
UNIVERSITY OF DUISBURG-ESSEN
FACULTY OF ENGINEERING SCIENCES
DEPARTMENT OF COMPUTER SCIENCE AND APPLIED COGNITIVE SCIENCE

Master Thesis

Investigation of Collaboration and Communication Patterns in
Software Projects using Social Network Analysis

Christoph Zils
Matriculation Number: 3034735

Computer Science and Applied Cognitive Science
Faculty of Engineering Sciences

Universität Duisburg-Essen

June 7, 2021

Supervisors:
Dr. Tobias Hecking
Prof. Dr. H. U. Hoppe
Prof. Dr. S. Stieglitz

Declaration of Authorship

I hereby declare that this thesis was exclusively made by myself
and that I have used no other sources and aids other than those
cited.

Duisburg, 4th of June 2021

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 2

2 Foundations 5
2.1 Open Source Software Development . 5
2.2 Git . 6
2.3 Community Smell Patterns . 8

2.3.1 Social Debt . 8
2.3.2 Formalized Patterns . 9

2.4 Provenance . 11
2.4.1 Definition . 12
2.4.2 Provenance Data Model . 12
2.4.3 Git & GitLab Provenance Models 15

2.5 Graph Databases . 21
2.5.1 Neo4j . 22
2.5.2 Cypher Queries . 22
2.5.3 prov2neo & neo4r . 23

2.6 Network Analysis . 24
2.6.1 Provenance Graph Analytics . 24
2.6.2 Social Network Analytics . 25

3 Concept and Implementation 29
3.1 Concept . 29

3.1.1 Extracting & Importing Data . 29
3.1.2 Transformation Operations . 31
3.1.3 Using Queries to find Community Smells 33
3.1.4 Comparison with Randomized Graphs 35

3.2 Implementation . 35
3.2.1 Data Cleaning . 35
3.2.2 Folding and Transformation . 36
3.2.3 Extensions . 41
3.2.4 Network Randomization . 43
3.2.5 Developer Analysis . 43
3.2.6 Network Analysis . 44

4 Evaluation 45
4.1 Graph Properties . 45
4.2 Community Smells . 45
4.3 Developer Characterization . 48
4.4 Randomized Networks . 49
4.5 Network Analysis . 50

iii

Contents

5 Discussion 51
5.1 Community Smell Patterns . 51
5.2 Developers . 53
5.3 Performance . 53

6 Conclusion 57

Bibliography 59

iv

List of Figures

2.1 Representation of the Organizational Silo community smell pattern [Tamburri et al., 2017] 9

2.2 Representation of the Lone Wolf community smell pattern [Tamburri et al., 2017] 10

2.3 Representation of the Black-cloud community smell pattern [Tamburri et al., 2017] 11

2.4 Representation of the Bottleneck community smell pattern [Tamburri et al., 2017] 12

2.5 Provenance core structures and their relations [Moreau and Missier, 2013] 13

2.6 Representation of provenance graph elements with their relations and
attributes. 14

2.7 Model of adding a new file to a project in Git. 16

2.8 Model of modifying an existing file in a project in Git. 17

2.9 Model of deleting a file from a project in Git. 18

2.10 Model of creating or annotating a commit in GitLab. 19

2.11 Model of creating or annotating an issue in GitLab. 20

2.12 Model of creating or annotating a merge request in GitLab. 21

2.13 Exemplary representation of a relationship between the two neighbors
Alice and Bob. 22

3.1 Pipeline from extracting data from GitLab to transforming and importing
communication and collaboration relations into provenance graphs in Neo4j. 31

3.2 Desired connections between users to be created via transformations. . . . 32

3.3 Left: Simple representation of collaboration of two users by file.
Right: Extended representation with activity including time component. . 32

3.4 Path to be queried to create the communication network for all GitLab
web resources. 33

3.5 Matrix multiplications to set up the collaboration matrix. User (U), com-
mits (C), file versions (FV) and files (F) adjacency matrices are needed. . 33

3.6 Operationalization of the Community Smell Patterns for the Lone Wolf
(left) and Operational Silo (right). 34

3.7 Structure of the communication graph to identify the Black-cloud effect. 34

3.8 Scheme of the extracted provenance graph within Neo4j. Nodes are
grouped according to their affiliation to Git commit or GitLab web re-
source model. 36

3.9 Required agents, activities and entities to establish collaboration relations
between authors and committers. Established connections between users
are represented by dotted lines. 37

3.10 Matrix multiplications to calculate the desired user file matrix 37

3.11 Flawed approach to the creation of the communication network. Connec-
tions between annotators are missing. 38

3.12 Part-wise calculation of the communication network with subsequent union.
Established connections between users are represented by dotted lines. . . 39

v

List of Figures

3.13 Cutout of the network regarding users (blue) and commits (pink) before
and after importing relations. Communication shown in red, collaboration
in green. 39

4.1 Identified community smell patterns for IGitt 46
4.2 Identified community smell patterns for ASE 47
4.3 Correlation diagrams of the full IGitt project for Lone Wolf and Organi-

zational Silo patterns. 48
4.4 IGitt non-smell users . 49
4.5 IGitt smell users . 49

vi

List of Tables

2.1 Overview of Git Commit and GitLab Resource Models used in this work. 15

3.1 The researched time windows of considered open source projects. 42

4.1 Overview of the selected projects to be analyzed in this work. Data is
portrayed at the time of extraction. 45

4.2 Comparison of community smells from authentic and randomized full
IGitt networks. 49

4.3 Comparison of community smells from authentic and randomized first
time window of ASE networks. 50

4.4 Computed centralities for communication networks of researched projects
and conditions. 50

vii

1 Introduction

In this first chapter, the basic motivation of the master thesis is explained and the
resulting research questions are presented. In addition, the context in which this thesis
was written is described as well as the possible applications for the solution developed.
Finally, the structure of the thesis is described for each chapter.

1.1 Motivation

Growing complexity and size of software projects greatly challenge developers and project
managers. Due to this trend, the approach to development is changing. Project manage-
ment changes from static development models to agile development methods, which aims
to reduce the formal effort of project management for both smaller and larger software
projects [Jorgensen, 2019]. Software projects of each size nowadays contain distributed
teams from different countries and continents that work together, making project man-
agement more complex for project managers and developers. To deal with these chal-
lenges, teams often use version control systems that allow artifacts to be recorded during
development and reverted to previous states if necessary and additionally contain tools
for project management such as forums and Kanban boards. This does not only apply to
professionally organized teams, but also to communities that promote publicly accessible
code, better known as open source.

Open source software (OSS) development reconciles both agile methods and distributed
work. In OSS projects, interested parties can view any source code and the cur-
rent development status of a software. They are free to participate in the commu-
nity by giving feedback on problems or joining the development themselves. This re-
sults in flat hierarchies in OSS projects and minimized effort in project management
[Crowston and Howison, 2006].

Because of this organizational structure, problematic behavior by users who collabo-
rate on the project but do not communicate effectively with others can occur. Tam-
burri et al. describe such negatively afflicted patterns as community smell patterns
[Tamburri et al., 2017]. These patterns, according to them, can cause serious conse-
quences for the entire project in the form of social debt. Consequences of this debt can
be increased effort due to source code revisions or high turnover of developers in the
project due to dissatisfaction. They have explored several patterns that can become
critical to an OSS project [Tamburri et al., 2015].

Finding these patterns can become too computationally intensive as the size of the
software projects increases. Provenance graphs offer one way of abstraction thereby.

1

1 Introduction

Provenance graphs map the complete history of all files and activities manipulated by
users and can describe the history of software projects [Moreau and Missier, 2013]. De-
tails about the changes to the source code are discarded, resulting in an abstracted and
stripped-down view of the project which can significantly reduce required computations
to find sub-graph patterns such as community smells.

Therefore, this master thesis aims at analyzing the development of software projects
with respect to community smell patterns using provenance graphs. For this purpose,
a workflow will be set up combining several tools for data extraction, transformation
and analysis. As an example, several projects will be extracted from the version control
system GitLab via the tool GitLab2PROV and analyzed with respect to four community
smell patterns. The following research question is to be answered through this approach:

RQ1: How can community smell patterns in communication and collaboration of open
source developers be identified using provenance graphs from a version control system?

Since no research about a combination of provenance graphs and the analysis of commu-
nity smell patterns was found after an extensive search, this approach offers an innovation
in the context of the investigation of human aspects in software engineering. It shall
be extended by an analysis of users and networks created from provenance graphs, so
that a prediction of possible community smells can be made based on a network analysis.

RQ2: Which community smell patterns identified in provenance graphs can be predicted
by user or network characteristics?

This work is developed in cooperation with the German Aerospace Center (DLR).
DLR is the German research center in the fields of aerospace, energy, transport and
digitization. Organized in different institutes and their respective departments, this
work is to be located in the area of Intelligent and Distributed Systems of the Insti-
tute of Software Technology. DLR uses the GitLab platform to manage in-house soft-
ware projects and in 2020 developed a tool to extract provenance graphs from GitLab
[Schreiber and de Boer, 2020]. The examined data therefore originates from this plat-
form and the implemented approach can be used to uncover software projects of DLR
with regard to negatively afflicted patterns in development.

1.2 Structure

Following this introduction, this work is structured into five consecutive chapters.

Chapter 2 In the second chapter of this master thesis, theoretical foundations regarding
open source development are introduced. Based on this, certain characteristics of open
source developer networks are addressed and explored in greater depth. Lastly, used
tools and methods to analyze those networks are presented.

2

1.2 Structure

Chapter 3 The concept of transforming the provenance graphs into collaboration and
communication networks and the subsequent network analysis to identify negative pat-
terns is presented. The resulting implementation of the concept is described and mea-
sures for the solution of occurring problems are outlined. In addition, the stakeholders
in identified patterns are examined and a randomization of the networks to verify the
results is performed.

Chapter 4 Results found through the implementation are listed. The focus here is
on network structures and specifics within the organization of the projects studied.
Furthermore, the actors in patterns found are described with regard to their activities.

Chapter 5 In the fifth chapter, previously mentioned results are discussed and com-
pared with other studies. Unexpected results are addressed, and possible backgrounds
are explored. Additionally, the performance of used algorithms is evaluated, and possible
improvements are suggested.

Chapter 6 At last, the thesis is considered in the perspective of the objectives achieved
and remaining open questions. Limitations are described and relevant questions for
future work are summarized.

3

2 Foundations

In this section, all the fundamentals important for understanding are to be sufficiently
explained and clearly presented. It reviews the definition and classification of Open
Software and its software development process. Open Source Software Development
is considered the initiator and main user of version management platforms, of which
Git is the most popular at the time of this work. Git as a platform is therefore briefly
introduced with respect to the value for OSS projects and particularly with regard to the
inherent structure. Within the structure of Git, negatively afflicted patterns can be found
in the communication and collaboration of users, so-called community smell patterns.
The emergence and consequences of these patterns are highlighted and currently known
patterns are presented in a formalized way. To find these patterns, underlying graphs
must be considered and deeply analyzed. As a basis for this work, provenance graphs are
used, which abstractly represent the development process in software projects. The tools
used for the extraction of these provenance graphs for the platform Git and especially
its adaptation GitLab are described. Subsequently, tools are listed that are used to
find community smell patterns within the networks and to characterize the networks
themselves. This includes provenance data and social network analysis methods, which
are used to analyze the topology of graphs and make graphs comparable in the big
picture.

2.1 Open Source Software Development

Open source software (OSS) is a widely used term that appears even before the year
2000 [Raymond, 1999]. It originates from the early hacker scene around 1970 and the
free software movement of the 1980s [Bretthauer, 2001], whose goal was to establish
freely available software as the standard and to be allowed to copy and modify ex-
isting software. Since that time, the value and approach has changed significantly.
Today, the term stands for an approach in which software projects are brought to
life from the ground up with an open, collaborative mindset. In doing so, interested
parties are encouraged to participate, to share openly and to develop in a community-
oriented manner [Fitzgerald, 2006]. In contrast to monolithic development by publishers
and the resulting complete dependence on users, users themselves can share improve-
ments and enhancements and put them up for discussion. This type of development
encourages a growing number of participants to peer review code from other developers,
thereby increasing the speed of releases of software versions [Feller and Fitzgerald, 2001].
Due to their size, speed and sometimes volatile developer community, it is challeng-
ing for project leaders and participants themselves to steer the open source commu-
nities and their software projects. This issue appears stronger as collaboration in OSS
lacks organizational forms compared to traditional collaboration in software development

5

2 Foundations

[Hars and Ou, 2002]. In order to better map and manage this process, open source soft-
ware development projects have been and are being analyzed by the scientific community
[Schreiber and Zylka, 2020]).

Researching OSS structures Analyzing these communities has shown that participants
might never have cooperated or communicated with one another, which could be prob-
lematic since social relationships between collaborators propel the entire development
process [Yang et al., 2013]. In particular, developer-developer connections from previ-
ous projects contribute to success in future projects, which emphasizes the relevance
of connections between developers in OSS development [Antwerp, 2010]. Communica-
tion relations between developers are mandatory, as projects do not present patterns
of traditional project management [Peterson, 2013], but as self-organizing, collaborat-
ing social networks [Madey et al., 2002]. However, it was proposed that these com-
munication networks in OSS communities should have high centrality and low density
[Wu and Goh, 2009]. High centrality brings an increase in development activity and
increases popularity and thus attracts users. In contrast, high density would have a
negative effect on project activity and popularity. These findings are in contrast with
the behavior of developers when fixing bugs [Bernardi et al., 2018]. When investigating
collaboration in OSS projects, it became apparent that most bugs are fixed by developers
who are not responsible for creating them. These developers have a lower communication
rate compared to other developers in the same project, from which the authors conclude
that the level of communication between bug-fixing developers should be increased to
reduce the total number of necessary fixes in a software project.
Although researching OSS communities is highly controversial in the scientific commu-
nity, it is clear from many sources that to strengthen ties between developers and support
OSS development, version management systems such as Git are a proven and prominent
instrument. Platforms based on Git that provide communication and project control
capabilities are today’s standard for OSS communities.

2.2 Git

Git is a free and open source based distributed version control system to support software
projects of different sizes [Chacon and Straub, 2014]. Git projects are always structured
by a tree. When the project is created, the root or initial commit is generated. From
the root, all files branch off with relations, resulting in individual branches with multiple
leaves when files are changed. This structure makes a Git project a directed, acyclic
graph through which the addition, modification, or deletion of individual leaves can be
captured. These leaves are representations of files but also commits that link the files
and their respective file versions.

Commits capture all changes made by users within a repository. They capture infor-
mation about changes, such as an author’s name, the ID of the previous commit, a log
message, and a diff that describes the differences between changed files. Commits are
permanently stored in the project. Developers have the possibility to retrieve the state
of the project at any time when a commit is made. Additionally, the project can be
rolled back to a previous commit at any time if necessary.

6

2.2 Git

Merge requests Software development is non-linear in Git. By branching and later
merging their own development branches, individual users can rapidly suggest changes
in the development of a project. These branches are stored locally, which keeps Git very
fast and scalable. Dedicated work is done in branches until the responsible developer
decides that the branch is in a state where it adds value to the project. They can make
a merge request to make changes available to the main branch and thus permanently
change the main branch. Depending on the hierarchy of the project, this merge request
must be accepted by an authorized developer. Merges, like any other change within the
project, are captured and mapped by commits.

GitLab GitLab is a web administration for version management of software projects,
which is based on Git. In addition to all Git functions, GitLab extends the collaboration
through Git with functions in the area of software development. This includes project
management tools such as Kanban boards and discussion forums. In addition, users
are provided with an issue tracking system, which is typically used to point out bugs
or suggest improvements that the community can discuss. Although GitLab offers free
hosting of private and public repositories, the focus of this work is exclusively on public
repositories, which can be queried via API. By hosting public and free repositories,
GitLab attracts OSS projects and the resulting open source community.

Supporting open source software development through Git The version control sys-
tem Git and systems based on it such as GitHub or GitLab offer many advantages to OSS
development. Users can set up their own projects for free and invite others to collabo-
rate with them or join other developer communities to support other people’s projects.
OSS projects thereby rely on voluntary work and benefit from low organizational costs
[Jarczyk et al., 2014]. GitHub, as a collaboration platform, offers a transparent develop-
ment environment that, through its pull-request based workflow, provides an easy way
for users to commit, review, and manage source code [Kalliamvakou et al., 2015]. This
is true for typical open source projects as well as commercial projects that are adapting
workflows on GitHub and increasingly rely on reduced communication, more independent
work, and self-organization. Transparency and the typical workflow can thereby help
to promote collaboration and to utilize code and knowledge beyond individual projects
[Kalliamvakou et al., 2015]. According to McDonald and Goggins, the success of GitHub
is due in particular to leading users who understand the importance of community par-
ticipation in projects and want to strengthen it [McDonald and Goggins, 2013]. They
also found that increased levels of participation are due to the features and usability of
the development platform that enable entry and work in OSS development. Features
that are supportive are, for example, (1) the possibility to edit own approaches of cloned
projects by branching and forking, (2) to be able to integrate commits quickly into the
running project, (3) to automate processes in projects or to have them managed by
bots, (4) discussion forums, issues, and merge requests to trigger communication be-
tween users, (5) reuse of code from other projects, and (6) interpret the platform as a
social network between users through follow and watch options to receive updates about
favored projects [Perez-Riverol et al., 2016].

7

2 Foundations

2.3 Community Smell Patterns

Although software development processes are largely supported by Git, asynchronous
or distributed work via version control systems can also give rise to negative pat-
terns [Tamburri et al., 2015]. This is particularly critical since software engineering
success depends on the well-being of the developer community [Keyes, 2011] and ad-
ditionally the intensity of code smells is influenced by emerging community smells
[Palomba et al., 2021]. A proven means to ensure well-being can be changes in or-
ganizational structure [Tamburri et al., 2013b]. Because organizational structures are
complex, multi-layered constellations of people and artifacts designed to achieve goals
[Pugh et al., 1969], interventions in their design must be deliberate. Before interven-
tions, the structure must first be explored and operationalized. According to Conway’s
law [Conway, 1968], organizational structures, especially communication patterns within
a community, can be traced through the software developed. This can be represented
by sociograms, which consist of nodes (e.g., people, artifacts) and relations between the
nodes [Jones, 2001]. Edges can thereby represent either social relations between people
or technical relations between people and artifacts. These relations also reflect the struc-
ture of a software development community, which is a specified form of organizational
structure.
When investigating the organizational structures of open source development communi-
ties, they found negatively afflicted anti-patterns in a high number of communities,
which can have a lasting impact on the efficiency of software development projects
[Tamburri et al., 2017]. Referring to code smells, functioning but poorly structured
code that needs to be reworked [Fowler et al., 1999], they created the notion of commu-
nity smells which resemble functioning but poorly structured communities. Community
smells exist in software communities with sub-optimal organizational and socio-technical
characteristics [Tamburri et al., 2017]. Using a combined study of qualitative and quan-
titative methods, they examined multiple communities with respect to four community
smell patterns they proposed. In the following, it will be briefly explained which prob-
lems arise from the occurrence of community smells and how they can be identified on
the basis of their formalization.

2.3.1 Social Debt

The term technical debt is associated in computer science with the possible consequences
of poor technical implementation [Cunningham, 1992]. This mainly refers to additional
effort incurred to make changes or revisions to poorly written software. Analogous to the
notion of technical debt, the notion of social debt [Tamburri et al., 2013a] was coined to
refer to the additional costs incurred to correct a poor development within a community.
This refers to additional costs for social and organizational tasks that enable smooth
development and execution of software development projects. In software engineering,
social debt can be used as a term to classify a community in terms of its ability to solve
problems in software development. Examining whether a current organizational layout is
performant can thereby help uncover social debt [Cusick and Prasad, 2006]. Since social
debt is caused by anti-patterns, these must be identified in order to intervene promptly
with mitigating measures and to reduce or prevent phenomena such as social debt.

8

2.3 Community Smell Patterns

2.3.2 Formalized Patterns

Although a majority of community smell patterns have already been defined [Tamburri et al., 2015],
the focus is on the four patterns Lone Wolf, Operational Silo, Black-cloud and Bottle-
neck [Tamburri et al., 2017] as they additionally have been formalized. While the first
two patterns are composed of communication and collaboration relations, the last two
patterns are formed by communication relations only. Therefore, for the formalization of
the patterns, the premise that Gm = (Vm, Em) is the communication graph of a project,
while Gc = (Vc, Ec) represents the collaboration graph is important. Additionally, the
transitive closure of the edge set Em is expressed as E∗m.

Organizational Silo The organizational silo effect describes sub-communities that have
become distant from and independent of their development community. As a result of
this separation, they not only increase their workload due to a lack of consultation, but
also develop tunnel vision with a focus on communication and collaboration with close
community members and a derogatory opinion towards more distant community mem-
bers [Tamburri et al., 2015]. In general, this pattern consists of three project members,
as shown in Figure 2.1. While developer 1 works on the same code as developer 2, they
do not communicate with each other. Developer 2, unlike Developer 1, communicates
with at least one other developer from the project who does not belong to the same
sub-community as 1. Developer 1 thus reflects the organizational silo in this pattern.

(v1, v2)|v1, v2 ∈ Vc, (v1, v2) /∈ E∗m

Figure 2.1: Representation of the Organizational Silo community smell pattern
[Tamburri et al., 2017]

Lone Wolf The Lone Wolf effect refers to a structure where a dyad of developers
collaborates with each other and does not communicate directly with each other. This
favors negative effects such as code duplication and free-riding of individual developers.
To prevent these effects, the dyad of collaborating developers that communicate with
a common stakeholder but not with each other should be identified. Figure 2.2 shows
this constellation with a missing communication link between the Lone Wolves. Since
this pattern is similar to the Organizational Silo, finding both patterns simultaneously is

9

2 Foundations

highly likely. At the same time, therefore, the negative consequences of both patterns can
occur, which is particularly critical to observe. In the example shown below, developers
1 and 2 resemble a Lone Wolf dyad.

{(v1, v2)|v1, v2 ∈ Vc, (v1, v2) ∈ Ec(v1, v2) /∈ E∗m}

Figure 2.2: Representation of the Lone Wolf community smell pattern
[Tamburri et al., 2017]

Black Cloud The Black Cloud effect is based solely on communication relations that
lead to negative social interactions within a software development community. The
lack of knowledge exchange between community members leads to gaps in knowledge
management. These foster a climate of uninformedness and impose time and mental
costs in reconciling the discrepancies between sub-communities [Tamburri et al., 2013b].
The Black Cloud effect, like the previously mentioned smells, provides for a division
of the community through emergent selfish behavior. Future communication between
sub-communities or individual developers is thus impaired. Finding the Black Cloud
effect depends on cluster identification with respect to communication in the project.
In the CodeFace4Smells tool [Tamburri et al., 2017], they draw on the CodeFace tool
developed by Siemens, which is used to analyze software projects. In CodeFace there is
an unspecified algorithm for clustering the vertices, which is also used for Black Cloud.
After clustering, the sets of pairs that connect the isolated sub-communities are deter-
mined. Communication between the two developers of a pair of nodes does not take
place regularly, but with large temporal pauses. For this reason, data from different
points in time must be analyzed. Each node pair found that meets these criteria repre-
sents an instance of the Black Cloud pattern as shown with developers 3 and 4 in figure
2.3.

{(v1, v2)|v1, v2 ∈ Vm, (v1, v2) ∈ Em,∀i, j(((v1 ∈ pi ∧ v2 ∈ pj)⇒ i 6= j) ∧ ∀vx, vy((vx ∈
pi ∧ vy ∈ pj ∧ (vx, vy) ∈ Em)⇒ vx = v1 ∧ vy = v2))}

with P = {p1, ..., pk} as mutually exclusive, completely exhaustive partition of Vm in-
duced by the clustering algorithm.

10

2.4 Provenance

Figure 2.3: Representation of the Black-cloud community smell pattern
[Tamburri et al., 2017]

Bottleneck To find the bottleneck effect, clusters within the network are compared
again. Community members who are the only members of their sub-community commu-
nicating with at least two other sub-communities are considered Bottleneck. Referring
to Figure 2.4, Developer 3 forms the bottleneck in communication and prevents more
pronounced information flow between other developers. As a gatekeeper, it influences
the speed of exchange and thus of the entire project by acting as the single point of
contact for any formal interaction between sub-communities. For projects with a highly
formal organizational structure, this pattern can bring strong implications as there is no
parallel communication path to bypass the Bottleneck. Possible consequences are long
times between change proposals and their executions, as well as lack of knowledge about
information channels due to the gatekeeper’s position as a unique boundary spanner
between different sub-communities [Tamburri et al., 2013b][Tamburri et al., 2015].

{v|v ∈ Vm,∃i(v ∈ pi ∧ vx(vx ∈ pi ⇒ v = vx))} ∪ {v|v ∈ Vm, ∃vx, i, j(v ∈ pi ∧ vx ∈
pj ∧ (v, vx) ∈ Em ∧ ∀vy, vz((vy ∈ pi ∧ vz ∈ pj ∧ (vy, vz) ∈ Em)⇒ vy = v)}

2.4 Provenance

This section briefly introduces the concept of provenance and mainly focuses on electronic
provenance and the generalized provenance data model. The elements of the data model
are crucial for understanding the transformation process of the provenance graph into
communication and collaboration models, which are necessary to find community smell
patterns within the project under study. Since this work focuses exclusively on data from
GitLab, both the basic tool for extracting data from Git and the resulting extension,
GitLab2PROV, are presented as Git provenance models.

11

2 Foundations

Figure 2.4: Representation of the Bottleneck community smell pattern
[Tamburri et al., 2017]

2.4.1 Definition

Coming from the French term “provenir”, which translates to “to come from”, prove-
nance is a concept, that is used for valuable items and mostly precious works of art
[Feigenbaum et al., 2012]. While art lovers attach great importance to provenance in
being able to tell the story of an object from earlier epochs, the greatest value for the
art market lies in proving the authenticity of art objects through information about the
artists, restorers and previous owners.

2.4.2 Provenance Data Model

The concept of provenance was considered and adapted for computer-based data [Moreau et al., 2008].
With the assembly of documents and financial transactions in mind, the focus here is
on helping users, regulators, and reviewers to verify data and their origin resulting in
trust towards data. This is especially necessary if derivations of these documents were
created in the past. Recording the provenance of said documents helps to simplify and
accelerate the verification process.
As stated by Moreau et al. for the W3C [Moreau et al., 2008],

”provenance describes the use and production of entities by activities,
which may be influenced in various ways by agents.”

Following this principle, the provenance data model [Moreau and Missier, 2013] intro-
duced by the World Wide Web Consortium (W3C) aims to standardize the recording
and exchange of provenance information. The standard includes the three types of activ-
ities, entities and agents and the associated relations. Through these components, the
graphical representation for recording provenance is enabled in the graph-based data
model as displayed in figure 2.5.

12

2.4 Provenance

Figure 2.5: Provenance core structures and their relations [Moreau and Missier, 2013]

Provenance Types Utilizing the previously mentioned types and their relationships,
every derivative of a document can be traced back to its origin since the provenance
graph of a document will always be a directed acyclic graph. In these directed acyclic
graphs, the types depend on each other as follows:

• Entities An entity can represent a physical, digital, or other type of thing that
has several specified properties. An entity does not have to be real or material,
it can also be imaginary or immaterial. In graphical representation, entities are
shown as yellow colored ovals in provenance graphs.
Common examples of entities are documents, a state, or files within a file system.
Abstract concepts, such as ideas, can also be represented by entities.

• Activities An activity always interacts with or influences an entity. The entity
can be changed, consumed, transformed, used, moved or even generated by the
activity. The activity takes place over a period of time, which is represented by
a start and an end time as attributes. The graphical representation is done by a
violet blue colored rectangle.

• Agents Agents are the originators of activities and thus simultaneously responsible
for the resulting consequences on entities. Depending on the participation in an
activity or responsibility for an entity, the agent is assigned a role within the
provenance graph. For example, they can become the originator of an entity or
the modifier of an entity via an activity. The agent is graphically represented by
an orange pentagon.

Each of the previously mentioned elements is also characterized by multiple attributes.
For each agent, activity and entity there is a unique identifier id. Further attributes

can be found depending on the considered network and can be defined when displaying
the said provenance graph. Activities are a special feature, since they are characterized
by a start and end time. By the specific attributes startTime and endTime the time is
represented in a usual DateTime format. An exemplary representation of these attributes
can be seen in figure 2.6.

13

2 Foundations

Figure 2.6: Representation of provenance graph elements with their relations and at-
tributes.

Provenance Relations In addition, agents, activities and entities are linked to each
other by relationships. The nodes of a provenance graph are connected by semantically
named directed edges that represent the relationships between the nodes. What is
special here is that instead of running from cause to effect, the edges are oriented in the
opposite direction. Thus, starting from a concrete node of the graph, the edges can be
used in statements about the antecedents of the node and therefore showing the process
of creation. The standard defines a set of relations for this purpose, as well as a scheme
that specifies which relations may be used between which nodes. In the following, the
relations relevant for this thesis are briefly defined.

• wasDerivedFrom If an entity is modified by an activity, a derivative of this entity
is created. Both entities are connected by the wasDerivedFrom relation, where the
edge of the derivative points to the original.

• specializationOf Not included in the original provenance data model and there-
fore missing in figure 2.5 is the relation between two entities. The first entity
marks the original version, whereas the second entity is, as the name suggests, a
specialization of this first entity. It contains all the information of the first entity
and extends its scope by adding further information.

• used Usage of an entity by an activity is shown by a used relation. The activity
has not used the entity before and therefore could not be influenced by the entity.
It should be noted that an activity cannot use the same entity more than once.
The relation always points from the activity to the utilized entity.

• wasAttributedTo An entity created after the execution of an activity is assigned
to the agent that initiated this activity. The relation wasAttributedTo expresses
the direct relationship between agent and entity, where the edge always runs from
the entity to the responsible agent.

14

2.4 Provenance

• wasGeneratedBy If an entity is created as part of an activity, the entity is
generated by the activity. From this follows the relation wasGeneratedBy, which
indicates by which activity the entity was generated. The relation always points
from the generated entity to the parent activity.

• wasInformedBy The exchange of two activities regarding a common entity takes
place via the relation wasInformedBy. This is true if one of the activities was
responsible for the generation of the entity and the second activity utilizes this
entity in the further process.

• wasAssociatedWith An agent that performs an activity is associated with it.
This is represented in the form of the relation wasAssociatedWith, starting from
the triggered activity and ending with the responsible agent.

Combining all the previously defined parts resulted in the provenance data model, which
now provides the basic structure for the representation and extraction of provenance
graphs. Introducing this model fits into a phase of switching from monolithic applications
with their own standards and data formats towards standardized and centralized formats,
making it possible to use the same data types for multiple applications.

2.4.3 Git & GitLab Provenance Models

One possible application of the provenance data model is the representation of collabo-
ration and interaction in software version control systems. Therefore, the adaptation of
the provenance data model for the extraction of provenance information from the most
prominent version control system Git is described in detail below. Because this work
is based on the provenance graphs of the Git-based platform GitLab, the extension by
web interfaces and their representation as provenance graphs must be taken up. The
models listed in table 2.1 are fundamental to understanding the extraction of provenance
graphs from the GitLab platform and play an important role in subsequent convolutional
operations.

Git Commit Model GitLab Web Resource Models

File Addition (Fig. 2.7) GitLab Commit (Fig. 2.10)
File Modification (Fig. 2.8) GitLab Issue (Fig. 2.11)
File Deletion (Fig. 2.9) GitLab Merge Request (Fig. 2.12)

Table 2.1: Overview of Git Commit and GitLab Resource Models used in this work.

Git2PROV One mechanism to ensure provenance of files in software development are
version control systems like Git. Although these are mainly used to facilitate collab-
oration on code and files within projects, in the background they store the history of
each file. This explains the utilization of the provenance data model to represent the
stored provenance within version control systems. The goal of their work was to achieve
increased interoperability between different systems that track provenance information.
For this, a representation of the Git version control system is proposed, where changes
to files are mapped using the provenance graph [De Nies et al., 2013]. The Git2PROV

15

2 Foundations

tool developed in the framework is based on a web service and by entering the URL
of a Git repository, the contained provenance information is serialized into a readable
format like PROV-JSON or PROV-XML. At the time of Git2PROV release, only openly
accessible repositories can be retrieved. The selected accessible repository is temporar-
ily cloned by the tool and a Git log command is executed. Resulting output is then
mapped with respect to the provenance data model and then returned as a response
from the web service in the requested serialization. For the mapping, the Git commit
model is considered, where the addition, modification and deletion of a file is represented.

Git file addition Figure 2.7 represents the addition of a new file to a project through a
Git commit. The commit itself is represented by the Commit activity, which is associated
with the Author and the Committer. Due to the directed, acyclic structure of Git,
almost all Commit activities have a predecessor called the Parent Commit. Only the
initial commit has no relation pointing to a previous action. The commit generates
two entities when a file is added. The first File entity represents the concept of the
file itself, while the File Version entity represents the initial version of the added file.
Thus, the File Version is declared as a specialization of the File and connected by the
corresponding relation. Both entities are attributed to the Author of the commit, since it
is presumed that the author created the two files included in the commit. Modifications
can create additional File Version entities that always point to the original File entity
and have a relation to the previous File Version entity.

Figure 2.7: Model of adding a new file to a project in Git.

Git file modification The model for modifying an existing file through a Git commit
is represented by figure 2.8. The commit is represented by a Commit activity as before,

16

2.4 Provenance

and as mentioned before, a new File Version entity is created. Thereby, the File

Version entity created by a previous commit is now declared as a File Version N-1

entity which is used by the current Commit entity. The current File Version entity
is marked by an appropriate relation as a derivative of its predecessor and at the same
time as a specialization of the original File entity. Unlike the model of adding a file,
here the File Version entity is associated with the Author.

Figure 2.8: Model of modifying an existing file in a project in Git.

Git file deletion Figure 2.9 shows the deletion of a file from a project by a Git com-
mit. The Git commit is represented by the Commit activity, which is associated with the
Author agent and Committer agent as responsible users. The Commit activity is related
to all previous Parent Commit activities involving the processed File entity. The dele-
tion of a file by a commit is handled by a special File version, which is immediately
marked as invalid by the Commit activity. This File Version entity is thus the last
descendant of the File entity and is marked as a specialization of it.

GitLab2PROV As platforms like GitHub and GitLab extend the version control system
with web interfaces, additional features are provided, such as detailed documentation
and discussion of commits, issues and merge requests. The data from these functions
can be queried via a web API and displayed in provenance graphs as an extension to
Git2PROV. For GitHub, this resulted in the GitHub2PROV tool [Packer et al., 2019],
where issue tracking and management of merge requests, as well as communication

17

2 Foundations

Figure 2.9: Model of deleting a file from a project in Git.

initiated by these functions between users in the project, could be represented as ex-
tensions to the provenance graphs created by Git2PROV. Comparable to Git2PROV,
this was done through the output of Git log commands issued to the GitHub API.
The provenance graphs generated by GitHub2PROV were used to show how the added
value of information could also be used in explaining phenomena and questions from
the field of project management. Based on this, the GitLab2PROV tool was developed
[Schreiber and de Boer, 2020], targeting the GitLab platform. In addition to issue track-
ing and managing merge requests, GitLab2PROV also records the web interface when
commits are created and increases query speed by using an asynchronous HTTP client
framework. To represent the retrieval of web resources from GitLab projects, models
have been developed to represent the processes for recording actions in GitLab.

GitLab web resources The GitLab web resource models, which record user interactions
via GitLab web resources, handle interactions on commits, issues, and merge requests.
The commit web resource is used when a commit is created. A committer can tag their
own commit with a message, so the supposed changes by that commit can later be
tracked by other developers easily. Other users in the project can annotate this commit,
which is also recorded by GitLab.
Similarly, in the issue tracking system, a user points out a bug, optimization potential,
or improvement, and the community can annotate the issue with comments or reactions
displayed by emoticons.
Merge request resources are similar to commits, as a committer can and should describe
what changes have been made in their development branch that is about to be merged.
Authorized people in the project can now decide whether to accept the merge request
or decline it, based on the quality of the submitted solution in the merging branch.

18

2.4 Provenance

The GitLab platform explicitly recommends using merge requests to start discussions.
The web resources mentioned above allow users to discuss and exchange opinions. They
record the internal communication within a project on the GitLab platform and thus
have a high value in the analysis of social networks in GitLab software projects. These
web resources are recorded by the models presented in the following.

GitLab web resource models The various models for recording commit resources, issue
resources, merge resources and their respective annotations do not differ significantly in
terms of their structure. Therefore, only the model for Git commits (figure 2.10) is
explained, but the models for issues (figure 2.11) and merge requests (figure 2.12) are
included for the sake of completeness. The selected model deals with two different

Figure 2.10: Model of creating or annotating a commit in GitLab.

processes in recording web resources: the creation of a web resource and the evolution
of the resource over time, after users and the system have annotated and thus initiated
events against the resource itself.
When creating a Git commit and the resulting Commit activity, a web interface is created
for the commit. This interface is represented by the Commit Creation activity, which
is related to the initiating Commit activity. Unlike the Git commit models, the Creator

agent is associated with the creation of the commit instead of an Author agent. This is
also attributed as being responsible for the Commit web resource and the initial Commit
Version resource specialized by it. Both the Commit resource and the Commit Version

resource are generated at creation time by the Commit Creation.
An annotation of the Commit Version resource is described as an event against the
web resource. Through this Commit Annotation event, a new version of the resource is
created that derives from the original Commit Version. This new resource and all future
Annotated Commit Version resources are recorded as specializations of the original
Commit resource. The executing Annotator agent is associated or attributed with the
annotation event and the resulting Annotated Commit Version resource respectively.

19

2 Foundations

Figure 2.11: Model of creating or annotating an issue in GitLab.

This approach differs for issues and merge requests only with respect to the missing
Commit event, which is initiated by adding, modifying, or deleting a file.

20

2.5 Graph Databases

Figure 2.12: Model of creating or annotating a merge request in GitLab.

2.5 Graph Databases

Due to exponentially increasing data volumes, current database solutions are facing ma-
jor challenges. In most cases, these are based on the principle of relational database
management systems, in which data is stored in tables consisting of rows and columns.
The standardized query language (SQL) is utilized to query this data. If data is retrieved
from multiple tables at the same time, JOIN operations have to be performed by the sys-
tem, which lead to an increasing computational intensity due to high complexity. In par-
ticular, the waiting time between queries and results increases with the amount of data.
Relational database management systems are therefore not suitable for structural and
topological analyses of large and highly interconnected data sets [Vicknair et al., 2010].
These analyses include biochemical interaction networks, provenance analysis methods,
and social network analysis.
To work around these challenges, databases can be used that are not based on the
relational database management system and therefore not based on SQL. These can
be grouped under the name of NoSQL databases, which also include graph databases.
Thereby, the data is not stored in tables, but in a native graph model. Two prominent
models in the use of graph databases are the Resource Description Framework model
and the Labeled Proerty Graph (LPG) model. The graph database Neo4j used for this
work is based on the LPG model. Labeled Property Graphs are characterized by di-
rected multi-graphs whose nodes and relations are labeled [Frisendal, 2016]. Figure 2.13
shows an exemplary representation of an LPG visualizing a relation between the two
neighbors Alice and Bob.
As can be seen in the figure, the LPG model consists of two components: Nodes and
Edges.

Nodes Nodes can have any number of properties. These consist of a key and the
associated value. In the example, the properties node ID and date of birth are

21

2 Foundations

Figure 2.13: Exemplary representation of a relationship between the two neighbors Alice
and Bob.

listed with their respective values. Additionally, labels can be assigned to nodes.
For example, in the context of Git, labels such as user and file are possible to
identify the respective data types. Within the LPG model, multiple edges can
occur between two nodes, hence the model is also described as multi-relational.

Edges Edges always connect only one start and one end node with a given di-
rection. An edge must be distinguished by a label and can additionally contain
properties in the form of key value pairs. Alice and Bob are connected by a relation
labeled IS NEIGHBOR OF.

2.5.1 Neo4j

Neo4j is a transactional graph database provided free of charge for non-commercial
users under the Gnu General Public License v3. Individual databases can be set up
with Neo4j using either dedicated servers or a local instance. Both options offer access
via Bolt, HTTP or HTTPS protocols through an integrated interface, allowing queries
to be made or data to be added. This is done via create, read, update and delete

operations optimized for the LPG model.
Since relations are stored separately in Neo4j instead of referencing another table, the
speed of certain operations is significantly faster than in relational database systems.
Especially for large, directed, acyclic graphs, Neo4j performs significantly better than
relational graph databases in the area of pattern matching [Pobiedina et al., 2014]. With
regard to the queries, a distinction must thereby be made as to whether and what is
filtered in the query. While a query with filtering by node types in Neo4j performs
significantly better than a relational graph database, this effect is opposite for filtering
by edge types [Hölsch et al., 2017]. When both node and edge types are used as filters
in a query, relational and non-relational graph databases perform comparably. For the
identification of community smells, the query formulation is important since finding
community smells is based on the principle of pattern matching.

2.5.2 Cypher Queries

Queries in Neo4j are formulated using the Cypher query language. Cypher was devel-
oped by Neo4j Inc. exclusively for its in-house graph database, but was adopted as an
open source project by the openCypher Implementation Group in 2015 and has been

22

2.5 Graph Databases

maintained ever since. As previously mentioned, the operations create, read, update
and delete (CRUD) can be executed, which have been adapted to the property graph
model as part of Cypher. These and other reserved keywords are interpreted by Neo4j
and executed according to previously defined scheme. Important keywords in the context
of this work are:

CREATE The CREATE clause can be used to create individual nodes or edges
in a database. A completely new graph can thereby be created or new nodes
and edges can be added to an existing graph. Labels and properties can also be
defined during creation. For edges, a direction must also be specified, since Neo4j
specializes in directed graphs.

MATCH The MATCH clause, together with RETURN, is probably the most impor-
tant. MATCH initiates the query for patterns within the graph to search for. The
patterns searched are specified by arbitrarily long concatenations of nodes and
edges. For specification, these nodes and edges can be filtered with respect to
their labels or properties, but a query can also be made without any filtering.

WHERE For constraining a MATCH query, WHERE can be used, to reduce the
amount of necessary calculations for a query by specifying conditions.

RETURN This clause can be used to specify which nodes, edges, properties or
labels are returned after a query. The representation of the return can also be
specified and whether only unique rows should be returned by using the DISTINCT

operator.

Additionally, there are logical operators like AND, OR or NOT which can partially be
combined within queries. An example query for the birth dates of all people named Bob
who are neighboring Alice (figure 2.13) is shown below.

MATCH (alice)-[:is_neighbor_of]->(bob) RETURN bob.date_of_birth

2.5.3 prov2neo & neo4r

To create a database in Neo4j with external data sets and to query data within the
database, tools can be used instead of the Neo4j instance with integrated browser. For
these tasks prov2neo and neo4r were employed.

prov2neo Programs like Git2PROV or GitLab2PROV extract files from software repos-
itories and store them as PROV-JSON. In order to make these JSON files usable for an
analysis in databases, the prov-db-connector was developed by the German Aerospace
Center. The tool allows W3C-PROV documents to be read into databases via an inter-
face. A revised version specialized for Neo4j is called prov2neo. prov2neo is characterized
by a higher speed when reading PROV documents into the Neo4j graph database and
was therefore used in this context.

23

2 Foundations

neo4r Neo4j offers the possibility to analyze graphs by own queries. In addition, the
Neo4j internal extension Graph Data Science Library provides methods to identify struc-
tures within graphs. For this purpose, centralities and similarities of nodes can be cal-
culated, communities can be detected and paths can be found. Even though the library
offers some options for action, the integration of many algorithms is missing and the
processing of queried data sets is expandable. One tool to address these issues is neo4r
[Fay, 2019]. With neo4r, a connection is created between Neo4j and an R [Team, 2017]
instance. Queries can be made in R via a connection object and are sent to Neo4j. The
result of the query is then returned as tibble, a successor to data frames, which is parsed
more deeply by R packages such as dplyr or igraph. Due to the amount of packages in
R that can be used for data and graph analysis, neo4r provides the necessary interface
to enable the use of sophisticated algorithms.

2.6 Network Analysis

In the following section, measures of interest for this work are presented for the analysis
of networks. First, provenance graph analytics are briefly introduced, which are used
to characterize the topology of provenance graphs. Afterwards, measures used in social
network analysis are described, which describe properties of the investigated networks
and allow comparability between different networks.

2.6.1 Provenance Graph Analytics

Following the principles of provenance networks analytics, the topology of a network
should be analysed first in the context of provenance graphs [Huynh et al., 2018]. For
this purpose, existing network metrics [Newman, 2010] can be adapted for provenance
graphs to highlight their structure. These metrics can be calculated generically by
provenance records and thus form the basis for quantitative analysis and comparison
with other provenance graphs. In this work, the focus is only on basic properties of
provenance graphs, which is why a limited selection of metrics is presented and also
used.

A provenance graph is a directed graph G = (VG, EG) consisting of a vertex set VG
and an edge set EG. All vertices in VG represent the different PROV elements intro-
duced in section XXX: entities, activities and agents. Two vertices can be connected
by a directed edge e = (vi, vj) ∈ EG if a relation in the provenance graph connects
this pair of vertices. To capture the quantitative, topological characteristics, these are
represented as follows:

• Number of provenance elements in G corresponds to the number of nodes n = |V |.

• Number of provenance relations in G corresponds to the number of edges e = |E|.

In addition to the nodes and relations, the graph diameter is also interesting for this
work, showing how distributed the provenance graph G is. The diameter dG indicates

24

2.6 Network Analysis

the longest distance within a graph G, where two nodes u and v are connected by the
shortest path d(u, v). This results in the following notation for the distance:

dG = maxu,v∈VG
d(u, v)

2.6.2 Social Network Analytics

Other generic metrics can be found in the area of social network analysis. Social network
analysis can be used to understand interactions and social organisation within a network
(Wasserman & Faust, 1994). Depending on the semantics of the network under investi-
gation, different analyses can be carried out based on the characteristics of the considered
network. Proposed by Dos Santos et al., a network can be classified in terms of collabo-
ration by the properties density and centrality degree [dos Santos et al., 2011]. In their
analysis of open source software developer groups, they try to classify networks in terms
of coordination of collaboration within a project by these two properties. Their approach
is to map collaboration processes of different levels of collaboration with social network
properties. These collaboration processes and their levels were defined in the Collabora-
tion Maturity Model (CollabMM) [Magdaleno et al., 2009], which assumes that commu-
nication is an important component but is subordinate to collaboration. As there is a
strong separation between communication and collaboration networks in this work, the
notion of collaboration according to Dos Santos et al. needs to be critically questioned,
especially with regard to the data investigated by them [dos Santos et al., 2011]. Only
data from bug trackers and mailing lists were extracted, in which developers discussed
the prioritisation of bugs and possible solutions. Therefore, the network measures they
use are considered here for communication graphs.

Degree centrality Degree centrality describes the degree of involvement of an actor
with other nodes of a network. The centrality can be considered with regard to the
entire network (network centrality) or the centrality of an individual node compared to
other nodes via node centrality [Freeman, 1978]. Formally, node centrality is defined by
the number of vertices adjacent to a vertex v:

CD(v) = deg(v)

Network centrality is determined by graph centralization. The graph centralization is
determined by the node centrality of all vertices in the network:

CD(G) =

|V |∑
i=1

[CD(v∗)− CD(vi)]

With v∗ as vertex with the highest degree centrality in the graph G. For a normalization
of graph centralization, this can be divided by the theoretically maximum achievable
score H for graph centralization of the initial graph G. The same attributes as number
of vertices and parameters (e.g. considering loop edges) must be used while calculating
H. Correspondingly, the normalized graph centralization of G is given by:

CD(G) =

∑|V |
i=1[CD(v∗)− CD(vi)]

H

25

2 Foundations

Betweenness centrality Betweenness centrality can be measured by how often shortest
paths between two vertices pass through a vertex v. Vertex v acts as a bridge between
the respective vertex pairs and its betweenness can be used to quantify how much control
it has in social network communication [Freeman, 1977]. The betweenness centrality of
a vertex can be described as follows:

CB(v) =
∑

i 6=j 6=v∈V

σij(v)

σij

Where σij maps the total number of shortest paths between i and j, while σij(v) maps
the shortest paths between i and j that pass through v (Brandes, 2001). Similar to
degree centrality, betweenness centrality can also be related to the entire graph. For the
normalized variant of the betweenness centrality of the graph G this results in:

CB(G) =

∑|V |
i=1[CB(v∗)− CB(vi)]

H

Closeness centrality In addition to the concepts of density and degree centrality pre-
sented above, the influence of closeness centrality on the emergence of community smell
patterns has been demonstrated [Almarimi et al., 2020a], which is why it is also consid-
ered an informative tool of social network analysis for this work. Closeness centrality
assumes a connected graph and measures the average length from the shortest path
between vertex v and all other vertices in a graph G [Sodeur, 2019]. The higher the
closeness centrality of a vertex, the closer it is to all other vertices:

CC(v) =
1∑

i d(i, v)

with d(i, v) as the distance between the two vertices v and i. Usually, however, the
normalized closeness centrality is given, where the formula is multiplied by the number
of vertices in the graph N and the initial vertex is subtracted. This allows a comparison
between graphs of different sizes. In larger graphs, the subtraction is omitted, resulting
in the following formula:

CC(v) =
N∑

i d(i, v)

While for directed graphs the direction of the connection between the vertices must be
considered, this distinction is obsolete for undirected graphs. For graph closeness cen-
trality, the same calculation method as for degree centrality and betweenness centrality
applies across the entire graph:

CC(G) =

∑|V |
i=1[CC(v∗)− CC(vi)]

H

Proportions of node centralities As another distinguishing criterion, Dos Santos et al.,
(2011) use proportions to compare network topologies. Unlike network centrality, the
consideration of proportions allows further conclusions about the proportion of vertices
with high centrality. For this purpose, the vertices with high centrality are compared
with the totality of all vertices within graph G:

IV =

(
VC
|V |

)

26

2.6 Network Analysis

Here IV represents the proportion of the central or mediating vertices. VC is the number
of vertices with centrality equal or greater than the centrality in the whole graph, while
|V | is the number of all vertices in the graph. The computation of these proportions can
be done for any of the previously presented centralities.

Density In other studies on communication within open source developer communi-
ties, density is used for characterization [Wu and Goh, 2009][Ehrlich and Cataldo, 2012].
Density is seen as a strong influencing component on the project success of open source
software projects [Wu and Tang, 2007] and indicates the compactness and especially the
level of cohesion of a network [Scott, 2002]. A high density is indicative of a close network
that is ready to respond quickly to changes. The density of a network is the percentage
of existing connections out of all theoretically possible connections:

DG =
2|E|

|V |(|V | − 1)

All the bases described so far will be connected practically in the following sections.
Following is the concept and implementation of the tool for identifying and analyzing
community smells in provenance graphs.

27

3 Concept and Implementation

The following section explains the concept of how data is extracted from considered
GitLab repositories, then transformed and finally analyzed. Special features of the
transformations will be highlighted. Furthermore, the concept describes the approaches
to extract community smell patterns and how these identified patterns can be evaluated
in the network. The subsequent subsection deals with the implementation of the concept
and which problems and modifications occurred during the implementation. After that,
improvements and adaptations that add value to the actual implementation are described
and how they were realized.

3.1 Concept

The concept is divided into a total of 3 parts. At first, the criteria to choose possible
projects is proposed. Then the tools used to extract data from the GitLab repositories
and insert it into the Neo4j graph database are outlined. A description of using prove-
nance graphs in Neo4j, is described and which transformation steps must be carried out
in order for community smell patterns to be found at all. This process of extracting, im-
porting and transforming provenance graphs can be seen in figure 3.1. In the following,
it will be shown how these transformed provenance graphs can be analyzed with respect
to community smell patterns. These will then be evaluated with respect to the patterns
found compared to randomized graphs.

3.1.1 Extracting & Importing Data

The first step is to determine which repositories should be examined. For this purpose,
the list of popular projects on GitLab was observed over a period of several weeks.
Each project was checked in terms of size and communication structures between the
contributors. The following criteria for the selection could be derived:

• Size The selected projects should be of different sizes in order to be able to detect
any differences in the analysis of different sized projects in terms of community
smell patterns. The number of developers should not fall below a minimum value
of 10 as some researched patterns only emerge with a minimum of 7 users. In
addition, the number of issues written so far, the number of submitted commits
and the number of confirmed merge requests were interesting in order to be able
to detect patterns at all. It was important not to select excessively large projects,
since the resources for the calculation were limited and the amount of calculations
increases exponentially with the increasing size of a project.

29

3 Concept and Implementation

• Communication Behaviour Communication should mainly take place on the
GitLab platform. Some observed projects externalized their communication to
other platforms like Slack or Discord which led to their exclusion from analysis.
Since the density of communication was much lower due to this externalization,
the likelihood of some community smells increased drastically (compare Lone Wolf,
Organizational Silo), while others became less likely (Black Cloud, Bottleneck),
since they are dependent on communication relations. Therefore, only projects
with a majority of internal platform communication were considered.

• Accessibility GitLab hosts both open-access and closed source projects. Since
GitLab2PROV allows access to openly available projects via access token and the
aim of this work is to analyze open source software communities, only such projects
were considered.

• Popularity As described at the beginning, only projects on GitLab’s current fa-
vorites list were considered. These are ranked based on hits and ratings from the
community and therefore appear to have added value for other users. A higher
popularity could in turn attract new developers or users, stimulating communica-
tion and collaboration in the project.

Considering all these factors, three projects were selected.

1. IGitt is a library that provides access to various Git based version control systems
like GitHub or GitLab via a unified python interface. Development began in early
2016, however it appears to have been terminated in 2019.

2. Freedesktop provides a platform and software development kit for Linux and
Docker-based applications. It is an extension and upgrade of the outdated Flatpak
SDK, which in turn acts as a host for Linux applications.

3. Atomic Simulation Environment (ASE) is a publicly available simulation en-
vironment with which atomic simulations can be set up, carried out, analyzed and
visualized.

Extracting data In order to extract data of the selected projects using GitLab2PROV,
an access token for the GitLab API must first be created. This token is then fed into
GitLab2PROV together with the URL of the respective project or repository, whereupon
the project is extracted in the desired format. In this case, the provenance graph was
output as PROV-JSON. It should be noted that no uniform time zone is considered,
but the time set in the project is adopted during extraction. For later analyses, it is
therefore important to adjust the time format, since graph databases are only designed
for the formats they specify for representing time.
During the design phase, it was also noticed that merge requests were not captured
by GitLab2PROV. Because these are an essential part of communication in software
projects, the tool was adapted after consultation with those responsible. In this way, a
complete and correct extraction of the data sets could be achieved.

30

3.1 Concept

Figure 3.1: Pipeline from extracting data from GitLab to transforming and importing
communication and collaboration relations into provenance graphs in Neo4j.

Importing data into Neo4j The next step is loading the resulting JSON file into Neo4j
using the prov2neo tool. Like GitLab2PROV, prov2neo is a Python-based application,
but it is used to load W3C provenance graphs into Neo4j. After running the tool, a new
Neo4j database is created with a name chosen by the user, but it is not displayed in the
graphical user interface since it is not known to the application. A new database with
the exact same name must be created within the desktop application in order for it to
have access to the underlying database containing the provenance graph.

3.1.2 Transformation Operations

Since the researched community smell patterns are defined exclusively by communication
and collaboration relations, these connections must be established and added. As can
be seen in Figure 3.2, this requires establishing collaboration links between the author
of a file and the committers who worked on a derivative of the original file. In addition,
the connections among different committers who have created derivatives of the same
file must also be connected via the collaboration relation. Similarly, these connections
should also be established for the communication network between the creator of a
commit, issue, or merge request and annotators who comment on or contribute to the
created resource. Only the Git commit models are used to create the collaboration
network. For the communication network, the GitLab web resource models are utilized.
In order to create the connections and later add them to the provenance graph, some
information must first be extracted from the provenance graph and transformed.

Retrieving data via queries The resources needed to transform a collaboration relation
can be extracted from the provenance graph by simple queries. Any user who creates the

31

3 Concept and Implementation

Figure 3.2: Desired connections between users to be created via transformations.

original or a derivative of a file is associated with it via the relation :wasAssociatedWith.
Therefore, two users who are associated with a common file should also be associated
with each other via a direct collaboration relation, as shown in figure 3.3. However, this
becomes problematic for time-dependent analyses. Only activities contain the temporal
provenance information, which is why they are needed for time-dependent queries. Since
activities do not have a direct link to the source file through which the users are con-
nected, the file versions must still be considered, since they point to the common source
file. This results in the structure from the right half of figure 3.3, where two users are
connected to the source file via an activity and the file version each. Since the shown
combination of user, commit, file version and file occurs in all Git commit models, this
approach can be applied to all operations of adding, modifying and deleting files in the
repository.

Figure 3.3: Left: Simple representation of collaboration of two users by file.
Right: Extended representation with activity including time component.

The procedure for the communication network is similar, but here only the GitLab web
resource models are accessed. In order to access the timestamps of the activities here
as well, the path shown in Figure 3.4 including activities must be queried. This path is
included in Git commits, issues and merge requests, which is why a common query is
sufficient for setting up the network. The entities and activities contained in the paths
are captured by the abstracted representation Creation and Annotation, as otherwise,
paths would have to be queried for each model of GitLab web resources. The R package
neo4r is used to extract the provenance information of the specified paths via queries to
the Neo4j API. This provenance information is then used to establish relations in the
next step.

Transforming PROV data into relations After extracting the provenance information,
adjacency matrices are created from it. Each existing connection between, for example,
agent and activity is mapped in the matrix with a value of 1 or greater. Cells without

32

3.1 Concept

Figure 3.4: Path to be queried to create the communication network for all GitLab web
resources.

adjacency, i.e. with a value of 0, are ignored to give the matrix dimensions with which
they can be easily multiplied. As can be seen in Figure 3.5, all matrices are multiplied
with each other step by step. The final matrix reflects which users have worked on which
files. A matrix multiplication of this user-file matrix with its transposed matrix creates
the user-user matrix and thus the precursor to the communication network.

Figure 3.5: Matrix multiplications to set up the collaboration matrix. User (U), commits
(C), file versions (FV) and files (F) adjacency matrices are needed.

Since the user-user matrix is square, it can be interpreted as an adjacency matrix.
The adjacency matrix simultaneously maps the connections within the graph of the
communication network. These connections can therefore be reimported into Neo4j as
edges between the users involved in the provenance graph.

3.1.3 Using Queries to find Community Smells

For the community smell patterns Lone Wolf and Organizational Silo, the queries can
simply be adopted as shown in figure 3.6. For this, only the communication and col-
laboration relations between the individual users need to be depicted. In the case of
Organizational Silo, it must also be noted that the two collaborating developers are not
in the same community. Therefore, the community membership is first determined by

33

3 Concept and Implementation

calculating the modularity and comparing whether both developers are part of the same
community. When formulating the queries, care must be taken that the requested struc-
tures are returned as the result. With Lone Wolf, the dyads of the two collaborating
users are considered, while with Organizational Silo only the collaborating user who
does not communicate is considered. The queries according to both patterns are then
sent via neo4r to the Neo4j API and the returns are viewed.

Figure 3.6: Operationalization of the Community Smell Patterns for the Lone Wolf (left)
and Operational Silo (right).

The two developers, who connect two otherwise unrelated communities, form the Black-
cloud. Due to the comparability of the representation in Figure 3.7 with the theory of
weak ties presented by Granovetter [Granovetter, 1973], the analysis of the community-
connecting edges seems to be appropriate. The Girvan-Newman algorithm is therefore
used to determine whether there are edges connecting two otherwise separate commu-
nities. These identified edges should then provide information on whether recurring
communication with longer periods of silence exists.

Figure 3.7: Structure of the communication graph to identify the Black-cloud effect.

For the last proposed pattern, Bottleneck, only users who are the only members of their
community interacting with at least two other sub-communities are considered. If this
restriction of the only user communicating externally is removed, a clique percolation
with k=3 can be applied. The users who are simultaneously contained in two cliques
thus form the respective bottlenecks.

34

3.2 Implementation

3.1.4 Comparison with Randomized Graphs

To compare the results and check whether these patterns arise only by chance, they are
compared with randomised networks. For better comparability, the randomised networks
must have the same dimensions as the initial network. For this purpose, derivatives of
the original network are created in which the edges between the individual nodes are
rearranged. Here, the degree of the nodes should be preserved and connections should be
randomised so that they remain connected to the same types of node pairs. A connection
that previously connected a user to a commit should also connect a user to a commit
after randomisation.

3.2 Implementation

The following section explains the practical implementation of previously explained con-
cepts. The focus is on the work steps after extraction. For a better understanding,
commands used and exemplary graphics are shown to illustrate the procedure. Difficul-
ties encountered and their solutions are described and then extensions for the developed
implementation are presented. Afterwards, it is explained how user properties are ex-
tracted from identified patterns and how randomization is used for comparability with
randomized networks.

3.2.1 Data Cleaning

After extracting the provenance graphs from the repository with GitLab2PROV and
transferring the PROV JSON file to Neo4j via prov2neo, the next step is to look closely
at the data and clean it. In Neo4j, cypher queries like

CALL db.schema.visualization()

can be carried out for this purpose, which display the schema of the provenance graph
(Figure 3.8). This made possible, for example, to discover that merge requests with
an earlier version of GitLab2PROV were not captured. In addition, it can be used to
verify the structure of the entire graph. With the extension APOC, meta-information
of the individual nodes, their attributes and the relations can be queried. Through
these two methods, a meta-analysis of the graph was performed. It was noticed that
in one case multiple timestamps were stored within an activity, which could lead to
errors in future analyses, as timestamps were important components of the queries.
This activity was removed together with all relations after closer examination, as only
one user was associated with this activity and other attached nodes. Collaboration and
communication graphs were not altered by this.

Although timestamps in nodes from different projects in GitLab did not contain a uni-
form format, they were unified in a later version of GitLab2PROV. Formatting the
timestamps thus became obsolete.

35

3 Concept and Implementation

Figure 3.8: Scheme of the extracted provenance graph within Neo4j. Nodes are grouped
according to their affiliation to Git commit or GitLab web resource model.

3.2.2 Folding and Transformation

Since the extracted provenance graphs do not contain connections of the types com-
munication or collaboration, these must first be created via folding of individual graph
components. Therefore, the first step was to analyze and extract the necessary com-
ponents to perform this folding. Subsequently, the connections are created via matrix
multiplications of the extracted components and returned to the original provenance
graph.

Collaboration Extraction For collaboration, connections have been created where users
have created new file versions of a file via commits. This is basically true for committers
but also for authors, since every time a new file is created in Git, a primary file version
of that file is also created directly. This enables to find the authors and user groups of
committers within the network who have collaborated with each other (see figure 3.9).
Since authors and committers are treated the same and both belong to the user type
within the Provenance graph, they can be queried with the other previously mentioned
components using the following query:

MATCH p=(u:user)-[:wasAssociatedWith]-(c:commit)-[:wasGeneratedBy]

-(v:file_version)-[:specializationOf]-(f:file)

RETURN DISTINCT u.id, c.id, v.id, f.id

This applies to the Git commit (figure 2.7), file modification (figure 2.8) and file deletion
(figure 2.9) models, due to a similar structure and because all requested elements and
connections are included in each of the extracted Git provenance graphs. The filtering
by edges visible in the query is solely for better visualization. A distinction of the edge
types was not made, if possible, as Neo4j performs better when filtering only by node

36

3.2 Implementation

types.
The result of this query via the neo4r to the API interface of Neo4j was a data frame
with the respective IDs of the users, commits, files and file versions. For each possible
connection, the entire path was returned, resulting in duplicates, which could be filtered
out using the keyword DISTINCT.

Figure 3.9: Required agents, activities and entities to establish collaboration relations
between authors and committers. Established connections between users are
represented by dotted lines.

Collaboration Folding After extraction, matrix multiplication is used to determine
which user worked on which file. For this the connections between user and commit,
commit and file version, file version and file are represented as matrices, by taking the
respective two columns from the data frame and representing them as adjacency matrix.
These adjacency matrices are reduced to the columns and rows in which there is at least
one connection. This changes the dimension of the matrices to the actual contained
number of for example users and commits. After this has been done for all connections,
they can now be multiplied together step by step. Finally, this results in a user-file
matrix that shows which user worked on which file. Figure 3.10 shows the described
approach graphically.

Figure 3.10: Matrix multiplications to calculate the desired user file matrix

In order to make visible which users have collaborated with each other via these files,
this user file matrix must be multiplied with a transposed version of the user-file matrix
in the next step. This results in a final matrix that does not distinguish between authors
and committers, but still shows all their collaborations. To reduce the resulting matrix,
the diagonal is set to 0 and the multiplicity of the respective edges is set to a maximum
value of 1, since multiple edges provide no added value and only require increased com-
putational effort.
Since no data can be transmitted directly to the Neo4j API via neo4r, the resulting
matrix is transformed to a graph and the edges are exported as edge list to a CSV file.
This CSV file can be read locally into Neo4j and a command is used to insert connections
between collaborating users.

37

3 Concept and Implementation

LOAD CSV WITH HEADERS FROM "file:///collaboration_edges.csv" AS row

MATCH (u1:user {id:row.from_id}), (u2:user {id:row.to_id})

CREATE (u1)-[:collaborates]->(u2)

Communication Extraction Similar to extracting components to generate connections
for collaboration, the components are also queried for communication. However, it
should be noted here that due to the structure of the provenance graphs, a distinction
must be made between creators and annotators, even though they are from the common
group of users.

MATCH p=(creator:user)-[:wasAssociatedWith]-(creation)<-

[:wasGeneratedBy]-(resource)-[:specializationOf]-(version)-

[:wasGeneratedBy]-(annotation)-[:wasAssociatedWith]-

(annotator:user)

RETURN creator.id, creation.id, resource.id, version.id,

annotation.id, annotator.id

As described before, the IDs of the individual actors, activities and entities are returned
in the form of a data frame after performing a query via neo4r.

Communication Folding The distinction between creators and annotators changes the
folding process compared to the folding regarding collaboration. As shown in Figure
3.11, a similar approach ignores the edges of the communication between annotators.
In addition, it is likely that the dimensions of the final creator-annotator matrix do not
correspond to those of a square matrix, making adequate mapping as a graph impossible
without error.

Figure 3.11: Flawed approach to the creation of the communication network. Connec-
tions between annotators are missing.

Therefore, the communication network is created in two parts and then merged (see
Figure 3.12). The respective resources (commit resource, issue resource, merge request
resource) are chosen as the common anchor point, since the structure of the GitLab web
resource models is similar except for the naming and irrelevant components. The two
parts of the communication network can be calculated via matrix multiplications of the
adjacency matrices as described before. Afterwards, a union is performed by adding the

38

3.2 Implementation

Figure 3.12: Part-wise calculation of the communication network with subsequent union.
Established connections between users are represented by dotted lines.

columns of the resource creator matrix to the resource annotator matrix.
Because duplicates are very likely, they are removed and then the merged matrix is
multiplied by a transposed version of this matrix to obtain an author annotator matrix.
The final matrix is reduced in terms of diagonals and multiplicity of edges as in the
collaboration matrix. Subsequently, the matrix is transformed into a graph and the
respective communication edges are read into Neo4j via a CSV file.

LOAD CSV WITH HEADERS FROM "file:///communication_edges.csv" AS row

MATCH (u1:user {id:row.from_id}), (u2:user {id:row.to_id})

CREATE (u1)-[:communicates]->(u2)

As can be seen from the query and Figure 3.13, the new connections between users are
fed into the graph with directions. This is an application-dependent requirement when
creating new edges for Neo4j, but later queries regarding community smell patterns will
query all edges regardless of their direction, so no further interference will result from
this.

Figure 3.13: Cutout of the network regarding users (blue) and commits (pink) before
and after importing relations. Communication shown in red, collaboration
in green.

39

3 Concept and Implementation

Query Execution On the graph, extended to include communication and collaboration
connections, the Cypher queries can now be run to identify developers who fit into one of
these patterns. The Lone Wolf pattern identifies dyads of users who collaborate but do
not communicate with each other. The query identifies all distinct users, which may be
at position u or position u2 within the pattern. Therefore, the two IDs returned by the
following query are checked again for duplicates and merged if applicable. Additionally,
the number of dyads is retrieved using a query that returns the count of all found Lone
Wolf patterns.

MATCH p=(u:user)-[:collaborates]-(u2:user), (u3:user)

WHERE (u)-[:communicates]-(u3)-[:communicates]-(u2)

AND NOT (u)-[:communicates]-(u2) RETURN DISTINCT u.id, u2.id

For the Organizational Silo pattern, the Louvain modularity must still be calculated
before execution. Basically, Tamburri et al. point out that only the modularity has to
be calculated, but no exact procedure is described [Tamburri et al., 2017]. Due to the
high speed and availability within the Graph Data Science Library, Louvain modularity
was chosen. It should also be mentioned that the Graph Data Science Library cannot
be accessed via a query from an external location, such as neo4r. Therefore, each time
a network is analyzed, it is necessary to start this calculation manually, which prevents
complete automation.

MATCH p=(u:user)-[:collaborates]-(u2:user), (u3:user)

WHERE (u2)-[:communicates]-(u3)

AND NOT (u)-[:communicates]-(u2)

AND NOT (u)-[:communicates]-(u3)

AND NOT u.louvain = u3.louvain

RETURN DISTINCT u.id, u2.id

After returning the IDs of the users involved, a distinction must be made as to which
users are being considered as Organizational Silo, in contrast to the Lone Wolf pattern.
Here it is the user u that can be described as an Organizational Silo and should therefore
be counted alone. User u2 will be considered for further analysis later on. In addition,
it is recorded how often the identified users could be found in the respective pattern.

Analyses without queries As mentioned in section 3.1.3, the Black-cloud pattern can
be revealed by using clustering algorithms. Since the structure of the Black Cloud pat-
tern consists of isolated sub-communities, which are only connected by a relation, the
use of the Girvan-Newman algorithm seemed appropriate [Girvan and Newman, 2002].
Edges within the graph are gradually deleted and remaining connected components rep-
resent individual communities. Since there is no native implementation in Neo4j to per-
form the Girvan-Newman algorithm and an implementation based on a cypher query is
cumbersome, an alternative was chosen. For the pattern we are looking for, only commu-
nication relations are important and the communication network has already been calcu-
lated in R. Therefore, with the help of the package igraph [Csárdi and Nepusz, 2006], the
communities were calculated based on the edge betweenness. This uses is an implemen-
tation of the Girvan-Newman algorithm, in which the group membership is determined

40

3.2 Implementation

according to modularity and the relations between communities that act as bridges. The
group membership and the respective bridges should be used to identify users who rep-
resent the black-cloud effect between two otherwise unrelated communities.
For the identification of Bottlenecks, a similar approach as for Black Cloud was chosen.
By accessing the already created communication network, the obvious solution was a
Clique Percolation with the factor k=3. The formulation of this pattern established by
Tamburri et al. was softened by the fact that there could not be only one user main-
taining contacts with other sub-communities, but several. Thus, only one user from
community A might communicate with community B, while another user from commu-
nity A might interact exclusively with community C. Since there is no integration of the
clique percolation method in Neo4j, this operation shall also be performed via R. Using
the package Clique Percolation and the necessary dependencies, the graph is first con-
verted into the format qgraph. From this unweighted graph, fully networked components
with 3 nodes are to be analysed. With the command

clique_percolation_k3 <-

cpAlgorithm(communication_graph, k = 3, mode = "unweighted")

this analysis was triggered. After several attempts of running the analysis, despite using
a small communication graph to be analyzed, the algorithm did not come to any result,
whereupon this analysis was aborted.

3.2.3 Extensions

When analyzing networks, it has become standard practice to examine several time
windows. Since the previous approach is based exclusively on the entire time period
of the extracted data set, it considers several iterations during development and thus
different cycles within the project, this standard approach is missing. Additionally,
during the development it became evident that hardware can be a strong limiting factor,
which is why a method was developed that also leads to success with low performance
computers.

Time windows Proposed by Zeini et al. is the analysis of time windows with fixed
size [Zeini et al., 2012]. These depend on the nature of the network and are calculated
using the clique percolation method. Due to limited resources in the implementation of
this approach, no result was obtained for the networks studied, so an alternative had
to be found. Instead of fixed time windows, the focus was on data for the publication
of new release versions. For this purpose, the two phases between the most recent
releases of ASE and IGitt were selected in each case. Due to the lack of information
about Freedesktop releases, time windows were selected that correspond to the use of
an underlying framework on which Freedesktop is built. If the framework was updated,
this was considered a fixed point in time when analyzing the data. The selected time
frames for the 3 projects are therefore derived as follows:

41

3 Concept and Implementation

IGitt Freedesktop ASE

22/01/2016 - 01/06/2017 29/03/2019 - 11/12/2019 16/12/2019 - 08/08/2020

01/06/2017 - 07/08/2017 11/12/2019 - 21/02/2020 08/08/2020 - 18/01/2021

Table 3.1: The researched time windows of considered open source projects.

Interval In the first condition of querying communication and collaboration networks,
no distinction is made with respect to time windows or intervals, but the entire crawled
dataset is considered. This makes it possible that users collaborated on files at a very
early stage of the project and later became inactive. Users who joined the same project
later and manipulate the same files are counted as collaborators of the now inactive users,
even though they can never communicate with each other. This supports the formation
of Organizational Silo and Lone Wolf patterns. To counteract this, an approach was
tried in which only collaborations and communications within certain intervals were
evaluated. For example, a collaboration is only counted if a developer has written a
commit and another developer has worked on the same file within a predefined period
of time. This also applies to communication about the creation of commits, issues and
merge requests and their annotations. The specified time period was set to 14 days in this
approach. Unfortunately, this approach could not be reconciled with batch processing
introduced in the next paragraph, which was used to capture time windows and large
data sets. An example query is as follows:

MATCH p=(u:user)-[]-(c:commit)-[:wasGeneratedBy]-(v:file_version)

-[]-(f:file)-[]-(:file_version)-[:wasGeneratedBy]-(c2:commit)

WHERE datetime() + duration.inDays(c.‘prov:endTime‘, c2.‘prov:endTime‘)

< datetime() + duration("P14D")

RETURN DISTINCT u.id, c.id, v.id, f.id

The query determines the time window between two commits and then compares it to
a 14-day period. If the time window of the commits was larger than 14 days, it was
ignored for further analysis.

Scalability When querying large data sets, calculation errors occurred due to limited
hardware. These errors were related to the amount of memory available, which was
limited to a total capacity of 8 gigabytes for this work. If this overflowed despite swapping
and paging processes, either interruptions occurred in the computation or the program
aborted with a segmentation fault, causing the entire R instance was interrupted. In
this case, results stored in the buffer were also deleted. To overcome these challenges, a
new approach had to be designed and implemented. The principle of batch processing
was used to divide the data sets into smaller, more easily computable parts. Thereby,
the individual data sets were analyzed in terms of their entirety and short time windows
were selected based on the density and the total time period considered. These short
time windows were then iteratively sampled and the communication and collaboration
relations were determined individually by convolutions. Subsequently, these relations
were cached and relations computed in the next batch were added piece wise. Thus,
the entire dataset was computed incrementally and later merged so that it could be
imported into Neo4j and queries could be executed.

42

3.2 Implementation

3.2.4 Network Randomization

To determine whether the patterns found are purely random or truly due to organiza-
tional structure, the number of community smells identified is compared to community
smells in randomized networks. The randomized networks are generated from the re-
spective original provenance graphs. For this purpose, the connections between the
individual elements are re-sorted from the provenance graphs. In a first experiment,
these connections should be reordered by the R package VertexSort with a degree pre-
serving sorting algorithm. Despite parallelized computation, the algorithm did not run
to completion, so a custom adapted method had to be developed. Previously generated
adjacency matrices describing the connections of the provenance graphs are reordered
by randomly reordering the columns of the matrices.

userCommitRandom <-

userCommit [,sample(1:ncol(userCommit), ncol(userCommit))]

This achieves a previously targeted degree preserving algorithm and extremely reduces
the computational cost. Through the subsequent procedure, as exemplified in Figure
3.10, strong randomization is achieved in the calculation of the communication and
collaboration relations for the randomized networks due to the multiple matrix multipli-
cations. For an automated generation of the randomized networks and the subsequent
retrieval of the community smells, the condition of louvain modularity had to be waived
for the Organizational Silo. This was previously calculated using the Graph Data Sci-
ence Library integrated in Neo4j. However, with neo4r as an interface, direct queries to
compute modularity via the Graph Data Science Library cannot be executed. Thus skip-
ping the modularity, 10 randomized networks could be automatically created for each
network under study, from which the community smells were subsequently determined
via previously described queries. From these randomized networks, all found community
smells were recorded, and the average number was calculated in order to compare them
with the identified patterns from the original graphs.

3.2.5 Developer Analysis

To identify key developers and to compare developers who are in smell patterns with
developers who are not in any pattern, they were examined in terms of their activity
characteristics. The behavior of the developers was recorded in terms of the number
of their activities in the project via queries and these were tabulated in a data frame.
The activities include commits, issue creations, merge requests and their annotations
summarized. For the smell pattern developers, the number of smell patterns they are in
is also counted. In addition, the average number of file versions and the average number
of contributors who worked on the same file were queried for the files on which these
developers worked. Subsequently, any correlations between the queried characteristics
were determined via the package corrgram using a correlation matrix. The comparison
of the developers in and outside of community smell patterns should be determined over
mean value comparisons of the characteristics. For this purpose, the group of non smell
users had to be reduced, since a large part did not write or publish a commit. Due to
the different numbers, neither mean value comparisons nor other quantitative, statistical

43

3 Concept and Implementation

comparisons were possible. Therefore, the numbers of the affected developers and users
were only compared superficially.

3.2.6 Network Analysis

In the last step, the studied communication networks were analyzed with respect to the
metrics presented in section 2.6.2. The R packages igraph and dplyr were used to analyze
the networks and normalize the values in each calculation for comparability of networks
of different sizes. Loops within the networks were ignored, and all networks were in-
terpreted as undirected, since creating the communication graph over the adjacency
matrices produced a directed network.

44

4 Evaluation

In this section, the results of the analysis are presented. First, the topology of the
examined graphs is briefly described and then the main part of the analysis regarding
the identified community smells is described. After that, the results for the developer
characterization are described. Finally, the results for the randomized networks and the
network analysis of the considered projects follow.

4.1 Graph Properties

In terms of size, the projects for the following approach differ greatly, as the computa-
tional effort grows exponentially with a linear increase of nodes. Table 4.1 shows the
numbers of the individual node types of the projects. The size of the projects increases
by about 200,000 nodes each. Since a multi-relational network is present, the number

Node type IGitt Freedesktop ASE

Users 49 317 650
Files 494 3.198 16.464

File Versions 1.978 19.936 110.423
Commits 417 5.580 18.243

Issues 147 1.178 859
Merge Requests 270 4.598 2.301

Annotations 11.310 173.494 238.310

Total #nodes 14.665 208.301 387.250

Total #edges 44.893 627.156 4.623.292

Table 4.1: Overview of the selected projects to be analyzed in this work. Data is por-
trayed at the time of extraction.

of edges exceeds the number of nodes many times over. ASE, in particular, is an overly
dense network, which can be observed by the approximately 12-fold amount of edges.

4.2 Community Smells

After identifying the four different Community Smell patterns, the results for the analysis
are very different. Due to problems that occurred during the analysis, some results could
not be recorded.

45

4 Evaluation

Figure 4.1: Identified community smell patterns for IGitt

IGitt In the IGitt project (Figure 4.1), most of the smells are found in the queried
14-day time window. For both the Lone Wolf and Organizational Silo patterns, the
identified number exceeds that of the analysis over the entire project period. The distinct
Lone Wolves (n=24) account for a share of about 49% within the interval. The rate
of Silos (n=19) is lower, with a share of 38.9% for the same condition. Considering
the whole network, the amount of Wolves (n=15) is 30.6% and that of Silos (n=10) is
20.4%. For the two time windows, the number of patterns found is significantly lower.
In the first time window, only a total of 2 dyads of users are uncovered within a frame of
17 months (4.1%), which make up the Lone Wolf pattern, while for the Organizational
Silo only a single developer could be identified (2%). This set of constellations is again
undercut in the second time window and not a single smell pattern could be identified
by queries. The time window here is much smaller and covers only a little more than
two full months. For the Black Cloud pattern, not even a single occurrence could be
detected for any of the conditions. This also results for the Bottleneck pattern, since the
algorithm did not finish during the analysis.

ASE The project ASE 4.2 is characterized by a much higher number of nodes and a
denser network of relations. Due to these characteristics, the project could neither be
analyzed with regard to the entire graph nor the 14-day interval. Due to this limitation,

46

4.2 Community Smells

Figure 4.2: Identified community smell patterns for ASE

no instances of Lone Wolf and Black Cloud patterns could be found. In the first time
window, a total of 8 dyads and thus a total of 8 Lone Wolves are found in a period of
8 months. Here, one developer in particular is conspicuous by its activities in a total
of 36 instances of this pattern. For the Organizational Silo, the number of identified
developers is slightly higher at 12. In the second time window, which covers just over
5 months, the numbers for the two patterns are significantly higher. The dyad of Lone
Wolves reaches a value of 27, describing 34 developers. The same number of developers is
also found for the Silos, although the respective developers uncovered are not congruent
for both patterns. Also included in this time window is the previously mentioned single
developer, which is represented by 36 instances in the first time window and 8 instances
of the Lone Wolf pattern in the second time window. As with the IGitt project, the
Black Cloud pattern has not been identified in any of the conditions examined. This is
also true for the Bottleneck Pattern due to the previously mentioned reason.

Even though the analysis for the Freedesktop project was not successful in terms
of community smells, it did yield results in terms of project structure. Freedesktop
is controlled by a few administrators who are the only ones in the project with the
ability to accept merge requests. They accept requests from other developers only at
certain times in batches. This includes especially commits and comments, which are
written automatically by bots. Bots appear both in the community smell patterns
found and outside them. Within the community smell patterns, they take the role of
the communicating developer in most cases, and in only one instance is a bot itself

47

4 Evaluation

considered a Organizational Silo.

4.3 Developer Characterization

Checking whether certain behavioral patterns of developers correspond to the number of
smell patterns was achieved by calculating correlations. Figure 4.4 shows an example of
the correlogram for the complete IGitt project with respect to the two smells examined.
Based on the rows and columns with the smells, it is visible that the effect size does not
exceed .3 and thus the lower limit for a small effect is not reached. Since the values for
all other conditions and also for the ASE project do not reach this limit, the developer
characterizations for these cases are not shown.

Figure 4.3: Correlation diagrams of the full IGitt project for Lone Wolf and Organiza-
tional Silo patterns.

Regarding the comparison between smell developers and developers who do not appear
in any pattern, the queried values are comparable. Figure 4.4 shows the activities of
the non-smell users. The average values for commits (C) are 890.34, for issues (I) 30.87,
merge requests (M) 6.75 and annotations (A) 17.91. For the smell user (figure 4.5) the
values for commits are 370.48, issues 13.5, merge requests 4.23 and annotations 7.5. The
number of activities for the smell developers is thus on average much lower than the
activities of the non-smell developers. The discrepancy is only smaller for issues with a
factor of 1.44 than for the other activities, which differ by a factor of more than two.

48

4.4 Randomized Networks

C I M A

170 10 97 3.815
55 39 32 2.222
7 4 11 756
6 1 3 257
4 0 0 45
3 0 0 8
1 0 0 19
1 0 0 1

Figure 4.4: IGitt non-smell users

C I M A

157 40 78 3.498
9 0 0 82
9 0 0 147
5 1 5 223
3 2 3 147
3 11 3 289
3 0 0 22
3 1 7 337
2 0 0 6
2 0 0 27
2 0 0 14
2 0 0 12
1 0 1 14

Figure 4.5: IGitt smell users

4.4 Randomized Networks

Retrieving community smells from randomized networks compared to the authentic net-
work consistently yields significantly higher results. For both the Lone Wolf and Organi-
zational Silo patterns, the mean and total scores for networks from randomly generated
provenance graphs are significantly higher for the IGitt project (see table 4.2). For Orga-
nizational Silo, the number of smell-tainted users is also 50% higher for the randomized
network than for the original network. A comparable distribution of community smells
is also true for the other conditions studied for IGitt.

#User Mean Sum Rand. #User Rand. Mean Rand. Sum

Lone Wolf 15 1.73 26 15 4.74 67
Org. Silo 10 1.8 18 15 4.93 74

Table 4.2: Comparison of community smells from authentic and randomized full IGitt
networks.

For the project ASE (table 4.3) the differences in the values are even more significant.
The number of users in smell patterns reaches a 637.5% higher value for the random-
ized graphs (n=51) than for the initial graph (n=8) for the Lone Wolf pattern. The
situation is similar for the Organizational Silo with an increase of 608% (n=73) com-
pared to the original value (n=12). Due to this high number of users, the total number
of community smells for both patterns is also much higher for the randomized graphs.
Especially Organizational Silo reaches a factor of over 1100% compared to the original
graph and is thus significant. Striking is the higher mean value for Lone Wolf from the
authentic graph (m=5.75) compared to the randomized graph (m=3.955). This is due
to an outlier value that far exceeds the mean value in this case. For the second time
window of the project ASE, the considered values are comparable.

49

4 Evaluation

#User Mean Sum Rand. #User Rand. Mean Rand. Sum

Lone Wolf 8 5.75 46 51 3.955 201
Org. Silo 12 1.92 23 73 3.66 267

Table 4.3: Comparison of community smells from authentic and randomized first time
window of ASE networks.

4.5 Network Analysis

Through social network analysis tools, the results shown in Table 4.4 were retrieved.
The values of the centralities refer to normalized computed graphs. For IGitt, there are
strong changes in terms of centralities and density compared to time windows. While
these score low, the diameter of the network (d=4) is twice as high as in the time
windows studied. For the time windows, a shift in density and closeness to higher values
is evident. Meanwhile, the values for degree and betweenness centrality decrease and
converge to the level of the complete investigated network. Values for the ASE project
remain consistently low except for degree centrality, which is in a medium range. All
values are constant over both time windows.

Project Condition Density Degree Betweenness Closeness Diameter

IGitt Full 0.195 0.295 0.027 0.077 4
Time W 1 0.509 0.600 0.325 0.692 2
Time W 2 0.746 0.311 0.090 0.816 2

ASE Time W 1 0.059 0.439 0.072 0.029 6
Time W 2 0.075 0.424 0.035 0.031 6

Table 4.4: Computed centralities for communication networks of researched projects and
conditions.

50

5 Discussion

In the following sections, the results described above are discussed. Thereby, the iden-
tified community smell patterns are first compared across the investigated conditions.
To explain the occurrence of different numbers of patterns, the centrality measures sug-
gested by literature and the structure of the project itself as well as the activities of
individual developers are considered and put into context. The following section deals
with the results of developer characterization and the realization that bots also mani-
fest themselves in community smell patterns. The last section deals with the observed
performance of the solution presented here and how problems can be solved efficiently
when working with provenance graphs and graph databases.

5.1 Community Smell Patterns

Based on the present results, only limited statements can be made about all community
smell patterns studied. Here, the amount of occurring smell patterns when querying a
14-day interval in the project IGitt stands out. Although this method was originally in-
tended to reduce the number of Lone Wolf and Organizational Silo patterns, the number
increases compared to the entire observation of a graph. When considering community
smells following the template of Tamburri et al., there is generally no distinction between
whether developers also communicate to that exact collaboration when they collaborate
[Tamburri et al., 2017]. With their formalization, they assume that all collaboration
and communication occurs with respect to the same resource. This can be explained by
sub-communities that are more likely to work together as a team and therefore treat the
same subjects. However, in the field of OSS, it may increasingly happen that developers
participate in leaps and bounds in files or project communications that do not belong to
their original sub-community, which additionally might have a negative effect on soft-
ware quality [Foucault et al., 2015]. So it is possible that developers work together on a
file and communicate about something entirely unrelated, resulting in many smell pat-
terns not being found. Especially over the consideration of longer periods of time, the
probability of finding smell patterns is reduced, since such processes may occur more
frequently over time. It has to be considered critically, which time periods should be
analyzed and if longer time periods impede the detection of actually existing smells.
For this, further studies need to be conducted and the definition of collaboration and
communication needs to be narrowed down.
Also striking is the vanishingly small number of smell patterns within the examined
time windows of IGitt compared to the rest of the graph. Considering the central-
ity measures, it can be seen here that especially density and closeness centrality have
a strong influence on the formation of community smell patterns, as hypothesized by
Almarimi et al. [Almarimi et al., 2020a]. Based on the structure of all patterns stud-
ied, it can be said that formalization finds especially missing communication relations.
Therefore, when there is a high density and closeness in the communication network,

51

5 Discussion

it is not surprising that the number of identified patterns is lower than in networks
with low density. Here, it is also worth mentioning the low diameter, indicating that the
short connections provide a fast flow of information that seems to counteract community
smell patterns. While this low number of found patterns is explained to be fundamen-
tally positive, as community smells create increased social debt [Tamburri et al., 2015],
a low amount of found patterns could be critical for project success. Densely intercon-
nected networks therefore require little effort in the processing of software or project
management errors, but can lose out on project success due to the lack of centralization
[Crowston and Howison, 2005]. More research should therefore be done to determine the
proportion of community smells within a project group rather than the proportion of
community smells in the project as a whole. Due to the structure of the projects studied,
where the communication network consisted of only one community and isolated nodes,
such a distinction could not be made. The fact that there is only one community suggests
how decentralized both projects are organized. This is also reflected in the low values
for degree centrality. Therefore, when looking at projects, the context of the project
must also be considered. Is the project organized institutionally? Does the project have
strict guidelines regarding collaboration and communication? Does the project have an
unofficial, i.e. recreational, background? A unified analysis of community smells without
considering the project background can therefore lead to misinterpretable results.
Also, the attachment of the community smells to individual developers or dyads of de-
velopers is to be criticized. During the analysis it was noticed that some maintainers
commented or annotated almost every issue or merge request. This approach makes de-
velopers feel noticed, and interactions of this kind help to bind new and old developers
to a project [Dominic et al., 2020]. The resulting communication links greatly increase
the number of identified patterns according to Tamburri et al. [Tamburri et al., 2017].
Thus, the formulation of community smell patterns should be reconsidered in the sense
that collaborating developers must be considered independently of a communicating
user. If a pattern exists in the network where two users collaborate and do not commu-
nicate with each other or externally, it will not be detected by the current formalized
community smell patterns.

For the different distribution of the community smell patterns Lone Wolf and Organiza-
tional Silo, the activity of some developers can be cited. Due to few active maintainers in
the project IGitt who commented or annotated issues and merge request, communication
relations to individual contributing developers were established. Because communica-
tive maintainers communicated with almost all active developers, a dense network of
communication relations could be created. This primarily reduces the occurrence of
the Organizational Silo pattern, since that pattern is conditioned by only a single com-
munication relation. In contrast, this approach supports the emergence of Lone Wolf
patterns, since the collaborating developers always have at least one communication re-
lation to the outside but not necessarily to the collaboration partner due to the activity
of the maintainers. Thus, the role of maintainers here can reinforce some community
smell patterns and reduce other smell patterns. With respect to the formalization of
community smell patterns, therefore, central, communicative developers must be given
special consideration.

The organization of the projects had a demonstrable influence on the number of commu-
nity smell patterns found. Compared to the randomized networks, not only is the num-
ber of smell-afflicted users much lower, but also the total number of patterns, suggesting

52

5.2 Developers

that the organization, even if not professional and only done through the members of
the project itself [Crowston et al., 2007], has a significant impact on the emergence of
community smell patterns.

5.2 Developers

When examining the developers with community smells, no correlation was found be-
tween the number of their respective activities and the occurrence of smell patterns. Nor
do they differ significantly from developers who have authored at least one commit and
do not find themselves in any pattern. Therefore, from the data obtained, no correlations
can be found between communication and collaboration behavior and participation in
smell patterns.

Strongly noticeable when looking more closely at users in and outside of community
smell patterns was the participation of bots within the project. Bots are supposed
to support the projects in interacting with new users, or they take over maintenance
tasks, such as updating files from other projects. In some cases, bots should remind
users to document their work. Due to these interactions, communication and collab-
oration relations between authentic developers and bots emerge, which are perceived
as community smells. In several cases, it became apparent during the analysis that
bots were found in both Lone Wolf and Organizational Silo patterns. Considering the
previously described problem with communicative users preventing community smells,
automated responses from bots could be responsible for reducing the number of nega-
tively afflicted patterns. Depending on the characteristics of the bots, both increases
and decreases in identified patterns are possible. In the analyzed networks, the number
of bots that found themselves within a community smell pattern but were not them-
selves identified as Lone Wolf or Silo was significantly higher. This is related to the
type of bots used. While bots, with the task of project communication, maintained
many communication relations with the distinct developers, maintenance bots were only
responsible for a small part of files that were updated at times. The bots considered
in the Freedesktop project, on the other hand, were more feature-rich and could review
commits from users and provide feedback, so revisiting this or similar projects has fur-
ther insight into the impact sophisticated bots have on the number of patterns. As the
number of bots increases in all social networks, including developer networks (Ferrara et
al., 2016), and they are not considered in automated community smell detection meth-
ods [Almarimi et al., 2020b][Palomba and Tamburri, 2021], the results may be heavily
skewed by bots. Therefore, it seems appropriate to filter bots when extracting net-
work data. Filtering bots from the extracted network beforehand shrinks the size of the
dataset, which can lead to better performance.

5.3 Performance

After retrospectively reviewing the performance of the developed solution, some chal-
lenges became obvious. These will now be critically reviewed and discussed with opti-
mization options.

53

5 Discussion

Hardware limitations Regarding the main limitation of memory, which has influenced
this work especially in terms of time spent and restructuring of large parts of the code,
the simplest and obvious solution would be to increase the available hardware if possible.
However, since it can be assumed that the fixed implementation of this solution within an
organization comes with a less limited amount of memory, the existing implementation
including batch processing can suffice. Overall, batch processing significantly affected
the queries and calculations in terms of time. While previous queries within the graph of
the ASE project sometimes resulted in waiting times of several minutes, batch processing
allowed smaller calculation blocks to be processed in seconds. Cumulatively, the query
and calculation time of the batches with the consecutive merging of the individual sub-
networks fell below the necessary computation time for an extensive query in the project.
This change was also present in smaller projects, however, not to the same extent as in
larger projects.

Cartesian products Since the computation time scales exponentially with increasing
graph size, the graph to be examined should be considered in more detail in advance.
Although the solution designed here has been adapted and tailored to the Neo4j graph
database, there are critical components thereby. In particular, due to the structure of the
formalized community smell patterns and the resulting queries, Cartesian products occur
in the results of many queries. Cartesian products [Vizing, 1963] are created by queries
that connect two or more disconnected patterns. With a higher number of disconnected
patterns within a query, a Cartesian product is created over all parts. This creates large
amounts of data that slow down the processing of the query. For this reason, queries
with disconnected patterns should be avoided at best. Cartesian products negate a
major advantage of the Neo4j graph database, namely the reduction of complexity due
to differentiation in terms of labels and properties but also the restriction of the search
space due to chosen conditions.

Alternative graph databases To speed up queries of large graphs, it is therefore de-
bated whether the query structure of the community smells can be adapted. As sug-
gested by Vicknair et al., orienting to a different graph database may also be ben-
eficial if the topology and characteristics of the graph under investigation allow it
[Vicknair et al., 2010]. Since in community smells patterns with different numbers of
users are queried and the speed depends strongly on the structure of a graph, alterna-
tive graph databases such as the relational graph databases DEX/Sparksee or OrientDB
could help. In case of a change of the database, a change regarding the whole query
structure can be considered here as well. In this solution, filtering is done by nodes
and their labels and properties, whereas in other graph databases with one list contain-
ing edges of all types, the speed of filtering by edges and their inherent information is
significantly increased [Hölsch et al., 2017].

Reducing search space Another way to improve performance is a counterintuitive
approach where users not involved in smell patterns are excluded in advance. In this
case, however, greater care must be taken to ensure that users who, according to the
formulation, do not constitute a negative pattern in the project, but who nevertheless
passively participate in such patterns, continue to be taken into account. Exemplary

54

5.3 Performance

the communicating developers are to be called, which are present in the patterns Lone
Wolf and Organizational Silo. For Black Cloud and Bottleneck, isolated nodes in the
communicating network are not of interest, as they are not counted as an independent
sub-community and can therefore be excluded. For later comparisons between smell
developers and non-smell developers or for social network analyses, a copy of the original
graph should nevertheless be retained.

55

6 Conclusion

This work aimed to design and implement a solution for analyzing negatively afflicted
sub-graph patterns, so-called community smell patterns, in provenance graphs of OSS de-
veloper communities. By integrating the two external tools GitLab2PROV and prov2neo
in combination with an R interface and the graph database Neo4j, the targeted goal of
identifying community smell patterns in GitLab projects could be achieved. After facing
several challenges, the approach was optimized especially for devices with limited hard-
ware via batch processing. Additionally, options were created to make the developers
and the network analyzable with respect to their network dimensions.

Community smell formalization By analyzing three OSS projects and finding seri-
ous differences between the individual test conditions and the projects with their indi-
vidual developer types, it was shown that the formalization of community smell pat-
terns according to the current proposal of Tamburri et al. (2017) could be extended
[Tamburri et al., 2017]. The results are strongly influenced by individual above-average
communicative participants, leading to misinterpretable insights after an analysis and
therefore influencing project management actions based on it. Bots, which interact with
developers and project files in an automated way, are also not considered in current
analyses of community smell patterns. Due to their increasing numbers, these must
be filtered or treated separately in future research. Additionally, project structure of
the considered communities must be evaluated in any analysis. While the centrality
measures closeness, degree, and betweenness centrality provide a good indication of the
project as a whole, for an effective look at community smell patterns and where they oc-
cur, individual sub-communities within a project should be examined. Especially larger
projects, which fragment in the context of division of labor and specialization, can be
corrected in terms of their management. As smell patterns occur, they are capable
of introducing countermeasures in order to avoid negative consequences due to social
debt.

Automated community smell detection Due to approaches, which use machine learn-
ing to find community smells with a hit rate of 77% [Palomba and Tamburri, 2021] and
89% [Almarimi et al., 2020b], respectively, the implementation for finding community
smells seems obsolete at first glance. However, since both approaches consider the en-
tire dataset in the analysis, they are more computationally expensive than the solution
presented here, which is tailored exclusively to the required data, which is one of the
main reasons in using provenance graphs [Huynh et al., 2018].
The implementation presented is therefore intended to be a guideline of the challenges
that can arise when working with provenance graphs and graph databases and how these
can be decomplicated with sometimes simple modifications. Furthermore, the approach
shown demonstrates the possible courses of action that arise in the context of working
with provenance graphs.

57

6 Conclusion

Provenance Graphs With the increasing complexity of software development and soft-
ware development processes, these must be supported with various tools to enable a
successful project. In the context of this work, it was prototypically shown how prove-
nance graphs from repositories of version control systems can be used by developer
communities in OSS to find patterns with potentially negative consequences. This takes
up the original idea of Schreiber & de Boer to be able to map software processes via
provenance graphs from GitLab and to be able to analyze and optimize these processes
[Schreiber and de Boer, 2020]. Due to the novelty of the tool used to extract provenance
graphs from this platform, the current research is limited to the analysis of a software
project in the context of the Corona Crisis [Sonnekalb et al., 2020][Schreiber, 2020] and
is extended by this work. Through the approach, it was shown how mathematical op-
erations can be used to generate and examine relation folds between developers in OSS
communities. Despite challenges in the analysis, it was possible to show how the work-
flow can proceed from extracting a provenance graph from GitLab, importing it into the
Neo4j graph database, and then analyzing the network with respect to the community
smells framework of Tamburri et al. [Tamburri et al., 2017]. This demonstrates the ver-
satility with which provenance graphs are used in software development. In contrast to
approaches that require analyzing the entire software projects with respect to commu-
nity smells, graphs reduced to provenance data are sufficient to serve this purpose.
Particularly in the context of network randomization, the power of individual compo-
nents and their respective components in provenance graphs becomes apparent. Simple
swaps of relations in adjacency matrices could avoid new sorts of edges via complex algo-
rithms. Nevertheless, due to the structure of the provenance graphs and by multiplying
the re-sorted adjacency matrices, a very high degree of randomization could be achieved.
This shows another form of versatility of provenance graphs and may be useful for future
analysis and research in software development.

Further implications Apart from the critique of the formalization of community smell
patterns and the application areas pointed out, this work gives implications which tools
can be used for the analysis of provenance graphs. Additionally, the challenges en-
countered and the resulting approaches to solving them can provide guidance in the
development of new analysis tools in the face of limited hardware in the field of software
development.

58

Bibliography

[Almarimi et al., 2020a] Almarimi, N., Ouni, A., Chouchen, M., Saidani, I., and
Mkaouer, M. W. (2020a). On the detection of community smells using genetic
programming-based ensemble classifier chain. In Proceedings of the 15th International
Conference on Global Software Engineering, ICGSE ’20, pages 43–54. Association for
Computing Machinery.

[Almarimi et al., 2020b] Almarimi, N., Ouni, A., and Mkaouer, M. W. (2020b). Learn-
ing to detect community smells in open source software projects. Knowledge-Based
Systems, 204:106201.

[Antwerp, 2010] Antwerp, M. V. (2010). The importance of social network structure in
the open source software developer community. In In The 43rd Hawaii International
Conference on System Sciences (HICSS-43.

[Bernardi et al., 2018] Bernardi, M. L., Canfora, G., Di Lucca, G. A., Di Penta, M., and
Distante, D. (2018). The relation between developers’ communication and fix-inducing
changes: An empirical study. Journal of Systems and Software, 140:111–125.

[Bretthauer, 2001] Bretthauer, D. (2001). Open source software: A history. Published
Works.

[Chacon and Straub, 2014] Chacon, S. and Straub, B. (2014). Pro Git. Apress, 2nd ed.
edition edition.

[Conway, 1968] Conway, M. (1968). How do committees invent?

[Crowston and Howison, 2005] Crowston, K. and Howison, J. (2005). The social struc-
ture of free and open source software development. First Monday.

[Crowston and Howison, 2006] Crowston, K. and Howison, J. (2006). Hierarchy and
centralization in free and open source software team communications. Knowledge,
Technology & Policy, 18(4):65–85.

[Crowston et al., 2007] Crowston, K., Li, Q., Wei, K., Eseryel, U. Y., and Howison, J.
(2007). Self-organization of teams for free/libre open source software development.
Information and Software Technology, 49(6):564–575.

[Csárdi and Nepusz, 2006] Csárdi, G. and Nepusz, T. (2006). The igraph software pack-
age for complex network research. undefined.

[Cunningham, 1992] Cunningham, W. (1992). The WyCash portfolio management sys-
tem. OOPSLA ’92.

[Cusick and Prasad, 2006] Cusick, J. and Prasad, A. (2006). A practical management
and engineering approach to offshore collaboration. IEEE Software, 74:201–269.

59

Bibliography

[De Nies et al., 2013] De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth,
P. T., Mannens, E., and Van de Walle, R. (2013). Git2prov: Exposing version control
system content as w3c prov. In International Semantic Web Conference (Posters &
Demos), pages 125–128.

[Dominic et al., 2020] Dominic, J., Houser, J., Steinmacher, I., Ritter, C., and
Rodeghero, P. (2020). Conversational bot for newcomers onboarding to open source
projects. In Proceedings of the IEEE/ACM 42nd International Conference on Soft-
ware Engineering Workshops, ICSEW’20, pages 46–50. Association for Computing
Machinery.

[dos Santos et al., 2011] dos Santos, T. A., de Araujo, R. M., and Magdaleno, A. M.
(2011). Bringing out collaboration in software development social networks. In Pro-
ceedings of the 12th International Conference on Product Focused Software Develop-
ment and Process Improvement - Profes ’11, pages 18–21. ACM Press.

[Ehrlich and Cataldo, 2012] Ehrlich, K. and Cataldo, M. (2012). All-for-one and one-
for-all? a multi-level analysis of communication patterns and individual performance
in geographically distributed software development. In Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work, pages 945–954.

[Fay, 2019] Fay, C. (2019). neo4r.

[Feigenbaum et al., 2012] Feigenbaum, G., Reist, I., and Reist, I. J. (2012). Provenance:
An alternate history of art. Getty Publications.

[Feller and Fitzgerald, 2001] Feller, J. and Fitzgerald, B. (2001). Understanding Open
Source Software Development. AddisonWesley Professional, 1. edition edition.

[Fitzgerald, 2006] Fitzgerald, B. (2006). The transformation of open source software.
MIS Quarterly, 30(3):587–598. Publisher: Management Information Systems Research
Center, University of Minnesota.

[Foucault et al., 2015] Foucault, M., Palyart, M., Blanc, X., Murphy, G. C., and Falleri,
J.-R. (2015). Impact of developer turnover on quality in open-source software. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
pages 829–841. ACM.

[Fowler et al., 1999] Fowler, M., Beck, K., Brant, J., and Opdyke, W. (1999). Refactor-
ing: Improving the Design of Existing Code. Addison Wesley, 1. edition edition.

[Freeman, 1977] Freeman, L. (1977). A set of measures of centrality based on between-
ness. Sociometry, 40:35–41.

[Freeman, 1978] Freeman, L. C. (1978). Centrality in social networks conceptual clari-
fication. Social Networks, 1(3):215–239.

[Frisendal, 2016] Frisendal, T. (2016). Graph data modeling for NoSQL and SQL –
technics publications.

[Girvan and Newman, 2002] Girvan, M. and Newman, M. E. J. (2002). Community
structure in social and biological networks. Proceedings of the National Academy of
Sciences, 99(12):7821–7826.

60

Bibliography

[Granovetter, 1973] Granovetter, M. S. (1973). The strength of weak ties. American
journal of sociology, 78(6):1360–1380.

[Hars and Ou, 2002] Hars, A. and Ou, S. (2002). Working for free? mo-
tivations for participating in open-source projects. International Jour-
nal of Electronic Commerce, 6(3):25–39. Publisher: Routledge eprint:
https://doi.org/10.1080/10864415.2002.11044241.

[Hölsch et al., 2017] Hölsch, J., Schmidt, T., and Grossniklaus, M. (2017). On the per-
formance of analytical and pattern matching graph queries in neo4j and a relational
database. In EDBT/ICDT 2017 Joint Conference: 6th International Workshop on
Querying Graph Structured Data (GraphQ).

[Huynh et al., 2018] Huynh, T. D., Ebden, M., Fischer, J., Roberts, S., and Moreau,
L. (2018). Provenance network analytics. Data Mining and Knowledge Discovery,
32(3):708–735.

[Jarczyk et al., 2014] Jarczyk, O., Gruszka, B., Jaroszewicz, S., Bukowski, L., and
Wierzbicki, A. (2014). GitHub projects. quality analysis of open-source software. In
Aiello, L. M. and McFarland, D., editors, Social Informatics: 6th International Con-
ference, SocInfo 2014, Barcelona, Spain, November 11-13, 2014. Proceedings, Lecture
Notes in Computer Science, pages 80–94. Springer International Publishing.

[Jones, 2001] Jones, D. (2001). Sociometry in team and organisation development.
British Journal of Psychodrama and Sociodrama, 16(1):10.

[Jorgensen, 2019] Jorgensen, M. (2019). Relationships between project size, agile prac-
tices, and successful software development: Results and analysis. IEEE Software,
36(2):39–43. Conference Name: IEEE Software.

[Kalliamvakou et al., 2015] Kalliamvakou, E., Damian, D., Blincoe, K., Singer, L., and
German, D. M. (2015). Open source-style collaborative development practices in
commercial projects using GitHub. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages 574–585. ISSN: 1558-1225.

[Keyes, 2011] Keyes, J. (2011). Social Software Engineering: Development and Collab-
oration with Social Networking. CRC Press.

[Madey et al., 2002] Madey, G., Freeh, V. W., and Tynan, R. (2002). The open source
software development phenomenon: An analysis based on social network theory. un-
defined.

[Magdaleno et al., 2009] Magdaleno, A. M., De Araujo, R. M., and Borges, M. R. D. S.
(2009). A maturity model to promote collaboration in business processes. Interna-
tional Journal of Business Process Integration and Management, 4(2):111–123.

[McDonald and Goggins, 2013] McDonald, N. and Goggins, S. (2013). Performance and
participation in open source software on GitHub. In CHI ’13 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’13, pages 139–144. Association for
Computing Machinery.

[Moreau et al., 2008] Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson,
J., Jiang, S., Munroe, S., Rana, O., Schreiber, A., Tan, V., and Varga, L. (2008). The
provenance of electronic data. Communications of the ACM, 51(4):52–58.

61

Bibliography

[Moreau and Missier, 2013] Moreau, L. and Missier, P. (2013). PROV-DM: The PROV
data model.

[Newman, 2010] Newman, M. (2010). Measures and metrics. In Networks. Oxford Uni-
versity Press.

[Packer et al., 2019] Packer, H. S., Chapman, A., and Carr, L. (2019). Github2prov:
provenance for supporting software project management. In 11th International Work-
shop on Theory and Practice of Provenance (TaPP 2019).

[Palomba et al., 2021] Palomba, F., Andrew Tamburri, D., Arcelli Fontana, F., Oliveto,
R., Zaidman, A., and Serebrenik, A. (2021). Beyond technical aspects: How do com-
munity smells influence the intensity of code smells? IEEE Transactions on Software
Engineering, 47(1):108–129. Conference Name: IEEE Transactions on Software En-
gineering.

[Palomba and Tamburri, 2021] Palomba, F. and Tamburri, D. A. (2021). Predicting
the emergence of community smells using socio-technical metrics: A machine-learning
approach. Journal of Systems and Software, 171:110847.

[Perez-Riverol et al., 2016] Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T.,
Uszkoreit, J., Leprevost, F. d. V., Fufezan, C., Ternent, T., Eglen, S. J., Katz, D. S.,
Pollard, T. J., Konovalov, A., Flight, R. M., Blin, K., and Vizcáıno, J. A. (2016). Ten
simple rules for taking advantage of git and GitHub. PLOS Computational Biology,
12(7):e1004947. Publisher: Public Library of Science.

[Peterson, 2013] Peterson, K. (2013). The github open source development process.
url: http://kevinp.me/github-process-research/github-processresearch.pdf (visited on
05/11/2017).

[Pobiedina et al., 2014] Pobiedina, N., Rümmele, S., Skritek, S., and Werthner, H.
(2014). Benchmarking database systems for graph pattern matching. In International
Conference on Database and Expert Systems Applications, pages 226–241. Springer.

[Pugh et al., 1969] Pugh, D. S., Hickson, D. J., Hinings, C. R., and Turner, C. (1969).
The context of organization structures. Administrative science quarterly, pages 91–
114.

[Raymond, 1999] Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Tech-
nology & Policy, 12(3):23–49.

[Schreiber, 2020] Schreiber, A. (2020). Visualization of contributions to open-source
projects. arXiv:2010.08874 [cs].

[Schreiber and de Boer, 2020] Schreiber, A. and de Boer, C. (2020). Modelling knowl-
edge about software processes using provenance graphs and its application to git-based
version control systems. In Proceedings of the IEEE/ACM 42nd International Con-
ference on Software Engineering Workshops, ICSEW’20, pages 358–359. Association
for Computing Machinery.

[Schreiber and Zylka, 2020] Schreiber, R. R. and Zylka, M. P. (2020). Social network
analysis in software development projects: A systematic literature review. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 30(3):321–362.

[Scott, 2002] Scott, J. (2002). Social networks: Critical concepts in sociology.

62

Bibliography

[Sodeur, 2019] Sodeur, W. (2019). Bavelas (1950): Communication patterns in task-
oriented groups. In Holzer, B. and Stegbauer, C., editors, Schlüsselwerke der Netzw-
erkforschung, Netzwerkforschung, pages 35–38. Springer Fachmedien.

[Sonnekalb et al., 2020] Sonnekalb, T., Heinze, T. S., Kurnatowski, L. v., Schreiber, A.,
Gonzalez-Barahona, J. M., and Packer, H. (2020). Towards automated, provenance-
driven security audit for git-based repositories: applied to germany’s corona-warn-app:
vision paper. In Proceedings of the 3rd ACM SIGSOFT International Workshop on
Software Security from Design to Deployment, SEAD 2020, pages 15–18. Association
for Computing Machinery.

[Tamburri et al., 2013a] Tamburri, D. A., Kruchten, P., Lago, P., and van Vliet, H.
(2013a). What is social debt in software engineering? In 2013 6th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE),
pages 93–96.

[Tamburri et al., 2015] Tamburri, D. A., Kruchten, P., Lago, P., and Vliet, H. v. (2015).
Social debt in software engineering: insights from industry. Journal of Internet Ser-
vices and Applications, 6(1):10.

[Tamburri et al., 2013b] Tamburri, D. A., Lago, P., and van Vliet, H. (2013b). Uncover-
ing latent social communities in software development. IEEE Software, 30(1):29–36.
Conference Name: IEEE Software.

[Tamburri et al., 2017] Tamburri, D. A., Palomba, F., and Kazman, R. (2017). Explor-
ing community smells in open-source: An automated approach. IEEE Transactions
on Software Engineering, 47(3):630–652.

[Team, 2017] Team, R. C. (2017). R: A language and environment for statistical com-
puting.

[Vicknair et al., 2010] Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., and
Wilkins, D. (2010). A comparison of a graph database and a relational database:
a data provenance perspective. In Proceedings of the 48th annual Southeast regional
conference, pages 1–6.

[Vizing, 1963] Vizing, V. (1963). The cartesian product of graphs. Vycisl. Sistemy,
9:30–43.

[Wu and Goh, 2009] Wu, J. and Goh, K. Y. (2009). Evaluating longitudinal success of
open source software projects: A social network perspective. In In Proc. of the 42nd
Annual Hawaii International Conference on System Sciences (HICSS.

[Wu and Tang, 2007] Wu, J. and Tang, Q. (2007). Analysis of survival of open source
projects: a social network perspective. PACIS 2007 Proceedings.

[Yang et al., 2013] Yang, M.-H., Chen, J. C., Tsai, C.-L., and Chao, H.-Y. (2013). In-
vestigating collaborative commerce system from the perspective of collaborative rela-
tionship. Journal of Electronic Commerce Research, 14(1):85.

[Zeini et al., 2012] Zeini, S., Göhnert, T., Hoppe, U., and Krempel, L. (2012). The
impact of measurement time on subgroup detection in online communities. In 2012
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining, pages 389–394.

63

	1 Introduction
	1.1 Motivation
	1.2 Structure

	2 Foundations
	2.1 Open Source Software Development
	2.2 Git
	2.3 Community Smell Patterns
	2.3.1 Social Debt
	2.3.2 Formalized Patterns

	2.4 Provenance
	2.4.1 Definition
	2.4.2 Provenance Data Model
	2.4.3 Git & GitLab Provenance Models

	2.5 Graph Databases
	2.5.1 Neo4j
	2.5.2 Cypher Queries
	2.5.3 prov2neo & neo4r

	2.6 Network Analysis
	2.6.1 Provenance Graph Analytics
	2.6.2 Social Network Analytics

	3 Concept and Implementation
	3.1 Concept
	3.1.1 Extracting & Importing Data
	3.1.2 Transformation Operations
	3.1.3 Using Queries to find Community Smells
	3.1.4 Comparison with Randomized Graphs

	3.2 Implementation
	3.2.1 Data Cleaning
	3.2.2 Folding and Transformation
	3.2.3 Extensions
	3.2.4 Network Randomization
	3.2.5 Developer Analysis
	3.2.6 Network Analysis

	4 Evaluation
	4.1 Graph Properties
	4.2 Community Smells
	4.3 Developer Characterization
	4.4 Randomized Networks
	4.5 Network Analysis

	5 Discussion
	5.1 Community Smell Patterns
	5.2 Developers
	5.3 Performance

	6 Conclusion
	Bibliography

