses to the cortex is still undetermined. Logically one would look for it in the

allocortex. One might suppose, however, by analogy with the somesthetic system

(Woolsey, 1947) that there might be a second receiving area (68IIgr?) in the iso-

cortex.

Three intrinsic nuclei send their radiations to the cortex: the dorsomedial, the

anterior, and the pulvinar. The radiation from the dorsomedial nucleus has been
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studied in cases which died at various intervals after frontal lobotomies and in which

a retrograde degeneration had set in. Freeman and Watts (1947) and Meyer, Beck,

and McLardy (1947) have contributed most to our knowledge. The older studies

of Fukuda (1919), Hartmann (1943), and others who found changes following upon

vascular insults or Pick's disease were not only confirmed to a large extent but were

also put on a much surer footing.

The dorsomedial (Sheps, 1945) nucleus (medial of Toncray and Krieg, 1946) con-

sists of a voluminous small-celled part, but bears in its dorsomedial corner a nest,

as it were, of large cells. According to Meyer, Beck, and McLardy (1947), the large-

celled part projects to the orbital region, the small-celled part to the cortex covering

the lateral aspect of the frontal region. Meyer, Beck, and McLardy, as well as

Freeman and Watts, have tried to establish a correspondence between Brodmann's

areas and the different parts of the dorsomedial nucleus. Hassler (1948) states:

"The oldest, oromedial part of this nucleus projects to the gyrus rectus of the orbital

region; its neighboring lateral part to the lateral orbital gyri (area 47 and parts of

area 11 Brodmann) ; the middle inner moiety of the medial part projects to the frontal

pole (about area 10), the middle outer moiety to the region around the anterior end

of the third frontal convolution (about area 46), the caudal inner moiety of the

medial part to the region bordering on the precentral motor region (corresponding

about to area 9) and the caudal outer moiety of the medial part to Broca's region

in its narrow sense." At any rate, the exact bounda^ of that part of the cortex

which receives radiations from the dorsomedial nucleus is not yet known. Freeman

and Watts would put Brodmann's area 8, our dysgranular cortex, into the sector

of the ventral nucleus; Meyer, Beck, and McLardy (1947) and LeGros Clark (1948)

feel that this is unjustified. There may be a zone without thalamic radiation between

the sectors of the ventral and the dorsomedial nucleus.

The exact course of the radiation from the dorsomedial nucleus is similarly not

known. It certainly occupies a rather small region in the anterior part of the internal

capsule, but whether it is intermixed there with other fibers (radiation from the

anterior nucleus, the frontopontine bundle) is not quite clear.

The anterior nucleus was divided by Sheps (1945) into three parts. The bulk of

the nucleus is formed by the anterior ventralis and anterior medialis; a thin cap of

cells was distinguished as anterior dorsalis (shown by Sheps on the ventral side of

the anterior nucleus of his Plate 1). Toncray and Krieg (1946) could not see any

cytoarchitectural differences between Sheps's medial and ventral parts. Freeman

and Watts (1947) state that the anterior nucleus (by which they mean the ventro-

medial part) sends its radiations to "areas 24 and 32." Their material, namely frontal

lobotomies, did not permit them to investigate whether the anterior nucleus has

connections with the posterior limbic area. Meyer, McLardy, and Beck (1948)

conclude that it "remains to be seen whether area 23 or part of it receives some fibers

from the anterior complex." Meyer, Beck, and McLardy (1947) found that the

"anteromedial nucleus projects at least to the precallosal part of the cingulate

gyrus; the anteroventral nucleus to more posterior parts of the cingulate gyrus."

Experiments have demonstrated such connections in primates (Bonin, 1948) as

well as lower mammals (J. Rose and Woolsey, 1948). After extensive destruction of

the human cortex the anterior nucleus is degenerated (see Sheps, 1945).

The posterolateral nucleus and its large outgrowth, the pulvinar, send radiations
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through the posterior limb of the internal capsule to the parietal lobe. Localized

destructions, particularly of the inferior parietal lobule, have been examined several

times (Monakow, 1895; Dejerine, 1901) but they are not sufficient to delimit the

sector of the pulvinar precisely. There is some evidence that the pulvinar projects

into at least a part of the occipital lobe, roughly that area which Brodmann called

19 and Economo OA (Dejerine's cases Bras, Heudebert, and Seguillon; Monakow's
cases 1-3, and his cases Pfister and Montgenet) but whether the parakoniocortex

receives any radiation from the pulvinar is not known. Monakow's last case (Mont-

genet), who had a lesion of the occipitotemporal gyrus, suggests that the ventral

border of the sector of the pulvinar is quite low, so as to include most of Economo's

PH, but one would welcome further confirmation. Walker's experiments on monkeys

(1938) as well as those of Clark and Boggon (1936) indicate that the extension of

the field of the pulvinar to the intermediate occipitotemporal region is correct.

The anterior extent of the sector of the pulvinar is equally uncertain.

The eulaminate isocortex of the temporal lobe and of the insula are generally

believed to be devoid of thalamic radiation as a result of experiments on monkeys

and chimpanzees (Walker, 1938; Bucy and Kluver, 1940), but more recent studies

indicate that the lateral surface of the temporal lobe has connections with the pul-

vinar (Chow, 1950). Observations on human brains (Dejerine, cases Bras and Neu-

mann; Monakow, case 11) are few and of dubious value. The study of Papez (1939)

leaves much to be desired, but the involvement of the parietal region in his case

seems surely too restricted to account for the severe degeneration of the pulvinar;

the major lesion was of the lateral and superior surfaces of the temporal lobe, so far

as one can judge from the photograph and meager description. The connections of

the cornu ammonis and the uncus are not strictly within the province of this mono-

graph. Monakow's observations, however, that the corpus mamillare showed de-

generation after necrosis of the uncus due to compression may be noticed in passing.

The specific afferents discussed on the previous pages form the most logical basis

for a rational subdivision of the cerebral cortex (Fig. 115). One is led to recognize

a frontal "sector" of the dorsomedial nucleus, a central sector of the ventral nucleus,

a parietotemporal sector of the posterolateral nucleus and its large expansion

—

the pulvinar, an occipital sector of the lateral geniculate body, a supratemporal

sector of the medial geniculate body, and a limbic sector of the anterior nucleus.

To these may be added, temporarily, a temporal sector whose thalamic connections

(if any) are at present in question, a perifalciform sector which has dysgranular,

largely juxtallocortex, and important relations to respiration (Kaada, Pribram,

and Epstein, 1949). But a strict adherence to the principle of afferent connections

would tear asunder koniocortex and parakoniocortex, and would put some areas

which we know to be closely related into different sectors. Thus it seems advisable

to define occipital and supratemporal sectors as consisting not only of the two konio-

cortices but of the surrounding parakoniocortices as well. To draw sharp boundaries

from cytoarchitectural observations alone we would not dare. Physiological neuron-

ography allows us to determine how far association fibers from the koniocortices

are distributed and that might, perhaps, be considered the outer boundary of the

parakoniocortex. A tentative sectoral map is given in Figure 115. It is understood

that the boundaries given are very roughly approximate; much more detailed in-
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vestigation is necessary to draw accurate limits to the individual sectors. More-

over, the density of radiation is not uniform throughout the sectors shown. Never-

theless, such a subdivision seems to us more logical than the usual division into
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Fig. 115A. Sectoral map of the cerebral cortex (Bailey). (See Figs. 115B and 115C.)

lobes, and promises to be a more useful guide to further studies than the cyto-

architectural maps previously utilized.

"Unspecific" afferents have been seen, as mentioned above, in the brain of the

mouse by Lorente de N6. By stimulating, in the cat, the medial part of the thalamus
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and observing the ensuing changes in the electrical activity of the cortex, Morison

and Dempsey (1943), and quite recently Jasper (1949), deduced the existence of a

similar system in the brain of that carnivore. Jasper states that he has observed the

same phenomena in the macaque. There is no direct evidence for the human brain.

However, it should be noted that, in widespread destruction of the cortex, LeGros
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REGIO
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Fig. 115B. Sectoral map of the cerebral cortex (Bailey). (See Figs. 115A and 115C.)

Clark and Russell (1940) observed a degeneration of the intralaminar nuclei, which

presumably give origin to the unspecific afferents, as well as of most of the reticular

zone. Sheps (1945) observed a similar case, according to his own words, but found

the intralaminar nuclei intact. Fukuda (1919) observed (his case iv) a retrograde

degeneration of the reticular zone in a child with idiocy and microcephaly. Fickler
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(1913), who examined Weigert-Pal, van Gieson, and carmine preparations, does not

mention the intralaminar nuclei but noticed degenerations in the corpus mamillare
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Fig. 115C. Sectoral map of the cerebral cortex (Bailey) (See Figs. 115A and 115B.)

and the zona incerta. The question of the existence of "unspecific" thalamic afferents

is by no means settled but enough is known to make further investigation desirable.
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b. efferent connections

Just as in the case of the cortical afferents, most of our information on the cortical

efferents or "projections" is based on the study of animals. The founders of modern

neuroanatomy—von Monakow (1914), van Gehuchten (1907), Winkler (1918-33),

Bechterew (1908-11)—to name but a few, used largely rabbits, cats and other

nonprimates. The experiments of Nissl (1908, 1911) are often quoted as showing

that the projection fibers of the cerebral cortex arise in layers v and vi but, so far

as one can judge from the brief notes which he published, the brains of his rabbits

were so maltreated as to make any conclusions drawn from them very questionable.

Modern workers have generally been more careful and secured at least monkeys.

But the number of human brains which have been thoroughly investigated is still

amazingly small—much too small when the difficulties of interpretation inherent

in pathological material are taken into account. To conclude from animals to man
concerning matters of cortical projection is particularly dangerous, as the classical

study of Fulton and Keller (1932) of the Babinski reflex convincingly demonstrates.

The most superficial observer will be struck by the dramatic consequences of a

cortical lesion in man, but even the trained neurologist may find it difficult to de-

tect any alteration in a monkey with a similar lesion. "Progressive corticalization"

has become a byword in comparative neurology, but it is still too readily brushed

aside when it comes to a discussion of the finer structure of the human brain.

The anatomical data from the human brain are very limited and derived mainly

from the study of pathological lesions by the older neuropathologists (Dejerine,

Monakow, Winkler). Many of these cases are very complicated and difficult to in-

terpret; even the cautious conclusions which have been drawn from them are ques-

tionable. Lately even more limited data, as in the case of the afferent connections,

are beginning to accumulate from the study of lobotomies. Also the results of elec-

trical stimulation of the human cortex (Penfield and Rasmussen, 1950) by neuro-

surgeons can be taken as corroborative evidence of the presence in the human brain

of tracts demonstrated anatomically in lower primates.

Corticothalamic System

Corticothalamic fibers have long been known in the macaque (see Walker, 1938,

p. 249) but have been proven for the human brain only in the case of the frontal

lobe, and even here only quite recently. M. Meyer (1949) investigated the de-

generated end-buttons by Glees's ammoniacal silver method and found projections

from the frontal eulaminate cortex to the dorsomedial nucleus of the thalamus, al-

though "surprisingly few in number," and from the agranular precentral areas to

the ventrolateral nucleus. Whether in the human brain the closed circuits formed

by these fibers in conjunction with the thalamocortical fibers play the important

role which McCulloch (1944b) assigned to them requires further confirmation.

The Oculomotor Apparatus

The oculomotor apparatus is frequently treated as a part of the somatomotor sys-

tem. Indeed, a dyed-in-the-wool anatomist could point to the mesodermal origin

of the extraocular muscles and the "somatomotor" character of the third, fourth, and

sixth cranial nerves. Yet, as Sherrington's description (1906) made quite clear, and
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as Holmes (1938) emphasized once more, the type of control that the cortex exerts

over the movements of the eyes (and, perhaps, of the eyelids) differs from that which

it exerts on the other muscles of the body. The slow movements elicited after a long

latency by relatively strong stimuli in the former case are in sharp contrast to the

immediate, almost twitchlike, response to relatively weak stimuli in the latter case.

From observations in the operating room (Foerster, 1936; Penfield and Boldrey,

1937; Penfield and Rasmussen, 1950) we know that, in the human brain just as in

that of the other primates which have been investigated, there are two cortical

regions which control eye movements, a frontal and an occipitoparietal one. In

Holmes's (1938) opinion, the frontal field essentially controls the voluntary move-
ments, and the parieto-occipital field is primarily concerned with the adjustment of

the gaze toward the stimulus of greatest interest (the phrase is ours). But Best

(1942) argued that to distinguish between spahen and blicken (viewing and looking)

was unimportant {unwesenllich) , since in all eye movements environmental stimuli

induce the shift of the gaze, repeating the gist of what Roux (1899) had said in his

classical discussion.

In the monkey, Crosby and Henderson (1948) found that the upper part of "area

19" and the lower occipital region project to the rostromedial part of the superior

colliculus and that the lower part of "area 19" and the upper occipital region pro-

ject to the caudolateral part of the superior colliculus. That in the macaque the

striate area gives rise to oculomotor pathways was shown by Walker and Weaver's

(1940) experiment on the effect of electrical stimulation and by LeGros Clark's

(1942) anatomical studies, also on monkeys, which demonstrated by the method of

retrograde degeneration that the solitary pyramidal cells of Meynert send their

axons to the anterior quadrigeminal body.

Foerster (1936), however, was unable to obtain eye movements in his patients by
stimulating the occipital pole, that is to say, presumably the striate area. It can be

argued, of course, that only that part of the striate area was exposed by the surgeon

which corresponds to the macula lutea and that, therefore, no shifting of the eyes

could be expected. The existence of corticotectal fibers in the human brain was in-

ferred by Edinger and Fischer (1913, see especially their Fig. 4) from their examina-

tions of the malformed brain of a child. Juba (1939) reported two cases in which

softenings on the medial side of both occipital lobes had partially destroyed striate

and parastriate areas; Marchi preparations showed degenerating fibers in the zonal

and superficial medullary strata of the anterior quadrigeminal bodies. Monakow
(1905) and Winkler (1918-1933, vol. 4) had previously found that, after old lesions

of the occipital cortex, the medial medullary stratum of the superior colliculus was

affected. Both Best (1942) and Kleist (1934) reported transitory paralysis of ocular

movements after lesions of the striate area in about 20 per cent of their cases. It is

difficult, in view of these observations, to deny that the striate area controls the posi-

tion and movements of the eyes.

The Somatic Apparatus

It has become almost traditional to group the somatic efferents into pyramidal

and extrapyramidal pathways. For classical anatomy the pyramidal tracts are the

corticospinal tracts. The terms just used are, therefore, a little narrow, for somatic



254 The Isocortex of Man

efferents should include most of the corticobulbar pathways, namely those to the v,

vii, ix, x, xi, and xii nerves whether morphologically viscero- or somatomotor nerves.

The corticospinal and corticobulbar tracts are known to arise from the precentral

agranular cortex. It may be safe to assume that the second motor area and that part

of the parietal cortex which is between the two motor areas sends off corticospinal

and corticobulbar fibers. Woolsey and Chang (1948) demonstrated them in the

macaque by recording antidromic impulses from the pyramidal tract, confirming

older anatomical work by Minkowski (1923-24) and others done before the second

motor area was recognized. The extirpation of this region, it should be noted, is

said by Penfield and Rasmussen (1950) to cause "no evidence of either sensory or

motor paralysis of either arm or leg after the first few days of postoperative con-

valescence have passed." That the simple agranular cortex gives origin to pyramidal

fibers was demonstrated (Minckler, Klemme, and Minckler, 1944) in Weigert and

Swank-Davenport preparations of the brain of a patient whose "premotor" cortex

had been removed nine months before death. They were able to trace degenerating

fibers from the "premotor" cortex through the brainstem into the anterior funiculus

of the spinal cord; at least this is the conclusion they drew from examination of the

"lowermost" level of the medulla oblongata.

It has been argued by Lassek (1948) that the cells of Betz can account for no more

than 2 to 3 per cent of all pyramidal fibers, if one assumes at least that each fiber

in this tract comes from a separate cell. The exact origin of the pyramidal tract is not

yet clear. Do its fibers arise solely from (large or giant) pyramidal cells in layer v

as Lorente de N6 thinks or do the large pyramidal cells in layer iiic contribute to

the tract as Cajal, and Economo and Koskinas held? P. Schroeder (1914) found a

gliosis (pseudogranular layer) only in layer v, and Bielschowsky (1916) concluded

that the corticofugal fibers arose from cells in layer v. Marinesco's (1910a) and

Wohlfahrt's (1932) conclusion that the Betz cells are the sole origin of the pyramidal

tract is no more accepted.

We need not discuss the details of the somatotopic organization of the motor cor-

tex; the reader is referred to the recent authoritative monograph by Penfield and

Rasmussen (1950). That the chapter is not entirely closed, however, is apparent

from the work of Woolsey and Settlage (1950).

The course of the corticospinal and corticobulbar tracts through the white matter

of the hemisphere, the internal capsule, the pes pedunculi and farther caudad has

been so often described as to need no repetition. The "twist" from cortex to pes

pedunculi, the orderly arrangement of the fibers which tend, as far as we know, to

keep their relative position to each other throughout the brainstem, deserve brief

mention. The decussation of about 80 to 92 per cent, the course of these crossed

fibers in the lateral pyramidal tract and the further course of the uncrossed ones

in the lateral and anterior tracts are also well known. The lateral tract appears to

end in the internuncial part of the posterior horn. This is, in any event, the interpre-

tation which Lloyd (1941) gives of his experiments on cats; actual observations in

the human spinal cord do not seem to have been made. The precise ending of the

anterior tract was investigated in Golgi preparations by Lenhossek, Kolliker, and

Ziehen (q.v., 1899). While Lenhossek reported endings in the homolateral, and

Kolliker in the contralateral anterior horn, Ziehen (p. 271) stated that he found
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collaterals to both anterior horns. Since the motoneurons on which these collaterals

end innervate the axial musculatures, a bilateral ending appears perfectly intelligi-

ble. Whether the fibers of the anterior tract end directly on motoneurons or on inter-

calated neurons has, so far as we are aware, never been investigated.

Weil and Lassek (1929) counted fibers in the pyramidal tract and determined the

mass of the musculature controlled by the pyramidal tract. They stated that the

muscles of the hand are not better supplied than those of the arm or shoulder, but

that the neurons for the upper extremity receive approximately twice as many

pyramidal fibers as those for the lower extremities. The number of fibers, their caliber

(and their velocity of conduction) has occupied the attention of numerous scholars.

Blocq and Ozanoff (1892) reported, after careful comparison of a sound and diseased

side, 79,000 fibers in the lateral pyramidal tract; 49,000 of them to the cervical,

and 30,000 to the lumbosacral enlargement. Later estimates revised this figure up-

wards; Weil and Lassek (1929) counted 250,000; van den Bruggen (1930) counted

the pyramidal fibers on one side "at the level of the olive" in nine cases. The aver-

age number of fibers was found to be 150,600 ± 1,410 (S.D. = 11,280). Lassek and

Rasmussen (1939) stated that there are "about 1,000,000 axons located in the pyra-

mids of man." Since there are only about 25,000 (Campbell, 1905) to 34,000 (Lassek,

1948) Betz cells in the human precentral cortex, it was argued, as we have just noted,

that only a relatively small number of fibers arise from the giant cells of Betz.

The diameter of the fibers has been determined by Haggquist (1936) by comparing

a healthy and a degenerated side. The lateral pyramidal tract "probably contains

fibers between 5 and 21 y, diameter." There appear to be two favored frequencies:

namely, 5-6 y. and 10-11 y- Haggquist felt that the area of the lateral pyramidal

tract contained numerous fibers not of cortical origin and that he had not sufficient

material on which to base a numerical estimate of the corticospinal fibers. The area

of the anterior tract contains (at the level of T3), according to Haggquist, prepon-

derantly fine fibers of 1-4 fi but the "fiber-spectrum" showed again a relative maxi-

mum at 10-11 n- These data are in fairly good agreement with Woolsey and Chang

(1948) who found, for the macaque, both fast and slow fibers; the former conducted

with a velocity of about 70 m sec,
-1

the latter of about 15 m sec
-1

.

The cerebral cortex sends fibers to most of the "extrapyramidal" servomecha-

nisms. Since the functional organization of this system is imperfectly understood, it is

at present difficult to arrange these projections in anything approaching logical

order. However, a valiant attempt, on the basis of present knowledge, has recently

been made by Bucy (1942) (see Fig. 116). We take the extrapyramidal mechanisms

to include the basal ganglia of the endbrain, the derivatives of the ventral thalamus

(corpus subthalamicum of Luys and zona incerta), the red nucleus and the sub-

stantia nigra of the midbrain, the pontine nuclei and tracts, the cerebellum and its

ganglia, the inferior olive and the reticular substance of the brainstem, the role of

which has been so brilliantly demonstrated by Magoun and Rhines (1947).

Of the basal ganglia of the endbrain, the caudate nucleus has been shown in the

monkey to receive fibers from all "suppressor" areas. The details of the corti-

costriatal connections, as revealed by physiological neuronography, have been re-

corded by Dusser de Barenne, Garol, and McCulloch (1941) for the macaque mon-

key; those of the chimpanzee by Garol and McCulloch (1944) and need not be re-
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capitulated here. In man, however, M. Meyer (1949) failed to find any degenerated

end-buttons in the caudate nucleus after leucotomy which, in some at least of her

cases, must have cut the efferent fibers from "area 8," known to be a suppressor

area in macaque and chimpanzee. M. Meyer has shown, on the other hand, that the

simple agranular precentral area sends a "considerable" number of fibers to the

globus pallidus. The exact origin and ending of these corticopallidal fibers were left

undecided.

JpSubcorficaJ;

1 Centers &

Pallido

^ > spinal
* I» cord

Fig. 116. The neural mechanism of choreoathetosis (after Bucy).

Corticosubthalamic connections were described by Mahaini (1893) in the brain

of a thirteen-year-old girl who had suffered since she was nine months old from

paresis with epileptic attacks. A large focus of long standing involved the supra-

marginal, angular, and superior temporal gyri but also the anterior part of the in-

ternal capsule and the head of the caudate nucleus. Whether the corticosubthalamic

fibers arise from frontal or parietotemporal region could, therefore, not be decided.

Monakow's (1895) case 7, which showed a partial degeneration in the subthalamic

nucleus, is similarly unsuited for information about the exact origin of the cortico-

subthalamic path (defect in F3 , operculum insulae, T\, and putamen). Winkler
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(1919-1932, vol. 4) describes a bundle breaking off from the internal capsule, to

pierce the subthalamic nucleus and to become gradually smaller toward substantia

nigra and pontine gray. He thought that connections between frontal cortex and

the body of Luys might thus be established. Material from leucotomy was studied

by Meyer, Beck, and McLardy (1947) and by M. Meyer (1949). Both papers find

degeneration in the subthalamic nucleus. The former concludes that only the

agranular precentral cortex sends fibers to the subthalamic body; the latter finds

some partial degeneration in the lateral part of Luys's body when only the eulaminate

frontal cortex was involved. It is noteworthy that the recent study on the connection

of the subthalamic body by Whittier and Mettler (1949) does not list cortico-

subthalamic fibers as a separate paragraph and that experiments in animals have

led most modern authors to deny such connections (see M. Meyer, 1949).

Cortico-incertal or, as P. M. Levin (1949) called them, corticozonal connections

were described by Monakow (1895). Though evidence was again insufficient to

determine their exact origin, the modern study of M. Meyer implicates the agranular

precentral cortex. The eulaminate frontal cortex may be ruled out; no evidence is

available for the rest of the brain.

Corticorubral fibers were studed by Monakow, Dejerine, LaSalle Archambault

(1914), Winkler, and many others. They agree that the corticorubral fibers arise

from the frontal lobe and some authors, notably Winkler, have gone so far as to

say "plus exactement, des circonvolutions basales de ce lobe." In conjunction with

M. Meyer's recent statement that only the agranular precentral cortex sends

fibers to the red nucleus one would conclude that the corticorubral tract arises from

the pars opercularis of the third frontal convolution. The course of this tract through

the internal capsule and into the nucleus ruber has been followed by Winkler in

the brain of a four-month-old child where it is unmyelinated and bordered laterally

by striorubral and medially by rubrothalamic and (according to Winkler) rubro-

cortical fibers. It runs through the anterior limb of the internal capsule to gain the

red nucleus via Forel's field i72 and H dorsal to the pallidorubral fibers.

Corticonigral fibers have generally been assumed to issue from the precentral

gyrus (see P. M. Levin, 1949). In the human brain they were described by Dejerine

(1901) to arise "surtout des regions rolandiques superieures" (Joe. cit., vol. II, p. 81)

after having stated a few pages previously (p. 73) that the majority of the fibers

arise from the motor zone of the face. Meyer (1949) saw some degenerations in the

ventromedial part of the substantia nigra but considers her findings merely sug-

gestive. Minckler, Klemme, and Minckler (1944) described corticonigral fibers

coming from the "premotor" region. Winkler discusses temporoparieto- and fronto-

nigral fibers ; the first run from cortex to midbrain with Tiirck's bundle, previously

denied by Dejerine; the second run from the frontal part of the parietal operculum;

the last from the frontal operculum—one is tempted, of course, to think of the second

motor area. Winkler bases his assertion on the study of pathological material;

corroboration seems badly needed.

The cerebral cortex sends, as everyone knows, messages to the cerebellum by way
of the corticopontine tracts of which there are two : a frontal and a parietotemporal

one. The custom to attach the names of Arnold and Turck to these tracts appears

to be based on a suggestion by Meynert (1879). He wrote in part: "from the anterior
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part of the hemisphere a mass of bundles enters the pes pedunculi which deserves

the name of Arnold's bundles [sic\\ since this author demonstrated in an indubitable

manner their course by dissection. The bundles of the pes pedunculi which enter it

from the cortex of the occipital and temporal lobes deserve the name of Tiirck's

bundles [sic !] because he was the first to analyze this region of the mass of the pes

pedunculi by pathological-anatomical observations." 1

The former, frequently named (a little too flatteringly) after Arnold, occupies

the most medial fifth of the pes pedunculi ; the latter, known as the bundle of Tiirck,

occupies the most lateral fifth of the pes pedunculi and arises, according to Dejerine

(1901), from the second and third temporal convolutions. The frontopontine tract

arises, again according to Dejerine, in the motor zone for face, pharynx and larynx.

It runs through the knee of the internal capsule and ends in the anterior part of the

pontine gray as well as, be it remembered, in the substantia nigra. Verhaart (1948)

found in two human cases evidence that the frontopontine tract contributed fine

fibers to the pyramid. Monakow (1905) stated that the frontopontine tract became

conspicuously (in prdgnanter Weise) myelinated only in the fourth and fifth week

after birth and that it originated from the anterior part of the first and second

frontal convolutions (see his Fig. 82) ; in other words from what we defined as the

frontal sector. It is not clear from his description precisely where the tract ends.

According to Quensel (1910) the fibers in Arnold's bundle have the following

origins (Fig. 117):

I. The medial third of Arnold's bundle in the cerebral peduncle, in the anterior limit of

the internal capsule in its basal third, belongs to the basal and frontal parts of Fi and the

gyrus fornicatus in front of the genu corporis callosi, perhaps also to the pars orbitalis of F3.

II. The middle part of Arnold's bundle, middle segment of the anterior internal capsule,

belongs to the parts of F\ on the medial cortex of the hemisphere including the gyrus forni-

catus in the region of the genu corporis callosi and immediately adjoining it. After the gen-

eral arrangement of the fibers of the internal capsule comes again into account the anterior

part of the pars triangularis of F3. Uncertain are fiber connections with the posterior half

of the pars triangularis, as well as the entire pars opercularis of F3.

III. The lateral part of Arnold's bundle, dorsal third of the anterior limb of the internal

capsule, belongs predominantly to the foot of F] and the adjacent gyrus fornicatus. In this

part of the internal capsule appear, laterodorsal and behind the knee of the internal capsule,

the fibers from the operculum Rolandii. As a rule, they leave the pes pedunculi to run vari-

ously in the Fussschleife.

Papez and Vonderahe (1947) describe a brain from which area 4 (<* and 7) of

Bonin was missing from one hemisphere. The patient had a contralateral flaccid

hemiplegia since childhood. Examination of the nervous system revealed the corre-

sponding corticospinal tract to be missing but there was a well developed fronto-

pontine tract.

Kirschbaum and Bonin (1947) examined a brain in which the "pre-" frontal

regions had been severely damaged twenty-three years previously. There was no

1 Die aus der Rinde entsprungen en Biindel des Hirnschenkelfusses gehen theils aus dem vor-

deren Antheile der Hemisphere als eine Bundelmasse ein, welche den Namen der Arnold'-

schen Biindel verdient, indem dieser Alitor ihren Verlauf in unzweifelhafter Weise durch
freie Preparation dargestellt hat. Die Biindel des Hirnschenkelfusses die aus der Rinde
des Hinterhauptes und Schlafenlappens eintreten, verdienen den Namen der Turck'schen
Biindel, weil er die Region dieser Hirnschenkelmassen durch pathologisch-anatoraische
Erfahrungen zuers. aufgewiesen hat.
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Fig. 117. Sources of Arnold's bundle according to Quensel.

1. Cross section of the peduncle (after Dejerine). TB—Tiirck's bundle; AB—Arnold's

bundle; Py = IV—pyramidal tract; X—position of the Fusschleife (dorsal F).

2 and 3. Surface of the hemispheres (scheme of Flechsig) with schematic indication of the

areas in relation to the parts of the peduncle.

Fibers in the peduncle and sources of these fibers similarly marked.
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degeneration of Arnold's bundle. Meyer, McLardy, and Beck (1948) state that

"there is some evidence in favour of a prefrontal origin of fibres going into the

peduncle and pons, but further clarification is necessary." The frontopontine tract

is not clearly degenerated after frontal lobotomy, but Meyer, Beck, and McLardy
(1947) said their findings tended to point to area 10. M. Meyer (1950) thinks she

has found a few end-buttons degenerated in the pontine nuclei after leucotomy, but

it should be remembered that the exact origin of degenerated fibers is difficult to

establish in such cases and the method of Glees is equally uncertain when used on

human brains removed several hours postmortem and fixed by immersion in for-

malin. Yakovlev, Hamlin, and Sweet (1950), from the study of two brains after

lobotomy, conclude

The inference is close at hand [whatever that may mean] that the fronto-pontine tracts, at

least in Cases 5 and 6, were bilaterally and symmetrically degenerated as a result of their

surgical section close to the areas of their origin in the frontal lobe—areas 10 (FE), mesial

9 {FD) and 8 (FC).

The experimental evidence is equally inconclusive. Using the Marchi technic on

macaque monkeys, Mettler (1935) derived the frontopontine tract from area 9,

Levin (1936) from area 10, and Sunderland (1940) from area 6 of Brodmann. In

spite of the assertions of LeGros Clark (1948) and Bonin (1950) the origin of the

frontopontine tract is not established. Perhaps the studies of brains on which

topectomies have been performed will decide the argument. So far the evidence

seems to us to indicate that the bulk of the fibers in the frontopontine tract arise

about where Brodmann located his area 6; there may be some fibers from further

forward.

The temporal or, as it might be called, lateral corticopontine tract is even more

uncertain. Dejerine saw it degenerated after lesions in the second and third temporal

convolutions. Monakow agrees in general but adds that he also observed an occipito-

temporal origin which he indicated in his Figure 82. Marie and Guillain (1903), on

the other hand, found indubitable proof only for an origin from the third temporal

convolution, and Rhein (1922) restricts the origin of Tiirck's bundle still further

to the posterior part of the third temporal convolution. These statements were

contradicted by Flechsig (1908) who denied an origin of Tiirck's bundle from the

third temporal convolution but emphasized, on the other hand, that he had seen

complete degeneration of this tract only in cases which had involved the primary

acoustic area. The literature up to 1917 has been collected and discussed by Hen-

schen (1917) who, on the basis of a case of his own, concluded that the fibers of

Tiirck's bundle do not arise from the primary sensory areas but from the "psychic

areas." In the macaque monkey it must arise, according to the results of Bucy and

Kliiver (1940), from that part of the temporal lobe posterior to the lower extremity

of the central sulcus.

Visceral Efferents

Visceromotor control by the cortex appears to be achieved by pathways which

project from the frontal and precentral sectors to the hypothalamus. The method

of physiological neuronography was employed by Ward and McCulloch (1947) to
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investigate these connections in the monkey. Projections from "area 6" to the pos-

terior hypothalamic region had been traced anatomically by Mettler (1948) in the

macaque. Bonin and Green (1949) found fibers going from the orbital surface of the

macaque to the hypothalamus. For the human we have at present only the report

by M. Meyer (1949) who found degenerated end-buttons in the mamillary body in

two cases where the lobotomy cut had removed part of the simple agranular pre-

central cortex. The possibility that these fibers arise from the anterior limbic cortex

was, however, not definitely ruled out.



Chapter IX: Functional Significance

Only by continual modification of its ancestral powers to suit the present can (a creature)

fulfil that which its destiny, if it is to succeed, requires from it as its life's purpose,

namely, the extension of its dominance over its environment. For this conquest Us

cerebrum is its best weapon. It is then around the cerebrum, its physiological and

psychological attributes, that the main interest of biology must ultimately turn.

C. S. Shebbington (1906)

Investigators have labored so diligently over the structure of the cerebral cortex

because of a conviction that in this way they might gain some understanding of the

manner of its functioning. As Hughlings Jackson put it: "Differentiation of struc-

ture of necessity implies difference in function." Otherwise it is not likely that

their curiosity would have led them so far since, as Flourens remarked in 1842,

an anatomy without physiology is an anatomy without purpose. As physicians we
are further interested in the utilization of this understanding for the relief of suffer-

ing caused by perversions of its functioning.

It is now well established that certain structural peculiarities of the cerebral

cortex are coextensive with areas of specialized functioning. We need mention only

the striate area and the agranular precentral area, although it is unknown how these

structural peculiarities are necessary to that special function. As this fact became

clearly established it was logical to seek for other similar areas of specialized struc-

ture which might be supposed to have peculiar functions. In doing so two factors

seem to have been often forgotten: (1) the corollary of the underlying hypothesis

is also probably true, namely, that areas having a very similar structure are likely

to have similar functions, insofar as their functioning depends on their intrinsic

structure, and (2) the cortex being a part of a communications system, its functioning

is not dependent solely on its intrinsic structure but, in large part, on its external

connections. This is very evident for exactly those areas first distinguished because

of their unusually variant structure—the striate area and the motor—the former

coinciding with the radiation of visual impulses to the cortex and the latter with the

most powerful projection system.

At any rate, anatomists proceeded on the assumption, explicitly stated by Brod-

mann, that the cerebral cortex consisted of a mosaic of juxtaposed organs. Vogt

added that the boundaries between these organs were "hair-sharp." The problem

then became, for an anatomist, to identify these organs and trace their boundaries,

leaving to the physiologists later to determine their functions. Perhaps there was, in

all this, the influence of a subconscious recollection of Gall and his phrenological

charts. However that may be, anatomists began to outline ever more supposed

organs, the functions of which physiologists labored as diligently to discover.

This pursuit was not too illogical so long as we possessed only the relatively

simple charts of Brodmann, and this is doubtless the reason that physiologists still

cling to them, but became quite absurd when guided by the exceedingly complicated

charts of the Vogt school. Even Hassler (1948), a pupil of Vogt, when discussing

262
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the thalamocortical relationships uses Brodmann's subdivisions. It is too great a

strain on the credulity of the most convinced believer in cerebral localization to

suppose that there are in the cerebral cortex as many as one hundred fifty separate

and distinct organs. Vogt, as early as 1903, insisted that (p. 161) for each physio-

logical center there must be at least one special specific fiber connection.

In the preceding chapters we have analyzed the cytoarchitectonic lore and out-

lined our convictions concerning its reliability and usefulness. We have distinguished

a considerably smaller number of "areas" than Brodmann or his successors. The
vogue of Brodmann's chart is a remarkable instance of the credulous acceptance

by the scientific world of a construct, the factual basis of which was never published.

Whether our map is more "correct" than the current ones, depends partly on what

is meant by "correct." It does not mirror the functional organization of the cerebral

cortex, which depends as much on input and output signals and on "long distance"

corticocortical signals as on the local variation of cortical architecture, the only

variable which the map is meant to portray. But, even when this is clearly under-

stood, the exact criteria by which "areas" are to be distinguished remain to be

defined. So far the definition of what constitutes a histological area, what is a

variant or a subarea, have been more intuitive than quantitative. The Vogts have

built up an imposing vocabulary in which—characteristically enough—compara-

tives abound. What is needed are measurements, but of what? Thickness of layers,

size and density of cells suggest themselves. But that is, with our present facilities,

an exasperatingly slow business. Better, so it seemed to us, to err on the side of

caution and to distinguish only those areas which can be intuitively recognized

without difficulty. Further subdivisions are undoubtedly possible. To make them at

present, without sufficiently precise definitions, serves no useful purpose.

The term "functional organization" has been, we fear, badly misused by us in

former years. It has become equivalent to the arrangement of corticocortical asso-

ciation fibers whereas it should mean the spatial distribution of nervous processes in

the cortex. To show how and to what extent the structure of the cortex (not only its

architecture) determines its "functional organization," thus defined, must be our

aim. We are far from having achieved it. But to reach it, a subdivision of the cortex

has always been considered as the first step. After Gall and Spurzheim had proposed

an elaborate and rather mythological subdivision, their saner successors proposed a

division into lobes based, it is true, on rather fortuitous relations between brain and

bones. Then came the subtle parcellation into areas more bewildering and confusing

than clarifying. We propose to go back to a simpler scheme of "sectors" based on

corticothalamic afferents and to supplement it by an architectonic map based on

easily recognizable distinctions.

If we suppose that the conditions in man follow the pattern which has been

worked out in some detail for the macaque, and less extensively for the chimpan-

zee, we may subdivide the isocortex in the manner indicated in Figure 115 by using

the corticothalamic relationships as a basis. This results in what Bonin (1950) has

called a sectoral map, and is justified by the fact that nearly every larger thalamic

nucleus has its individual sector of the cortex with which it is connected by fibers

going in both directions. Each sector has, therefore, one of the features pointed out

by Vogt (1903) as necessary to a functionally individual area, namely, a unique
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fiber connection. The median center of Luys and the intralaminar nuclei are ex-

ceptions to the rule.

It is at once apparent, however, that such a sectoral map gives as false an im-

pression as the usual cytoarchitectonic map. In the first place, the radiation of each

nucleus seems to be concentrated more or less in the central part of each sector

which includes the closely related parakoniocortex. The sectors, therefore, do not

have uniform intrinsic structure. Moreover, the thalamic nuclei, if judged by
their other connections, are not of uniform functional significance. Some—for

example the external and internal geniculate bodies—are obviously relay stations

for sensory stimulation coming from the periphery; others—such as the dorsomedial

nucleus and the pulvinar—have no such direct relationship to the incoming

sensory streams. It is evident that, if such a sectoral map be drawn, the sectors are

not of uniform functional significance. This fact invalidates Vogt's (1906) criticism

of the work of Flechsig. It is doubtless true that Flechsig made many statements

which subsequent investigation has not substantiated, and that he delimited

his areas too sharply, yet the general resemblance of his map to that of the

Vogts (Fig. 118) is too obvious to be fortuitous. In its general lines the concept

of Flechsig holds fast. It is interesting to remark that Vogt fell into the same

error for which he criticizes Flechsig, stated his myeloarchitectural findings dog-

matically and drew the boundaries of his areas with even more improbable sharpness.

If now we scrutinize this sectoral map more closely, we find that those sectors

which are related to the thalamic nuclei not directly in the pathway of the in-

coming sensory impulses, such as the pulvinar (parietal sector) and dorsomedial

nucleus (frontal sector), are covered by generalized eulaminate cortex. The same is

true of what we have called the temporal sector which, recent experiments (Chow,

1950) indicate, may also be related to the pulvinar; much of the generalized frontal,

parietal, occipital, and temporal cortex seems to have only scanty thalamic con-

nections in any case. A comparison of figures 1, 112, and 118 shows that it is just

the cortical regions most tardily myelinated which develop intimate connections

with each other by means of long fiber tracts and were called by Flechsig, in terms

habitual to the psychology of his day, the associational areas. All that we know of

their intrinsic structure and connections indicates that they must have some

function in common and, most probably, of greater complexity than simple reflex

activity after the pattern of the spinal cord.

What is this generalized function common to these cortical sectors of generalized

structure? Beritoff stated (1924), on the basis of experimentation carried out by

Pavlov's school, that this function was to make transitory connections. Many
illustrations have been given of the manner in which conditioned reflexes can be

built up, torn down, reconstructed or altered under experimental conditions; such

reflexes are formed in the cerebral cortex. Hughlings Jackson had something of the

same idea when he wrote: "if the centers of the highest level ('mental centers')

were not little organized, and therefore very modifiable, we could only with diffi-

culty adjust ourselves to new circumstances and should make few new acquire-

ments." These suggestions still consider cortical activity as tantamount to reflex

activity. Even Pavlov and Sherrington thought almost exclusively about reflexes.

With that mode of thinking went hand in hand Brodmann's conception of cortical

areas as elementary organs.
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Meanwhile Gestalt pyschology was led to consider fields in the sense in which

that concept had been developed in physics. Indeed, Kohler (1924) demonstrated

that the physicist's concept of fields was essentially a gestalt in the technical sense

of the psychologist. From that Kohler (1938) developed his theory of isomorphism.

Fig. 118. Myelinization of the cerebral cortex (the extent of the myelinization is indicated

by the size of the dots) of a nineteen-day -old child (after C. and O. Vogt).

Whether it can be upheld in precisely that sense which Kohler gave it, with its

assumption of cortical fields (see Kohler and Wallach, 1944), is not for us to decide.

Its success in explaining sensory phenomena does not guarantee its ability to explain

everything. But isomorphism, in the abstract sense in which the mathematician

uses the term, between mental and neural processes, is exactly what Craik (1943)
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states by the phrase "thought models or parallels reality," and is at the base of the

theory of Pitts and McCulloch (1947). In this general form it leaves, of course,

undefined the nature of the processes.

Thurstone's factor-analysis, used among others by Halstead (1947) in his study of

impaired brains and their functions, and Wiener's Cybernetics (1948) have given us

new viewpoints for the analysis of cerebral functions. It is clear to most students

that the cortex can be likened to a calculating machine (Craik, 1943; McCulloch,

1949) with greater justification than to a slot machine, although even this simile

breaks down eventually. For, in spite of Ashby's (1949) or Grey Walter's (1950b)

visions, no machine has been constructed that can outwit a human brain in choosing

goals and Lady Lovelace, Lord Byron's daughter, has put it on record that this will

never happen (see Hartree, 1949) . Be that as it may, to consider memory, recogni-

tion, and forecasting as fundamental properties of the brain appears now necessary.

Whether this is a complete list is, however, not certain. If volition can be denned

as a forecasting and a comparison of the result with an established set of (ethical)

values, and if comparison and recognition can be considered to be two aspects of

the neuron as coincidence detector, we may be well on the way to a theory of

cortical function.

In any event, Wiener has made it clear that order as against mere noise is the

important characteristic of nervous functions. It is not always sufficiently realized

that the cortex has, as every electroencephalographer knows, a high level of "noise"

of a random background activity. This activity, whether aroused from deeper

nervous centers or inherent in the cortex itself (Bremer, 1947), serves perhaps to

keep the cortex alert and ready to receive stimuli. The histologist is apt to con-

struct his firing diagrams without much regard to this noise. Indeed, it has to be

admitted that we are unable at the moment to state with sufficient generality what

distinguishes "meaningful" signals from random noise. "Order" is a very vague

term; there is an infinity of types of order.

There is a spatial order in cortical events, mirrored inadequately in the areal

maps which adorn the literature on cortical architecture. We understand fairly well

the functional organization of the input signals—where visual, tactile, and acoustic

messages arrive, how their subordinate spatial arrangement subserves topographical

discrimination in the first two, and pitch discrimination in the last case. We also

know that output signals emerge from the "motor" area, e.g., the agranular giganto-

pyramidal area, and we know something of its type of order. That is, however,

certainly not the whole story; oculomotor output signals, e.g., can be traced from

other areas. In any event, there is a wide gap between input and output. That gap

is Hughlings Jackson's highest level; psychologically it contains almost everything

that is in our consciousness. The ordering principle within the highest level is still

largely a mystery. Spatial organization does not seem to be the clue. The studies of

aphasia (Head, 1926; Alajouanine and Mozziconacci, 1947), of apraxia and agnosia

(Lange, 1936) as well as the modern tests of clinical psychologists have never led

far beyond a very general localization (Goldstein, 1946) ; every attempt at detailed

subdivision has failed. One can only conclude that the important type of order is

that of the mutual relations of vast numbers of neurons within a given, somewhat

vaguely circumscribed, region. Kubie (1930), Lorente de N6 (1938), Dusser de
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Barenne and McCulloch (1938), and others talk about hypothetical reverberating

electrical circuits and Adrian (1947) talks vaguely about still vaguer electrical

phenomena. There is physiological evidence to support these speculations, such as

the long-lasting traveling effects of cerebellar stimulation (Clark, 1938), the phe-

nomenon of the spread of suppression (Garol, 1940), the spreading depression of

Lefio (1944), or the figural aftereffects of Kohler and Wallach (1944).

Anatomists have shown that sensory input, and much of motor output, are

handled by cortical areas which differ markedly from eulaminate cortex and differ,

as might be expected, in opposite directions, namely in that of a koniocortex in the

former and in that of an agranular cortex in the latter instance. It is also clear that a

koniocortical input area renders the eulaminate cortex in its immediate vicinity

into a parakoniocortex. But, beyond that, areal differentiations of the human
cerebral cortex become hazardous. We were able to point to a few local peculiarities

—on the inferior frontal convolution, the superior parietal lobule, within the temporal

lobe, etc.—but these are all minor. The human isocortex is more remarkable for

its uniformity than for multifarious differentiations.

It may well be, and some theories (Lashley, 1942; H. v. Foerster, 1948) explicitly

assume it, that higher mental functions are based on a statistical interplay of neu-

rons. Such processes would be favored by a relative homogeneity of wide cortical

fields. These theories have been greatly strengthened by the revelations of electro-

encephalography. By this method we can observe the cortex in action, albeit in-

directly. One of the fundamental discoveries is that there is a regular rhythmical

fluctuation of the electrical potential of the cortex, at a rate of about 10 c/s, which

was called by Berger (1929) the alpha rhythm. It is best seen when the cortex is

receiving as little as possible of sensory stimulation and the cortex is in other ways
nearly at rest. Under such conditions we find that the alpha rhythm (Jasper and
Penfield, 1950) is distributed over all the generalized eulaminate regions of the

cortex (Fig. 119) but is absent from the agranular regions. There is now a tendency

to identify the alpha rhythm with a scanning mechanism such as is used in television

(Craik, 1943; Pitts and McCulloch, 1947; Walter, 1947). In this case it should be

operative also in the koniocortices but we lack direct observational data.

Later studies (Walter, 1950a) have shown that the rhythm is plural. In normal

subjects there are two or three components in the band of frequencies from 8-13

c/s. These rhythms may be disturbed by external stimulation or by mental effort

(for example by opening the eyes or by visual imagination) and a change provoked

in their form and harmonic content. Such harmonics may appear not only in the

visual area but almost anywhere in the cortex. If a sensory area is activated at an
appropriate rate it can be forced to communicate with other regions. A stimulation

of the visual area at 12 f/s can evoke a component at 6 c/s in the temporal and at

24 c/s in the frontal region. It is characteristic of these transactivation effects that

the rate is different from that of the primary activating stimulus (Livanov, 1938).

These secondary transactivations are most easily provoked in the temporal lobes,

usually in the theta band (6-7 c/s).

We do not wish to pursue these electrical studies further. Enough has been said

to show that vast areas of the cerebral cortex are functioning during mental proc-

esses. It is not surprising that large quantities of the general eulaminate cortex
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can be removed without too obvious a defect. As Walter remarks (p. 30), "In the

sort of experiments I have been describing, the activity of single units seems to us

of no greater relevance than the behaviour of a single ion in a chemical reaction;

the removal or destruction of great numbers of units seems to have a negligible

effect upon function. The study of brain function can only be statistical in this

sense because the brain can only function statistically in relation to the environment."

The cerebral cortex does not normally function in isolation. We have endeavored

F Roland!

Beta H Alpha *fiJ\J\J\[\P'

Fig. 119. Diagrammatic representation of cortical areas giving rise to alpha rhythm as op-

posed to those showing beta rhythm (stippled). From Jasper and Penfield.

to collect the evidence for corticopetal and corticofugal pathways, so far as it is

derived from the human brain. While we have doubtless overlooked scattered papers,

we believe that we have at least cited a fair sample. The observations are few and

usually inconclusive. Indeed, it is perhaps not too much to say that, before the

advent of leucotomy, only two authors were really interested in these questions

—

Dejerine and Monakow. Pathological lesions are, of course, very unsuitable material

in most instances but, for many parts of the brain, they will remain for long the

only source available. Recently surgical lesions of the frontal lobe have been avail-

able for study. Precisely because interpretations are precarious, investigation of
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numerous brains is desirable. This is not a glamorous task; no oscilloscope flashes,

no Geiger counter clicks, but the "wiring diagram" of the brain is as interesting and

important as it ever was. We have seen how the specific afferents may form the

basis of a fruitful subdivision of the cortex.

In an attempt to evaluate the functional role of the association fibers, it must

not be forgotten that they are not the only means for conducting signals from one

part of the cortex to another. In fact, Wiener (1948) believes that, when compared

to the brain of a lower mammal, the human brain is "quite defective in the matter

of long-distance trunk lines." In physiological neuronography, Dial narcosis sup-

presses the transmitter system of the intracortical feltwork, and makes the signals

coming in over the association fibers stand out the more clearly, thus creating quite

artificial conditions. As employed heretofore physiological neuronography tells,

therefore, only a part of the story. Yet a few generalizations can be made.

On the sensory side, it has been shown for optic and acoustic impulses that the

primary sensory areas, i.e., the koniocortices, stand in close connection with the

parakoniocortices; the concept of parakoniocortex, originally advanced by Economo
and retained in our study, receives support from physiological neuronography. The

primary sensory areas do not send messages very far into the surrounding cortex

and receive cortical impulses almost exclusively from the parasensory areas; the

parasensory areas, on the other hand, receive afferents from several other cortical

areas and send their corticocortical efferents much farther away. But the longest

corticocortical pathways connect the generalized eulaminate areas which Flechsig

called the associational areas.

As Flechsig (1901) long ago pointed out:

The areas (of the cortex) differ with respect to the corona radiata and they also differ in a

most extraordinary manner with respect to the long association systems. The terminal zones

are the richest in them; they are the endings of the long association systems. On the other

hand, no long association system is known which connects two primordial zones that are to

be regarded as sensory centers. ... If a visual and an auditory impression meet one another

anywhere in the cortex of the cerebrum, this can only happen through the instrumentality

of the intermediate and terminal zones. If the mutual interference of the stimuli is a pre-

liminary condition of the association of their mnemonic impressions, the cortex of the inter-

mediary and the terminal zones will be indispensable for this purpose also. They are, there-

fore, association centers; and this view is strongly confirmed by the clinical observation

that in lesions of the region lying between the visual and tactile spheres it is association

troubles that occur, the best known of which is sensory alexia.

Somatomotor events can easily be traced up the pyramidal tracts to the pre-

central gyrus, to the second motor area on the infrafrontal and infraparietal plane

and to the region between these two branches of the "V." But motor impulses do

not arise spontaneously in the giant cells of Betz (Hassler, 1949). During life they

are obviously under the influence of frontal, premotor, and parietal regions as well

as under those from the thalamocortical afferents which Hassler (1949) studied.

The loss of either frontal or parietal signals will cause a dysfunction clinically

noticeable as apraxia (see Lange, 1936). It is tempting to think of the parietal influx

as somehow regulating motor activity in the light of information given the parietal

lobe as "bodyscheme," in the widest and most "dynamic" sense of the word, and of
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the frontal influx as related to Liepmann's Bewegungsentwurf, a sort of forecast of

future movements by the prefrontal field.

Disturbances of associations of images with symbols, or of symbols with each

other, should be expected to cause aphasia and related disorders. Indeed, who

would not think of transcortical aphasia? But it appears useless to give rein to

further speculation ; we begin to indulge in armchair philosophy.

The question of the functional dignity of the commissural fibers is particularly

vexing since, from the meticulous studies by Akelaitis (1944) of patients whose

commissures had been sectioned by van Wagenen, it is clear that the impairment

following sectioning of the corpus callosum is astonishingly slight. We pointed

out (p. 240) that the number of commissural fibers is small, as compared with the

total number of cells in one hemisphere, of the order of less than 1 per cent. Morin

and Goldring's (1950) observation that, in the opossum, transmission of excitation

from one hemisphere to the other is not abolished after cutting all commissures of

the forebrain, is of interest. Jasper (1950) observes that section of the corpus

callosum does not abolish the effect of the bilateral recruiting response from thalamic

nuclei. It is known also that callosal activity modifies the brain waves in the cerebral

cortex (O'Leary, 1949). It is incredible that such a vast tract of nervous fibers should

be functionless but we have no clear idea of its significance. The theoretical con-

siderations of Nielsen (1937) and the cases of Trescher and Ford (1937) and of

Maspes (1948) indicate that more ingenious examination may discern very useful

material for our understanding of cerebral functioning.

Preparatory to the study of cortical architecture we have passed in review the

information on racial differences which have accumulated over the years. We dis-

covered a lamentable amount of prejudice and biased thinking. The first task

was to root out a rank growth of misstatements and irresponsible distortions.

When properly evaluated by statistical methods, very few racial characteristics

can be shown to exist in the configuration of the sulci. Even in the few cases where

racial peculiarities can be asserted, as e.g., in the dorsal part of the frontal lobe or

in that of the lunate sulcus, it is merely a matter of different frequencies and not

of clear dichotomies. Estimates of brain weight and metrical characters have also

shown racial differences but they are so erratic that one is, at present, forced to

look upon them as entirely fortuitous.

The few notes on racial differences in cytoarchitecture by Vint (1934), Stefko

(1926), Loo (1933-35), and van Noort (1918) are even more disappointing. One

wonders whether they show much more than the rapidity with which postmortem

changes appear in cadavers kept under what must have been primitive conditions

and fairly warm weather. Vint's measurements of the thickness of the cortex can

be duplicated by many of our own recorded in Chapter V. Whether or not the

Chinese and the orang have sprung from the same stem as Klaatsch (1911) and

Kurz (1924) believe, cytoarchitectonic study led Loo (1933-35) to conclude "that

histologically the cerebral cortex of the Chinese brain is neither lower in organiza-

tion, nor more anthropoid, nor fetalized." van Noort's statement that large pyra-

midal cells are absent in the acoustic koniocortex of his two Madurese brains would

merely indicate, so one could argue, that the Madurese were more highly differ-

entiated than the "Whites." To save the self-esteem of the white man, and help
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him carry his burden, we hasten to add that we would not consider this argument

any more cogent than van Noort's own conclusions.

When we remember that man is born with a very immature cortex, that even

his pyramidal tracts remain unmyelinated for almost a year, it should be clear that

culture in its widest sense is not innate but learnt by the individual during infancy.

That is true of language, of skills, of everything that follows. That genotypes are

not the same throughout the world we know from the distribution of blood groups

;

that different environments and different cultural patterns have led to different

trends in Natural Selection (or should we say Cultural Selection?) must also be

admitted, and may suffice to explain those psychological and mental differences

which have been reported; but anatomical racial differences in the brain have yet

to be found.

Our knowledge of the structure of the cerebral cortex is so incomplete, and our

methods of study so crude, as to make any attempt to identify structural pecu-

liarities characteristic of the brains of unusually intelligent persons entirely fruit-

less (Riese and Goldstein, 1950). What dubious information we have, especially from

the Russian school, indicates that the normal range of variation is so great as to

invalidate, for a long time to come, any such attempt. The same reasoning applies

to studies (Eduard Beck, 1950) of differences in structure to be found between the

two hemispheres of the same brain, and even more so to studies of racial differ-

ences (Loo, 1933-35). We are quite incapable of identifying anatomical correlates

of race, intelligence, or genius.

It is possible that the more efficient functioning of the brain of a genius is a mat-

ter of quality rather than of structure but, at the present time, our knowledge

even of its structure is so rudimentary that we can formulate only the crudest

hypotheses (Pavlov, 1928) concerning the manner of functioning of the cerebral

cortex. When all is said and done we are most impressed by the limited use made,

even by the most civilized peoples, of the possibilities which our vaunted "best

weapon" offers us. It remains to be seen whether we shall not fly into the atom bomb
as helplessly as moths into a candle.
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Plate I. Allocortex praepiriforrais Aprp.
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Plate II. Isocortex eulanmiatus parietalis inferior lEpi.
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Plate III. Isocortex eulaminatus parietalis superior IEps.
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Plate IV. Isocortex eulaminatus praeoccipitalis IEpro.
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Plate V. Isocortex eulaminatiis frontalis inferior /£/?.
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Plate VI. Isocortex eulaminatus temporalis inferior JEh.
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Plate VIII. Isocortex agranularis gigantopyramidalis praecentralis IAGprc.
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Plate IX. Isocortex agranularis juxtallocorticalis limbicus IAJl.
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Plate X. Isocortex koniosus striatus occipitalis IKSo.
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Plate XII. Isocortex koniosus supratemporalis IKst.
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Plate XIII. Isocortex parakonioeorticalis occipitalis IPo.
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Plate XIV. Isocortex juxtallocorticalis temporalis Ut.



Plates

Plate XV. Isocortex dysgranularis frontalis IDf.
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