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Abstract 

Finite element-based topology optimizations have become a vital tool in the 

design of lightweight-optimized components and structures. Used in the early 

stages of the product development process, they can help identify load paths 

and shape the fundamental design of a product. However, the interpretation of 

topology optimization results can be a challenging and time-consuming task. In 

order to properly analyze the topologies, both knowledge in the field of finite 

element computations as well as computer-aided engineering and design are 

necessary. This multi-disciplinary engineering expertise can be expensive and 

not feasible for small and medium-sized businesses. By automating this vital 

step in a product development process, the utilization of topology 

optimizations in all product development processes can be greatly promoted. 

We propose a two-fold process for automatically processing density-based 

topology optimization results for future CAD design proposals: extracting a 

wireframe and deriving cross sections. The wireframe extraction supports 

mixed-element models featuring two-dimensional and three-dimensional finite 

elements and optional mirror symmetry consideration. The cross section 

extraction is currently available for three-dimensional finite elements. 

The wireframe extraction is fundamentally based on voxelization and 

skeletonization of a finite element- and density-based topology optimization. 

The cross section extraction makes use of the element density as well as the 

stress distributions from the topology optimization result. At first, load 

conditions are identified for each beam of the previously extracted wireframe 

and an appropriate beam profile is chosen from a set of profiles (currently 

circle and rectangle, both filled or hollow, and I-beams). Then, using a least 

square loss optimization and image processing-based shape averaging, the 

geometric dimensions of each selected beam profile are determined. In the end, 

a model is available which can be converted into a parametric CAD model for 

further design work. 

 

  



 

 

1. Introduction 

Topology optimizations are becoming more and more present in product 

development processes as they enable the exploration of lightweight design 

potential in the early product development stages. As such, they can serve as 

one of the bases for the product’s structural design. However, topology 

optimization results are inherently open for any structural design method. They 

can serve as a basis for a sheet metal design or a truss structure featuring beams 

of various cross sections, a welding-heavy design or one using screws and 

bolts. In the early design stage, these features may not have been defined yet. 

This leads to a variety of possible design solutions to be explored. 

A topology optimization setup usually starts with a defined volume which is 

meshed with finite elements (FE) - the available design space. By applying 

loads and boundary conditions, defining design constraints (such as 

deformation or stress limits) and an optimization objective (such as minimizing 

the mass) the optimization algorithm calculates the optimal material 

distribution in the design space respecting the design constraints. The result can 

be used to identify load paths and shape the fundamental design of the product. 

However, properly interpreting the results and converting them into product 

designs is challenging. There are few and limited solutions available on the 

market. Existing commercial solutions do not work automatically and are 

usually designed for a specific manufacturing scenario, such as automotive 

sheet metal designs (Altair (2021)). 

The engineering challenge of deriving a suitable design paired with the sparse 

availability of supporting algorithms may be one of the main hindrances for 

smaller businesses to implement topology optimizations into their product 

development processes. Providing automated (intermediate) steps for 

interpreting topology optimization results will lead to the reduction of 

(repetitive and error-prone) manual labor, essentially freeing up resources for 

other, more creative tasks. Ultimately, this will enable a quicker spread of 

topology optimizations in various product development processes which, in 

turn, can result in better lightweight-optimized structures and parts. 

In this paper, we propose a process to automatically create truss-like structures 

with beam sections from density-based topology optimization results. The 

developed process is based on topology optimization results generated using 

the solid isotropic material with penalization method (SIMP) which yields 

density distributions for elements within the design space (see Bendsøe 

(2004)). In short, an element density-based topology optimization varies the 

relative element density for each element depending on the stresses and 

displacements each element is subject to and depending on the optimization 

objective and constraints. The relative element density is the scalar value of the 

current density divided by the original (full) density of the material, meaning 

its value varies between 0 and 1. A value of 1 for an element means that this 
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element is vital for the load distribution within the design space. Contrarily, an 

element with a density close to zero does not contribute to the stiffness of the 

structure. The elements with a high element density carry most of the load and, 

thus, depict load paths within the design space. By using a density threshold 

(Iso-value), elements with a lower relative element density than the chosen 

threshold will be masked from view, making the load paths visible. In case of 

the presented process elements below the threshold will be ignored from any 

evaluation. 

One way of handling the complexity and freedom in the product development 

process which uses topology optimizations is to make the derived CAD 

(Computer Aided Design) model as parametric as possible. For this, a skeleton 

approach can be used as part of a top-down design approach. The skeleton can 

be derived from the topology optimization, basically by following the load 

paths within the design space. In top-down assemblies, one part serves as a 

geometrical reference for all subsequent parts. Changing dimensions in this 

part triggers a cascade of changes in the referenced parts. It thus serves as a 

parametric base for subsequent design steps where the connectivity and spatial 

information of the skeleton can be altered, e.g. as proposed by Ostrosi (2020). 

This approach enables the rapid exploration of possible designs and, thus, 

increase product development speed or the exploration depth. 

The element density distribution of a topology optimization often creates a 

truss-like structure. As such, deriving models based on individual beams 

forming a truss structure is a viable path to choose. Most beams within such a 

structure are subject to tension-compression load, though, bending and torsion 

loads are possible as well. The stress data created by an FE calculation is made 

up of stress tensors for each element containing normal stresses (𝜎𝑥, 𝜎𝑦, 𝜎𝑧), 

shear stresses (𝜏𝑧𝑥, 𝜏𝑧𝑦) and von Mises stresses. Principal stresses and main 

stress axes can be calculated from these results. 

The proposed process (Figure 1) aims at automatically generating a skeleton 

and defining cross sections of the corresponding beams. It is comprised of two 

parts which will be discussed in detail in the following sections 3 and 4: 

wireframe creation and cross section extraction. The wireframe is the skeletal 

representation of the topology result. It consists of points and lines, each 

connecting two points. On its own, it can already be used as a skeleton for a 

CAD model. With the wireframe, each beam within the truss-like structure of a 

topology optimization can be identified. In the second part of the process, a 

cross section is allocated to each beam based on the topology optimization 

result’s density and stress distribution. 

 



 

 

 

 Overall process flow chart 

In the following section, an overview of similar scientific work dealing with 

automatic processing of topology optimization results is given. Afterwards, 

two separate sections discuss the two main process steps, the wireframe 

extraction and the cross section approximation. They are accompanied by a 

simple example model. In section 5, accompanying data on this example model 

as well as a more complex example model are presented and algorithm 

performance is discussed. Lastly, a conclusion presents the most important 

aspects and provides an outlook for future developments. 
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2. Related work 

A complete process for reconstructing beam structures from 3D topology 

optimization results is presented by Nana et al. (2017). They propose a process 

which directly uses the FE mesh to extract a wireframe. After filtering the 

topology optimization result, a rough mesh surface shape remains which needs 

to be smoothed. The curve skeletonization step only uses the FE nodes of the 

mesh as a point cloud. For each beam of the skeleton, a circular beam cross 

section is approximated using the average Euclidian distance between the 

skeleton segment and the point cloud of the FE mesh surface. No other cross 

sections are supported. Last but not least, they normalize the curve skeleton, 

straightening bent sections so that uniform circular beam sections remain. 

Results are validated by performing FE calculations and comparing volumes 

and compliance values to the initial topology optimization results. 

Another process for generating parametric CAD models is proposed by 

Ramsaier et al. (2019). Here, clustering algorithms are used to identify beam 

sections and node clusters in topology optimization results via 

tension/compression stress results. For this, the principal stress direction for 

each element is examined and the data gathered in a histogram of element 

stress directions. By identifying peaks in the histogram, individual beams are 

identified. A limitation is that all cross sections are again assumed to be circles 

with a constant diameter along the beam axes, though they do not explain how 

exactly they are approximated. 

Other approaches to automate the derivation of geometry from topology 

optimization results do not use a wireframe or are not based on beam sections 

and, instead, directly convert the FE mesh into surfaces (e.g. Swierstra et al. 

(2020), Hsu and Hsu (2005), Koguchi and Kikuchi (2006), Lin and Chao 

(2000) or Tang and Chang (2001)). However, due to their high dependency on 

the FE quality many of these approaches have strict requirements for the FE 

mesh and also the quality of the topology optimization result. Furthermore, 

some are limited to two-dimensional meshes and, thus, have limited use in 

many engineering tasks. Lastly, while yielding correct representations of the 

initial topology optimization result, these approaches usually generate complex 

surface models which are not well-suited for further processing, e.g. for further 

manual design work in a CAD program or for manufacturing preparations. 

The process for generating the parametric CAD model proposed in this work is 

based on a voxelization approach, offering easy expansion support for all kinds 

of finite element types while still providing accurate results. The generated 

truss-like structures feature individual beam-sections offering advantages with 

respect to usability in real-life engineering tasks, such as change of dimensions 

or beam types. Depending on the design challenge and constraints, such as 

manufacturing constraints, many more beam types can be supported and the 

method could also be adapted to using extrusion profiles. 



 

 

3. Wireframe extraction 

In this section, a process for creating a wireframe from a topology optimization 

result is proposed which consists of three steps (see left box ‘wireframe 

creation’ in Figure 1). The steps will be explained in the following sections. 

The wireframe will serve as the basis for a parametric CAD model. Since many 

topology optimizations use symmetry conditions to reduce the calculation time, 

it is important to preserve symmetries if applicable and create symmetric 

wireframes if desired. Currently, individually toggleable symmetries along the 

three main planes are supported. As a further benefit, the processing time is 

greatly reduced if symmetry conditions are enabled (almost halved for each 

active symmetry plane, see run time examples in section 5). 

A model of a gantry crane will be used as an example throughout this paper to 

show the intermediate results for each process step. Figure 2 shows the finite 

element model setup (left), including applied forces and constraints, and the 

result of the topology optimization (right), viewed with a relative element 

density threshold of 50%. The FE model consists of 17,082 nodes and 75,288 

tetra elements. The average element size is 50 mm. The bottom of the cranes 

supports are point-constrained (red) while loads in all three cardinal directions 

are applied on a non-design space (pink) in the middle of the bridge girder 

using an RBE2 element. This will create moments along the x- and y-axes in 

the bridge girder. There are three load cases in total. For the topology 

optimization, the two gantries form the design space whose compliance is to be 

minimized while restricting the remaining design space volume to 20%. 

Symmetry along the xz- and yz-planes is enabled. 

  

 Gantry crane finite element model (left) and topology optimization (right) 
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3.1. Voxelization 

In the first step called voxelization, the finite element-based topology model is 

converted into a voxel representation. A voxel is a cube arranged in an 

equidistant three-dimensional grid (analogous to a pixel in a 2D image). Each 

voxel has a binary value stating whether it is active or not, indicating that there 

is material at this volume in the model space. 

In preparation for the voxelization, an element density threshold has to be 

chosen. Only elements whose density is above this threshold will be converted 

into the voxel grid. This choice is crucial for the resulting wireframe and beams 

cross sections. However, this is standard procedure for any interpretation of a 

density-based topology optimization, be it automatic or manual. Finding the 

“correct” choice is not a focus of this paper. 

This intermediate voxelization step is unusual in comparison to other 

approaches for extracting a wireframe in the literature. For example, the above-

mentioned approaches by Nana et al. (2017) and Ramsaier et al. (2019) both 

directly generate skeletons from FE meshes. A voxel grid, however, offers 

several advantages over using the FE mesh. For one, the FE mesh does not 

need to be smoothed in order to yield good wireframes. Since the finite element 

sizes and their geometrical form can vary greatly within one model, the 

smoothing can be a costly process. Another advantage is data efficiency. To 

define an FE mesh at least two data structures are needed: FE nodes, which are 

numbered and have three coordinates, and finite elements, which are also 

numbered and then defined by several nodes (e.g. a hexahedral cuboid element 

is defined by eight nodes). The voxel grid, on the other side, is stored in a 

single three-dimensional matrix where each voxel can be addressed via its 

position which makes processing it very efficient. The corresponding spatial 

coordinates can be derived by the (configurable) grid distance. The global 

coordinate system of the voxel matrix is always centered in the voxel matrix 

volume. If the FE model is not centered along the global coordinate system, an 

additional displacement vector is generated. It is, however, only needed to 

correctly align the derived model with the initial FE model and is not used in 

the calculations to receive a wireframe. 

Alternatively, skeleton extractions from FE meshes often only use the outer 

surface of the mesh and treat the FE mesh as a point cloud, such as by Nana et 

al. (2017), Ju et al. (2007) or Cao et al. (2015). This can result in very rough 

skeletons which need heavy pruning or smoothing. Furthermore, this method 

does not produce good results for two-dimensional finite element meshes 

forming concave surfaces. Figure 3 (top) shows the topology optimization of 

the head of a train. It consists of a hull of 2D tria finite elements. The nose at 

the front forms a tight curvature with some holes in the topology. The skeleton 

made with the point cloud-based algorithm by Cao et al. (2015) (which is 

available on github) does not follow the hull well and contracts inwards 



 

 

(Figure 3 bottom left, compare red lines to orange FE mesh). The voxelized 

train head (Figure 3 bottom right) follows the contour closely so that the 

wireframe can be extracted accurately. 

 

 Comparison of geometric accuracy of FE mesh (top) representations 

generated by point cloud-based (bottom left) and voxel-based (bottom right) 

algorithms 

Ultimately, by first voxelizing the FE mesh, an abstract homogenized 

representation is added to the process, decoupling all further processing steps 

from the FE mesh. From a programming perspective, this means that support 

for additional FE solvers and FE types can be implemented easily without 

affecting the following processing steps. To an extent, the process also 

becomes independent from the initial FE mesh quality where elements can 

have varying sizes and deformations which can result in poor performance or 

results during processing. 

The method for converting an FE mesh into a voxel grid uses the method 

presented in Huang et al. (1998). It has been formulated for 2D elements in a 

3D space and consists of three steps: voxelizing the vertices, the edges and the 

volume of an element. This method is directly applied to all currently 

supported two-dimensional finite elements (tria and quad). 

For currently supported three-dimensional elements (tetrahedrons and 

hexahedrons), it is first checked if any voxel is contained in the volume 

enclosed by the finite element. Additionally, the above-mentioned method by 
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Huang et al. (1998) is used as a fall back if volume-voxelization fails. In 

Figure 4, the voxelized gantry crane is depicted in gray (compare to topology 

optimization from Figure 2, right). The voxel grid size is the same as the 

average FE size, 50 mm. Black voxels are part of the skeleton which will be 

explained in the next subsection. 

 

 Voxelized gantry crane topology optimization (gray) and the one-voxel thick 

voxel skeleton (black) 

3.2. Thinning 

The voxelized model is a direct representation of the initial topology 

optimization which still represents a material distribution within the model 

space. In order to identify the model’s topology (i.e. which parts of the model 

are interconnected and how), a skeleton is extracted. This skeleton will only 

feature one-voxel thick branches, essentially omitting any information of 

material distribution. The voxel skeleton is highlighted with dark voxels in 

Figure 4. 

Here, another advantage of using a voxel grid for the wireframe extraction 

becomes apparent. Due to its ordered nature, a voxel grid can be processed by 

common image processing algorithms. These are usually very fast even for 

large models and some are available in standard code libraries, such as the 

thinning algorithm by Lee et al. (1994), which is implemented in pythons 

scikit-image library (see van der Walt et al. (2014)). It is currently being used 

to thin the voxel model to one-voxel thick branches. The algorithm examines 



 

 

the 3x3x3-neighborhood of each voxel (i.e. a box of 27 voxels) and iteratively 

deactivates voxels until there is only one-voxel wide branches left. 

A disadvantage of the used algorithm is that it does not guarantee symmetric 

skeletons even if the input data is perfectly symmetric. Since support for 

symmetry planes is desired, the resulting skeleton is trimmed and mirrored 

according to the active symmetry constraints. 

3.3. Identify and connect junction voxels 

The wireframe model is supposed to consist of points and lines. The points can 

be extracted from the skeletonized voxel model. They are exactly those voxels 

where three or more beams meet. To identify these junction voxels, an 

algorithm presented in Klette (2006) is used which divides the voxel skeleton 

into branches and clusters at junctions where three or more branches meet. The 

method was initially developed to detect brain cells from two-dimensional 

density images. In our proposed process, it is used to identify junction voxels. 

A junction cluster (gray voxels in Figure 5) consists of several voxels at the 

end of branches which are in the vicinity of a junction. The voxel closest to the 

centroid of the junction cluster is declared as the junction voxel (green voxel in 

Figure 5) and will later serve as a point in the wireframe. 

 

 Three branches meeting at a junction cluster of four voxels (gray + green) 

and the junction voxel (green) 

This step also respects symmetry constraints if symmetry planes are activated. 

For example, this entails that, for junction clusters touching a symmetry plane, 

a voxel at the symmetry plane will be chosen as the junction voxel. 

Having identified junction voxels, i.e. points of the future wireframe, they also 

need to be connected with each other via lines. This is done using a flood 

filling algorithm. Starting from a junction voxel, the algorithm walks along the 

voxel skeleton voxel by voxel until it hits another junction voxel. The starting 

and the end voxel are then flagged as connected with each other. This is done 
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until all junction voxels, skeleton voxels and branches have been touched at 

least once. The result is a list of interconnected junction voxels. 

However, this cannot yet be used as a wireframe because each connection is a 

single straight line from junction voxel to junction voxel. Beams in a topology 

optimization are often not straight but can curve freely through the 3D space. 

To account for this, the distance is calculated between each skeleton voxel and 

the straight-line connection between the junction voxels of the branch the 

skeleton voxel is part of. If the distance exceeds a certain threshold, the 

skeleton voxel is turned into a junction voxel, dividing the branch into two 

branches. This process is repeated until the distance for all skeleton voxels is 

below the threshold, ensuring that the line connections follow the voxel 

skeleton, and thus, the topology optimization closely. This parameter needs to 

be set with caution as geometrical accuracy (low threshold) can quickly lead to 

a high number of segmented beams, effectively over-separating the wireframe 

model, making it less usable for the following cross section extraction and real-

life engineering application. The result is the final wireframe model (Figure 6).  

 

 Wireframe (over voxel skeleton in light gray) of the gantry crane model 

4. Cross section extraction 

In this section, the box ‘cross section extraction’ from Figure 1 will be 

presented. To explain the approach, the two process steps ‘beam load case 

analysis’ and ‘find cross sections based on geometry’ are broken down into 

more detailed sub-processes (see gray boxes in Figure 7). They will be 

discussed in detail in the following sections. 



 

 

 

 Detailed flow chart of cross section extraction 

4.1. Beam load case analysis 

For beam-like structures, three types of basic loads can be differentiated: 

tension/compression, bending and torsion. Each load is characterized by a 

unique stress pattern inside the material and requires a different type of cross 
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section. For compression and tension, the mechanical stress is evenly 

distributed across the whole cross section and the overall profile area matters 

most to handle the loads. The shape of the cross section becomes more 

important in case of bending load. To counteract large stress values along the 

outer faces of the beam, profiles with more material at the edges are usually 

chosen. Profiles like a standard EN 10365 I-beam have significantly lower 

bending stress and deflection than a circular cross section with the same profile 

area under similar loading conditions. For torsion, hollow circular profiles are 

preferred, and it is crucial to avoid any kind of cross sections with openings 

such as C-Profiles or I-beams due to their low torsional stiffness. 

Finding a good profile shape has also been investigated by Larsen and Jensen 

(2009). However, their method is limited to a CAD-tool which assists a user by 

matching predefined shapes with marked geometry. The user needs to select 

the axis and highlight an area of the topology optimization and the procedure 

matches a primitive shape by comparing the polar coordinate plots extreme 

values. For example, a triangle has 3 peaks so any geometry with a polar plot 

with 3 peaks at the right distance is classified as such. This method requires too 

much user interaction to be useful for the desired automated process. 

We present a novel method to extract information about the type of load on 

beam-like structures created by topology optimizations. Based on the 

observations on single beams with varying loads, a strategy to analyze the 

stress patterns of the topology results was developed. Only three components 

of the stress tensor are found to be relevant for analysis: the normal stress 𝜎𝑧 

along the beam axis (which will be called the z-axis) and the two perpendicular 

shear stresses 𝜏𝑧𝑥 and 𝜏𝑧𝑦. The element stress tensors are transformed into the 

local coordinate system of the beam where the z-axis is oriented along the 

beam axis. 

Tension/compression is characterized as a mostly constant normal stress along 

the beam axis and no shear stresses. Beams under bending loads show a normal 

stress distribution with layers parallel to the beam length. One side of the beam 

is stretched while the opposing side is compressed. In the middle, a layer 

without material stress can be observed, called the neutral filament. Viewed in 

the local xy-plane, this distribution forms a characteristic gradient as seen in 

Figure 8. Torsion produces no normal stresses but a layered distribution of 

shear stress. 



 

 

 

 Rectangular example beam under bending load transformed to a stress 

distribution graph y. 

The first step of the automated cross section detection is to assign each finite 

element to a beam of the previously extracted wireframe. This is done by 

calculating the Euclidian distance from an elements center of mass to the axis 

of each beam. The element is assigned to beam it has the smallest distance to. 

Then, for each beam of the wireframe model, the stress components are 

converted to a graph representation. All finite element stresses of a beam are 

projected into the beams local xy-plane and then sorted along a given direction 

vector 𝑣 (see Figure 8). The stress values of the current component are graphed 

over their position along 𝑣 so that the gradients become visible. To find the 

best graph representation for arbitrarily rotated beams, 𝑣 vectors with different 

orientations are systematically tested. It is sufficient to consider orientation 

from 0 to 𝜋. For each graph, a linear function is fitted using the least squares 

regression and the orientation of 𝑣 with the lowest regression error is chosen. 

Next, the fitted line can be analyzed for specific properties: 

▪ linearity of the graph: compare the minimum and maximum of the stress 

component (𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥) to extreme values of the graph (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) 

and calculate a normed value 𝜀𝑙 =
|𝑠𝑚𝑖𝑛− 𝑠𝑚𝑎𝑥|

|𝑦𝑚𝑖𝑛− 𝑦𝑚𝑎𝑥|
. A value near 1 indicated 

a linear distribution, while 0 means it is most likely constant. 

▪ x-intercept: 𝜖0 is 0 if the graph does not cross the |𝑣|-axis, 𝜖0 is closer 

to 1 the closer the intercept is to the middle of the axis. 

▪ relative component importance: the length |𝑠𝑚𝑖𝑛
𝛼 − 𝑠𝑚𝑎𝑥

𝛼 |, (𝛼 ∈

{𝜎𝑧,  𝜏𝑧𝑥 ,  𝜏𝑧𝑦}) between both stress extreme values is compared to both 

other components to calculate a value 𝜖𝑐 =
|𝑠𝑚𝑖𝑛

𝛼 −𝑠𝑚𝑎𝑥
𝛼 |

max
𝛼

|𝑠𝑚𝑖𝑛
𝛼 −𝑠𝑚𝑎𝑥

𝛼 |
. It reflects 

how important this stress component is relative to the others. 
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To calculate a score for every load case, the relevant metrics for every stress 

component are added together. Their relevance is determined from the 

expected graph shape for a particular case. For example, for bending: 

(1) 𝜀𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
1

5
(𝜀𝑙

𝜎𝑧 + 𝜀0
𝜎𝑧 + 𝜀𝑐

𝜎𝑧 + (1 −  𝜀𝑐
𝜏𝑥𝑧) + (1 −  𝜀𝑐

𝜏𝑦𝑧)) 

Properties can either be added normally or subtracted from 1, depending on if 

they are an indicator for or against the scored load case. Table 1 provides the 

rules for the scores of all three load cases. 

Table 1:  How to add the stress graph metrics to calculate each load case score 

 

The result is normalized to values between 0 and 1 which indicates the 

confidence in the load case by the automated process. The highest score 

indicates the right load case for the beam. 

4.2. Cross section analysis 

The next step is the geometric analysis of the topology optimization results to 

find the right dimensions and shapes of the beam profiles. For further 

processing, all finite elements are converted to a single point representation by 

collapsing their nodes (e.g. four tetra element corners) into one average point. 

The single point retains all information like density, volume and stress tensor 

and can be processed with methods developed for point clouds. 

Each beam is cut into segments along its axis, which is given by the extracted 

wireframe (axis z in Figure 9). The segments are flattened into two-

dimensional slices by removing the coordinate along the beam axis. For each 

of these 2D slices, a geometric shape, which represents the beam geometry in 

this area, is found. The segmentation is necessary because it is possible that the 

wireframe axis is angled towards the real beam axis. This could lead to 

distorted 2D slices and geometrically inaccurate shapes being detected. Hence, 

segmenting a beam ensures a geometrically accurate shape detection. Each 

segment has a small overlap with the next to ensure smooth transitions. The 

detected shapes will be averaged to one shape for each beam afterwards. 



 

 

 

 Beam divided into four segments and 2D-flattened points of each segment 

For the shape detection of a 2D slice, the outline or hull points are extracted. 

This can be done using a convex hull algorithm. However, for all geometries of 

non-convex nature this leads to unsatisfactory hull detection (Figure 10, left). 

Therefore, the 𝜒-shape algorithm is used as proposed by Duckham et al. 

(2008). It can calculate hull points for any given 2D point cloud and needs a 

single parameter in the range of 0 to 1. Figure 10 shows a comparison between 

a convex hull algorithm and the 𝜒-shape algorithm with different parameter 

values for 𝜒. The smaller the parameter 𝜒 is chosen, the closer the hull matches 

the point cloud outline. 

 

 Segment processed with the convex hull and Chi-Shape-algorithm 

For real-world applications, only certain geometric shapes are typically used as 

cross sections for beams. In this paper, the focus lies on rectangular and 

circular profiles as well as I-beams. The proposed workflow supports many 

different shapes which can be added with little effort. The supported shapes 

now need to be detected and fitted to the previously extracted outline points. 

Multiple methods were considered for this step, for example Hough-
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Transformation on circles and extended to rectangles, as proposed by Jung et 

al. (2004). However, a different approach achieved better results: For each 

shape, a distance metric is employed which calculates the length from a given 

point to the shape border. Over several iterations, a least square loss function is 

minimized in order to find the optimal parameter vector for any shape. The 

geometric shape with the lowest least squares error is chosen to fit the segment. 

At this stage, since one beam was divided into several segments, each beam 

has a number of shapes which can deviate from each other in small ways. The 

detected shapes need to be unified into one common profile. Shape averaging 

is a topic with only very few relevant contributions, mostly covering biology 

related shapes. The easiest form of shape average is the simple average of all 

shape parameter values. For circles, this is easy to compute and gives good 

results. However, rectangles are defined with rotation angles which cannot be 

averaged without problematic edge cases, e.g. two rectangles rotated by 180°. 

Furthermore, this simple average cannot combine two different types of shapes. 

A more flexible approach was designed utilizing image processing. It can 

robustly find averages for all shapes. The first step is to generate an image 

buffer large enough for all shapes of a single beam. The buffer is a gray value 

image with a range of 255 values per pixel and can be controlled via a 

resolution parameter. All 𝑛 shapes are additively drawn into the buffer with a 

value of 255 𝑛⁄  so that a white region appears where all segment shapes 

overlap, as seen in Figure 11 (left). The image is blurred with a simple gauss 

filter to avoid hard edges (Figure 11, center). 

 

 Rectangular shapes averaged using the image processing method 

Next, a threshold value has to be calculated to extract the correct shape from 

the buffer. The maximum dimensions of every input shape are evaluated and 

averaged. For a circle, this would be the diameter; for a rectangle, the diagonal 

and its perpendicular length. All image pixels above the threshold are set to 

255 and all below to 0, resulting in a shape with sharp edges, as seen in 

Figure 11 (right). The resulting white shape in the image buffer can now be 

analyzed to find its maximum dimensions. From the center point of all pixels, 

two perpendicular rays are cast, measuring the length to the shape border. This 

process is repeated in the possible range of all directions and the maximum 

dimensions of all rays cast is compared to the previously calculated average 

dimensions. If the average is lower, the threshold is increased and vice versa. 

This iteratively narrows down a threshold value where the difference in 

dimensions is minimized. Now the shape edges are extracted using a canny 



 

 

edge detector. Knowing the image resolution, all remaining white pixels can be 

transformed back to world positions. This outline is the average outline of all 

segments of a beam. Now, the shape of this outline can be determined by 

reusing the previously described least square loss optimization and, ultimately, 

receive the overall average shape of the beam. 

4.3. Finalize cross sections 

In the previous steps, all beams were analyzed to find their respective load case 

(tension/compression, bending, torsion) and their average beam shape and 

dimensions. The information from these two steps need to be consolidated to 

receive a cross section proposal for each beam. 

Beams under tension/compression and torsion loads are ultimately treated the 

same. The profile shape and dimensions are taken from the detected shape 

from the geometric topology information (e.g. circular or rectangular). Finally, 

the shapes are hollowed out to match the beams mass to the mass of the beam-

like structure in the topology optimization result (considering the relative 

element densities from the topology optimization). Beams under bending load 

however are only allowed to fit rectangular shapes which are ultimately 

converted to standard EN 10365 I-beams. The resulting cross sections for the 

gantry crane model are shown in Figure 12. 

So far, this method only supports three-dimensional finite elements. In future, 

it is planned to also take two-dimensional finite elements into account to 

generate cross sections for fully mixed-mesh topology models. 

 

 Gantry crane wireframe with identified cross sections 
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5. Exemplary application 

During discussion of the proposed process in sections 3 and 4, a small-scale 

gantry crane model served as an example model to demonstrate the individual 

process steps (see all steps in figures 2, 4, 6 and 12). In this section, statistical 

information such as element counts and algorithm run times will be provided. 

Furthermore, an additional large-scale model of a train car body will be 

introduced. 

All calculations were performed on a desktop computer featuring an Intel Xeon 

E5-1660 processor with a 3,2 GHz base clock speed. The algorithm runs as 

single-core. Table 2 provides the statistics on the gantry crane model as well as 

the car body, which will be introduced afterwards. For all runs, symmetry 

along the xz- and yz-plane were activated. Run times are median values of five 

runs, whereas multiple runs show consistent run times. Understandably, the 

voxelization takes the most time since in this step the - by far - largest amount 

of data is processed (each finite element needs to be touched at least once). 

Table 2:  Quantified facts and results for gantry crane and train car body 

Model Gantry crane Train car body 

Dimensions (x/y/z) 2.4 x 2 x 2 m 20 x 2.94 x 4.6 m 

Element types 3D (tetra) mixed 2D/3D (tria, 

quad, penta, hexa) 

Number of FE nodes 17,082 260,890 

Number of finite elements 75,288 240,164 

Average mesh size 50 mm 60 mm 

Element density threshold 0.5 0.2 

Size of voxel grid element 50 mm 60 mm 

Number of active voxels 6,283 34,312 

Number of skeleton voxels 239 4,561 

Number of wireframe nodes 17 249 

Number of wireframe connections 18 296 

Run time wireframe extraction 50 s 147 s 

 …of which is voxelization  48 s 129 s 

Run time cross section extraction 14 s 11 s 

The second application example is a train card body which is modeled in real-

life size (Figure 13, top). The undercarriage (green) of the wagon is modeled 

with 3D elements; the sides and roof (blue), fronts (purple) and the 

intermediate floor (orange) are modeled hulls using 2D elements. All elements 

are part of the design space. The topology optimization setup is complex, 

involving 15 load steps and eight optimization constraints limiting 

displacements at strategic points. The optimization objective is to minimize the 

overall mass. The topology optimization result in Figure 13 (center) is filtered 

using an element density of 0.2. The extracted wireframe (overlaid over the 



 

 

voxel skeleton) shown in Figure 13 (bottom) can already serve as a useful base 

for a parametric CAD model. However, it is also noteworthy that the process 

may be further improved in future work, specifically to increase the result 

quality for larger models. 

 

 Train car body model: FE (top), topology optimization results (center) and 

extracted wireframe (bottom) 

As described in section 4, the cross section extraction is currently only capable 

of handling three-dimensional data. Consequently, the calculations were run 

again with only the undercarriage which consists of penta and hexa elements. 

Figure 14 shows the topology optimization result of only the undercarriage 

(top), the extracted wireframe (center) and the extracted cross sections 

(bottom). 



AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF 

TOPOLOGY OPTIMIZATION RESULTS 

 

 

 Processed undercarriage: Topology optimization (top), wireframe (center) 

and beam sections (bottom) 

6. Conclusion 

In this paper, a process is proposed for automatically processing density-based 

topology optimization results with mixed two- and three-dimensional finite 

elements. After manually selecting the desired element density threshold, the 

two-fold process first extracts a wireframe using the density distribution 

results. The finite element mesh is converted into an equidistant grid of voxels. 

This allows for a geometrically accurate derivation of information from the 

finite element mesh. A skeletonization algorithm reduces the branches to one-

voxel-wide representations. Structural junction voxels are then detected within 

the set of skeleton voxels. The connections between the junction voxels are 

then smoothed to correctly follow the skeletal contour. Trimming and filtering 

operations finalize this first process step which produces a wireframe model. If 

desired, the wireframe can be axially symmetric on up to three planes.  

After having extracted the wireframe, the second step of the proposed process 

is to suggest cross section geometries for each branch of the wireframe using 

the geometric mesh information and the elemental stress results from the 

topology optimization. For this, the local load case for every wireframe beam 

(tension, compression, bending or torsion) is detected using stress distribution 

graphs of the elemental stresses. Then, a geometric shape is derived by 

segmenting each beam and flattening the density, volume and elemental stress 

information into two-dimensional slices. From this, hulls are extracted and 

averaged to identify one best-fitting cross section from a selection of cross 

sections (filled/unfilled rectangle or circle and I-beam). The result is a 

geometrically accurate wireframe where each branch possesses cross section 

properties. 



 

 

The process is planned to be refined and extended to enable the fully automatic 

conversion of topology optimization results into basic parametric CAD models, 

ready to be used in a typical product development process. To enable this, the 

wireframe geometry extraction can be refined to produce more continuously 

straight branches. 

The suggestions for cross sections can also be refined, possibly by using 

machine learning algorithms to consider local and global stiffness or 

compliance, or to support more cross section geometries. Furthermore, the 

geometric design of the junction points, i.e. providing smooth transitions 

between beams can also be subject of further research. 

To validate the proposed wireframe and cross sections, an FE analysis can be 

used to validate the models against the original topology optimization result. 

By applying the original load cases from the topology optimization, the model 

can be validated considering stresses, compliance or mass. 

7. References 

Altair Engineering Inc. (2021). C123. https://web.altair.com/c123. Accessed 

22nd June 2021. 

Bendsøe, Martin; Sigmund, Ole (2003). Topology Optimization - Theory, 

Methods and Applications: Springer. 

Cao, Junjie; Tagliasacchi, Andrea; Olson, Matt; Zhang, Hao; Su, Zhinxun 

(2010). Point Cloud Skeletons via Laplacian-Based Contraction. In: Proc. of 

IEEE Conf. on Shape Modeling and Applications: IEEE. 187-197. 

Duckham, Matt; Kulik, Lars; Worboys, Mike; Galton, Antony (2008). Efficient 

generation of simple polygons for characterizing the shape of a set of points in 

the plane. In: Pattern Recognition 41 (10). 3224-3236. 

Hsu, Ming-Hsiu; Hsu, Yeh-Liang (2005). Interpreting three-dimensional 

structural topology optimization results. In: Computers & Structures 83 (4-5). 

327-337. 

Huang, Jian; Yagel, Roni; Filippov, Vassily; Kurzion, Yair (1998). An accurate 

method for voxelizing polygon meshes. In: IEEE Symposium on Volume 

Visualization. 119-126. 

Ju, Tao; Baker, Matthew L.; Chiu, Wah (2007). Computing a family of 

skeletons of volumetric models for shape description. In: Computer Aided 

Design 39 (5). 352-360. 



AUTOMATIC PROCESSING AND CROSS SECTION ANALYSIS OF 

TOPOLOGY OPTIMIZATION RESULTS 

 

Jung, Clàudio Rosi; Schramm, Rodrigo (2004). Rectangle detection based on a 

windowed Hough transform. In: Proceedings. 17th Brazilian Symposium on 

Computer Graphics and Image Processing. IEEE. 113-120. 

Klette, Gisela (2006). Branch Voxels and Junctions in 3D Skeletons. In: 

Combinatorial Image Analysis 4040. Springer. 34-44. 

Koguchi, Atsushi; Kikuchi, Noboru (2006). A surface reconstruction algorithm 

for topology optimization. In: Engineering with Computers 22 (1). 1-10. 

Larsen, Shane; Jensen, C. Greg (2009). Converting Topology Optimization 

Results into Parametric CAD Models. In: Computer-Aided Design and 

Applications 6 (3). 407-418. 

Lee, Ta-Chih; Kashyap, Rangasami L. (1994). Building Skeleton Models via 

3-D Medial Surface Axis Thinning Algorithms. In: CVGIP: Graphical Models 

and Image Processing 56 (6). 462-478. 

Lin, C.-Y.; Chao, L.-S. (2000). Automated image interpretation for integrated 

topology and shape optimization. In: Structural and Multidisciplinary 

Optimization 20 (2). 125-137.  

Nana, Alexandre; Cuillière, Jean-Christophe; Francois, Vincent (2017). 

Automatic reconstruction of beam structures from 3D topology optimization 

results. In: Computers & Structures 189. 62-82. 

Ostrosi, Egon; Bluntzer, Jean-Bernard; Stjepandic, Josip (2020). A CAD 

Material Skeleton-Based Approach for Sustainable Design. In: 

Transdisciplinary Engineering for Complex Socio-technical Systems – Real-life 

Applications. IOS Press. 700-709. 

Ramsaier, Manuel; Till, Markus; Schumacher, Axel; Rudolph, Stephan (2019). 

On a Physics-based Reconstruction Algorithm for Generating Clean Parametric 

Native CAD-Models from Density-based Topology Optimization Results. In: 

The World Congress of Structural and Multidisciplinary Optimization. 

Swierstra, Marco K.; Gupta, Deepak K.; Langelaar, Matthijs (2020). 

Automated and Accurate Geometry Extraction and Shape Optimization of 3D 

Topology Optimization Results. In: NAFEMS European Conference on 

Simulation-Based Optimisation. 

Tang, Poh-Soong; Chang, Kuang-Hua (2001). Integration of topology and 

shape optimization for design of structural components. In: Structural and 

Multidisciplinary Optimization 22 (1). 65-82. 

van der Walt, Stéfan; Schönberger, Johannes L.; Nunez-Iglesias, Juan; 

Boulogne, François; Warner, Joshua D.; Yager, Neil et al. (2014). scikit-image: 

image processing in Python. In: PeerJ 2, e453. 


