Economic analysis of a hybrid battery storage system providing frequency containment reserve in Germany considering future developments

Knowledge for Tomorrow

Patrick Draheim

7th December 2021

PhD-day EERA PhD-day Energy Storage: Techno-economics and Sustainability

DLR Institute of Networked Energy Systems

Agenda

- 1. <u>Business Cases for hybrid BESS concepts</u>
- Research Project "HyReK 2.0"
- Frequency Containment Reserve and the HyReK-Concept
- Economic Assessment Results
- Conclusion of Project Results
- 2. Circular Economy for BESS
- First concepts and ideas

Source: DLR VE

Potential PhD Topic 1 Business Cases for hybrid battery energy storage system (BESS) concepts

Source: IRENA (2017)

Starting Point

- BESS are key to the energy transition (e.g. IRENA 2017)
- Strong BESS price decrease expected, offering new opportunities
- Business cases are necessary for the success of innovations (de Medeiros et al. 2013)
- · Sector coupling concepts have a high potential

Possible Research Question

• How can business cases for short-term energy storage systems in combination with sector coupling (e.g. hybrid BESS) be established while supporting the energy transition?

Why hybrid BESS?

"HyReK 2.0": Research Project and Concept

- Project Title: "HyReK Hybrid Regulating Power Station 2.0" (11/2018 10/2021)
- System installed in Bremen, Northwest Germany
 - Li-ion battery storage system (BESS) of 18 MW power and 14.2 MWh capacity
 - PtH-unit (electric boiler) of 18 MW capacity linked to the battery storage and a heat storage
- Project partners: Stadtwerke Bremen (SWB), AEG Power Solutions, DLR Institute of Networked Energy Systems
- Access to high quality data thanks to industry partners

Federal Ministry for Economic Affairs and Energy

Supported by:

on the basis of a decision by the German Bundestag

Frequency Containment Reserve (FCR) in Germany

- First (=primary) balancing measure among the ancillary services if the power grid frequency deviates from the nominal value of 50 Hz
- FCR-providing systems have to be able to supply and absorb power
- Market is organized in an auction
- BESS are highly qualified for FCR provision
 - Fast response
 - Power supply and absorption
- More than 400 MW BESS for a total of 573 MW market capacity, prices have been falling since 2015

Source: Figgener et al. (2020)

Frequency Containment Reserve The HyReK-Concept

- Hybrid setup allows heat generation if the battery is fully charged
- \rightarrow PtH unit replaces part of the battery
- In theory, the HyReK has two main advantages compared to BESS
- 1. Lower battery capacity necessary for same FCR power output
 - BESS require 0.7 MWH and HyReK 0.5 MWh for each MW FCR (Schlachter et al. 2020)
 - \rightarrow Lower initial investment, saving battery resources
- 2. Second revenue stream by selling heat
 - \rightarrow Higher revenues

 \rightarrow HyReK is a smart way of using sector coupling for FCR \rightarrow Existing system has proven to function well in practice

HyReK

Icon sources: 123rf.com Flaticon.com

Frequency Containment Reserve HyReK Economic Assessment

Source: Willenbrock et al (2021)

Base Assumptions

Lifetime

 Initial investment costs 10.5 million € 2019 Price and Frequency data Discount Rate 6 % 15 years Heat revenue 10 €/MWh 157 €/MWh Heat taxes

HyReK operational costs are high due to PtH taxes

→ About 13 % (2 million \in) of the total costs account for PtH taxes

 \rightarrow The HyReK cannot unfold its full sector coupling potential under the current tax framework

Frequency Containment Reserve HyReK Economic Assessment – Sensitivity Analysis

Base Assumptions

•	Initial investment costs	10,5 million €
	 Optimized Dimensioning (-3.5 MWh) 	
	 Battery Costs (-44 %) 	7,5 million €
•	Price data	2019
•	Discount Rate	6 %
•	Lifetime	15 years
•	Heat revenue	10 €/MWh
)	Heat taxes	157 €/MWh

- Battery costs could decrease by 70% until 2030 (IRENA 2017)
- · Lower investment costs lead to considerably higher profitability

→ Battery cell cost decrease could heavily influence the profitability of the HyReK within the next years

Frequency Containment Reserve HyReK Economic Assessment – Sensitivity Analyses

- + FCR Price decrease 2015-2019: ~ 57 %
- FCR prices are another main parameter for the economic profitability of HyReK
- Future development hard to predict due to non-transparent market
- \rightarrow FCR has become a volatile and risky market
- → New applications/business models

Source: Willenbrock et al (2021)

FCR price change in %

Further Business Models HyReK Economic Assessment

Arbitrage Trading

- = Capitalizing price difference on electricity markets
- Current literature indicates strong battery strain and high degradation
- Revenues are not sufficient to justify the degradation

Peak Shaving

- = Avoiding peak load charges (e.g. industry consumers)
- Profitability highly dependent on load profile
- · General statements are difficult

→ In the future, higher cycle stability and lower battery costs might offer new opportunities

Source: Draheim et al. (2020)

Why focus on hybrid BESS?

- 1. There is a high cost-saving potential of hybrid solutions
- \rightarrow However, sector coupling is currently avoided due to PtX taxes
- 2. FCR as a single application for large BESS is not economically profitable
- \rightarrow Price are low and hard to predict, market requirements are changing
- \rightarrow New business models are possible, especially for hybrid concepts
- 3. Battery cell cost are going to decrease
- \rightarrow Influence on the economics of (hybrid) BESS and its applications

Potential PhD Topic 1 Business Cases for BESS and sector coupling

Possible Results

- Identification of attractive (new) applications or combinations
- Iucrative BESS sizes depending on served applications could be identified
- Specific political measures are necessary to promote sector coupling (tax reliefs) and cost-efficient ancillary service provision

Challenges

- Many institutes research in business cases for BESS, there are many contributions with regards to standalone BESS already.
- Currently, there are many "ifs" regarding possible future applications or markets (black start, momentary reserve)
- · Hybrid concept does not make economic sense
- → Maybe regulatory framework for sector coupling needs to be set first

Source: Englberger et al. (2020)

Potential PhD Topic 2 Circular Economy for BESS

Starting Point

- Global battery demand is expected to increase 14-fold by 2030 (WEF 2019)
- Use of second-life batteries has a high environmental and economic potential (Haram et al. 2021)
- Investment profitability is a main sucess factor of (sustainable) innovations (de Medeiros et al. 2013)
- Data availability is very scarce

Potential PhD Topic 2 Circular Economy for BESS

Possible Research Questions

Business Models for Second life Applications

- Which business models for second-life BESS are possible? Which first-life application could fit which second life application?
- Which regulatory adaptions are necessary to ease second-life applications of BESS? (e.g. safety)

Recycling economics

- How can the recycling of large amounts of BESS be organized? (infrastructure, cell design)
- What is the energy demand of energy-intensive recycling processes?
- Is their justified from an environmental and economic perspective (also regarding the general increase in electricity demand)?

Challenges

 Regulatory and technical questions might have to be answered first, before economic questions can be addressed

DLR.de/ve • Chart 16 > EERA JP 6 PhD-day > Patrick Draheim > 7th December 2021

Thank you!

References

- de Medeiros, Janine Fleith; Duarte Ribeiro, Jose Luis; Cortimiglia, Marcelo Nogueira. Success factors for environmentally sustainable product innovation: a systematic literature review. (2014) Journal of Cleaner Production 65. <u>https://doi.org/10.1016/j.jclepro.2013.08.035</u>
- Draheim, Patrick; Schlachter, Uli; Wigger, Henning; Worschech, Alena; Brand, Urte; Diekmann, Theys; Schuldt, Frank; Hanke, Benedikt; von Maydell, Karsten; Vogt, Thomas (2020) Business case analysis of hybrid systems consisting of battery storage and power-to-heat on the German energy market. Utilities Policy, 67. Elsevier. <u>https://doi.org/10.1016/j.jup.2020.101110</u>
- Englberger, Stefan; Josse, Andreas; Hesse, Holger. Unlocking the Potential of Battery Storage with the Dynamic Stacking of Multiple Applications (2020) Cell Reports Physical Science 1 (11). <u>https://doi.org/10.1016/j.xcrp.2020.100238</u>
- Figgener et al.; The development of stationary battery storage systems in Germany status 2020; Journal of Energy Storage 32; 2020; <u>https://doi.org/10.1016/j.est.2020.101982</u>
- Haram, Mohammed Hussein Saleh Mohammed; Lee, Jia Woon; Ramasamy, Gobbi; Ngu, Eng Eng; Thiagarajah, Siva Priya; Lee, Yuen How (2021). *Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental impact, assessment, and challenges.* Alexandria Engineering Journal 60 (5); <u>https://doi.org/10.1016/j.aej.2021.03.021</u>
- IRENA (2017), *Electricity Storage and Renewables: Costs and Markets to 2030*, International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-038-9
- Schlachter, Uli; Worschech, Alena; Diekmann, Theys; Hanke, Benedikt; Maydell, Karsten von (2020) Optimised capacity and operating strategy for providing frequency containment reserve with batteries and power-to-heat. Journal of Energy Storage. Elsevier. <u>https://doi.org/10.1016/j.est.2020.101964</u>
- World Economic Forum (WEF) A Vision for a Sustainable Battery Value Chain in 2030 Unlocking the Full Potential to Power Sustainable Development and Climate Change Mitigation (2019) Cologny/Geneva, Switzerland.
- Wigger, Henning; Draheim, Patrick; Brand, Urte; Vogt, Thomas (2020) *Environmental and economic analysis of sector-integrating hybrid battery energy storage systems.* 2nd Life Cycle Innovation Conference, 26-28. Aug 2020, Berlin, Germany.
- Willenbrock, Clemens (2021) Entwicklung eines ökonomischen Bewertungsmodells für Energietechnologien und Anwendung auf ein Hybridregelkraftwerk unter Berücksichtigung potenzieller zukünftiger Szenarien. Masterarbeit, Technische Universität Hamburg.
- Wrede, Insa (2020). Ein ungehobener Schatz: Recycling von E-Auto-Batterien. Online verfügbar unter https://www.dw.com/de/ein-ungehobener-schatz-recycling-von-e-auto-batterien/a-51996406 (accessed 09.08.2021).

