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ABSTRACT

The importance and complexity of spatial join resulted in many
join algorithms, some of which run on big-data platforms such as
Hadoop and Spark. This paper proposes the first machine-learning-
based query optimizer for spatial join operation which can accom-
modate the skewness of the spatial datasets and the complexity
of the different algorithms. The main challenge is how to develop
portable cost models that take into account the important input
characteristics such as data distribution, spatial partitioning, logic
of spatial join algorithms, and the relationship between the two
datasets. The proposed system defines a set of features that can all
be computed efficiently for the data to catch the intricate aspects
of spatial join. Then, it uses these features to train three machine
learning models that capture several metrics to estimate the cost of
four spatial join algorithms according to user requirements. The
first model can estimate the cardinality of spatial join algorithm.
The second model can predict the number of rough comparisons for
a specific join algorithm. Finally, the third model is a classification
model that can choose the best join algorithm to run. Experiments
on large scale synthetic and real data show the efficiency of the
proposed models over baseline methods.
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1 INTRODUCTION

The rapid increase in the amount of big spatial data urged the re-
search community to develop many systems to process this huge
amount of spatial data, such as SpatialHadoop [11], GeoSpark [38],
and many others [12]. One of the most important and challeng-
ing operations in all these systems is spatial join, which combines
multiple datasets together based on their spatial features.

Spatial join is one of the most resource demanding operations
in spatial databases and it becomes even more challenging with big
data [5, 13, 31]. Since big spatial data systems run in a distributed
environment, the best algorithm has to balance the computation
across machines, reduce disk access from the distributed file sys-
tem, and minimize network overhead. At the same time, the skewed
distribution of the inputs and the hardware specification of the ma-
chines have to be taken into account. The complexity of the problem
encourages the researchers to develop many spatial join algorithms
for big data [11, 21, 38]. However, this creates a complex query op-
timization problem to choose the best spatial join algorithm given
the input datasets and hardware resources.

Traditionally, this query optimization problem has been ad-
dressed using theoretical cost models [1, 3, 18, 19]. With the rise of
big-data, some of these cost models have been ported to MapReduce
and similar systems [2, 31]. Unfortunately, these theoretical models
are limited due to some strong assumptions such as the uniformity
of the input datasets or about the query processing engine, e.g.,
Hadoop MapReduce, which limit their use in practice.

The advancement of machine learning resulted in a new genera-
tion query optimizers that rely on data-driven models for database
operations including join [23, 24, 27, 28, 37]. However, these models
are limited to equi-join and cannot catch the complex logic of spa-
tial join. Further, most of this work assumes that the same datasets
are used for training and testing which limit the applicability of the
produced models.

This paper proposes the first learned query optimizer for dis-
tributed spatial join on big data. This cost model can be abstracted
as a complex function that estimates a single value, e.g., selectivity
or best algorithm, based on some descriptors for the input. The
main challenge with this approach is to build a model that balances
generality and practicality. On one side, the model should be general
so that it can be ported to different datasets, spatial join algorithms,
and systems. On the other side, it needs to be practical by providing
a simple output that can be directly used by the query optimizer
such as the estimated result size or the best algorithm to run.

To address the challenges above, we propose a machine learning
based framework that consists of three levels of application. The
first level builds a cardinality estimation model that learns the result
size independently of the algorithm. The input features used in
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this level cover individual dataset attributes, e.g., size and some
skewness measures, and other features based on the convoluted
histogram, which catch the joint distribution of the two datasets
that is important for spatial join. The second level combines the
predicted result size with other dataset attributes to build a separate
model for each spatial join algorithm that predicts the number of
geometric comparison operations, which is an algorithm-specific
but hardware-independent feature. Finally, the third level builds a
classification model which is able to predict the best algorithm.

This proposed architecture gives system designers the flexibility
of choosing the level that matches their application needs from the
most general (level 1) to the most specific one (level 3). Moreover,
it allows us to train some of these models once and share them.
For example, the cardinality estimation model in level 1 can be
used regardless of the algorithm. Similarly, the models in level 2
are hardware-independent so they can be ported to any hardware.

The proposed work is open source !. In particular, we implement
the proposed models using scikit-learn [30] and train/test them on
different datasets. To train the model, we use an open-source spatial
data generator [36] to generate hundreds of datasets by varying
the data distribution and size. In addition, we train on subsets
of publicly available real data from UCR-Star [20]. Together, the
synthetic and real data generate a rich training set with thousands
of training points. The results show that the proposed model can
estimate the cardinality of the spatial join with an error of as low
as 8% when compared to the ground truth. It can also predict the
number of MBR tests for different algorithms with a reasonable
error. Finally, we tested the end-to-end framework in predicting
the best algorithm in terms of running time.

In summary, we make the following contributions:

(1) We design and implement the first machine learning based
model which is able to predict the best algorithm for spatial
join in terms of their running times.

(2) We break down the time prediction model into separate
models that predict join selectivity, number of MBR tests,
and fastest algorithm. These models are the building blocks
for existing spatial join query optimizers.

(3) We carry extensive experiments to validate the advantages
of the proposed models over the existing solutions.

The rest of this paper is organized as follows. Section 2 discusses
the related work. Section 3 describes the process of our proposed
cost model. Section 4 details the training and test process including
data generation and preparation. Section 5 gives the results of our
experiments. Finally, Section 6 concludes the papers and discusses
future works.

2 RELATED WORK

Non-spatial join optimization: Due to its popularity and impor-
tance, there has been a large body of work for optimizing non-
spatial equi-join. There are mainly three problems related to query
optimization, selectivity estimation, join cost estimation, and join
ordering. Traditionally, theoretical models were proposed to solve
these three problems [17, 25, 29, 33]. One of the key challenges is
the correlation between join attributes. With the rise of machine
learning, it was utilized to build sophisticated data-driven models
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for selectivity estimation [23, 37], join cost estimation [24, 26, 28],
and join order enumeration [27]. These ML-based methods suffer
from two limitations. First, they only work with equi-joins and
do not support the complex logic of spatial join. Second, existing
models is trained on a small number of tables and can only work
with these tables. For example, existing techniques model the input
table using a one-hot vector that defines which table to work with.

Join Type Non-spatial Spatial

Problems Selectivity estimation, | Selectivity estimation
join cost, and join or- | and join cost estima-
dering tion

Theoretical | [17, 25, 29, 33] [1-3, 18, 19, 31]

ML [23, 24, 26-28, 37] This work

Figure 1: Related work in join optimization

Spatial join optimization: Given the high cost of spatial join,
its optimization also was rigorously studied through the two prob-
lems of selectivity estimation and join cost estimation. Effective
formulas have been proposed for uniformly distributed datasets
in [2], but their extension to skewed distributions were not straight-
forward. For accurate selectivity estimation, a method was proposed
that computes the correlation fractal dimension of the considered
spatial datasets and applying a power law for self-join [3] and
binary join [18]. However, these methods were limited to point
datasets with distance join predicate.

To optimize distributed spatial join queries, a cost-based and
rule-based query optimizer was proposed for MapReduce [31]. It
breaks down the spatial join into two phases, partition and join, and
decides which technique to use in each phase. This work has two
limitations. First, the cost-based model requires the measurement
of eight parameters to catch the characteristics of the hardware,
algorithms, and data. Second, it did not consider all join algorithms,
e.g., block nested loop join. A more detailed model was proposed
in [5] which breaks down the cost into CPU, local and network I/O
components. It overcomes the limitations of the earlier work as it
uses only simple data statistics and supports more algorithms but
it is limited to uniformly distributed data.

This paper proposes the first ML-based model for distributed
spatial join for selectivity estimation and cost estimation. It differs
from existing ML-based query optimizers as it supports spatial join
and can apply to any input data that was not part of the training
process. It also overcomes the limitations of existing theoretical
spatial join models as it supports skewed data including real datasets
and it works on well-defined data statistics that can be computed
with a simple data scan.

3 OVERVIEW OF SJML

This section gives an overview of the proposed Spatial Join Machine
Learning (SJML) tool illustrated in Figure 2. SJML is a supervised
model that requires a training phase. Most existing ML-based query
optimization models can only be applied to the same data distribu-
tions it was trained on. However, SJML breaks from this restriction
as it builds a dataset-independent model that can be applied to any
dataset. Thus, in the training phase, we use Spider [36], a standard
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Figure 2: Overview of SJML

spatial data generator, to generate various datasets with diverse
characteristics. For each pair of generated datasets, we extract a set
of features that the machine-learning model can train on. We also
run all available algorithms on each pair of datasets to measure
their behavior with such pair of datasets. This results in a training
point that can be fed to the proposed ML algorithm to learn how
the existing algorithms behave for a specific pair of input datasets.

This generic model can easily extend to more spatial join algo-
rithms or data processing systems. In this paper, we focus on four
fundamental spatial join algorithms, namely, block nested-loop join
(BNLYJ), partition based spatial merge join (PBSM), distributed index-
based join (DJ), and repartition join (REPJ). All these algorithms
are implemented in both Hadoop and Spark.

After the model is built, we can use it to infer the best spatial join
algorithm to run. Given a pair of datasets, we extract their features
in the same way done in the training phase. We feed the features
to SJML to choose the best algorithm to run.

Data Generation: To obtain a portable model, we need to make
sure that we generate diverse and representative data. We generate
data using five different distributions and vary the data distribution
parameters such as skewness and geometry size. We also create
compound dataset that combine two or more simple datasets.

Feature Extraction: The most challenging step in the proposed
model is the feature extraction step. We need to extract a set of
features that are relatively easy to compute and are useful for the
spatial join problem. We extract three sets of features. First, we
collect statistical-based features such as the cardinality of the input
and average geometry area. Second, we collect histogram-based
features that represent data distribution and skewness such as box
counting. We also introduce a convoluted histogram that combines
the two datasets together to represent the relationship between
them. Finally, we compute partitioning-based features that repre-
sent how the data is partitioned and indexed.

Model Training and Inference: We train three models that
work in concert to solve the problem. The first model estimates the
size of the spatial join result which is a very important algorithm-
independent metric for the cost of spatial join. The second model
estimates the total number of rectangle tests (i.e., intersection tests

Table 1: Summary of features

Group | Feature Description
#geo Number of geometries
P size . . .
size Total input size
MBR Minimum bounding rectangle
p mbrArea®™ | Average record area
’Q; dens | jen®8 Average record width
= len{;v‘g Average record height
L
& | Paist Ey, E; Box counting with base 0 and 2
3 #cells Number of cells (partitions)
%’D #splits Number of splits (blocks)
-(% TTarea Sum of partition areas
TTmargin Sum of partition semi-perimeters
P TToverlap | Sum of overlap areas between pairs of
part partitions
LB Load balancing: Standard deviation of
sizes
BU Block utilization: Percentage of block us-
age
- Area; Percentage of overlap area occupied
S | Pmpr | Area; by dataset i or j
;é JSij Jaccard similarity between the two MBRs
5] eg, €2 Box counting for the convoluted his-
O | Pop .
togram with base 0 and 2

between the MBR of two geometries) in the algorithm which is an
algorithm-specific but hardware-independent metric for the cost
of spatial join. The third model combines these two metrics with
other features to choose the best algorithm. The first two models
are regression models while the third is a classification model.

4 MODEL TRAINING AND TESTING

The training process runs a supervised training step to build an
ensemble of models that estimate the cost of spatial join. First, it
runs a feature extraction step that takes two datasets and converts
them into a fixed-size feature vector and a set of performance
metrics. Each model learns a function that maps a subset of the
feature vector to one of the performance metrics. Second, to train a
generic and representative model, we use Spider [36] to generate
diverse synthetic datasets, and UCR-Star [20] to extract real datasets.
Finally, we prepare the master dataset that we use for training and
testing each of the models that we propose in the paper. The details
of these steps are described below.

4.1 Feature Extraction

The spatial datasets that the spatial join operation processes are not
directly usable by the machine learning models that we propose,
since they expect a fixed-size feature vector not a variable size
dataset. This step extracts a set of standard features for each pair
of datasets D; and D; to prepare the data points for model training.
All the features that we propose to use can be extracted in one
parallel scan over the data.

Table 1 summarizes all features we use in this paper and the
details are given in this section. We divide the set of features into
two groups, single and combined dataset statistics. Single dataset
statistics are features that are extracted for each individual dataset
separately. Combined statistics represent features that are computed



for the two datasets together. Finally, We collect a set of metrics
from the execution of each spatial join algorithm that represent its
cost.

4.1.1 Single Dataset Statistics. The following statistics are com-
puted individually for each dataset D, and they are not modified
based on the join query, since they describe the dataset itself. We
define them into four groups. The first two groups contain a set
of associative and commutative functions that can be computed
efficiently in one parallel scan. The third group is computed from
a histogram over the data which can be computed exactly in one
additional scan, or approximately in one scan that can be com-
bined with the first two groups [32]. The fourth group is computed
from the partition information and does not require scanning the
actual records. Further details are provided in the following four
definitions.

Definition 4.1 (Data size statistics - Ps;z.). Given a dataset D,
we define:

o #geo(Ds): number of geometries (records) in Dy: |Dx|.
o size(D.): size of the dataset in bytes. size(Dx) = 3, ¢p, size(r),
where size(r) is the size of a record in bytes.

Definition 4.2 (Data density statistics - P, ). Given a dataset
D.., we define:

e MBR(D:): Minimum Bounding Rectangle of D. MBR(D.) =
(min x, min y, max x, maxy).
o mbrArea®8(D,): given the MBR of geometries r in D, (mbr(r)),

it represents the average area of such MBRs: mbrArea®*8(D.) =
2rep, area(mbr(r))
D.

|
o lent¥(Dy) and len‘;v'g (D+): given the MBR of all geometries
in a dataset, they represent the average length on the X

and Y axis of such MBRs. leng &(D,) = Zrep, lenx (mbr(r))

D]
lenZVg (D) is calculated similarly.

After the above statistics are calculated, the histogram of the
input is computed. We always create a high-resolution histogram
of size 8192 x 8192. This histogram is used to calculate in particular
the parameters Ey and E; using the box-counting technique as
described in [6]. The histogram is also used to calculate the lower-
resolution histograms H(D.) that will be used for the computation
of the convoluted histogram described shortly.

Definition 4.3 (Histogram-based statistics - Pg;s; ). Given a dataset
D, its high-resolution histogram h is generated and some metrics,
first proposed in [4, 6, 34], describing the distribution of the geome-
tries in the reference space of D, are computed. In particular, two
numeric values, called Eg and E3, derived from the box-counting
(BC%*(r)) technique [3] are considered. The following formula
show how to compute the function BC on the histogram h with
scale r. Eg and Ej are the slope of the plot of BCIOD* (r) and BCIZ:)* (r)
in log scale, respectively.

BCY (r) = > hi(Da, 1)1

where h;(Dx,r) = count(geometries of D, intersecting the i cell of h
with scale r).

Since every dataset has to be partitioned when running in Hadoop
and Spark, we devise a fourth set of features that represent the spa-
tial characteristics of the partitioning. Spatial partitioning is char-
acterized by the MBR, number of geometries, and total size of each
partition. If the data is not spatially partitioned, we assume that the
MBR of all partitions is the same as the dataset MBR and that the
number of geometries and size is equally split among partitions.

Definition 4.4 (Partition statistics - Ppgrt). Given a dataset D
that is partitioned with some technique, the following parameters
regarding its partitions can be defined:

o i#cells(D,): number of cells partitioning the dataset D.
o #splits(D): number of blocks containing records of Ds.
e Total area of D,: sum of the area of all partitions.

TTarea(Ds) = Z area(c;j) X cj.blocks
c;€I(Dy)
where 7 (D) is the set of cells used for partitioning the
reference space of D, and c;.blocks is the number of blocks
stored in cell c;.
e Total margin of Dy: sum of the length of the semiperimeter
of all partitions.

TTnargin(Ds) = Z sp(ci) X cj.blocks
c;€l(D.)
where sp(c;) is the semiperimenter of the cell ¢;, i.e., width
+ height.
e Total overlapping of D.: sum of the area of the overlapping
regions produced by intersecting each cell ¢; with all other

cells.
TTyvertap(Ds) = Z area(c; N cj) X B(c, ¢j)
ci,c; €I (Dy)
N cj.blocks X (c;j.blocks — 1)
c;eI (D) 2

where B(cj, cj) = cj.blocks X cj.blocks
o Load balancing: standard deviation of index cells cardinality

LB(D,) = chiEI(D*) (cj.card — avgCard)?
|Z7(D)]
where avgCard is the average cardinality of the cells belong-
ing to the index 7 (D).
e Block utilization: average percentage of block usage:

BU(Dy) = Yb;eI(D,).blocks(bi-size/blockSize)
T |7 (D.).blocks|

These metrics can be easily calculated from the partition infor-
mation which is typically very small and can be processed by a
single machine. For example, for disk-based partitioned data, this
information is stored in the master file [2].

4.1.2 Combined statistics. Since spatial join is a binary operation
that takes two input datasets, we include additional combined sta-
tistics that catch the relationship between the two inputs. The fol-
lowing statistics are computed for each pair of datasets that are
input of a join query. Notice that we do not need an additional scan
over the data to compute these statistics since they are computed
based on the summaries computed for each dataset individually.



Definition 4.5 (MBR overlapping statistics - Pp,p,,-). Given a pair
of datasets (D;, Dj), the following statistics describing their over-
lapping are computed.

e Percentage of the area of D; occupied by the area of the
datasets intersections:
area(MBR(D;) N MBR(D;))
area(MBR(D;))
e Percentage of the area of D; occupied by the area of the
datasets intersections:
area(MBR(D;) N MBR(D;))
area(MBR(Dj))

Area; =

Areaj =

e Jaccard similarity:
area(MBR(D;) N MBR(D;))
area(MBR(D;) UMBR(D;))

JSij =

In order to combine the information stored in the high-resolution
histogram computed separately on the datasets D; and Dj, we
introduce the concept of convoluted histogram.

The convoluted histogram is simply the result of two histograms
for the two datasets overlaid on top of each other. The goal is to give
the machine learning model a picture of how the two datasets over-
lap with each other, which is extremely important for estimating
the cost of the spatial join query.

To compute a simple histogram for one dataset, we overlay a
uniform grid and count the number of records in each grid cell. If a
record overlaps multiple cells, we count it only in the grid cell that
contains its centroid to avoid overcounting. Finally, we normalize
the histogram by dividing by the largest number to prepare it for
machine learning processing.

To compute a convoluted histogram for two datasets, we need to
apply the same grid for both of them. This ensures that their relative
positions in space is taken into account in the convoluted histogram.
To do that, we define the grid based on the minimum bounding
rectangle (MBR) of the union of the two datasets, i.e., the enlarged
MBR that covers both datasets. Since the convoluted histogram
requires knowledge of the two datasets before it is computed, it is
not possible to precompute before the join query runs, e.g., as a part
of data preprocessing and indexing. On the other hand, computing
it on the fly when the join query comes would further delay the
query and would defy the whole purpose of the spatial join query
optimization problem.

To efficiently compute the convoluted histogram, we do it in
two steps. The first step, which can be done offline, computes a
simple histogram for each datasets based on its own MBR. Then,
when the join query comes, we define the grid of the convoluted
histogram based on the union MBR of the two datasets. After that,
we transform the two simple histograms to the new grid to define
the convoluted histogram as explained in [32]. The key idea of
this transformation is to run a sort-merge-like algorithm that maps
each bin in one of the two histograms to the corresponding bin in
the convoluted histogram. In addition, it defines a multiplier ratio
that is computed based on the amount of spatial overlap between
the source and target bins in the two histograms. Note that this
transformation is approximate and assumes that the data in each bin
is uniformly distributed but it is sufficient for our purpose. Further
details about this operation is explained in [32].

Definition 4.6 (Convoluted histogram-based statistics - P,y ). Given
a pair of datasets (D;, Dj), some metrics describing their mutual
distribution and based on the box-counting technique are computed.
In particular, Eg and E; are calculated starting from the convoluted
histogram of D; and D; as shown in Def. 4.3. They are able to de-
scribe the distribution and density of the overlapping areas between
D; and Dj. For sake of clarity we call them ey and e, leaving Eo
and E; for single histograms.

This collection of parameters will be used for setting the machine
learning model and, in particular, they will be used for generating
the input vector of the model.

4.1.3  Performance metrics. The following metrics are collected
from the result of spatial join for each pair of datasets. We propose
model that trains on these collected metrics and estimates them
during the inference step as further detailed in Sec. 4.4.
Join selectivity: the first performance metric is join selectivity
(075s), computed as:
ors = |D; >« Dj|
7>~ IDil - 1Dj]
i.e., the cardinality of the spatial join divided by the cardinality of
the cross product of the two datasets.
MBR test selectivity: the second performance metric is the
MBR test selectivity (ops), computed as:
#MBRtest(algo;, Dj, Dj)
IDil - |Dj
i.e., the number of MBR tests that each specific join algorithm
requires divided by the cardinality of the cross product of the two
datasets. This is an important machine-independent metric that
strongly correlated with the running time.
Join running time: the third metric is the running time of a
join algorithm on a specific hardware, e.g., a cluster of machines.
Best join algorithm: the fourth performance metric determines

the best algorithm in terms of running time, i.e., one of the four
labels: BNL]J, PBSM, D], and REP]J.

oMS =

4.2 Training Data Generation

In this step, we produce the training data that will be used to build
the SJML model. Our goal is to build a universal model that can
work with any input so it is vital that the training data is diverse
and representative of a large swath of distributions. At the same
time, we need to make sure that the data generation process will
not take too long. Thus, we can summarize our goals as follows:

(1) Generate representative data that can train an accurate and
universal model.

(2) Reduce the overhead of generating the data.

(3) Produce data with the ability to train all the proposed models,
i.e., join selectivity, MBR test selectivity, and best algorithm.

To generate representative data, we combine synthetic data from
the Spider [22, 36] data generator, and publicly available real data
from UCR-Star [20]. For synthetic data, we generate datasets of five
different distributions provided by Spider, namely, uniform, parcel,
bit, Gaussian, and diagonal. Additionally, we apply various trans-
formations to the generated datasets such as translation, scaling,
and rotation to ensure we cover more cases such as when the input



datasets are not perfectly aligned. All transformations are repre-
sented using a single affine transformation matrix, which allows us
to control all these transformations and ensure we have diverse dis-
tributions. Moreover, we combine some of these generated datasets
in pairs to produce complex distributions, e.g., diagonal+Gaussian.
In total, we have 320 synthetic datasets. This allows us to produce
more than 50,000 data points that represent all pairs.

In addition to synthetic data, we also use real datasets from the
public repository, UCR-Star. Since the number of real datasets is
relatively limited and they are harder to retrieve and process, we
generate arbitrarily many real datasets by extracting subsets of
the real data with random search windows. This ensures that the
distributions of the real data are diverse and representative of many
real datasets. We chose the OSM buildings, lakes, and roads datasets,
and US Census linearwater, edges, and faces datasets. In total, we
have 95 real datasets that range from 134 MB (few HDFS blocks) to
7 GB (many HDFS blocks). This variation of number of blocks will
result to the high variation of choice of the best join algorithm.

To reduce the overhead of generating the data, we generate data
at three scales: small, medium, and large. These are at the order of
1-2 MB, 10-20 MB, and 1-2 GB, respectively. The key idea is that
smaller datasets are easier to generate and process which allow
us to generate thousands of training points in a very short time.
However, small datasets might not hold a good representation of
performance characteristics, which can only be tested with larger
data. Thus, we generate the medium and larger datasets which can
better catch performance behavior of spatial join algorithms as
described shortly.

To be able to train all models, we divide the training data among
the three models as follows. First, all the datasets are used to train
the model that estimates the join selectivity since it is not affected
by the data size. In other words, if the dataset gets bigger but all
data characteristics remain the same, the selectivity will not change.
To further clarify that to the reader, we use Spider to generate four
groups of datasets. For each group, we fix the dataset characteristics
and increase the data size from 1 MB to 50MB. For each dataset size,
we run spatial join and measure the join selectivity as the result
cardinality divided by the product of the two input cardinalities.
As shown in Figure 3(a), the selectivity of spatial join is almost a
constant which confirms this point. At the same time, as Figure 3(b)
shows, joining the 1IMB dataset is about 10 times faster than joining
the 50MB datasets. Hence, we can use this method to generate
thousands of training points in a reasonable time without sacrificing
the quality of the model.

Second, to train the model for MBR test selectivity, we use only
medium and large datasets. While MBR selectivity might not be
affected by cardinality, the way we partition the data is. Therefore,
when using the medium dataset (scale of 10-20 MB), we adjust
the partition size to be 128 KB. This results in a partitioning that
has similar characteristics to partitioning 10-20 GB dataset with a
partition size of 128 MB.

Third, to train the model for fastest algorithm detection, we
use the large datasets which show the actual performance of the
machines on big data. We use datasets that are big enough to utilize
all executor nodes in the cluster. The goal is to avoid the case where
only a few executor nodes are working since they do not represent
the real performance of the cluster. This is similar to focusing on
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Figure 3: Join selectivity and execution time in different car-
dinality scales

asymptotic behavior of algorithms when running on large enough
input data. Overall, our proposed query optimizer focus on HDFS-
based data systems (Hadoop, Spark) and give more priority for
problems on large datasets.

4.3 Training Set Preparation

In our system, we design the training data as tabular data. Each row
of the training data includes a list of features and the output metric.
The metric could be the join selectivity, the MBR test selectivity,
the best algorithm, or the total running time. In order to highlight
the impact of the different features we define four possible training
sets as shown in Table 2:
(1) FSs: the feature set that includes statistical-based features;
(2) FSsp: the feature set that includes FSg and histogram-based
features;
(3) FSspp: the feature set that includes FSs, FSgp, and partitioning-
based features;
(4) FSqap: the feature set that include FSgp,, join cardinality, and
number of MBR tests of all join algorithms.
The tabular data would be fed into an efficient regression or
classification models, which will be discussed in Section 4.4.

Table 2: Different possibilities of feature sets

Name Features of D, Feat./metrics of (D;, Dj)
Psize | Pdens | Ppart | Paist | Pmbr | Pen | 05s | oms

FSs v v

FSgp v v v v

FSshp v v v v v v

FSan v v v v v v v v

4.4 Definition of the models

In this part, we describe the models that we propose for the spatial
join cost estimation problem. We show how we break down the
complexity of the spatial join problem and algorithms by proposing
an ensemble of models. In particular, we create four models which
estimate four different metrics that all help in choosing the best
algorithm. The four models estimate, (1) join selectivity, (2) MBR
test selectivity per algorithm, (3) the best algorithm by running
time, and (4) the running time of the chosen algorithm.



4.4.1 MI1: Join selectivity estimation model. This model estimates
the join selectivity of the spatial join operation (oys). There are
three reasons we are considering ojs for the first model. First, it
is an algorithm- and machine-independent metric which makes
it relatively easier to estimate. Second, join selectivity is a very
important metric for spatial join performance that is important to
estimate by itself. Third, it is a metric that does not depend on the
data size which allows us to use small datasets for training.

We build M1 as a regression model that takes as input the features
of both inputs except for the size and the partitioning information
as they are irrelevant. The learned metric join selectivity is defined
as the result cardinality divided by the product of the input cardinal-
ities. Since the join selectivity is independent of the join algorithm,
we have only one instance of M1 that can be used for all join al-
gorithms. To speed up the training process, we generate a large
training set for small data and we run only one join algorithm to
get the result size. We can easily parallelize this process on cluster
nodes by letting each executor process one of the datasets.

4.4.2  M2: MBR test selectivity estimation model. We use MBR test
selectivity (oass) as a stable and machine-independent metric for the
performance of each algorithm for two reasons. First, it is machine
independent which makes it easy to port the learned model to a
different system without any changes in the training. In addition,
since it is system load independent, it is possible to generate the
training set in parallel on a cluster without worrying about any
conflicts. Second, it is independent of input size which allows us to
train it on as low as medium-size data.

We train four M2 models, one for each algorithm. The model is
trained as a regression model and takes as input all input features
except for input size which is irrelevant for this model. Unlike M1,
this model takes the partitioning features into account since the
partitioning of the input affects the performance. The training set
for this model consists of medium and large datasets. For medium
data (10-20MB), we use a partition size of 128 KB to generate enough
partitions to train this model. The resulting partitions are equivalent
to partitioning a 10-20 GB dataset with a 128 MB partition size.

4.4.3 M3: Algorithm Selection. This model chooses one of the al-
gorithms to run for a specific pair of inputs. We design M3 as a
classification model that produces one of four labels for the four
algorithms. Since the choice of algorithms is highly dependent on
the input size, this model is only trained on large datasets with
several gigabytes in size.

4.44 M4: Running Time Estimation. This last model estimates the
end-to-end running time of a specific algorithm. This model is not
necessary for the execution of SJML, but it is added to make the
system more user friendly by providing an estimated running time.

Since the running time is hardware dependent, we build a linear
regression model for each algorithm that is trained and applied on
specific hardware settings. It takes as input the result cardinality and
MBR test cardinality, estimated by models M1 and M2, and produces
an estimated running time. Due to its simplicity, this algorithm can
be trained on a very small training set which makes it easy to train
when the algorithm is ported to a different hardware. This model
is not meant to be accurate enough to rank the algorithms but can
still produce a rough estimated running time.

5 EXPERIMENTS

This section provides an experimental evaluation to measure the
feasibility and accuracy of the proposed models. The experiments
are designed to answer the following research questions:

(1) Can machine learning models outperform hand-crafted the-
oretical models?

(2) Do the proposed features catch all aspects of spatial join?

(3) Is the proposed model generic enough to be applied on a
dataset that was not in the training set?

(4) How accurate is the model in choosing a spatial join algo-
rithm to run?

5.1 Experimental Setup

We implement four spatial join algorithms with their original de-
sign on Beast [10] - a Spark based system for big spatial data man-
agement. Beast is deployed on a Spark 3.0 cluster of one master
node with 128GB RAM and 2x8-core Intel Xeon CPU E5-2609 v4
@1.7GHz, and 12 executor nodes each with 2X6-core Intel Xeon
E5-2603 @1.7GHz and 10TB HDD.

The synthetic data is generated using the open-source Spider
generator [22, 36]. The real data is downloaded from UCR-Star [20].
We chose the OSM buildings [15], lakes [14], and roads [16] datasets,
and US Census linearwater [8], edges [7], and faces [9] datasets.
The detailed information of experimental datasets are described in
our technical report [35].

As a baseline, we use the theoretical models proposed in [5, 21,
31]. To measure the accuracy of join selectivity model M1 and MBR
test selectivity model M2, we use mean absolute error (MAE) and
mean absolute percentage error (MAPE) which are calculated as
following.

LC n
MAE = % le ly; —xi| MAPE = % El |yix—ixi|
iz

where y; is the estimated value and x; the true value.

For the algorithm selection model, we use the accuracy metric
to evaluate how good the classifier can choose the best algorithm.
To account for the cases where multiple algorithms provide almost
the same running time, we also measure the MAPE between the
running time of the selected algorithm and the best algorithm. A
lower value of MAPE indicates a better selection model.

5.2 Baseline methods

In order to compare the accuracy of the proposed model with pre-
vious work and show the improvements of the proposed approach,
we define the following baseline methods.

o Baseline B1 for the join selectivity model M1: we consider the
well-known spatial join selectivity estimation formula first
proposed in [2] and also adopted in the theoretical model
for spatial join algorithm ranking proposed in [5, 31]. This
formula is defined for uniformly distributed datasets. To
verify the accuracy of B1 for uniformly distributed data,
we tested it on various datasets as reported in Table 3. As
shown in the table, B1 provides good accuracy when applied
on uniformly distributed dataset (column MAPEjs), but the
performance deteriorates when applied on skewed and non
completely overlapping datasets.



Table 3: Accuracy of the theoretical models (B1, B3;) for join
selectivity and the best two algorithms in ranking,.

Distribution | MBR overlap MAPEjs (B1) | Acc (B32)
Uniform > 90 1.7% | 72%
Skewed >90% 25% | 64%
Skewed < 90% > 200% | 57%

o Baseline B2 for the MBR test selectivity model M2: we consider
the estimation of the theoretical model for ranking spatial
join algorithms proposed in [5]. Notice that the theoretical
model has a different goal, i.e. to predict the ranking of the
spatial algorithms and not the number of MBR tests per-
formed by them. The number of MBR test was used in [5] as
an intermediate estimate to evaluate the relative position of
the algorithms in the ranking, thus it is very imprecise when
compared to the real values computed in the experiments.
However, to the best of our knowledge there is no other
approach in literature that try to estimate this parameter.
Baseline for algorithm selection model M3: we compare our
work with the rule-based model proposed in [31] (called B3;)
and the cost-based model proposed in [5] (called B3;). The
theoretical models were designed for uniformly distributed
datasets, thus, as shown in Table 3 (column Accgg,k), the
accuracy of B3; in predicting at the best or the second best
join algorithm decreases quickly considering non uniform
datasets.

5.3 Feature Selection

This experiment shows how the proposed feature selection affects
the accuracy of the proposed models. In general, we expect that the
more complex and intricate features will produce more accurate
models. In each experiment, we compare three variations of pro-
posed models M1, M2 and M3 with the three feature sets FSs, FS,p,
and FSgp,. The tabular data is collected from 7140 join queries on
synthetic datasets with different data distributions.

Table 4: Effect of feature selection to join selectivity estima-
tion models

Feature Set | Model | MAPE | MAE

FSq B1 35% | 2.87x107°
FS; M1 23% | 1.06x107°
FS¢p, M1 4.49% | 2.36x107°

Table 4 shows the evaluation of join selectivity model (M1) and
the baseline (B1) when using features sets F'S; and FSg,. We do
not use FSgp,, since the partitioning information is not relevant to
the join selectivity. First, we evaluate the performance of baseline
method B1 from a previous work [2] on the feature set FS;. Since
B1 is designed to work with the join of uniform dataset, its MAPE
value is pretty high. In addition, the equations of B1 use only the
features available in the feature set FSs. Given the same feature set
FSs, a random forest regression model M1 is significantly better
than the baseline B1 gaining 12% in terms of MAPE. Finally, if we

feed FSp, to M1, the MAPE value (4.49%) is significantly reduced
when compared to other models. This low MAPE value indicates
that a regression random forest model with informative features can
efficiently predict the join selectivity of a join query and outperform
hand-crafted models.

Table 5 shows the efficiency of MBR selectivity (M2) and the base-
line (B2) when using features sets FSs, FSsp, and FSgp,,. Since we
have a separate model for each of the four algorithms, we measure
the performance of each of them separately. Overall, the baseline
model B2 cannot work well with this problem, and its MAPE and
MAE values are almost unacceptable. Keep in mind that B2 was not
designed to accurately measure the MBR selectivity but it is roughly
calculated at an intermediate step. In contrast, the proposed random
forest regression model M2 can achieve very good values in terms
of both MAPE and MAE values. We can also observe the downtrend
of these metrics when there are more meaningful features fed into
the model. We do not see much improvement for the models of
BNLJ and PBSM, but noticeable improvement for the models of
DJ and Rep], which use the partitioning information in their join
strategies. This observation further confirms our conjecture that
machine learning models can outperform theoretical models when
given enough features that describe the input datasets.

Table 6 shows the accuracy of algorithm selection (M3) and the
baselines (B3 and B3;) when using different features sets. We use
two metrics to evaluate the efficiency of these algorithm selection
models. The accuracy measures the percentage at which the model
correctly estimates the best algorithm. The MAPE value measures
the percentage of the difference between the running time of pre-
dicted algorithm and the actual best algorithm. The results show
that B3; and B3; are not able to predict the best algorithm well,
when their accuracy is too low, and the MAPE value is unreason-
able. They are slightly better than a complete random choice which
would yield 25% accuracy. The reason for this poor performance is
that these models were mainly designed for uniformly distributed
data and do not account for the complex spatial distributions. On the
other hand, the proposed random forest classifier M3 can provide
up to 82% accuracy and 7.4% MAPE value. The highest accuracy
is produced with the model that uses all the proposed features.
In addition, Figure 4 show the confusion matrices of the baseline
B3, and the proposed M3, respectively. This figure shows that the
baseline get a decent accuracy (around 60%) for the PBSM and Rep]
algorithms but get really confused about the other two algorithms,
BNL]J and DJ. On the contrary, the proposed model is generally
accurate, especially for BNL], PBSM, and D]J, but performs less ac-
curately for the Rep]. We plan to address this issue in the future but
the results are very encouraging to include the proposed optimizer
into existing spatial database systems.

Finally, we wanted to take a closer look into the difference be-
tween the feature set FSgp,;, and FSyy;. In this experiment, we fix
the test set and gradually increase the training set from 40% to 100%
of all the available training data. Figure 5 shows that the model
performs generally better with the feature set FS,;; even when the
training set is small. This indicates that the join selectivity and
MBR selectivity, which are added in FS,j;, help in improving the
model performance.



Table 5: Effect of feature selection on MBR selectivity estimation models B2 and M2

BNLJ PBSM DJ Rep]
Feature Set | Model | MAPE MAE | MAPE MAE | MAPE MAE | MAPE MAE
FS; B2 518% | 1.13x107% | 1332% | 7.18x10™% | 386% | 4.36x107% | 183% | 7.82x107%
FS M2 15% | 6.64x107% | 1.25% | 3.99x10™° | 6.8% | 11.09x10™> | 7.5% | 8.53x107°
FSqp, M2 1.8% | 6.13x107° | 1.42% | 4.48x10™ | 54% | 825x107> | 3.9% | 4.17x107°
FSshp M2 1.77% | 6.22x10™° | 1.39% | 4.38x10™° | 4.5% | 6.95x10™° | 3.3% | 3.45x107>

Table 6: Effect of feature sets on algorithm selection models

Feature Set | Model Accuracy | MAPE
FSgpp B3; [31] 33.7% | 122.8%
FS, B3, [5] 32.2% | 80.5%
FSs M3 71% 13.9%
FSgp, M3 79% | 7.9%
FSepy M3 81% | 7.5%
FS.n M3 82% 7.4%
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Figure 4: The confusion matrix of the algorithm selection
model
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Figure 5: Performance of M3 for the FSgp, and FS,; feature
sets as the training set size increases

5.4 Training Set Generation

This experiment shows the effect of the training set on the accuracy
of the models. Our goal is to show that the more distributions we
have in the training set, the more accurate the model becomes for a
dataset with any distribution. To verify that, we gradually increase
the number of synthetic distributions in the training set, from 1 to
5, and measure MAE of join selectivity model M1 and MBR tests
selectivity model M2. For fairness, when we limit the number of
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Figure 6: Effect of training distributions in M1 and M2 model

Table 7: Regression score of the linear model between join
result, number of MBR tests and join execution time

Algorithm | Regression Score
BNLJ 0.86
PBSM 0.78
DJ 0.82
Rep] 0.80

distributions, we try all combinations and take the average. For
example, for two distributions, we try (g) = 10 combinations and
report their average. Finally, we add the data with real distribution
and consider the total number of distributions being 6. These 6
distributions well represent most available spatial datasets as shown
in [22, 36]. Figure 6 shows the efficiency of the baseline models B1
and B2 and the proposed models M1 and M2 when the number of
distributions varies, while the test dataset is fixed. Since there is
no training process for B1 and B2, their MAE values are fixed. In
contrast, the MAE values for M1 and M2 improves as the number
of distributions increases. This behavior indicates that adding more
distribution to the training data helps in improving the model’s
performance. Moreover, there is a slight difference of MAE value
between the training data with all five distributions and the training
data with real dataset’s join results. This small gap shows that we
can train on synthetic data, and still estimate the join algorithm’s
cost efficiently.

5.5 Spatial join cost estimation model

This experiment measures the performance of the proposed linear
regression model M4 which estimates the algorithm running time.
Input features are only the result size and number of MBR tests,
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Figure 7: Spatial join running time estimation with M4

obtained by multiplying o;s and oy (estimated by M1 and M2)
by the cardinality of the cross product. Our goal is to show that
these two features accurately estimates the overall running time.
Additionally, since this is a linear model, it can be trained on a very
small dataset. This allows system designers to use pre-trained M1
and M2 models together with a very small training set on their
hardware to measure the spatial join query performance. Table 7
shows that the regression score of these models is very good for
the four algorithms. In addition, we plot the estimated running
time with predicted running time for the different linear regression
models in Figure 7. Due to limited space, we only included the
models with highest score (BNL]) and lowest score (PBSM).

6 CONCLUSION

This paper presented a spatial join cost estimation model based on
machine learning. It is able to choose the best distributed spatial
join algorithm given two input datasets. It breaks down the cost
estimation into several modules. The first module estimates the
cardinality of the spatial join result which is an algorithm indepen-
dent metric. Second, it estimates the number of MBR tests done
by each algorithm which is a machine-independent but algorithm-
specific metric of performance. The third module estimates the
best algorithm. Finally, the first two metrics are fed together into
a regression model that estimates the running time. To train this
model, we used a synthetic data generator that produces thousands
of datasets with various distributions to train the model on the dif-
ferent aspects of spatial data. We showed that training on synthetic
and small/medium size datasets can speed up the model setting and
still produce accurate results. Our experimental evaluation shows
the effectiveness of the proposed method in estimating both best
algorithm and join cardinality. In the future, we plan to further ex-
tend this model by taking into account the hardware specification
to estimate a more accurate result.
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