Camera Condition Monitoring and Readjustment
by means of Noise and Blur

Maik Wischow!2, Guillermo GallegoQ, Ines Ernst!, Anko Borner!

Abstract—Autonomous vehicles and robots require increas-
ingly more robustness and reliability to meet the demands of
modern tasks. These requirements specially apply to cameras
because they are the predominant sensors to acquire information
about the environment and support actions. A camera must main-
tain proper functionality and take automatic countermeasures if
necessary. However, there is little work that examines the practi-
cal use of a general condition monitoring approach for cameras
and designs countermeasures in the context of an envisaged
high-level application. We propose a generic and interpretable
self-health-maintenance framework for cameras based on data-
and physically-grounded models. To this end, we determine two
reliable, real-time capable estimators for typical image effects of
a camera in poor condition (defocus blur, motion blur, different
noise phenomena and most common combinations) by comparing
traditional and retrained machine learning-based approaches in
extensive experiments. Furthermore, we demonstrate how one
can adjust the camera parameters to achieve optimal whole-
system capability based on experimental (non-linear and non-
monotonic) input-output performance curves, using object detec-
tion, motion blur and sensor noise as examples. Our framework
not only provides a practical ready-to-use solution to evaluate and
maintain the health of cameras, but can also serve as a basis for
extensions to tackle more sophisticated problems that combine
additional data sources (e.g., sensor or environment parameters)
empirically in order to attain fully reliable and robust machines.

I. INTRODUCTION

Machines from different fields (e.g., vehicles, robots) are
evolving away from manual control and gaining autonomy.
This evolution is equally increasing the need for reliability
and robustness to ensure the safety of people and the machines
themselves. These requirements run like a red thread through
all system components, starting with the sensors that perceive
the environment. Particular attention is paid to trustworthy
perception, as all subsequent actions depend on it. Cameras
are nowadays the predominant sensors to perceive the environ-
ment, and are therefore the subject of our study. To guarantee
a camera’s intended functionality, autonomy also demands for
self-health-maintenance, i.e., the task of continuously mon-
itoring the behavior of the system and executing automatic
countermeasures in case of a detected misbehavior.

Previous studies (e.g., [1]-[6]) have approached this task
by estimating and optimizing image features linked to general
image quality (like sharpness, noise or dynamic range). To

IM.W., LE. and A.B. are with the German Aerospace Center (DLR), Berlin,
Germany. E-Mail: [firstname].[lastname] @dlr.de.

2G.G. is with the Dept. of EECS of TU Berlin (Faculty V), the Einstein
Center Digital Future, and the Science of Intelligence Excellence Cluster,
Berlin, Germany. E-Mail: guillermo.gallego @tu-berlin.de.

this end, various automatic image quality maintenance tech-
niques have been developed and are now part of a standard
camera’s imaging pipeline (auto-focus, auto-exposure, auto-
white-balance, etc.). However, such techniques are typically
decoupled from the envisaged high-level application and hence
may not reach optimal whole-system performance. This is
particularly true if the system can trade off image quality for
other high-level application benefits.

This work tackles such a problem by proposing a modular
and general self-health-maintenance framework that strives for
optimal application performance. We demonstrate the working
principle of our framework on the exemplary application of
object detection (as a representative modern image application
of great importance in various fields) and focus on motion blur
and noise as typical undesired image properties (see Fig. 1).
Our modular design favors interpretability, explainability, and
testing of multiple components with less effort than end-to-
end approaches. Without loss of generality, our study analyzes:
time-varying effects influencing blur and noise quality param-
eters (since any time-invariant effects are usually subtracted
by camera calibration), and region-wise effects, thus allowing
us to consider spatially-varying problems.

We make the following contributions:

e« We propose a general framework to approach camera
self-health-maintenance tasks coupled to arbitrary high-
level applications in order to reach optimal whole-system
performance (Sec. III), and we demonstrate it for object
detection affected by motion blur and noise (Sec. VII).

e We carry out a comprehensive experimental study com-
paring six traditional and modern (machine-learning—
based, ML) image blur and noise estimators (Sec. V)
on three datasets. And we provide practical recommen-
dations with regard to camera monitoring applications
(Sec. VI), all grounded on knowledge of the camera
physics. In the image formation process, we account for
blur (with two root causes), noise (with three root causes),
and at the application level we test on two advanced
object detectors (YOLOV4, Faster R-CNN) and two types
of objects (cars and pedestrians).

e We provide the source code of our experiments,
including the retrained estimators: https://github.com/
MaikWischow/Camera-Condition-Monitoring.

II. RELATED WORK

Our study is closely related to active vision [7] and adaptive
camera regulation [8] in that there are two connected tasks:
online perception of the current vision state and execution of

https://github.com/MaikWischow/Camera-Condition-Monitoring
https://github.com/MaikWischow/Camera-Condition-Monitoring

Input Data Stream

Monitor Camera Condition

Blur
texp v
AP
f(z)
—_—
%e_MTF
Nt Noise 10 1
texp = 40ms - AP m
ISO = 2 : f(@)
SO U[)i;v ;‘.
g
S ——_—

Take Countermeasures

Fig. 1: The detection of the motion blurred car (red) fails with the present camera configuration (¥%). We tackle the source
of this problem using (i) an online estimation of image quality properties, (i) knowledge about camera physics f(x) and
(#i7) empirical object detection performance curves AP (expressed as functions of the image quality). In this way, unfavorable
camera conditions can be detected and actively tackled to reach optimal application performance (green). In the example, image
blur is estimated and mitigated online by changing the camera configuration: decreasing the exposure time t.,, and increasing
the ISO gain. Blur is reduced at the expense of slightly increasing noise to produce better object detection rates.

an action to improve some target criterion. In the perception
task we estimate major properties of the camera system state
by assessing the quality of the image data it produces in terms
of blur and noise. Subsequently, we define actions that can be
carried out to control the camera, therefore influence image
properties (we demonstrate this for motion blur and noise)
and hence optimize the system’s performance for a target
application (object detection in this work).

Motion blur can be directly approached at a hardware level
by involving, e.g., an accelerometer [9] or a self-designed
sensor [10], but it is typically managed by (automatic) expo-
sure control through image processing. Most general exposure
control works focus on image quality indicators like the
intensity entropy [1], [4], gradients [2]-[4] and histograms
[5], [6], or approach it learning-based [11]. Our work is most
similar to [11], thus we use it as a comparison baseline.
Similarly to [4] and [11], we employ blur and noise as image
quality indicators for the camera’s condition. The work in [4]
assumes a simplified additive zero-mean Gaussian noise, while
[11] models the most important noise sources close to the
camera physics (which is experimentally supported as being
more realistic [12], [13]). In contrast to all aforementioned
works, we consider a more extensive and realistic image
formation pipeline by including motion and defocus blur as
well as simultaneously occurring corruptions that influence
each other.

Traditional works typically do not couple the estimation
problem they solve to the envisaged high-level application and
hence do not reach optimal whole-system performance (e.g.,
[1], [3], [6]). We incorporate object detection performance as
a feedback signal [11], but we do not rely on a tailored end-to-
end learning approach. Instead, we propose a more modular,
extensible and interpretable approach: given the image data,
we empirically determine a performance profile (adapted to
the application) in terms of data quality metrics. To this end,
we employ dedicated blur and noise estimators with real-time
capabilities by adapting [2]-[4], [11] to focus on regions of

Application

Img > (e.g., Object Detection)

Camera

Scene

—

Decision &
Control Policy

-
%

|
' |
% S : |—>| Noise Estimation |-» & !
2 — gl —
g gg : |—>| Blur Estimation |—> MTF i
m —
o=
g2 I - N :
ET I o, MTF |
©
oo : * I
' I
' |
! [
' |

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

Camera Self-Health-Maintenance System

Fig. 2: System Overview. The camera is constantly monitored
by analyzing image corruptions (e.g., blur and noise). Ac-
cording to the estimated severity of such corruptions, camera
control parameters (e.g., exposure time tex, and ISO gain) are
recalculated to maximize application performance using the
(offline determined) input/output (I/O) performance curves.

interest. The details of these estimators and the adaptations
made are presented in upcoming sections (Secs. V-A and V-B).

IIT. SYSTEM OVERVIEW

Our proposed camera self-health-maintenance system con-
sists of online testing (Fig. 2) and offline training parts (Fig. 3).

Let us briefly introduce the offline training procedure first.
We start with image datasets from a target application domain
as input (e.g., object detection) and corrupt them according to
an image formation pipeline (Sec. IV). The pipeline contains
the most common (physics-based) sources of blur and noise
affecting the camera condition, with realistic severity levels
(Sec. VI-A). We quantify these levels using noise and blur

Data
Sets

Feature Variation:
Noise (a), Blur (MTF)

Img | o}
v v
CorruptImg | . Application Score
(Physics) Img" — (e.g., Object Detection) [(e.g., AP)

Fig. 3: Training the System (System Identification). An offline
sensitivity analysis determines the impact of physical image
corruptions (e.g., blur and noise) on the performance of a target
application (e.g., object detection), and stores the results in
input/output (I/O) performance curves. As input, image data
close to the application domain are used.

metrics: noise level o and modulation transfer function (MTF)
values, respectively. Afterwards, we let our system’s target
application (object detection) evaluate these corrupted images.
We likewise quantify this performance in terms of the well
known objective average precision score (AP, Sec. V-C).
Knowing each applied image corruption and the correspond-
ing calculated application performance, the respective tuples
are aggregated into input/output performance curves (I0PC),
which is the final product of this training procedure.

The testing part (Fig. 2) has access to these IOPCs and
analyzes each captured (yet unprocessed) camera image on-
line using machine learning based, real-time capable noise
level and MTF estimators (Sec. V). We have evaluated their
estimation and runtime performances compared to established
state-of-the-art estimators (Sec. VI) for isolated and combined
corruption cases, and propose a simple approach to improve
blur estimation in case of interfering high noise levels. If
the estimated image quality does not meet the requirements
for optimal application performance recorded in an IOPC, a
control policy decides how to adjust camera parameters as
countermeasure. We propose two exemplary control policies
using exposure time and ISO gain to trade off blur and noise.
They exploit the fact that object detectors are typically more
sensitive to blur than to noise (Sec. VII).

IV. IMAGE FORMATION PROCESS

The image formation process that we consider in a standard
camera is depicted in Fig. 4. Let us specify the image blur and
noise components of this model, and metrics to quantify them.

A. Blur

Image blur is the result of processes that reduce image
sharpness. The most prominent of such processes are (z) light
refracted by a defocused lens, (i) motion between the sensor
and the scene, (i7¢) atmospheric turbulence, and (¢v) diffraction
[14, p. 325]. We focus on the former two sources, whose
induced blur types are known as defocus and motion blur,
respectively. Many factors contribute to these processes and
make their mathematical description complex. For the sake of
simplicity they are often modelled as a convolution on the
image plane:

I"(z,y) = I(x,y) ® h(z,y), 1)

where I(z,y) is the input intensity at pixel (x,y) (before the
blur process), h(z,y) is the blur kernel and I*(x,y) is the
blurred image intensity. The kernel h(z,y) is also called Point
Spread Function (PSF) [14, p. 328].

The PSF can be used to objectively quantify image blur.
Its Fourier transform is the Optical Transfer Function (OTF)
and it describes how spatial frequencies f (i.e., image details,
contrast) are affected by blur:

PSF(z,y) & OTF(f) oc MTE(f) ¢! PTFW) - (2)

Usually only the magnitude of the OTF, known as the mod-
ulation transfer function (MTF), is relevant to quantify blur,
and so the phase transfer function (PhTF) is omitted. Let us
now describe defocus and motion blur kernels h(z,y).

1) Defocus Blur: We assume a defocus blur kernel h(z,y)
that distributes a pixel’s intensity evenly over an approximate
circular area of neighboring pixels (with radius r and center
(cz,cy)) [14, p. 325]:

h(.’L’) _ 5, (‘T—C-’L’)2+(y_cy)2 ST2
W= 0, otherwise,

3)

with the value s determined by the normalization constraint
J[h(z,y)dxdy = 1. This circle refers to the term circle of
confusion, whose diameter d = 2r + 1 can be calculated as
f]Sy — 5]

d=Ag—p P2 4)
expressed in terms of the focused object distance (57), the out-
of-focus object distance (S3), the focal length (f), the image
distance (f1) and the aperture diameter (A) [15, p. 216]. We
assume the camera comprises a single, perfect, convex, thin
lens satisfying 1/f = 1/f; +1/5;.

2) Motion Blur: Depending on the type of motion, image
blur can manifest as translation, rotation, scale changes or a
combination of all of them. Hence, a closed-form expression
for h(z,y) may be complex to obtain. Its main influencing
factors are the exposure time and the relative angular speed
between the imaged objects and the sensor during the exposure
(see [14, p. 326] for an exemplary approximation of h in
a simple scenario). We model h(x,y) to contain a coherent
path of pixels with non-zero and potentially inhomogeneous
intensities. We assume h(z, y) may be non-linear, since factors
like an uneven driving ground and unpredictable moving scene
objects might lead to complex non-linear movements during
the exposure interval. For simplicity we neglect additional
influences like the camera’s readout procedure, the influence
of the shutter or rapidly changing lightning conditions.

B. Noise

Image noise denotes “any undesired information that con-
taminates an image” and often occurs during image acquisition
or transmission [14, p. 348]. Having the online condition
monitoring approach in mind, we tackle the problem of online
characterization and mitigation of image acquisition noise.
We consider time-varying sources because time-invariant noise
sources (such as photo response non-uniformity) are often
addressed during calibration (before acquisition) and their

Poisson

v

— Q) —>

- -
Voo

> % —>®

Photon Defocus Motion Dark Current Readout
Shot Noise Blur Blur Shot Noise Noise
Lens Sensor

Poisson Gaussian

v v
> —>OD

v

Fig. 4: Image formation process of the considered camera system, including blur and noise models. A clean image I(z,y)
undergoes several physical processes that produce noise and blur, yielding the corrupted image I’(z,y) (clean image patch
vs. distinct corruptions in stated order). Noise is either signal-dependent or signal-independent, while blur is modelled as a

convolution with a point spread function (PSF).

residuals are assumed to have a minor influence on image
quality. Generally, noise can be modelled by:

I(z,y) = I(z,y) + I(z,y)" u(z,y), ()

where I(x,y) is the clean intensity (the signal’s intensity),
u(x,y) is a random, stationary and uncorrelated noise process,
and | (z,y) is the noisy intensity. A parameter v controls
different noise types. The amount of noise (or noise level) may
be quantified using the standard deviation o of the underlying
statistical distribution of w(z,y).

Let us now detail the most prominent time-varying noise
processes, namely photon shot noise, dark shot noise and
readout noise (Fig. 4). As a theoretical guide, we follow [16].

1) Photon Shot Noise: As photons arrive at the sensor,
the counting process within the exposure interval undergoes
random fluctuations. This is known as shot noise and follows
a Poisson distribution. If the number of arriving photons k
is large enough (i.e., in non-low illumination conditions),
the Poisson distribution may be approximated by a Gaussian
distribution using the Central Limit Theorem [17, p. 225]:

)\k —\ k — oo 1

= e Nz GAMBCI

Pa(k)

with A = o2 as the expected value and variance of the arrival
events. The higher the number of arriving photons, the higher
the number of random fluctuations; hence photon shot noise
behaves signal-dependent and can be described by (5) when
setting v = 1 and u(z,y) ~ Py(k).

2) Dark Current Shot Noise (DCSN): Similar to photon
shot noise, dark current (DC) shot noise originates from the
random arrival of DC electrons and follows the same distri-
bution (6). DC emerges from thermally generated electrons
at different sensor material regions. The amount of generated
electrons depends, among others, mainly on the pixel area,
temperature and exposure time [18, ch. 7.1.1]. DCSN is signal-
independent, hence v = 0 in (5).

3) Readout Noise: Readout noise refers to the imper-
fections due to the sensor’s electronic circuitry converting
charge into digital values and it is attributed to the on-chip
amplification and conversion processing units [19, p. 197].
Although readout noise can be reduced to a negligible level in
scientific cameras, its impact is still significant for industry-
grade sensors that lack of noise reduction [18, ch. 7.2.9].
We incorporate sense node reset noise (alias kKTC noise) and
source-follower noise as the main time-varying components.

Both noise sources can be modelled as a zero-mean Gaus-
sian process, where ¢ mainly depends on the temperature.
The overall readout noise contribution is a signal-independent
addition of both noise processes, hence v = 0 in (5). We keep
it at this level of abstraction and refer to [16] for details.

In summary, we consider the blur and noise sources in Fig. 4
and have described their physical models mathematically.

V. IMAGE QUALITY ASSESSMENT

In this section we introduce blur and noise estimation meth-
ods to quantify image quality objectively. We summarize both
traditional and learning-based (ML) approaches first and then
detail our improvements (Secs. V-A and V-B). Subsequently,
we introduce object detection as a proxy application to assess
the severity of blur and noise levels (Sec. V-C).

A. Blur Estimation (via the MTF)

The goal of our image blur estimators is to predict the MTF
given a possibly blurred input image patch (1) I*, where I* is
assumed to be monochrome (i.e., grayscale) and of size 192 x
192 pixels (following the ML approach). Fig. 5 summarizes
the steps of the two main approaches.

1) Traditional methods (non-learning—based): We use two
baseline methods: “graph-based” [20] (GBB) and “simple
local minimal intensity prior” [21] (PMP) as traditional blur
kernel estimators (top branch in Fig. 5). Both estimators follow
a maximum-a-posteriori framework

min £(I ® h, I7) + aG(I) + BR(h) 7

Traditional

—>-—>-

Sy

Fig. 5: Blur estimation of traditional (top branch) and learning-
based (bottom branch, ML) approaches. All methods take
one or more image patches as input and output estimated
MTF samples for pre-defined image frequencies (f) in the
horizontal (H) and (V) directions. Traditional methods
first estimate a blur kernel, transform it into Fourier space F
and sample MTF values. The learning-based method consists
of a pre-processing stage (Pre) followed by a multi-layer CNN.

Blur Kernel
Estimation

MTF

g

/
N\

to iteratively refine a clean latent image I and the blur kernel h.
The objective function (7) is the negative logarithm of the
posterior distribution (thus maximization turns into minimiza-
tion). It consists of a data fidelity term (L) that penalizes the
deviations with respect to the observed image I*, and two
regularizers G and R (prior knowledge) on the unknowns
(with positive weights «, 3). The GBB method [20] represents
images as graphs and employs a skeleton image with only
strong gradients as a proxy for /. It uses a re-weighted graph
total variation prior G(I) to favor bi-modal image histograms.
The PMP method [21] builds on top of the dark-channel
prior, proposing a simplified patch-wise minimal pixel prior
G(I) that aims for sparse minimal pixel intensities with small
computation complexity. The resulting h from each method is
Fourier-transformed into the MTF (2) and sampled at the same
spatial frequencies as the learning-based approach (Fig. 5), for
better comparison. We use the source code from [22], [23],
setting the kernel size parameter to 31 x 31 pixels.

2) Learning-based Method: We modify a learning-based
approach [24] to directly estimate MTF values of camera
lenses from natural images (without estimating the kernel h
first). It consists of a pre-processing stage followed by a CNN.

The pre-processing stage includes four steps: (¢) Intensities
are first scaled to [0, 1] and mean-normalized. (i4) A rotation
is applied for estimations of the MTF in radial and tangential
directions. (i¢2¢) The Sobel-filtered image patch is passed as an
additional channel to aid the MTF estimation procedure. (¢v)
Channels are spatially downsampled to enlarge the receptive
field of early CNN layers. We alter step (i) to distinguish
between estimations in horizontal and vertical directions and
thus be able to compare to baseline methods GBB and PMP.

The CNN consists of a convolutional layer, seven residual
blocks with strided convolutions, an intermediate feature repre-
sentation layer and three fully connected layers that regress the
MTF outputs (bottom branch of Fig. 5). The resulting output
consists of eight MTF values in the range [0, 1] linespx~! at
pre-defined spatial image frequencies.

The training is supervised. In [24], pairs of sharp image
patches and PSFs (I, h), synthetic or real, are collected. Their
convolution (1) leads to the training samples I*; and the

Traditional

Noise Level
Estimation

7 ™

ML /
Fig. 6: Noise estimation of traditional or learning-based (ML,

e.g., multi-layer CNN-based) approaches. Both approaches
estimate a noise level ¢ for each input image patch.

[]

respective MTF samples of the PSFs at pre-defined frequencies
are the training labels. In contrast to [24], we blurred the sharp
images by simulated random defocus and motion blur kernels
(see Sec. VI) and retrained the CNN.

At inference time, we pass a batch of four input image
patches, i.e., we stack temporally consecutive patches from
the same sensor position, pre-process them independently and
input them into the CNN at once. We expect better results this
way according to the authors’ experiments, although one patch
works as well. The obtained CNN output is then an (averaged)
MTF estimation.

Since the original source code is not available, we reimple-
mented it with guidance from the authors, who also provided
their original training data.

B. Noise Estimation

The goal of the image noise estimators is to predict the
noise level o of a process (5) w given a noisy input image
patch I , which is monochrome and of size of 128 x 128 pixels
(following the ML approach). Fig. 6 depicts the steps of the
two main approaches.

1) Traditional methods (non-learning—based): As baseline
estimators we use the works of [25] (self-implemented) and
[26] (with its code basis [27]). Both are representatives of the
two major noise estimation approaches in the literature:

The adaptive Gaussian filtering method [25] (B+F) uses the
standard deviation of the most homogeneous image patches
as a basis to calculate a Gaussian kernel that is used to filter
such patches. The standard deviation of the difference between
filtered and unfiltered patches leads to the estimated 6. We
increased the internal image patch size from 3 x 16 to 8 x 16
pixels due to better observed results on the selected datasets.

The method [27] decomposes image patches via Principal
Component Analysis (PCA, also abbreviation of the method)
into their eigenvalues and assigns the noise ratio to the smallest
ones. In contrast to previous work, the authors tackle the prob-
lem of overestimating or underestimating noise theoretically
and propose an efficient non-parametric algorithm for noise
level estimation.

2) Learning-based Method: We use the work of [28],
[29] as learning-based (ML) approach. It was designed for
pixel-wise noise level estimation from signal-dependent noisy
images. The noise model was Gaussian with parameters that
accounted for photon and readout noise.

The CNN consists of 16 convolutional layers (including
three residual blocks) and lacks pooling and interpolation

Sensitivity Analysis AP A
Obj. Detection Aggregation
Median
Calculation Vb N
>) L MTF
0, MTF AP 4
A/
T | - (0, AP)
(MTF, AP) L

Fig. 7: Sensitivity analysis of object detector performances
for blur and noise. The detectors are evaluated on corrupted
images resulting in average precision (AP) scores. For the true
de/te\ction areas, corresponding patch-wise noise () and blur
(MTF) estimations are aggregated to medians (¢ and MTF)
and, together with the APs, added to performance curves.

layers due to a known performance decrease for image noise
tasks. The resulting output & is estimated for each pixel, but for
a better comparison with baseline methods we use the median
over the patch as the noise level estimator.

Training in [28] is supervised, carried out by artificially
adding noise with o € [0,30] to images from the Waterloo
dataset [30]. We retrained the CNN in the same way using
our noise model of Sec. IV-B (see details in Sec. VI).

C. Empirical Input-Output Performance Curves

We choose object detection as a representative modern
image application of great importance in various fields. And,
as presented, we choose image noise and blur as the main data
quality indicators of the state of our imaging system.

Specifically, we use YOLOv4 [31] and Faster R-CNN [32]
as state-of-the-art real-time object detectors (with pre-trained
models and default settings, applied on grayscale images). The
goal is to determine object detection sensitivities empirically
for different noise and blur levels (Fig. 7). We do this analysis
offline, but an iterative online approach is also feasible.

As input we assume image data with grougi\truth object
detections and corresponding patch-wise blur (MTF) and noise
(6) estimations (Fig. 7). First, both object detectors are applied
on the images to gather estimated detections. Second, these
estimations are scored with the well-known average preci-
sion (AP) metric, which we calculate following [33]. In the
subsequent aggregation step, we determine the corresponding
median ¢ and MTF estimations of all the respective image
patches overlapping with the ground truth object detections.
Finally, the resulting input-output tuples (o, AP), (MTF, AP)
or (6, MTF, AP) are collected as performance curves (IOPCs).

VI. EXPERIMENTS

We first describe the datasets used and the image corruptions
applied (Sec. VI-A). Subsequently, we evaluate the accuracy
and runtime performances for the proposed blur and noise
estimators separately (Secs. VI-B and VI-C) and on combined
image corruptions (Sec. VI-D). Finally, we propose a post-
processing technique to enable blur estimation in the presence

Fig. 8: Datasets. Exemplary images from datasets Sim (896 x
768 px), Udacity (1920 x 1200 px) and KITTT (1242 x 375 px).

of high noise levels (Sec. VI-E). All experiments are executed
on an Intel Xeon W-2145 CPU and an NVIDIA Quadro RTX
6000 GPU, with the CNN methods running on the GPU.

A. Datasets

We employ one simulated and two real-world datasets: Sim,
KITTT [34] and Udacity [35] (Fig. 8). We create Sim with
the simulator [36] to provide accurate ground truth for blur
and noise estimation. Sim comprises 1000 images of a village
environment acquired from different viewpoints and includes
vehicles, such as cars and bikes. From KITTI we use the an-
notated object detection sub-dataset (with preceding frames),
and from Udacity we use sub-dataset #2. We subsample KITTI
and Udacity for two reasons: to reduce processing time and to
remove (in all conscience) clearly visible blur/noise corrupted
images that would bias estimation results (however, a residual
risk of corruption in the natural images remains). To this end,
we pick 1000 images per dataset for noise estimation and
150 images for blur estimation, and match these numbers on
Sim. For blur, we only use image patches containing detected
objects of interest.

All datasets are synthetically corrupted with controlled
amounts of noise and blur using the models of Sec. IV.

Noise: Following the “real noise” studies in [13], we
generate noise with levels o € {5, 10,15, 20,25} DN (digital
numbers on a [0, 255] scale). We apply default CMOS camera
parameters from [16] and study noise in isolation or in
combination. (i) For isolated DCSN and readout noise studies,
we set the temperature to 77 = 330K and the exposure
time to texp = 0.1s. (i1) For the combined noise case we
include all noise sources, with random 7' € [300, 330] K and
texp € [0.002, 1] s to emphasize different noise components in
each image. In order to reach the desired o, we amplify the
(raw) noise in both settings.

Blur: We synthesize blur kernels of size d €
{3,7,11,15,21} px. d is the diameter for defocus kernels or
the approximate path length for motion blur kernels (inspired
by [37]). Defocus blur kernels are calculated analytically
using (3). Motion blur kernels are generated using [38],
distinguishing between linear motion kernels (motion intensity
parameter set to 0) and non-linear ones (parameter set to 1.0),
and manually selecting the kernels that satisfy the target d.

We further propose two use cases for combined blur and
noise occurrences: (i) Defocus blur and DCSN (Defocus +
DCSN) that might arise at high temperatures (as caused by
direct Sun illumination) and with defocus induced by material
stress in the optics setup, and (ii) photon noise and motion
blur (Photon + Motion) due to high exposure times and signal
amplification, typical of low light conditions.

B. Blur Estimation

We assess blur estimation accuracy in terms of the average
mean a/bs\olute error (AMAE) between a robust MTF estima-
tion (MTF, with ~ 5% outliers rejected) and ground truth
(GT) samples at eight frequencies (f;) each in horizontal (H)
and vertical (V) image directions (w):

1
AMAE = — MAE
5 w_%v} (w),
L8 ®)
MAE () = = >~ IMTFT(f;) ~ MTF (/)]
81:1

We first calculated (robust) median, minimum and maxi-
mum estimations for the uncorrupted datasets in Fig. 9. In the
Sim case, we could determine MTFST by evaluating a Siemens
Star (generated in the simulator) with the tool [39]. For the
real-world datasets however, there are no known GT values,
but we expect similar sharp images and hence we plot the
estimations for comparison.

Analyzing Fig. 9 we make five major observations: (7) The
CNN estimates a nearly ideal MTF with hardly any variance
in the Sim case and provides similarly confident estimations
for KITTL. (z¢) Contrary to expectations, the CNN estimates a
more uncertain and lower MTF for Udacity. Concerning this,
we found challenging effects that influenced the estimation,
like frequent windshield reflections and regular slight mo-
tion blur in the moving direction, despite our pre-selection
of images. The traditional estimators (GBB/PMP) are also
affected, producing lower median estimations than for KITTL
(¢17) The variances of GBB/PMP shrink from Sim, via KITTI
towards Udacity. (¢v) GBB performs noticeably worse in Sim.
We ascribe its low median and large variance to the lack of
image gradient diversity of the Sim dataset (GBB relies on
gradients, but strong horizontal edges are scarce in Sim). (v)
PMP produces generally low estimations and its maxima are
far from the GT (Sim) or expected GT (real-world) values.

Next, we corrupted the datasets with the generated blur
kernels and used the sampled MTFs of the kernels as ground
truth. The blur AMAE scores are summarized in Table I.
We make the general observation that GBB/PMP —unlike
the CNN— usually perform worst for small (3 px) and large
(21 px) kernel sizes. This often manifests in undesired artifacts
like smear or cuttings in these estimations (see kernels in
Tab. I right). The decreased performance for small blur cases
is in agreement with the results from Fig. 9, where GBB and
particularly PMP produce lower median estimations and higher
variance for Sim/KITTI, and lower variance for the already
corrupted Udacity. Since GBB/PMP follow a coarse-to-fine
approach, more internal iterations would enhance the level

of detail of the kernel and thus produce smaller errors (at
the expense of computational cost). On the other hand, larger
kernel estimations improve as larger image patches are used.
The authors of GBB [20] suggest kernels be much smaller than
the image to have a well-defined blur estimation problem. We
further regularly observe larger estimation errors for Udacity,
whereby the impact decreases towards larger kernels. This
confirms that Udacity is already corrupted by blur and/or the
estimations are influenced by challenging conditions (Fig. 10).

Apart from the already mentioned small/large kernels, all
methods estimate defocus well (Tab. I). Nevertheless, the CNN
delivers the most accurate results, with a median AMAE of
< 1%. GBB considers the common simplification of Gaussian
blur for defocus, whereas PMP does not and tends to perform
slightly better than GBB.

The CNN also estimates linear motion blur comparably well
but (except for small/large kernels) GBB tends to produce the
smallest errors. It is conspicuous that a kernel size d = 15 px
falls out of the grid for Sim. We notice that all methods
have almost no errors in horizontal but large errors in vertical
direction (above all, the CNN method). This is due to the
already mentioned lack of strong horizontal edges of the
evaluated image patches, which are necessary for larger kernel
sizes, hence we ignore these results.

Non-linear motion estimation results (also in Tab. I) differ
for the CNN method, which produces larger and more varying
errors for kernel sizes d > 7 px compared to the traditional
estimators and the linear case. We interpret this as a larger
uncertainty and conclude that the CNN might not be appro-
priate for estimation of complex non-linear motion kernels.
In contrast, the scores of GBB/PMP are more accurate and
more stable among the different kernels and datasets (with
GBB a bit better). This slightly better motion blur estimation
performance of GBB compared to PMP is consistent with the
experiments in [20], where PMP is compared to the work of
Pan et al. [40] that first proposes a dark channel prior.

Computational performance: In terms of runtime, we see
from the table in Fig. 9 that the CNN executes more than
x50 faster than GBB/PMP and moves in the realm of real-time
capability. Although the CNN executes on a GPU, the running
times of current GBB/PMP implementations (running on the
CPU) are too long to be practical for a condition monitoring
application (especially for multiple image patches).

In summary, the GBB and PMP methods are in general
not accurate for blur-free or small/large blur kernel estimation
on the image patch sizes used, and available implementations
are not real-time capable. Nevertheless, they provide accurate
estimates for medium-sized kernels and in the case of non-
linear motion blur. The CNN method, on the other hand, might
not be suited for non-linear motion kernels, but performs well
in terms of defocus, linear motion and real-time requirements.
If non-linear motion blur can be circumvented (e.g., with short
exposure times or slow motions), the CNN method can be
employed for monitoring a camera’s condition.

C. Noise Estimation

We evaluate the proposed noise estimators by comparing
their robust median, minimum and maximum statistics (re-

KITTI

Udacity

MTF

1 | l

1
02 03 04 05 02 03 04 05 06

Frequency [lines/px]

06 0 0.1

Mean Runtime [s]
CNNwmrr 0.24
PMP 12.69
GBB 13.07
CNN, 0.005
PCA 0.002
B+F 0.005
0 0.1 02 03 04 05 06

Fig. 9: Blur estimation of uncorrupted datasets (i.e., “ground truth”). Left: Median, minimum and maximum blur estimations
of the uncorrupted datasets (depicted by sampled points with interpolation in between and the shaded areas, respectively;
horizontal direction only). Right: Mean runtime estimations per image patch (for CNNyrp per input batch of four images).

TABLE I: Blur estimation of synthetically corrupted datasets. Left: Ground truth blur kernels and average mean absolute errors
(AMAE) of horizontal and vertical median blur estimations [%]. The best results per kernel and dataset are highlighted in
bold. Right: Typical GBB/PMP kernel estimations with undesired artifacts (compare to respective ground truth kernels).

Defocus Blur

Linear Motion Blur

Lin. Non-Lin.

Defocus Motion Motion

Non-linear Motion Blur

Size [px] 3 7 11 15 21 3 7 11 15 21 3 7 11 15 21 ..-Sé”
Kemel - E-EH-NHeNeoelN-N-'N B-N B-E-N-N-N/ =
- L B
Sim CNN 02 07 05 03 0.7 122 121 62 251 38 28 182 228 122 32.0 nn.és ®
PMP 79 22 24 24 26 347 55 125 133 194 258 47 52 36 117 © 5
GBB 29 38 43 48 9.1 250 54 47 170 11.1 148 46 62 60 7.2 - 2%
KITTI CNN 04 08 05 03 05 31 11.1 44 80 73 28 155 165 47 287 52
PMP 92 23 23 20 21 351 6.6 144 31 203 246 49 69 28 0.1 ZE
GBB 37 24 31 45 101 17.8 4.6 84 58 167 113 4.7 58 52 8.3 =% 5
Udacity CNN 38 06 06 03 05 157 76 60 45 108 124 95 125 50 126 n--‘ia @
PMP 143 43 36 22 18 395 92 174 50 229 300 88 105 42 108 Ng
GBB 68 29 32 45 113 244 62 106 50 19.1 165 51 6.1 56 105 ﬂ n ng‘é

Fig. 10: Challenging conditions in the Udacity dataset. From
top left: Slight motion blur (3 px) in moving direction, light
reflections and two examples of severe motion blur.

jecting ~ 5% outliers) against the controlled ground truth
noise levels. Results are reported in Fig. 11. Since we obtained
comparable results for DCSN and readout noise per dataset,
we dropped similar plots.

We first observed that B+F and PCA methods are prone to
structural misestimation: both over-estimate low noise levels,
and B+F under-estimates high noise levels. These phenom-
ena have been already reported and are characteristic of the
corresponding model family [25], [26]. Moreover, all methods
tend to strongly under-estimate noise in natural images, which

even reduces the median performance of the B+F method.
We observe this behavior in over-exposed areas where most
pixels are in saturation, which is expected from vehicle camera
images containing large sky areas. The CNN method is less
vulnerable since it learned employing fewer meaningful pixels;
[4] omits such image regions under the assumption that under-
/over-saturated patches ‘“cannot contain noise” (which only
holds for completely saturated regions).

Another observation is the striking difference between the
signal-dependent and signal-independent noise cases. signal-
dependent photon shot noise increases the variance of all
estimators, especially on real-world data. We observed that
large variations in bright and dark intensity areas within one
image patch led to over- and under-estimation, respectively.
The CNN noise level is limited here since it was trained with
o < 30DN. If all noise types occur simultaneously (last plot
in Fig. 11) the estimations become more accurate and more
robust than in the case of all noise being attributed to photon
shot noise. According to the observations of [12], [13], realistic
noise follows a combined Poisson-Gaussian distribution, and
the Poisson part is troublesome for the noise estimators (in
particular for those with Gaussian assumptions). Hence, we
consider isolated photon shot noise as the worst case scenario.
The CNN and PCA methods perform similarly if signal-
dependent photon shot noise is included, and the CNN is more
reliable (smaller variance) otherwise. In terms of denoising,

Photon Shot Noise (Sim) Photon Shot Noise (KITTI)

DCSN (Sim)

Readout Noise (KITTI) Combined Noise (Udacity)

—©—CNN
—&— PCA

_—A— B+F

Est. Noise Level 6 [DN]

0 5 10 15 20 25
Noise Level o [DN]

Fig. 11: Noise estimation of corrupted datasets. Median, minimum and maximum statistics (depicted by sampled points with
interpolation in between and the shaded areas, respectively) of the three proposed noise estimators (CNN, PCA, B+F) as the
noise level o increases (from 0 to 25 grayscale levels, DN), for several types of noise (Photon Shot, DCSN, etc.) and datasets
(Sim, KITTI, Udacity). The last plot shows the effect of combining all noise types (on the Udacity dataset).

similar results have been shown by comparing traditional and
learning-based methods on real data [12].

Computational performance: Regarding runtime (Fig. 9,
right table), PCA is executed fastest, with an average of 2 ms
per patch, but in the same order of magnitude as the other
estimators (5 ms). All noise estimators are real-time capable
and considerably faster than blur estimators.

Summarizing, the CNN and PCA methods are accurate in
median but their reliability decreases the stronger the photon
shot noise is. In case of signal-independent noise only, the
CNN performs by far most reliably. Since PCA is prone to
structural misestimation (e.g., over-exposed areas, small noise
levels), we suggest using the CNN for condition monitoring
applications. Finally, the reliability of PCA and CNN could
be improved by using the median estimation from consecutive
frames.

D. Combined Estimation of Blur and Noise

Because previous sections showed that CNN blur and
noise estimators performed among the best ones on isolated
blur/noise cases, we now use these estimators on combined
blur and noise corruption experiments. Fig. 12 shows the
results for combined defocus blur and DCSN on Udacity (“De-
focus + DCSN”), and Photon Shot Noise with simultaneous
linear motion blur on KITTI (“Photon + Lin. Motion”).

1) Defocus + DCSN: According to the physics behind the
image formation process in Fig. 4, an image is corrupted by
defocus first and DCSN afterwards. Hence, high-frequency
image content is filtered and fully represented by the DCSN.
In theory, the larger the blur the easier the noise estimation.
This is what we observe in the first plot of Fig. 12. Although
there is a small estimation error for zero defocus, & becomes
most accurate for d > 3px and remains unchanged. Hence,
defocus is favorable for DCSN estimation. We expect the
same effect for other combinations of defocus/motion blur and
DCSN/readout noise.

On the other hand, DCSN negatively affects defocus esti-
mation because advantageous information for detecting blur
(the absence of high frequencies) gets corrupted by noise. We
notice two effects from the results on the table of Fig. 12: All
defocus estimations worsen with increasing noise levels, and
this impact becomes more severe for larger kernel sizes. While
estimations for a small kernel (d = 3 px) can be considered

as still good for o = 10DN, the same noise level leads to
poor blur estimations for larger kernels. This outcome was
investigated in the context of motion deblurring [41], where it
was found that, as o grows, blur estimations approach the
Dirac delta function in a large variety of approaches. We
observe the same behavior for the CNN estimations, hence
the increasing relative error towards larger kernels. Generally,
defocus estimations are robust for o < 5DN. Since sensor
noise can be detected accurately in case of defocus, a small &
should be assured before trusting blur estimations.

2) Photon + Lin. Motion: In this case noise is added before
the blur (due to the physics behind the image formation model
in Fig. 4). Therefore, we expect the opposite behavior, i.e., a
poor noise estimation (the blur kernel acts as a classical noise
filter) and a good blur estimation. As we see on the second plot
and the table in Fig. 12, the results meet the expectations. A
motion blur of size d = 3 px is already enough to fully disturb
noise estimation, resulting in a constant & = 0 (note that noise
is not removed from the image but spread among neighboring
pixels). The linear motion blur estimations remain untouched
among all blur and noise levels. The CNN blur estimator seems
to focus on high-frequency image content as the results from
Defocus + DCSN already suggested.

In summary, we conclude that even a small amount of blur
boosts the detection of subsequent noise while suppressing
preceding noise sources. So, in the presence of blur, photon
noise is difficult to estimate and therefore should be avoided.
Regarding blur estimation, photon noise does not harm, while
subsequent DCSN with ¢ > 10 DN generally prevents esti-
mation. Hence, if one can eliminate photon noise, we suggest
estimating noise before judging a blur estimation result. As in
the noise evaluation of Sec. VI-C, sensor noise (DCSN and
readout noise) is more favorable than photon shot noise for a
condition monitoring application.

E. Improved Blur Estimation in Presence of High Noise

The previous section has pointed out that blur is not
accurately estimated in the case of high subsequent noise (e.g.,
DCSN, with ¢ > 10DN). Here we demonstrate a simple
approach to improve the accuracy of such MTF estimates.
The approach exploits the fact that preceding photon noise
does not influence the MTF estimation of subsequent linear
motion blur (see table in Fig. 12). Hence, the approach consists

Defocus + DCSN Photon + Lin. Motion

CNN (Kernel Size 0 ... 21 px) 21

)
G
T
T

15 L

N
=}
T

—_
S
T
T

Est. Noise Level 6 [DN]
%3 o
[[
[[

0 5 10 15 20 25 0 5 10 15 20 25
Noise Level o [DN]

Defocus + DCSN Photon + Lin. Motion
Size [px] 3 7 11 15 21 3 7 11 15 21
Kernel - u n D = E n ll
Noise Level 0 3.8 06 06 03 0.5 3.1 11.1 44 80 73
5 43 49 17 08 1.1 3.1 11.1 44 80 73
10 6.0 33.7 374 483 394 3.1 11.1 44 80 73
15 19.0 494 614 69.6 763 3.1 11.1 44 80 73
20 24.0 503 622 70.0 76.5 3.1 11.1 44 80 73
25 240 504 623 70.1 76.7 3.1 11.1 44 80 73

Fig. 12: Combined estimations of blur and noise for two image corruption configurations: Defocus + DCSN on the Udacity
dataset, and Photon + Linear Motion blur on the KITTI dataset. Plots of the median noise estimation (Left) and table with
median blur estimation (AMAE (8) in %) (Right) for different noise levels and kernel sizes. Noise estimated for different blur
kernel sizes is color coded from blue to purple. However, differences are almost indistinguishable at this scale.

Lin. MB + DCSN + Lin. MB

with d; = 3px, 0 = 10 DN dy = 3px, 0 = 25DN

dy = 11px, o = 10DN

d; = 11px, o = 25DN

1.0

~
\ < -
N3 N
N S
N N -
N .
N ~

0.2 -==H L
mm v
! | N i A
0 01 02 03 04 0 01 02 03 04 O

Frequency [lines/px]

Fig. 13: Improved blur estimation in presence of noise. Scenario “lin. MB; + DCSN + lin. MBy”, with kernel size d; = 7 px.
Left: four plots of min./max./median MTF estimations (Est.) of the combined linear motion blur (lin. MB 1 and 2) compared
to the ideal combined MTF (GT) in horizontal (H) and vertical (V) image directions on the Udacity dataset. The last motion
blur (lin. MB3) spreads DCSN and thus fixes MTF estimation for the combined blur. However, noise might become structured
(Right) and influence median and max. estimations; minimum estimations stay stable and approach the ground truth best.

of considering the above-mentioned “high subsequent noise”
as the preceding noise of a new blur stage, estimating the
overall MTF and reassigning the credit between the two blur
stages. Specifically, following up on the Defocus + DCSN case
in Sec. VI-D, the considered pipeline has now three stages:
lin. MB + DCSN + filtering. Letting the first blur kernel
be by, we filter ﬂ(&;e by an a@ﬁonal @el by, estimate
the overall blur MTF(by, by) = MTF(b;) MTF(b,) and lastly
divide the MTF by the known MTFST(b,) according to the
Fourier convolution th@gm [42, p. 242]. To this end, we
assume MTFCT (by) &~ MTF(by) and determine the estimation
error of l\ﬁ(bl) with respect to MTFT ().

Due to the combinatorial complexity of the experimental
configuration, we focus on the following one. Supported by
the results in Sec. VI-D, we employ only the CNN method
for MTF estimation on Udacity data, and in preparation
for Sec. VII, we consider the case of lin. MB + DCSN
(representative for sensor noise, to keep it clear and concise).
Although subsequent defocus blur might be the best choice
to filter DCSN, our CNN has not been trained on combined
defocus and MB, hence we apply a lin. MB filter (which
leads to the configuration lin./l\ABl + DCSN + lin. MBy).
To approach MTFCT(by) ~ MTF(by), we pick the motion
blur kernel with size dy = 7 px (compare results in Table I).
Finally, we select the four operating points with small/large

kernel sizes (d; € {3,11} px) and high/higher noise levels
(0 € {10,25} DN). The blur sizes are chosen so that the
overall blur is still detectable by the/Q\IN. In the following,
we first evaluate the estimation of MTF(by, bo) (summarized
in Fig. 13) and continue with the division by the known
MTF®T(by), i.e., evaluating MTF(b;) (Table II).

1) m(bth) Estimation: The four plots in Fig. 13
show robust min./median/max. estimations (with ~ 5% out-
liers removed) compared to the respective MTFGT(bl, by) =
MTFT (b;) MTFST (b,) (calculated using the known blur ker-
nels) in horizontal and vertical directions. Frequencies beyond
the zero-crossing of the MTFCT curves are omitted because
they only contain noise (aliasing).

Our first observation is the growing estimation uncertainty
(variance) towards higher frequencies and with higher noise
levels. This effect originates from the filtered DCSN, which
forms a fine-detailed structure in diagonal direction. It also
influences lower frequency details and increases the median
and max. estimations in both directions (see image in Fig. 13).

We further observe low estimation variances in the vertical
direction if d;y = 11px. This is because the MB; kernel
operates mainly in the vertical direction, which supports the
respective MTF estimations. Last but not least, we notice that
the minimum MTF estimations approach the GT values best.
These estimations originate from unaffected image structure

TABLE II: Estimation of linear motion blur b; (lin. MB) on
combined pipeline (Lin. MB; + DCSN + Lin. MB,), using
Udacity data. For Lin. MB5 we use a kernel size of do = 7 px.
The table reports mean absolute errors (MAE) of horizontal
(H) and vertical (V) estimations, their average (AMAE) and
the expected AMAE (Eq. (9)).

Corruption Levels Error Metrics

di[px] o[DN] MAE(H) MAE(V) AMAE AMAEE*
3 10 2.8 11.6 7.2 17.4
3 25 3.0 21.1 12.1 17.4
11 10 6.3 8.7 7 9.7
11 25 33 1.6 245 9.7

(e.g., structure orthogonal to the noise structure direction).

2) MTF(by) Estimation: We need to ensure three precondi-
tions to divide MTE®T (b,) from I\TT\F(bl7 by) for a meaningful
result: (i) MTF (b1, by) < MTFOT(by), (i) MTFOT (by) > 0+
and (i7i) MTF(by, by) > 0+c¢, for all sampled frequencies. We
chose the control parameter ¢ = 0.1 to avoid large quotients
for small values, and omit frequencies that do not satisfy the
conditions.

Table II presents results in terms of the MAE and AMAE
scores (8), and the expected AMAE scores

AMAEP®" = \/ AMAE(MTE(by))? + AMAE(MTE(b3))? (9)

from the error propagation of hﬁ(bl) and ﬁ(bQ).

We observe noticeably worse MAE(V) scores for d; = 3 px
than for d; = 11 px, which are in agreement with the already-
mentioned slight motion blur in the moving direction (V) on
Udacity data (Sec. VI-B). The high noise level (o = 25 DN)
further disturbs the blur estimation for the small kernels.
Vice versa, the high noise seems to boost the blur estimation
for dy = 11px. This observation is in agreement with the
corresponding plots of Fig. 13: the minimum MTF(by, by)
estimations decrease slightly due to the additional noise
structure but simultaneously reduce the deviations from the
ground truth. Generally, we observe lower AMAE scores for
all configurations than expected by the error propagation and
attribute these differences to such a partial error counteraction.

Summarizing, additional filtering suppresses noise so that
preceding blur estimation can be re-enabled for high sensor
noise levels o > 10DN. The estimation of the (preceding)
blur even comes with a lower error than expected in all
configurations. Although the procedure might come with side
effects (in case of a filter that transforms noise into structured
image content), they can be avoided by taking the minimum
MTF estimations over time. This procedure is also suitable for
a condition monitoring application as it can be applied in the
background without changing the camera configuration.

VII. MAXIMIZING OBJECT DETECTION BY TRADING OFF
BLUR AND NOISE

We now demonstrate how one can use the online blur/ noise
estimators and the offline empirical input-output performance
curves to control image quality and hence optimize the sys-
tem’s performance (Fig. 2). We choose object detection as our

exemplary target application and select “car” and “pedestrian”
as exemplary object classes on Udacity data. We focus on
actions tackling linear motion blur (lin. MB) here because
object detectors are substantially more sensitive to lin. MB
than to noise (Fig. 14), and there is abundant motion blur
in standard datasets like Udacity (Fig. 10). We also neglect
photon noise and demonstrate the procedure with sensor noise
only (DCSN + read noise), so that filtered photon noise does
not lower the noise level estimation. Unless otherwise stated,
we apply the settings from Sec. VI-A for noise generation.

We make the following considerations knowing the camera’s
physical process. The main controllable influencing factor of
motion blur is the camera’s exposure time fex, (Sec. IV-A2).
We exploit the relations

texp < I and texp, oc MB ~ MTF ™! ~ AP,

. (10)
ISO «x I and ISO x 0 ~ AP™ ",
where AP is the average precision of the object detector.
Reducing fex, by a factor o = t‘e’}(‘é [tey > 1 equally

decreases the aggregated amount of light intensity / (assuming
sensor linearity) and also MB by the same factor (assuming
constant relative speed between camera and scene). To com-
pensate for the missing light, we may increase the camera ISO
gain by factor «, which likewise amplifies the noise level o.
This relationship depends on the camera sensor architecture
and whether the analog or digital signal is amplified [43]. We
assume digital amplification as the worst case and thus a linear
relation. Hence, we can model the problem as an optimization
one, i.e., determining « from the IOPCs to maximize the object
detector’s score:

o = argmax AP(a&,aMB(l\//I'ﬁJ)). (11)
[

Note that tey, x 03 -gy during optimization [16, p. 3]. We

drop this influence here for simplicity, since the already small

DCSN has no significant effect on ¢ in our setting.

Fig. 14 shows exemplary IOPCs for isolated (left) and
combined (right) blur and noise occurrences. It can be seen
that the relation from the blur or noise corruptions to the
detection performances might be non-trivial and non-linear
(e.g., YOLOV4 car detection in presence of lin. MB) since
we do not really know what machine learning methods learn.

Example 1: We demonstrate this framework using the
Sim environment on a concrete example of YOLOv4 car
detection with corrupted data by means of lin. MB and sensor
noise (Fig. 15). The left image in Fig. 15 depicts the scene in
uncorrupted conditions (without noise or blur), for reference.
Here the first car is detected fairly (p = 0.53) and the second
one much better (p = 0.97). While the CNN noise estimator
detects a small noise level of & = 1 DN by mistake, the MTF
estimation is nearly ideal (MTF = 0.99). Next, we included a
realistic trajectory for the simulated camera to create a linear
motion with a speed of v &~ 760 px/s. This causes blur (an
exposure time of te, = 28ms induces a motion blur of
doid = 21 px), and we also apply sensor noise of ¢ = 3 DN.
In this situation (second image in Fig. 15) blur and noise are
estimated within the expected error ranges (ciold = 18 px), but
the cars are no longer detected (p ~ 0). In the next step, we

Lin. MB + Sensor Noise:
Faster R-CNN Pedestrian

Lin. MB + Sensor Noise:
YOLOv4 Car

Linear Motion Blur Combined Noise

9 ——— YOLOv4 Car 182 15.9 96 99 94

E Faster R-CNN . Pedestrian e - 55

< s0-e— oo o o ¢ C i\ : -

sl T e - z 18.4 17.0

§ d=15 4 £ 3

2 3o a=21 '\‘\A\&\‘___‘ E 217 203

& 20:><%>< t\.\.\‘\’_: & o P

s]

2 IO*A_IA\‘\‘\‘ L

Z ‘ ‘ ‘ ! '—_“\‘A—‘A\A‘—. : 16.0 14.1 20.4
0
10 09 08 07 06 05 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Estimated MTF Est. Noise Level 6 [DN] Est. Noise Level 6 [DN]

Fig. 14: Influence of blur and noise on object detection performance. Exemplary object detection performances depending on
isolated (Left) and combined (Right) occurring and blur and noise. All input-output profiles depend on the actual estimated
corruption levels. Performances are measured in terms of average precision (AP). Noise levels and MTFs are estimated by the
respective CNN methods and the MTFs depict means for horizontal and vertical measurements at frequency f = 0.1. The red
and orange arrows demonstrate two examples of exposure time fex, / ISO-gain trade-off paths (see text in Sec. VII).

Original Scene Corrupted Scene Reduced texp Increased ISO gain

& = 3.0, MTF = 0.57 & =3.0,MTF = 0.84 & = 6.0, MTF = 0.78

6 = 1.0, MTF = 0.99

Fig. 15: Maximizing object detection by trading off blur and noise. Application of the proposed framework to detect cars using
YOLOV4 on Sim data suffering from linear motion blur and sensor noise. The scene (Left) is first imaged with an exposure
time of 28 ms (leading to a motion blur of d ~ 21 px) and corrupted by noise of ¢ = 3DN. As a result, YOLOv4 no longer
detects the cars (Center-Left). Applying the optimal o* = 2 (according to the performance profile from Fig. 14) improves
car detection (Center-Right), even beyond the value in the uncorrupted scene. Finally, we multiply the ISO gain by «o* to
compensate for the missing light, which improves overall detection slightly (Right). Hence, blur is reduced from d =~ 21 px to

9 px and noise amplifies from ¢ =~ 3 DN to 6 DN while detection rate increases from zero (no detection) to p ~ 0.8.

determine o*: knowing the relation between motion blur sizes
and estimated MTFs (ﬁrst/@)t in Fig. 14) and the estimated
noise level, we target an MTF € [0.7, 0.8], which corresponds
to d € [8,12] px (cf. first heat plot in Fig. 14). We chose
durger =~ 9px, hence, o = dou/durger ~ 18/9 = 2. We
then reduce t., by the factor a* and show an intermediate
image without ISO gain amplification. The cars are now well
detected while blur and noise are still estimated within the
expected error ranges. As we did not investigate the influence
of image intensity on object detection performance, next we
increase the ISO gain by the factor a* to restore the original
intensity level, producing the last image of Fig. 15. In this
last step the detection scores and the accuracy of the estimated
blur (citarget = 9 px) slightly increase despite the likewise noise
amplification (0 =~ 6 = 6 DN). The steps taken are marked
with red arrows on the heat plot in Fig. 14.

Example 2: Let us show another example on the
non-monotonic YOLOv4—car-detection heat map of Fig. 14,
marked with orange arrows. Suppose the initial operating point
is given by an image with (6, MTF) = (10,0.96). The system
decides to decrease the noise at the expense of increasing
motion blur to move to higher AP detection values (greener
part of the heat map). Inspecting the AP curves (1st plot in

~
~

Fig. 14), MTF = 0.96 corresponds to d = 3 px, and the system
targets MTF € [0.7,0.8] (high values of the heat map), which
corresponds to a larger motion blur of d~8 px. Two steps are
taken (like in Fig. 15): first, the system increases the exposure
time by a factor & = 8/3 & 2.7 to achieve the desired MTF
improvement. Then, it decreases the ISO (and reduces noise)
by the same factor a ~ 2.7 to restore the inﬁaﬁity level for the
detector. The final operating point is (6, MTF) =~ (3.8,0.8),
which has a higher AP value than the initial point.

VIII. CONCLUSION

We have proposed a framework for real-time camera condi-
tioning, bringing together the tasks of inferring the state of the
system and acting on the camera’s operating point to achieve
optimal system performance. Our framework has a modular
design, hence it is flexible and interpretable, allowing for
multiple choices of its submodules, such as the image quality
estimators. To this end, we have carried out a comprehensive
experimental study close to the physics of the sensor and have
incorporated six state-of-the-art image quality estimators, two
advanced object detectors and two standard datasets plus one
self-created. We have considered a more extensive and realistic
image formation pipeline than preceding works by including

motion and defocus blur as well as simultaneous occurring
corruptions that influence each other. All these elements have
been put together in a coherent manner to justify our design
choices and provide insights and practical recommendations
with regard to camera monitoring applications (summarized
at the end of each experimental subsection).

Regarding the framework, the main idea is that aiming at
improving image quality blindly, without taking into account
the subsequent high-level application, may not always be best.
If the end goal is better high-level application performance
(say, car detection), then it is sensible to trade off image
quality for whole system performance by adjusting the camera
parameters. We have demonstrated this on how image blur and
noise (image quality) affect an object detection application; the
specific control strategy of the camera parameters (exposure
time and ISO gain) depends on the experimental input-output
performance curves of the object detector (which is in general
non-linear and non-monotonic). However, our framework is
generic: it is not limited to the proposed control strategy (one
could control a motor to adjust focus), it can be applied to
other optical sensor systems (as infrared or event cameras),
other scenarios, and it can consider other “features”, conceiv-
ably application-specific, besides blur and noise. These have
been selected because they are among the most generic and
influencing effects in image processing.

Lastly, we have focused on corruptions originating in the
camera itself. However, a possible extension would be to
model and compensate for unexpected camera conditions (i.e.,
corruption sources that cannot be avoided or that originate
outside the camera). This could be done by acquiring and ex-
ploiting additional data, such as the sensor’s and environment’s
configuration (focal length, aperture size, exposure time, tem-
perature, positioning, illumination), leading to the research and
development of more advanced Sensor Al approaches [44].

REFERENCES

[1] H. Lu, H. Zhang, S. Yang, and Z. Zheng, “Camera parameters auto-
adjusting technique for robust robot vision,” in IEEE Int. Conf. Robot.
Autom. (ICRA), 2010, pp. 1518-1523.

[2] I. Shim, T.-H. Oh, J.-Y. Lee, J. Choi, D.-G. Choi, and I. S. Kweon,
“Gradient-based camera exposure control for outdoor mobile platforms,”
IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 6, 2018.

[3] Z. Ding, X. Chen, Z. Jiang, and C. Tan, “Adaptive exposure control
for image-based visual-servo systems using local gradient information,”
JOSA A, vol. 37, no. 1, pp. 56-62, 2020.

[4] U. Shin, J. Park, G. Shim, F. Rameau, and I. S. Kweon, “Camera
exposure control for robust robot vision with noise-aware image quality
assessment,” in JEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), 2019.

[5] T. Li, Y. Song, and T. Mei, “An auto exposure control algorithm based
on lane recognition for on-board camera,” in IEEE Intell. Vehicles Symp.,
2015, pp. 851-856.

[6] J. Torres and J. M. Menéndez, “Optimal camera exposure for video
surveillance systems by predictive control of shutter speed, aperture,
and gain,” in Real-Time Image and Video Processing, vol. 9400, 2015.

[7] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active vision,” Int. J.
Comput. Vis., vol. 1, no. 4, pp. 333-356, 1988.

[8] V. Murino, G. L. Foresti, and C. S. Regazzoni, “Adaptive camera
regulation for investigation of real scenes,” IEEE Trans. Ind. Electron.,
vol. 43, no. 5, pp. 588-600, 1996.

[9] K. V. Chandrasekhar, M. H. Imtiaz, and E. Sazonov, “Motion-adaptive

image capture in a body-worn wearable sensor,” in I[EEE Sensors, 2018.

T. Hamamoto and K. Aizawa, “A computational image sensor with

adaptive pixel-based integration time,” IEEE J. Solid-State Circuits,

vol. 36, no. 4, pp. 580-585, 2001.

[11]
(12]
[13]
[14]

[15]
[16]

[17]
[18]
[19]
[20]

[21]

[22]
(23]
[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

E. Onzon, F. Mannan, and F. Heide, “Neural auto-exposure for high-
dynamic range object detection,” in JEEE CVPR, 2021, pp. 7710-7720.
J. Xu, H. Li, Z. Liang, D. Zhang, and L. Zhang, “Real-world noisy
image denoising: A new benchmark,” arXiv:1804.02603, 2018.

J. Anaya and A. Barbu, “Renoir-a benchmark dataset for real noise
reduction evaluation,” J. Visual Comm. Image Repres., 2018.

S. Jayaraman, S. Esakkirajan, and T. Veerakumar, Digital Image Pro-
cessing. Tata McGraw Hill Education, 2009.

S. Ray, Applied Photographic Optics. Focal Press, 2002.

M. Konnik and J. Welsh, “High-level numerical simulations of noise in
CCD and CMOS photosensors: review and tutorial,” arXiv, 2014.

J. L. Devore, Probability and Statistics for Engineering and the Sciences,
8th ed. Brooks/Cole, 2011.

J. Janesick, Scientific charge-coupled devices. SPIE press, 2001, vol. 83.
D. Dussault and P. Hoess, “Noise performance comparison of ICCD with
CCD and EMCCD cameras,” in Infrared Systems and Photoelectronic
Tech., vol. 5563. Int. Society for Optics and Photonics, 2004.

Y. Bai, G. Cheung, X. Liu, and W. Gao, “Graph-based blind image
deblurring from a single photograph,” IEEE Trans. Image Process.,
vol. 28, no. 3, pp. 1404-1418, 2018.

F. Wen, R. Ying, Y. Liu, P. Liu, and T.-K. Truong, “A simple local
minimal intensity prior and an improved algorithm for blind image
deblurring,” IEEE Trans. Circuits Syst. Video Technol., 2020.
BYchaol00, “Graph-based-blind-image-deblurring,” https://github.com/
BYchao100/Graph-Based-Blind-Image-Deblurring, 2018.

FWen, “deblur-pmp,” https://github.com/FWen/deblur-pmp, 2019.

M. Bauer, V. Volchkov, M. Hirsch, and B. Schcolkopf, “Automatic
estimation of modulation transfer functions,” in IEEE Int. Conf. Comput.
Photography (ICCP), 2018.

D.-H. Shin, R.-H. Park, S. Yang, and J.-H. Jung, “Block-based noise
estimation using Adaptive Gaussian Filtering,” IEEE Trans. Consumer
Electronics, vol. 51, no. 1, pp. 218-226, 2005.

G. Chen, F. Zhu, and P. Ann Heng, “An efficient statistical method for
image noise level estimation,” in Int. Conf. Comput. Vis. (ICCV), 2015.
Z. Yue, “Noise level estimation for signal image,” https://github.com/
zsyOAOA/noise_est_ICCV2015, 2019.

H. Tan, H. Xiao, S. Lai, Y. Liu, and M. Zhang, “Pixelwise estimation
of signal-dependent image noise using deep residual learning,” Compu-
tational intelligence and neuroscience, vol. 2019, 2019.

H. Tan, “Pixel-wise-estimation-of-signal-dependent-image-noise,”
https://github.com/TomHeaven/Pixel-wise- Estimation-of-Signal-
Dependent-Image-Noise-using-Deep-Residual-Learning, 2018.

K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang,
“Waterloo exploration database: New challenges for image quality
assessment models,” IEEE Trans. Image Process., vol. 26, no. 2, pp.
1004-1016, 2016.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” arXiv:2004.10934, 2020.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” Advances in
Neural Information Processing Systems, vol. 28, pp. 91-99, 2015.

J. Cartucho, R. Ventura, and M. Veloso, “Robust object recognition
through symbiotic deep learning in mobile robots,” in IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IROS), 2018, pp. 2336-2341.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in IJEEE CVPR, 2012.
Udacity, https://github.com/udacity/self-driving-car, 2016.

P. Irmisch, D. Baumbach, 1. Ernst, and A. Borner, “Simulation frame-
work for a visual-inertial navigation system,” in /EEE Int. Conf. Image
Process. (ICIP), 2019, pp. 1995-1999.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding and
evaluating blind deconvolution algorithms,” in JEEE CVPR, 2009.

L. Borodenko, https://github.com/LeviBorodenko/motionblur, 2020.

H. Meifner, “Determination and improvement of spatial resolution ob-
tained by optical remote sensing systems,” Ph.D. dissertation, Humboldt-
Universitét zu Berlin, 2021.

J. Pan, D. Sun, H. Pfister, and M.-H. Yang, “Blind image deblurring
using dark channel prior,” in /JEEE CVPR, 2016, pp. 1628-1636.
Y.-W. Tai and S. Lin, “Motion-aware noise filtering for deblurring of
noisy and blurry images,” in IEEE CVPR, 2012, pp. 17-24.

B. Jéhne and H. HauBecker, Eds., Computer Vision and Applications.
Academic Press, 2000.

J. Igual, “Photographic noise performance measures based on raw files
analysis of consumer cameras,” Electronics, vol. 8, no. 11, 2019.
Borner et al., “Sensor artificial intelligence and its application to space
systems—a white paper,” arXiv:2006.08368, 2020.

https://github.com/BYchao100/Graph-Based-Blind-Image-Deblurring
https://github.com/BYchao100/Graph-Based-Blind-Image-Deblurring
https://github.com/FWen/deblur-pmp
https://github.com/zsyOAOA/noise_est_ICCV2015
https://github.com/zsyOAOA/noise_est_ICCV2015
https://github.com/TomHeaven/Pixel-wise-Estimation-of-Signal-Dependent-Image-Noise-using-Deep-Residual-Learning
https://github.com/TomHeaven/Pixel-wise-Estimation-of-Signal-Dependent-Image-Noise-using-Deep-Residual-Learning
https://github.com/udacity/self-driving-car
https://github.com/LeviBorodenko/motionblur

	I Introduction
	II Related Work
	III System Overview
	IV Image Formation Process
	IV-A Blur
	IV-A1 Defocus Blur
	IV-A2 Motion Blur

	IV-B Noise
	IV-B1 Photon Shot Noise
	IV-B2 Dark Current Shot Noise (DCSN)
	IV-B3 Readout Noise

	V Image Quality Assessment
	V-A Blur Estimation (via the MTF)
	V-A1 Traditional methods (non-learning–based)
	V-A2 Learning-based Method

	V-B Noise Estimation
	V-B1 Traditional methods (non-learning–based)
	V-B2 Learning-based Method

	V-C Empirical Input-Output Performance Curves

	VI Experiments
	VI-A Datasets
	VI-B Blur Estimation
	VI-C Noise Estimation
	VI-D Combined Estimation of Blur and Noise
	VI-D1 Defocus + DCSN
	VI-D2 Photon + Lin. Motion

	VI-E Improved Blur Estimation in Presence of High Noise
	VI-E1 MTF"0362MTF(b1, b2) Estimation
	VI-E2 MTF"0362MTF(b1) Estimation

	VII Maximizing Object Detection by Trading Off Blur and Noise
	VIII Conclusion
	References

