

Insights in CO2 emission estimation and European experience

Kay Gade
DLR Institute of Transport Research

German Aerospace Center (DLR) Institute of Transport Research

Why is the topic relevant?

- ⇒ Decarbonisation of all sectors by 2050
- □ Intermediate GHG emission reduction target for 2030: 55 %

European Missions 100 Climate-Neutral and Smart Cities by 2030

Why is the topic relevant?

Evolution of CO2 emissions in the EU by sector (1990-2016) Source: European Environment Agency

Cars account for 60% of transport CO2 emissions Source: European Environment Agency

Air pollution is the single largest environmental health risk in Europe

Avoid-Shift-Improve: The three pillars of reducing the climate impact of the transport sector

The transport sector's CO₂ emissions refer to tank-to-wheel emissions

- CO₂ emissions of the transport sector refer to a subrange in the energy chain of a vehicle that extends from the point at which energy is absorbed to discharge, i.e. Tank-to-Wheel (TTW).
- Under the TTW perspective and concerning CO₂ emissions battery electric vehicles (BEV) and hydrogen-powered fuel cell electric vehicles (FCEV) are zero emission vehicles.
- The Well-to-Wheel perspective covers the entire energy consumption and CO₂ emissions of a fuel caused by production, supply and use.
- Life cycle assessment (LCA) covers all stages of the life cycle of a vehicle (cradle-to-grave), i.e. Well-to-Wheel + vehicle body cycle (manufacture, maintenance, recycle).

Source: Sacchi et al., Zheng & Peng (2021).

Source: https://www.mazda.com/en/csr/special/2016 01/

How to estimate the emissions?

A vehicle's CO_2 emissions depend directly on its fuel consumption: Burning one liter of gasoline releases 2.33 kg CO_2 , one liter of diesel 2.65 kg CO_2 . No catalytic converter and no filter will help!

All vehicles

Modelling CO2 emissions of passenger transport relies on a number of models and assumptions

Emission factors HBEFA — Handbook of Emission Factors

- COPERT and HBEFA are quite similar in features
- HBEFA allows easier access to data
- Norway and France and EC JRC now also support the use of HBEFA
- Both providing "real-world" emission factors
- For some nations uncertainties in fleet composition

⇒ Notice: COPERT and HBEFA stem from the same original data harmonization (ERMES European Research on Mobile Emission Sources)

Vehicle emission models usage in Europe

Extracting data for customized passenger car fleets

- HBEFA provides data that allow customizing to your fleet
- Important features are:
 - three road types (urban, sub-urban and highway)
 - Technological subsegments (fuel, EURO class)
 - ➤ Bio-fuel share considered or not (CO2)
 - Energy consumed fossil and electricity
 - Cold-start emissions
 - and many more (traffic situation, gradient etc.)
- Before compiling data, one need to decide what features are relevant and how to use them, e.g.:
 - do I need road-type differentiation?
 - will I modify bio-fuel content?
 - will I modify fleet composition?
- Percent of Subsegment is key for customization!

VehCat 🔻	Year 🕶	Compone	RoadCa 🕶	Subsegment	•	%OfSut ▼	EFA y	EFA_ag 🔻
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin ECE-15'04		6,53E-05	201,7747	172,1947
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin conv other concepts	5	7,44E-05	201,7747	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Ucat		9,61E-05	201,7747	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin PreEuro 3WCat 198	7-9	0,000981	192,9457	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-1		0,007423	192,7969	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-2		0,00969	195,9836	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-3		0,024298	192,1157	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-4		0,163966	181,7266	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-5		0,114961	166,1717	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-6ab		0,124399	163,969	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-6c		0,021374	163,5191	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-6d		0,007574	156,8532	
PKW	2020	CO2(total)	nicht-diffe	PKW Benzin Euro-6d-temp		0,037838	160,554	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-1		0,001546	194,0785	178,3476
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-2		0,004133	187,2148	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-3		0,018826	178,1493	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-3 (DPF)		0,000691	179,9308	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-4		0,01656	183,7499	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-4 (DPF)		0,056089	183,7499	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-5		0,088084	172,9136	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-6c		0,023163	181,3822	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-6ab		0,152949	177,6226	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-6d-temp		0,037963	178,7035	
PKW	2020	CO2(total)	nicht-diffe	PKW Diesel Euro-6d		0,00716	176,4435	
PKW	2020	CO2(total)	nicht-diffe	PKW diesel Euro-5 EA189 nach S	Soft	0,055676	179,5795	

Circulation plan for the City of Växjö

Primary goal

 Promote sustainable travel and a more attractive city by providing a higher traffic safety environment for pedestrians and cyclists by controlling car traffic

Secondary goal

- Decrease car usage and promote other travel modes
- Improve the opportunities for children to get to school by walking or biking, and to be able to move freely within the city
- Free the traffic environment from car traffic in favor of other traffic modes or purposes

Source: Ziedén, T., Hale, C. (2021): The study of a new Circulation Plan for Växjö and the effect on Emissions; SUMBA+ Webinar

Circulation plan for the City of Växjö – Results & consclusions

Emissions; SUMBA+ Webinar

- Transport system is complex and measures can have a variety of effects
- Congestion has a high impact
- Cold start share has a significant effect on the results
- Fleet compositions are endless and can change quickly depending on Government laws and regulations as well as fuel prices

Take home messages

- CO₂ emissions of the transport sector refer to tailpipe emissions (Tank-to-Wheel).
- Modelling CO₂ emissions of the transport sector can be done in different levels of detail ⇒ Good assumptions are a starting point and can be gradually replaced by more detailed assumptions or models.
- Estimating CO2 emissions gives you a better understanding of the impacts of your transport system, possible development paths as well as effects of measures.
- If a transport model is already available, much of the work is already done.

Thank you for your attention - and get in touch!

DLR Institute of Transport Research **Kay Gade** Research Associate

Kay.Gade@DLR.de www.dlr.de/vf/en

Further information on DLR projects

https://verkehrsforschung.dlr.de/en

