

Automatic Processing and Cross Section Analysis of

Topology Optimization Results

C. Gomes Alves, Y. Barthel

(German Aerospace Center, Germany)

Abstract

Finite element-based topology optimizations have become a vital tool in the

design of lightweight-optimized components and structures. Used in the early

stages of the product development process, they can help identify load paths

and shape the fundamental design of a product. However, the interpretation of

topology optimization results can be a challenging and time-consuming task. In

order to properly analyze the topologies, both knowledge in the field of finite

element computations as well as computer-aided engineering and design are

necessary. This multi-disciplinary engineering expertise can be expensive and

not feasible for small and medium-sized businesses. By automating this vital

step in a product development process, the utilization of topology

optimizations in all product development processes can be greatly promoted.

We propose a two-fold process for automatically processing density-based

topology optimization results for future CAD design proposals: extracting a

wireframe and deriving cross sections. The wireframe extraction supports

mixed-element models featuring two-dimensional and three-dimensional finite

elements and optional mirror symmetry consideration. The cross section

extraction is currently available for three-dimensional finite elements.

The wireframe extraction is fundamentally based on voxelization and

skeletonization of a finite element- and density-based topology optimization.

The cross section extraction makes use of the element density as well as the

stress distributions from the topology optimization result. At first, load

conditions are identified for each beam of the previously extracted wireframe

and an appropriate beam profile is chosen from a set of profiles (currently

circle and rectangle, both filled or hollow, and I-beams). Then, using a least

square loss optimization and image processing-based shape averaging, the

geometric dimensions of each selected beam profile are determined. In the end,

a model is available which can be converted into a parametric CAD model for

further design work.

1. Introduction

Topology optimizations are becoming more and more present in product

development processes as they enable the exploration of lightweight design

potential in the early product development stages. As such, they can serve as

one of the bases for the product’s structural design. However, topology

optimization results are inherently open for any structural design method. They

can serve as a basis for a sheet metal design or a truss structure featuring beams

of various cross sections, a welding-heavy design or one using screws and

bolts. In the early design stage, these features may not have been defined yet.

This leads to a variety of possible design solutions to be explored.

A topology optimization setup usually starts with a defined volume which is

meshed with finite elements (FE) - the available design space. By applying

loads and boundary conditions, defining design constraints (such as

deformation or stress limits) and an optimization objective (such as minimizing

the mass) the optimization algorithm calculates the optimal material

distribution in the design space respecting the design constraints. The result can

be used to identify load paths and shape the fundamental design of the product.

However, properly interpreting the results and converting them into product

designs is challenging. There are few and limited solutions available on the

market. Existing commercial solutions do not work automatically and are

usually designed for a specific manufacturing scenario, such as automotive

sheet metal designs (Altair (2021)).

The engineering challenge of deriving a suitable design paired with the sparse

availability of supporting algorithms may be one of the main hindrances for

smaller businesses to implement topology optimizations into their product

development processes. Providing automated (intermediate) steps for

interpreting topology optimization results will lead to the reduction of

(repetitive and error-prone) manual labor, essentially freeing up resources for

other, more creative tasks. Ultimately, this will enable a quicker spread of

topology optimizations in various product development processes which, in

turn, can result in better lightweight-optimized structures and parts.

In this paper, we propose a process to automatically create truss-like structures

with beam sections from density-based topology optimization results. The

developed process is based on topology optimization results generated using

the solid isotropic material with penalization method (SIMP) which yields

density distributions for elements within the design space (see Bendsøe

(2004)). In short, an element density-based topology optimization varies the

relative element density for each element depending on the stresses and

displacements each element is subject to and depending on the optimization

objective and constraints. The relative element density is the scalar value of the

current density divided by the original (full) density of the material, meaning

its value varies between 0 and 1. A value of 1 for an element means that this

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

element is vital for the load distribution within the design space. Contrarily, an

element with a density close to zero does not contribute to the stiffness of the

structure. The elements with a high element density carry most of the load and,

thus, depict load paths within the design space. By using a density threshold

(Iso-value), elements with a lower relative element density than the chosen

threshold will be masked from view, making the load paths visible. In case of

the presented process elements below the threshold will be ignored from any

evaluation.

One way of handling the complexity and freedom in the product development

process which uses topology optimizations is to make the derived CAD

(Computer Aided Design) model as parametric as possible. For this, a skeleton

approach can be used as part of a top-down design approach. The skeleton can

be derived from the topology optimization, basically by following the load

paths within the design space. In top-down assemblies, one part serves as a

geometrical reference for all subsequent parts. Changing dimensions in this

part triggers a cascade of changes in the referenced parts. It thus serves as a

parametric base for subsequent design steps where the connectivity and spatial

information of the skeleton can be altered, e.g. as proposed by Ostrosi (2020).

This approach enables the rapid exploration of possible designs and, thus,

increase product development speed or the exploration depth.

The element density distribution of a topology optimization often creates a

truss-like structure. As such, deriving models based on individual beams

forming a truss structure is a viable path to choose. Most beams within such a

structure are subject to tension-compression load, though, bending and torsion

loads are possible as well. The stress data created by an FE calculation is made

up of stress tensors for each element containing normal stresses (𝜎𝑥, 𝜎𝑦, 𝜎𝑧),

shear stresses (𝜏𝑧𝑥, 𝜏𝑧𝑦) and von Mises stresses. Principal stresses and main

stress axes can be calculated from these results.

The proposed process (Figure 1) aims at automatically generating a skeleton

and defining cross sections of the corresponding beams. It is comprised of two

parts which will be discussed in detail in the following sections 3 and 4:

wireframe creation and cross section extraction. The wireframe is the skeletal

representation of the topology result. It consists of points and lines, each

connecting two points. On its own, it can already be used as a skeleton for a

CAD model. With the wireframe, each beam within the truss-like structure of a

topology optimization can be identified. In the second part of the process, a

cross section is allocated to each beam based on the topology optimization

result’s density and stress distribution.

 Overall process flow chart

In the following section, an overview of similar scientific work dealing with

automatic processing of topology optimization results is given. Afterwards,

two separate sections discuss the two main process steps, the wireframe

extraction and the cross section approximation. They are accompanied by a

simple example model. In section 5, accompanying data on this example model

as well as a more complex example model are presented and algorithm

performance is discussed. Lastly, a conclusion presents the most important

aspects and provides an outlook for future developments.

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

2. Related work

A complete process for reconstructing beam structures from 3D topology

optimization results is presented by Nana et al. (2017). They propose a process

which directly uses the FE mesh to extract a wireframe. After filtering the

topology optimization result, a rough mesh surface shape remains which needs

to be smoothed. The curve skeletonization step only uses the FE nodes of the

mesh as a point cloud. For each beam of the skeleton, a circular beam cross

section is approximated using the average Euclidian distance between the

skeleton segment and the point cloud of the FE mesh surface. No other cross

sections are supported. Last but not least, they normalize the curve skeleton,

straightening bent sections so that uniform circular beam sections remain.

Results are validated by performing FE calculations and comparing volumes

and compliance values to the initial topology optimization results.

Another process for generating parametric CAD models is proposed by

Ramsaier et al. (2019). Here, clustering algorithms are used to identify beam

sections and node clusters in topology optimization results via

tension/compression stress results. For this, the principal stress direction for

each element is examined and the data gathered in a histogram of element

stress directions. By identifying peaks in the histogram, individual beams are

identified. A limitation is that all cross sections are again assumed to be circles

with a constant diameter along the beam axes, though they do not explain how

exactly they are approximated.

Other approaches to automate the derivation of geometry from topology

optimization results do not use a wireframe or are not based on beam sections

and, instead, directly convert the FE mesh into surfaces (e.g. Swierstra et al.

(2020), Hsu and Hsu (2005), Koguchi and Kikuchi (2006), Lin and Chao

(2000) or Tang and Chang (2001)). However, due to their high dependency on

the FE quality many of these approaches have strict requirements for the FE

mesh and also the quality of the topology optimization result. Furthermore,

some are limited to two-dimensional meshes and, thus, have limited use in

many engineering tasks. Lastly, while yielding correct representations of the

initial topology optimization result, these approaches usually generate complex

surface models which are not well-suited for further processing, e.g. for further

manual design work in a CAD program or for manufacturing preparations.

The process for generating the parametric CAD model proposed in this work is

based on a voxelization approach, offering easy expansion support for all kinds

of finite element types while still providing accurate results. The generated

truss-like structures feature individual beam-sections offering advantages with

respect to usability in real-life engineering tasks, such as change of dimensions

or beam types. Depending on the design challenge and constraints, such as

manufacturing constraints, many more beam types can be supported and the

method could also be adapted to using extrusion profiles.

3. Wireframe extraction

In this section, a process for creating a wireframe from a topology optimization

result is proposed which consists of three steps (see left box ‘wireframe

creation’ in Figure 1). The steps will be explained in the following sections.

The wireframe will serve as the basis for a parametric CAD model. Since many

topology optimizations use symmetry conditions to reduce the calculation time,

it is important to preserve symmetries if applicable and create symmetric

wireframes if desired. Currently, individually toggleable symmetries along the

three main planes are supported. As a further benefit, the processing time is

greatly reduced if symmetry conditions are enabled (almost halved for each

active symmetry plane, see run time examples in section 5).

A model of a gantry crane will be used as an example throughout this paper to

show the intermediate results for each process step. Figure 2 shows the finite

element model setup (left), including applied forces and constraints, and the

result of the topology optimization (right), viewed with a relative element

density threshold of 50%. The FE model consists of 17,082 nodes and 75,288

tetra elements. The average element size is 50 mm. The bottom of the cranes

supports are point-constrained (red) while loads in all three cardinal directions

are applied on a non-design space (pink) in the middle of the bridge girder

using an RBE2 element. This will create moments along the x- and y-axes in

the bridge girder. There are three load cases in total. For the topology

optimization, the two gantries form the design space whose compliance is to be

minimized while restricting the remaining design space volume to 20%.

Symmetry along the xz- and yz-planes is enabled.

 Gantry crane finite element model (left) and topology optimization (right)

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

3.1. Voxelization

In the first step called voxelization, the finite element-based topology model is

converted into a voxel representation. A voxel is a cube arranged in an

equidistant three-dimensional grid (analogous to a pixel in a 2D image). Each

voxel has a binary value stating whether it is active or not, indicating that there

is material at this volume in the model space.

In preparation for the voxelization, an element density threshold has to be

chosen. Only elements whose density is above this threshold will be converted

into the voxel grid. This choice is crucial for the resulting wireframe and beams

cross sections. However, this is standard procedure for any interpretation of a

density-based topology optimization, be it automatic or manual. Finding the

“correct” choice is not a focus of this paper.

This intermediate voxelization step is unusual in comparison to other

approaches for extracting a wireframe in the literature. For example, the above-

mentioned approaches by Nana et al. (2017) and Ramsaier et al. (2019) both

directly generate skeletons from FE meshes. A voxel grid, however, offers

several advantages over using the FE mesh. For one, the FE mesh does not

need to be smoothed in order to yield good wireframes. Since the finite element

sizes and their geometrical form can vary greatly within one model, the

smoothing can be a costly process. Another advantage is data efficiency. To

define an FE mesh at least two data structures are needed: FE nodes, which are

numbered and have three coordinates, and finite elements, which are also

numbered and then defined by several nodes (e.g. a hexahedral cuboid element

is defined by eight nodes). The voxel grid, on the other side, is stored in a

single three-dimensional matrix where each voxel can be addressed via its

position which makes processing it very efficient. The corresponding spatial

coordinates can be derived by the (configurable) grid distance. The global

coordinate system of the voxel matrix is always centered in the voxel matrix

volume. If the FE model is not centered along the global coordinate system, an

additional displacement vector is generated. It is, however, only needed to

correctly align the derived model with the initial FE model and is not used in

the calculations to receive a wireframe.

Alternatively, skeleton extractions from FE meshes often only use the outer

surface of the mesh and treat the FE mesh as a point cloud, such as by Nana et

al. (2017), Ju et al. (2007) or Cao et al. (2015). This can result in very rough

skeletons which need heavy pruning or smoothing. Furthermore, this method

does not produce good results for two-dimensional finite element meshes

forming concave surfaces. Figure 3 (top) shows the topology optimization of

the head of a train. It consists of a hull of 2D tria finite elements. The nose at

the front forms a tight curvature with some holes in the topology. The skeleton

made with the point cloud-based algorithm by Cao et al. (2015) (which is

available on github) does not follow the hull well and contracts inwards

(Figure 3 bottom left, compare red lines to orange FE mesh). The voxelized

train head (Figure 3 bottom right) follows the contour closely so that the

wireframe can be extracted accurately.

 Comparison of geometric accuracy of FE mesh (top) representations

generated by point cloud-based (bottom left) and voxel-based (bottom right)

algorithms

Ultimately, by first voxelizing the FE mesh, an abstract homogenized

representation is added to the process, decoupling all further processing steps

from the FE mesh. From a programming perspective, this means that support

for additional FE solvers and FE types can be implemented easily without

affecting the following processing steps. To an extent, the process also

becomes independent from the initial FE mesh quality where elements can

have varying sizes and deformations which can result in poor performance or

results during processing.

The method for converting an FE mesh into a voxel grid uses the method

presented in Huang et al. (1998). It has been formulated for 2D elements in a

3D space and consists of three steps: voxelizing the vertices, the edges and the

volume of an element. This method is directly applied to all currently

supported two-dimensional finite elements (tria and quad).

For currently supported three-dimensional elements (tetrahedrons and

hexahedrons), it is first checked if any voxel is contained in the volume

enclosed by the finite element. Additionally, the above-mentioned method by

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

Huang et al. (1998) is used as a fall back if volume-voxelization fails. In

Figure 4, the voxelized gantry crane is depicted in gray (compare to topology

optimization from Figure 2, right). The voxel grid size is the same as the

average FE size, 50 mm. Black voxels are part of the skeleton which will be

explained in the next subsection.

 Voxelized gantry crane topology optimization (gray) and the one-voxel thick

voxel skeleton (black)

3.2. Thinning

The voxelized model is a direct representation of the initial topology

optimization which still represents a material distribution within the model

space. In order to identify the model’s topology (i.e. which parts of the model

are interconnected and how), a skeleton is extracted. This skeleton will only

feature one-voxel thick branches, essentially omitting any information of

material distribution. The voxel skeleton is highlighted with dark voxels in

Figure 4.

Here, another advantage of using a voxel grid for the wireframe extraction

becomes apparent. Due to its ordered nature, a voxel grid can be processed by

common image processing algorithms. These are usually very fast even for

large models and some are available in standard code libraries, such as the

thinning algorithm by Lee et al. (1994), which is implemented in pythons

scikit-image library (see van der Walt et al. (2014)). It is currently being used

to thin the voxel model to one-voxel thick branches. The algorithm examines

the 3x3x3-neighborhood of each voxel (i.e. a box of 27 voxels) and iteratively

deactivates voxels until there is only one-voxel wide branches left.

A disadvantage of the used algorithm is that it does not guarantee symmetric

skeletons even if the input data is perfectly symmetric. Since support for

symmetry planes is desired, the resulting skeleton is trimmed and mirrored

according to the active symmetry constraints.

3.3. Identify and connect junction voxels

The wireframe model is supposed to consist of points and lines. The points can

be extracted from the skeletonized voxel model. They are exactly those voxels

where three or more beams meet. To identify these junction voxels, an

algorithm presented in Klette (2006) is used which divides the voxel skeleton

into branches and clusters at junctions where three or more branches meet. The

method was initially developed to detect brain cells from two-dimensional

density images. In our proposed process, it is used to identify junction voxels.

A junction cluster (gray voxels in Figure 5) consists of several voxels at the

end of branches which are in the vicinity of a junction. The voxel closest to the

centroid of the junction cluster is declared as the junction voxel (green voxel in

Figure 5) and will later serve as a point in the wireframe.

 Three branches meeting at a junction cluster of four voxels (gray + green)

and the junction voxel (green)

This step also respects symmetry constraints if symmetry planes are activated.

For example, this entails that, for junction clusters touching a symmetry plane,

a voxel at the symmetry plane will be chosen as the junction voxel.

Having identified junction voxels, i.e. points of the future wireframe, they also

need to be connected with each other via lines. This is done using a flood

filling algorithm. Starting from a junction voxel, the algorithm walks along the

voxel skeleton voxel by voxel until it hits another junction voxel. The starting

and the end voxel are then flagged as connected with each other. This is done

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

until all junction voxels, skeleton voxels and branches have been touched at

least once. The result is a list of interconnected junction voxels.

However, this cannot yet be used as a wireframe because each connection is a

single straight line from junction voxel to junction voxel. Beams in a topology

optimization are often not straight but can curve freely through the 3D space.

To account for this, the distance is calculated between each skeleton voxel and

the straight-line connection between the junction voxels of the branch the

skeleton voxel is part of. If the distance exceeds a certain threshold, the

skeleton voxel is turned into a junction voxel, dividing the branch into two

branches. This process is repeated until the distance for all skeleton voxels is

below the threshold, ensuring that the line connections follow the voxel

skeleton, and thus, the topology optimization closely. This parameter needs to

be set with caution as geometrical accuracy (low threshold) can quickly lead to

a high number of segmented beams, effectively over-separating the wireframe

model, making it less usable for the following cross section extraction and real-

life engineering application. The result is the final wireframe model (Figure 6).

 Wireframe (over voxel skeleton in light gray) of the gantry crane model

4. Cross section extraction

In this section, the box ‘cross section extraction’ from Figure 1 will be

presented. To explain the approach, the two process steps ‘beam load case

analysis’ and ‘find cross sections based on geometry’ are broken down into

more detailed sub-processes (see gray boxes in Figure 7). They will be

discussed in detail in the following sections.

 Detailed flow chart of cross section extraction

4.1. Beam load case analysis

For beam-like structures, three types of basic loads can be differentiated:

tension/compression, bending and torsion. Each load is characterized by a

unique stress pattern inside the material and requires a different type of cross

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

section. For compression and tension, the mechanical stress is evenly

distributed across the whole cross section and the overall profile area matters

most to handle the loads. The shape of the cross section becomes more

important in case of bending load. To counteract large stress values along the

outer faces of the beam, profiles with more material at the edges are usually

chosen. Profiles like a standard EN 10365 I-beam have significantly lower

bending stress and deflection than a circular cross section with the same profile

area under similar loading conditions. For torsion, hollow circular profiles are

preferred, and it is crucial to avoid any kind of cross sections with openings

such as C-Profiles or I-beams due to their low torsional stiffness.

Finding a good profile shape has also been investigated by Larsen and Jensen

(2009). However, their method is limited to a CAD-tool which assists a user by

matching predefined shapes with marked geometry. The user needs to select

the axis and highlight an area of the topology optimization and the procedure

matches a primitive shape by comparing the polar coordinate plots extreme

values. For example, a triangle has 3 peaks so any geometry with a polar plot

with 3 peaks at the right distance is classified as such. This method requires too

much user interaction to be useful for the desired automated process.

We present a novel method to extract information about the type of load on

beam-like structures created by topology optimizations. Based on the

observations on single beams with varying loads, a strategy to analyze the

stress patterns of the topology results was developed. Only three components

of the stress tensor are found to be relevant for analysis: the normal stress 𝜎𝑧

along the beam axis (which will be called the z-axis) and the two perpendicular

shear stresses 𝜏𝑧𝑥 and 𝜏𝑧𝑦. The element stress tensors are transformed into the

local coordinate system of the beam where the z-axis is oriented along the

beam axis.

Tension/compression is characterized as a mostly constant normal stress along

the beam axis and no shear stresses. Beams under bending loads show a normal

stress distribution with layers parallel to the beam length. One side of the beam

is stretched while the opposing side is compressed. In the middle, a layer

without material stress can be observed, called the neutral filament. Viewed in

the local xy-plane, this distribution forms a characteristic gradient as seen in

Figure 8. Torsion produces no normal stresses but a layered distribution of

shear stress.

 Rectangular example beam under bending load transformed to a stress

distribution graph y.

The first step of the automated cross section detection is to assign each finite

element to a beam of the previously extracted wireframe. This is done by

calculating the Euclidian distance from an elements center of mass to the axis

of each beam. The element is assigned to beam it has the smallest distance to.

Then, for each beam of the wireframe model, the stress components are

converted to a graph representation. All finite element stresses of a beam are

projected into the beams local xy-plane and then sorted along a given direction

vector 𝑣 (see Figure 8). The stress values of the current component are graphed

over their position along 𝑣 so that the gradients become visible. To find the

best graph representation for arbitrarily rotated beams, 𝑣 vectors with different

orientations are systematically tested. It is sufficient to consider orientation

from 0 to 𝜋. For each graph, a linear function is fitted using the least squares

regression and the orientation of 𝑣 with the lowest regression error is chosen.

Next, the fitted line can be analyzed for specific properties:

▪ linearity of the graph: compare the minimum and maximum of the stress

component (𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥) to extreme values of the graph (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥)

and calculate a normed value 𝜀𝑙 =
|𝑠𝑚𝑖𝑛− 𝑠𝑚𝑎𝑥|

|𝑦𝑚𝑖𝑛− 𝑦𝑚𝑎𝑥|
. A value near 1 indicated

a linear distribution, while 0 means it is most likely constant.

▪ x-intercept: 𝜖0 is 0 if the graph does not cross the |𝑣|-axis, 𝜖0 is closer

to 1 the closer the intercept is to the middle of the axis.

▪ relative component importance: the length |𝑠𝑚𝑖𝑛
𝛼 − 𝑠𝑚𝑎𝑥

𝛼 |, (𝛼 ∈

{𝜎𝑧, 𝜏𝑧𝑥 , 𝜏𝑧𝑦}) between both stress extreme values is compared to both

other components to calculate a value 𝜖𝑐 =
|𝑠𝑚𝑖𝑛

𝛼 −𝑠𝑚𝑎𝑥
𝛼 |

max
𝛼

|𝑠𝑚𝑖𝑛
𝛼 −𝑠𝑚𝑎𝑥

𝛼 |
. It reflects

how important this stress component is relative to the others.

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

To calculate a score for every load case, the relevant metrics for every stress

component are added together. Their relevance is determined from the

expected graph shape for a particular case. For example, for bending:

(1) 𝜀𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
1

5
(𝜀𝑙

𝜎𝑧 + 𝜀0
𝜎𝑧 + 𝜀𝑐

𝜎𝑧 + (1 − 𝜀𝑐
𝜏𝑥𝑧) + (1 − 𝜀𝑐

𝜏𝑦𝑧))

Properties can either be added normally or subtracted from 1, depending on if

they are an indicator for or against the scored load case. Table 1 provides the

rules for the scores of all three load cases.

Table 1: How to add the stress graph metrics to calculate each load case score

The result is normalized to values between 0 and 1 which indicates the

confidence in the load case by the automated process. The highest score

indicates the right load case for the beam.

4.2. Cross section analysis

The next step is the geometric analysis of the topology optimization results to

find the right dimensions and shapes of the beam profiles. For further

processing, all finite elements are converted to a single point representation by

collapsing their nodes (e.g. four tetra element corners) into one average point.

The single point retains all information like density, volume and stress tensor

and can be processed with methods developed for point clouds.

Each beam is cut into segments along its axis, which is given by the extracted

wireframe (axis z in Figure 9). The segments are flattened into two-

dimensional slices by removing the coordinate along the beam axis. For each

of these 2D slices, a geometric shape, which represents the beam geometry in

this area, is found. The segmentation is necessary because it is possible that the

wireframe axis is angled towards the real beam axis. This could lead to

distorted 2D slices and geometrically inaccurate shapes being detected. Hence,

segmenting a beam ensures a geometrically accurate shape detection. Each

segment has a small overlap with the next to ensure smooth transitions. The

detected shapes will be averaged to one shape for each beam afterwards.

 Beam divided into four segments and 2D-flattened points of each segment

For the shape detection of a 2D slice, the outline or hull points are extracted.

This can be done using a convex hull algorithm. However, for all geometries of

non-convex nature this leads to unsatisfactory hull detection (Figure 10, left).

Therefore, the 𝜒-shape algorithm is used as proposed by Duckham et al.

(2008). It can calculate hull points for any given 2D point cloud and needs a

single parameter in the range of 0 to 1. Figure 10 shows a comparison between

a convex hull algorithm and the 𝜒-shape algorithm with different parameter

values for 𝜒. The smaller the parameter 𝜒 is chosen, the closer the hull matches

the point cloud outline.

 Segment processed with the convex hull and Chi-Shape-algorithm

For real-world applications, only certain geometric shapes are typically used as

cross sections for beams. In this paper, the focus lies on rectangular and

circular profiles as well as I-beams. The proposed workflow supports many

different shapes which can be added with little effort. The supported shapes

now need to be detected and fitted to the previously extracted outline points.

Multiple methods were considered for this step, for example Hough-

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

Transformation on circles and extended to rectangles, as proposed by Jung et

al. (2004). However, a different approach achieved better results: For each

shape, a distance metric is employed which calculates the length from a given

point to the shape border. Over several iterations, a least square loss function is

minimized in order to find the optimal parameter vector for any shape. The

geometric shape with the lowest least squares error is chosen to fit the segment.

At this stage, since one beam was divided into several segments, each beam

has a number of shapes which can deviate from each other in small ways. The

detected shapes need to be unified into one common profile. Shape averaging

is a topic with only very few relevant contributions, mostly covering biology

related shapes. The easiest form of shape average is the simple average of all

shape parameter values. For circles, this is easy to compute and gives good

results. However, rectangles are defined with rotation angles which cannot be

averaged without problematic edge cases, e.g. two rectangles rotated by 180°.

Furthermore, this simple average cannot combine two different types of shapes.

A more flexible approach was designed utilizing image processing. It can

robustly find averages for all shapes. The first step is to generate an image

buffer large enough for all shapes of a single beam. The buffer is a gray value

image with a range of 255 values per pixel and can be controlled via a

resolution parameter. All 𝑛 shapes are additively drawn into the buffer with a

value of 255 𝑛⁄ so that a white region appears where all segment shapes

overlap, as seen in Figure 11 (left). The image is blurred with a simple gauss

filter to avoid hard edges (Figure 11, center).

 Rectangular shapes averaged using the image processing method

Next, a threshold value has to be calculated to extract the correct shape from

the buffer. The maximum dimensions of every input shape are evaluated and

averaged. For a circle, this would be the diameter; for a rectangle, the diagonal

and its perpendicular length. All image pixels above the threshold are set to

255 and all below to 0, resulting in a shape with sharp edges, as seen in

Figure 11 (right). The resulting white shape in the image buffer can now be

analyzed to find its maximum dimensions. From the center point of all pixels,

two perpendicular rays are cast, measuring the length to the shape border. This

process is repeated in the possible range of all directions and the maximum

dimensions of all rays cast is compared to the previously calculated average

dimensions. If the average is lower, the threshold is increased and vice versa.

This iteratively narrows down a threshold value where the difference in

dimensions is minimized. Now the shape edges are extracted using a canny

edge detector. Knowing the image resolution, all remaining white pixels can be

transformed back to world positions. This outline is the average outline of all

segments of a beam. Now, the shape of this outline can be determined by

reusing the previously described least square loss optimization and, ultimately,

receive the overall average shape of the beam.

4.3. Finalize cross sections

In the previous steps, all beams were analyzed to find their respective load case

(tension/compression, bending, torsion) and their average beam shape and

dimensions. The information from these two steps need to be consolidated to

receive a cross section proposal for each beam.

Beams under tension/compression and torsion loads are ultimately treated the

same. The profile shape and dimensions are taken from the detected shape

from the geometric topology information (e.g. circular or rectangular). Finally,

the shapes are hollowed out to match the beams mass to the mass of the beam-

like structure in the topology optimization result (considering the relative

element densities from the topology optimization). Beams under bending load

however are only allowed to fit rectangular shapes which are ultimately

converted to standard EN 10365 I-beams. The resulting cross sections for the

gantry crane model are shown in Figure 12.

So far, this method only supports three-dimensional finite elements. In future,

it is planned to also take two-dimensional finite elements into account to

generate cross sections for fully mixed-mesh topology models.

 Gantry crane wireframe with identified cross sections

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

5. Exemplary application

During discussion of the proposed process in sections 3 and 4, a small-scale

gantry crane model served as an example model to demonstrate the individual

process steps (see all steps in figures 2, 4, 6 and 12). In this section, statistical

information such as element counts and algorithm run times will be provided.

Furthermore, an additional large-scale model of a train car body will be

introduced.

All calculations were performed on a desktop computer featuring an Intel Xeon

E5-1660 processor with a 3,2 GHz base clock speed. The algorithm runs as

single-core. Table 2 provides the statistics on the gantry crane model as well as

the car body, which will be introduced afterwards. For all runs, symmetry

along the xz- and yz-plane were activated. Run times are median values of five

runs, whereas multiple runs show consistent run times. Understandably, the

voxelization takes the most time since in this step the - by far - largest amount

of data is processed (each finite element needs to be touched at least once).

Table 2: Quantified facts and results for gantry crane and train car body

Model Gantry crane Train car body

Dimensions (x/y/z) 2.4 x 2 x 2 m 20 x 2.94 x 4.6 m

Element types 3D (tetra) mixed 2D/3D (tria,

quad, penta, hexa)

Number of FE nodes 17,082 260,890

Number of finite elements 75,288 240,164

Average mesh size 50 mm 60 mm

Element density threshold 0.5 0.2

Size of voxel grid element 50 mm 60 mm

Number of active voxels 6,283 34,312

Number of skeleton voxels 239 4,561

Number of wireframe nodes 17 249

Number of wireframe connections 18 296

Run time wireframe extraction 50 s 147 s

 …of which is voxelization 48 s 129 s

Run time cross section extraction 14 s 11 s

The second application example is a train card body which is modeled in real-

life size (Figure 13, top). The undercarriage (green) of the wagon is modeled

with 3D elements; the sides and roof (blue), fronts (purple) and the

intermediate floor (orange) are modeled hulls using 2D elements. All elements

are part of the design space. The topology optimization setup is complex,

involving 15 load steps and eight optimization constraints limiting

displacements at strategic points. The optimization objective is to minimize the

overall mass. The topology optimization result in Figure 13 (center) is filtered

using an element density of 0.2. The extracted wireframe (overlaid over the

voxel skeleton) shown in Figure 13 (bottom) can already serve as a useful base

for a parametric CAD model. However, it is also noteworthy that the process

may be further improved in future work, specifically to increase the result

quality for larger models.

 Train car body model: FE (top), topology optimization results (center) and

extracted wireframe (bottom)

As described in section 4, the cross section extraction is currently only capable

of handling three-dimensional data. Consequently, the calculations were run

again with only the undercarriage which consists of penta and hexa elements.

Figure 14 shows the topology optimization result of only the undercarriage

(top), the extracted wireframe (center) and the extracted cross sections

(bottom).

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

 Processed undercarriage: Topology optimization (top), wireframe (center)

and beam sections (bottom)

6. Conclusion

In this paper, a process is proposed for automatically processing density-based

topology optimization results with mixed two- and three-dimensional finite

elements. After manually selecting the desired element density threshold, the

two-fold process first extracts a wireframe using the density distribution

results. The finite element mesh is converted into an equidistant grid of voxels.

This allows for a geometrically accurate derivation of information from the

finite element mesh. A skeletonization algorithm reduces the branches to one-

voxel-wide representations. Structural junction voxels are then detected within

the set of skeleton voxels. The connections between the junction voxels are

then smoothed to correctly follow the skeletal contour. Trimming and filtering

operations finalize this first process step which produces a wireframe model. If

desired, the wireframe can be axially symmetric on up to three planes.

After having extracted the wireframe, the second step of the proposed process

is to suggest cross section geometries for each branch of the wireframe using

the geometric mesh information and the elemental stress results from the

topology optimization. For this, the local load case for every wireframe beam

(tension, compression, bending or torsion) is detected using stress distribution

graphs of the elemental stresses. Then, a geometric shape is derived by

segmenting each beam and flattening the density, volume and elemental stress

information into two-dimensional slices. From this, hulls are extracted and

averaged to identify one best-fitting cross section from a selection of cross

sections (filled/unfilled rectangle or circle and I-beam). The result is a

geometrically accurate wireframe where each branch possesses cross section

properties.

The process is planned to be refined and extended to enable the fully automatic

conversion of topology optimization results into basic parametric CAD models,

ready to be used in a typical product development process. To enable this, the

wireframe geometry extraction can be refined to produce more continuously

straight branches.

The suggestions for cross sections can also be refined, possibly by using

machine learning algorithms to consider local and global stiffness or

compliance, or to support more cross section geometries. Furthermore, the

geometric design of the junction points, i.e. providing smooth transitions

between beams can also be subject of further research.

To validate the proposed wireframe and cross sections, an FE analysis can be

used to validate the models against the original topology optimization result.

By applying the original load cases from the topology optimization, the model

can be validated considering stresses, compliance or mass.

7. References

Altair Engineering Inc. (2021). C123. https://web.altair.com/c123. Accessed

22nd June 2021.

Bendsøe, Martin; Sigmund, Ole (2003). Topology Optimization - Theory,

Methods and Applications: Springer.

Cao, Junjie; Tagliasacchi, Andrea; Olson, Matt; Zhang, Hao; Su, Zhinxun

(2010). Point Cloud Skeletons via Laplacian-Based Contraction. In: Proc. of

IEEE Conf. on Shape Modeling and Applications: IEEE. 187-197.

Duckham, Matt; Kulik, Lars; Worboys, Mike; Galton, Antony (2008). Efficient

generation of simple polygons for characterizing the shape of a set of points in

the plane. In: Pattern Recognition 41 (10). 3224-3236.

Hsu, Ming-Hsiu; Hsu, Yeh-Liang (2005). Interpreting three-dimensional

structural topology optimization results. In: Computers & Structures 83 (4-5).

327-337.

Huang, Jian; Yagel, Roni; Filippov, Vassily; Kurzion, Yair (1998). An accurate

method for voxelizing polygon meshes. In: IEEE Symposium on Volume

Visualization. 119-126.

Ju, Tao; Baker, Matthew L.; Chiu, Wah (2007). Computing a family of

skeletons of volumetric models for shape description. In: Computer Aided

Design 39 (5). 352-360.

AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF

TOPOLOGY OPTIMIZATION RESULTS

Jung, Clàudio Rosi; Schramm, Rodrigo (2004). Rectangle detection based on a

windowed Hough transform. In: Proceedings. 17th Brazilian Symposium on

Computer Graphics and Image Processing. IEEE. 113-120.

Klette, Gisela (2006). Branch Voxels and Junctions in 3D Skeletons. In:

Combinatorial Image Analysis 4040. Springer. 34-44.

Koguchi, Atsushi; Kikuchi, Noboru (2006). A surface reconstruction algorithm

for topology optimization. In: Engineering with Computers 22 (1). 1-10.

Larsen, Shane; Jensen, C. Greg (2009). Converting Topology Optimization

Results into Parametric CAD Models. In: Computer-Aided Design and

Applications 6 (3). 407-418.

Lee, Ta-Chih; Kashyap, Rangasami L. (1994). Building Skeleton Models via

3-D Medial Surface Axis Thinning Algorithms. In: CVGIP: Graphical Models

and Image Processing 56 (6). 462-478.

Lin, C.-Y.; Chao, L.-S. (2000). Automated image interpretation for integrated

topology and shape optimization. In: Structural and Multidisciplinary

Optimization 20 (2). 125-137.

Nana, Alexandre; Cuillière, Jean-Christophe; Francois, Vincent (2017).

Automatic reconstruction of beam structures from 3D topology optimization

results. In: Computers & Structures 189. 62-82.

Ostrosi, Egon; Bluntzer, Jean-Bernard; Stjepandic, Josip (2020). A CAD

Material Skeleton-Based Approach for Sustainable Design. In:

Transdisciplinary Engineering for Complex Socio-technical Systems – Real-life

Applications. IOS Press. 700-709.

Ramsaier, Manuel; Till, Markus; Schumacher, Axel; Rudolph, Stephan (2019).

On a Physics-based Reconstruction Algorithm for Generating Clean Parametric

Native CAD-Models from Density-based Topology Optimization Results. In:

The World Congress of Structural and Multidisciplinary Optimization.

Swierstra, Marco K.; Gupta, Deepak K.; Langelaar, Matthijs (2020).

Automated and Accurate Geometry Extraction and Shape Optimization of 3D

Topology Optimization Results. In: NAFEMS European Conference on

Simulation-Based Optimisation.

Tang, Poh-Soong; Chang, Kuang-Hua (2001). Integration of topology and

shape optimization for design of structural components. In: Structural and

Multidisciplinary Optimization 22 (1). 65-82.

van der Walt, Stéfan; Schönberger, Johannes L.; Nunez-Iglesias, Juan;

Boulogne, François; Warner, Joshua D.; Yager, Neil et al. (2014). scikit-image:

image processing in Python. In: PeerJ 2, e453.

