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Abstract. Scale resolving simulations are indispensable to provide in-depth knowledge
of turbulence in order to improve turbulence modelling approaches for turbomachinery
design processes. However, the inflow conditions of spatially evolving turbulent flow sim-
ulations are of utmost significance for the accurate reproduction of physics especially for
Large Eddy Simulations. The present paper compares two approaches to introduce syn-
thetically generated velocity fluctuations for Large Eddy Simulations: an inflow boundary
condition and a source term formulation. In case of the boundary condition the velocity
fluctuations are added to the mean velocity components at the inlet panel of the com-
putational domain. The source term formulation uses an additional volume term in the
momentum equation to add the fluctuating velocity field at an arbitrary location. The
functionality of these methods in combination with the synthetic generation of fluctu-
ations is validated in the generic test case of spatially decaying homogeneous isotropic
turbulence. Furthermore, the spatial variation and anisotropy of turbulent statistics in a
turbulent boundary layer as well as the development length of the different combinations,
needed to reach a fully developed flow, are analysed for a turbulent channel flow.

1 INTRODUCTION

In order to design less noisy, more efficient and resource-conserving jet engines, the cor-
rect representation of turbulent flow structures in Computational Fluid Dynamics (CFD)
is of crucial importance. Since Reynolds-averaged Navier-Stokes (RANS) modelling is
prone to show inaccuracies in regions where strong streamline curvature, separation, tran-
sition, relaminarization and heat transfer play a role, scale resolving simulations are indis-
pensable [1]. Despite the enormous increase in computational power, scale resolving sim-
ulations, e.g. Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES),
will not be part of the industrial design process in the coming decades. Nevertheless,
through the gains in knowledge of turbulence provided by LES, which are a compromise
between accuracy and computational costs, RANS models in industrial application will
continuously be enhanced.
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However, the prescribed inflow conditions of spatially evolving turbulent flow simula-
tions are of utmost importance for the accurate reproduction of physics for LES. Tabor
and Baba-Ahmadi [2] distinguish between two different approaches in order to obtain
adequate inflow conditions including turbulent fluctuations. On the one hand, there is
the Precursor Simulation Method, in which the inflow conditions are created performing
a separate precomputation. Due to the fact that such an approach is not always fea-
sible for industrial applications, another procedure based on statistical quantities such
as Reynolds stresses and integral values, called Synthetic Turbulence Generator (STG),
emerged. The goal of an STG is the synthetical generation of velocity fluctuations with
respect to the correct representation of integral quantities like length and time scales. The
mapping of the characteristic turbulent energy cascade characterized by coherent vortex
structures is essential in order to judge the functionality of these methods. Furthermore,
a practice-oriented STG should be able to reproduce the isotropy of turbulence as well as
the anisotropy in a turbulent boundary layer. Druault et al. [3] show that synthetically
generated velocity fluctuations, which simply follow a Gaussian distribution, consequently
lacking any fluid mechanics background, are not able to reproduce the expected turbulent
flow field. Therefore, the supply of correct spatial and temporal correlations for the STG
is the key for the occurrence of fully evolved, realistic turbulent structures. A decisive
criterion for the valuation of an STG is the development length, which characterizes the
covered distance of the flow before realistic turbulence is established. There are many
STG approaches to fulfil the criteria mentioned above. Keating et al. [4], e.g., review
different methods of prescribing inflow conditions for LES.

In this paper we employ the STG suggested by Shur et al. [5], based on Fourier recon-
struction of the fluctuating velocity field using wave vectors with uniformly distributed
random directions. The goal of this paper is to compare two approaches for introduc-
ing the synthetically generated velocity field into the CFD domain: an inflow boundary
condition and a source term formulation. In case of the boundary condition the velocity
fluctuations are added to the mean velocity components at the inlet panel of the computa-
tional domain. The volume source term by Schmidt and Breuer [6], which was originally
combined with an STG method based on a digital filter concept, uses an additional source
term in the momentum equation to add the fluctuating velocity field at the desired loca-
tion in the volume. This numerical flexibility results in the possibility to use coarser grids
upstream of the source term location due to the absence of turbulent fluctuations.

This paper is organized as follows: First, the theory of the applied Fourier-technique
is outlined. The two approaches to introduce the fluctuations generated by the STG are
stated subsequently. Section 3 presents the simulation results, before the last section
summarizes the results and issues an outlook.

2 NUMERICAL METHODS

The synthetic generation of turbulent fluctuations is performed using the parallelized
multi-block CFD-solver TRACE, which is being developed by the DLR’s Institute of
Propulsion Technology with focus on turbomachinery [7]. TRACE solves the compress-
ible, unsteady filtered Navier-Stokes equations according to the LES approach. In this



Marcel Matha, Christian Morsbach and Michael Bergmann

context we use the cell-centred finite-volume method, whereby a fraction of ¢ = 1073 of
Roe’s numerical flux [8] is added to a central flux. Second order accuracy for the advec-
tive fluxes is achieved by applying van Leer’s MUSCL extrapolation [9] as well as for the
viscous fluxes via a central finite difference scheme. An explicit Runge-Kutta algorithm
with third order accuracy is used to obtain precise and robust time integration for the
unsteady computations. The general concept of the STG of Shur et al. [5], which em-
ploys ideas of Kraichnan [10], is described in the following, whereupon the two methods
to introduce the synthetically generated fluctuations into the flow field are discussed.

2.1 Synthetic turbulence generation

The parts of the formulation of the STG stated here, are important to understand the
general concept to obtain turbulent velocity fluctuations. For detailed explanatory notes
on this approach, the reader is referred to the original publication [5].

Similarly to the statistical turbulence modelling the velocity vector can be split in a
mean velocity u (r) and a synthetically generated fluctuating part u, (r,#). The velocity
at a point r = {z,y, z} reads:

u(r,t) =u(r) +ul,(r,t) (1)

A transformation is used to express the velocity fluctuations in Equation (1):

Uy (T, 1) = a0 (r,t) (2)
By means of the introduction of the fluctuating vector v”, which satisfies the restrictions
v = 0 and vj'v] = d;;, the Reynolds stresses are correct owing to the definition of the
tensor A. The Cholesky decomposition of the Reynolds stress tensor, 7;; = AAT, leads

to:
Tex 0 0

A={ay} = T/ Tyy — G2, 0 (3)
Fsz/ax:c (sz - ayz‘az:c) /ayy \/TZZ - aga} - agy

In order to determine the velocity fluctuation in Equation (2) the fluctuating vector v”
has to be computed:

v'(r,t) = 2\/%2 V@' [o" cos (KMd"™ - 1’ + ¢M)] (4)

Here:

e N is the number of modes

e ¢" is the normalized amplitude of the mode n, defined by the local energy spectrum
and determined from a modified von-Karman spectrum

e d” is a random unit vector of direction uniformly distributed over a sphere

e k" is the amplitude of the wave vector of the mode n: k™ = k"d"

3
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e ¢" is a unit vector normal to d" (¢™ -d" = 0)
e ¢" is the phase of the mode n (random number, uniformly distributed in [0, 27))

As all quantities in Equation (4) are defined only once before the start of the simulation,
there is no time-dependency so far. Thus, Shur et al. [5] propose the use of a pseudo-
position vector

, x! kn mai?le(r)} (ZL’ - umacrot)
r= Y = Y ) (5)
2 z

whereby Unacro Tepresents a macro-scale velocity.

2.2 Inflow formulation of the STG

The synthetically generated velocity fluctuations in Equation (2) are added to the
mean velocity component in the respective direction according to Equation (1). The
superposition takes place at the inlet of the computational domain, resulting in a Dirichlet
boundary condition for the simulation.

2.3 Source term formulation of the STG

As the source term formulation is based on the concept of Schmidt and Breuer [6],
which uses an additional source term Sgyy,, in the momentum equation, the reader is
again referred to the original publication for all details of the approach.

Subtracting the initial momentum equation from the modified one including the addi-
tional source term, while assuming that the advective and diffusive fluxes do not change
because of the introduction of this term, yields the formulation of the source term:

0
/ Sapmans dV = / L ] gy (6)

In order to avoid rapid relaminarization the time derivative in Equation (6) is replaced
by the integral time scale Tr:

/i
/ Sy dV = / [‘";i—yn”']dv (7)
T

\% 1%

Additionally, the time scale can be interpreted as a relaxation time needed to react to
disturbances, hence the time step should be much smaller (At < Tr) preventing a rapid
and strong system response. Moreover, to avoid discontinuities and ensure a fast spatial
development of turbulent structures, the amplitude of the source term is scaled with a
Gaussian distribution according to the streamwise distance d = |z — xgr| to the origin of
the source term zgr and the integral length scale Lp:

md?
SSE2 (0) = S0 (51 ) )
S—_— ——
G
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Based on the Taylor’s hypothesis for u; > u/, the integral time scale is computed using
the streamwise velocity component u, and the integral length scale:
Ly
Tr=— 9
r= (9)
The source term Sgyn ., is calculated at xgr for each time step and distributed in stream-
wise direction according to the exponential function G.

3 RESULTS & DISCUSSION

The inflow and source term formulation in combination with the STG, described above,
are investigated in the generic test case of spatially decaying homogeneous isotropic tur-
bulence and a turbulent channel flow application.

3.1 Spatially decaying homogeneous turbulence

The fundamental functionality of the STG in combination with the methods to intro-
duce the fluctuations into the CFD domain is evaluated by a spatially decaying homo-
geneous turbulence test case. The test case with a Mach number of 0.1 features peri-
odic boundary conditions perpendicular to the streamwise direction. Thus, lacking any
shear layer and production of turbulence after adding the synthetically generated turbu-
lent fluctuations, the spatial decay takes place. Multiples of the turbulent length scale,
8nLy X 2wLy X 2w Ly with Ly = 0.001m, represent the domain size discretized on a
mesh of 128 x 32 x 32 rectangular hexahedra. The origin of the source term is located
at rgr = %Lx. One axial through-flow of the domain is resolved with 2304 time steps.
After two through-flows the averaging of the flow variables starts, while 22 through-flows
are simulated. The subgrid stresses are computed by the Smagorinsky model [11].

% 2 o "o
{gﬁ‘ 84 Qe ~ =%
0.6 0 i
| 2
@, [1/s]: -40000 40000 ®, [1/s]: -40000 40000
(a) Inflow formulation (b) Source term formulation
Figure 1: Spatial development of vortex structures illustrated by isosurface Ay = —0.0025 and streamwise

vorticity component in X Z-plane

The difference in the functionality is illustrated in Figure 1. Whereas vortex struc-
tures are only present downstream of the source term position in picture 1(b), the inflow
formulation leads to an immediate decay of vortex structures from x/L, = 0 onwards.
Furthermore, it is observed that the inflow formulation introduces less turbulence kinetic
energy compared to the source term formulation, see Figure 2 and Figure 3. Whereby
Ax = x—xgr represents the relative distance referred to the source term origin. However,
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the STG does not generate fully isotropic turbulence as specified by the input parameters.
With increasing distance from the location, where the superimposition of the turbulent
fluctuations to the flow field takes place, the differences between the normal stresses re-
turn to isotropy, also indicated by the convergence to zero of the shear stress components,

due to the absence of velocity gradients.

/ N ‘ — Inflow formulation
10 N ‘ — - Source term formulation
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Figure 2: Turbulence intensity with reference to input parameter T'ug
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Figure 3: Reynolds stresses with reference to input Reynolds stress (u”u!’)o

Based on simulations with 10 times the simulation duration as before, respectively
220 through-flows, energy spectra resulting from autocorrelations are computed. Figure
4 shows the Fourier transform of the autocorrelations, i.e. the Power Spectral Den-
sity (PSD), at constant locations. Both formulations lead to an early evolution of the
characteristic spectrum, as the —5/3 law in the inertial range is already recognizable at
x/L, =~ 0,18, respectively Ax/L, =~ 0,18. With increasing distance covered the inertial
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range becomes even pronounced, because of the evolution from superimposed, syntheti-
cally generated fluctuations to physical turbulent structures.
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Figure 4: PSD scaled with input velocity ug and turbulent length L1 of the spatially decaying turbulence

3.2 Channel flow

In order have a look at the spatial variation and anisotropy of turbulent statistics in
a turbulent boundary layer, the STG is applied in a turbulent channel flow. To enforce
the Reynolds number based on the friction velocity Re, = 395, a constant body force
source term in the streamwise momentum equation is used. In order to minimize com-
pressibility effects, the Mach number is set to 0.1. A reference solution, which is the result
of a periodic channel, is required to investigate the development length of the STG in a
finite-dimensional channel flow application. Therefore, the computational domain of the
periodic channel is set up with periodic boundaries in streamwise direction as well as in z-
direction. The domain size is defined by multiples of the channel half-height 6 = 0.006m.
For the periodic case this results in 276 x 26 x md on a mesh of 72 x 54 x 72 rectangular
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hexahedra. The finite-dimensional channel is 5 times longer and has 360 x 54 x 72 cells.
The corresponding grid steps in wall units are Azt ~ 34, Azt ~ 17, Ayl ~ 0.6 and
Ayt~ 35, whereby the grid resolution was chosen on the basis of a compromise between
accuracy and computational costs. The origin of the source term is located at zgr = 1—10La:-
In case of the periodic channel, the whole domain is initialized by the superimposition of
the velocity fluctuations generated by the STG and the mean velocity components, while
the inflow and source term formulation is applied to the finite-dimensional channel. Based
on the investigations of Bergmann et al. [12] a statistical averaging of the flow variables
takes place after a transient phase of 20 eddy turnover times ETT = tu,/d. Both cases
are resolved with 40 ETT, resulting in approx. 50 through-flows in the periodic case
and approx. 20 through-flows in the finite case. The WALE model is applied in order to
obtain the subgrid stresses for the LES [13].
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Figure 5: Development of velocity profiles in streamwise direction

Hereinafter, the spatially evolving LES results labelled with a specification of location
are compared with the solution of the periodic channel and incompressible DNS results
of Iwamoto et al. [14]. The streamwise velocity profile scaled with the friction velocity
Uy~ = U, /u, shows agreement in the viscous sublayer with the DNS results, whereas the
differences become larger in the log-law region, see Figure 5. Starting from the initial-
ization by the averaged periodic solution, the velocity profiles of the inflow formulation
in Figure 5(a) tend to greater values as far as z/§ ~ 5, where this effect is eventually
reversed yielding convergence to the periodic solution. This turning point can be identi-
fied as the minimum in the friction coefficient in Figure 6. Based on the comparison with
the periodic solution, the development length of the inflow formulation is determined to
20z /6. Keating et al. [4] identified a similar development length for an STG based on
Batten et al. [15], which is also a modified version of the method proposed by Kraichnan
[10]. By employing a zonal RANS-IDDES (Improved Delayed Detached Eddy Simulation)
approach, Shur et al. [5] stated a shorter development length of their own STG.
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Figure 7: Development of Reynolds stresses in streamwise direction for the inflow formulation
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When having a look at the Reynolds stresses in Figure 7, whereby

e~ ——
wiu = ufulful (10)

the overestimation of the velocity profile can also be recognized by the root mean square
(RMS) of the streamwise velocity fluctuations. In general the Reynolds stresses increase
with covered distance ending in no realistic results at x/d > 28.5, respectively Az /§ > 25.4
for the source term approach. The shape of these last profiles is due to the effect of the
exit boundary condition. The streamwise velocity profile of the source term formulation
differs extremely from the DNS results next to Az/d = 0, i.e. approximately the source
term position xgyr. This is because of the formation of a laminar velocity profile out of the
prescribed turbulent one without fluctuations, identified as the drop in friction coefficient
upstream of the source term location in Figure 6. The synthetically generated fluctuations
tend to laminarize directly after adding to the flow field, as the decrease in shear stress
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Figure 8: Development of Reynolds stresses in streamwise direction for the source term formulation

10



Marcel Matha, Christian Morsbach and Michael Bergmann

can also be recognized downstream of the superimposition for the inflow formulation.
Going across the source term position, an increase of friction resulting in an overshoot is
observed. Subsequently, the friction coefficient reaches a plateau, so that the source term
formulation features the same development length of 20Ax/d as the inflow formulation.
Schmidt and Breuer [6] present a similar development length and progression in friction
coefficient for the source term formulation applied to hybrid simulations (RANS-LES).
The overestimation of the fully developed friction coefficient compared to the periodic
solution, can be seen in [6] as well. Furthermore, it is noticeable that the LES results in
close vicinity to the source term position have the smallest discrepancy to the velocity
profile of the DNS at y* < 70, whereas the longer the distance from the source term
location the better the approximation holds for y™ > 70. In contrast to the inflow
formulation, the Reynolds stresses of the source term formulation, illustrated in Figure 8,
indicate that there is no turbulence kinetic energy upstream of the source term location,
as the flow field has not experienced the total impact of the source term yet. Downstream
of the source term origin the stresses develop due to the formation of a boundary layer
associated with the production of turbulence in the same way as they do when applying the
inflow formulation. In comparison to the inflow formulation, the normal stress component
in z-direction and the shear stress of the source term formulation coincide better with the
DNS results, while there is no difference with reference to accordance in x- and y-direction
of the normal stresses.

4 CONCLUSIONS

In this work, we investigated the performance of the STG by Shur et al. [5] in combi-
nation with two approaches to introduce the fluctuations into the flow field. The inflow
and the source term formulation, based on Schmidt and Breuer [6], showed very similar
results in the isotropic as well as in the anisotropic, wall-bounded test case, confirming
their functionality. Thus, the STG in combination with the inflow or the source term for-
mulation is capable to represent the turbulent energy spectrum as well as the turbulent
boundary layer profiles of streamwise velocity and second-order moments. One benefit of
the source term formulation is the opportunity to apply existing non-reflecting boundary
conditions without modification, whereas the inflow formulation requires an adaption of
the inlet boundary condition to superimpose the fluctuations. Moreover, since the source
term formulation provides the flexibility to introduce turbulent fluctuations at an arbi-
trary position in the flow field, where the grid is sufficiently fine and consequently the
damping of small turbulent structures is negligible, this method should be considered
for future simulations requiring turbulent fluctuations in the inflow for turbomachinery
applications.
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