Acoustic Mach number, jet Mach number or jet speed – what is the optimal control property for jet noise experiments at AWB

Christian Jente

Jet experiment, ISA norm conditions and implications on temperature control

ISA norm test conditions are defined as:

- Acoustic chamber/room pressure
- Acoustic chamber/room temperature
- · Isothermal velocity profile

$$p_0$$
: = 101325 Pa

$$T_0$$
: = 288.15 K (15° C)

$$T_j = T_0$$

Definition of Operational conditions

Operational conditions can be defined by

- Jet velocity
- Jet Mach number
- · Acoustic Mach number

$$U_j$$

$$M_j \coloneqq U_j/\sqrt{\gamma R T_j}$$

$$M_{ac} \coloneqq U_j/\sqrt{\gamma R T_0}$$

Heat requirements for testing ISA-cold air flow

The measurement of a certain jet velocity requires a moderately heated pressurized air supply - even for cold testing at $15^{\circ}C$:

- Definition for jet velocity
- Definition for jet Mach number

15°C
$T_{tj} = T_j + U_j^2 / (2c_p)$
$T_{tj} = T_j \left(1 + \frac{\gamma - 1}{2} M_j^2 \right)$
=0.2 (cold air)

			for Ø100mm nozzle:	
Jet Mach	Jet temperature		mass flow	heat flow
number			rate	rate*
Mj [-]	Ttj [K]	Ttj,ISA [°C]	ṁ [kg/s]	Q [kW]
0	288	15	0.0	0
0.5	303	29	1.64	24
0.6	309	36	1.96	41
0.7	316	43	2.29	65
0.8	325	52	2.62	97
0.9	335	62	2.95	138
1	346	73	3.27	189

^{*}compared to cold/unheated supply piping at T_t=15°C

Ffowcs-Williams' modification of Lighthill's theory

10th AIAA/CEAS Aeroacoustics Conference

AIAA 2004-2946

10th AIAA/CEAS Aeroacoustics Conference, Manchester, England 10-12 May 2004

AIAA-2004-2946

AIAA-2004-2946

Noise Scaling for Unheated Low Aspect Ratio Rectangular Jets

K. C. Massey*, K. K. Ahuja[†], and R. Gaeta[‡] Georgia Institute of Technology, GTRI/ATASL Aerospace and Acoustics Technologies Branch Atlanta, Georgia 30332-0844

[p.5] The classical result for estimating the acoustic intensity of noise from a jet issuing into a quiescent medium from Lighthill's theory, modified by Ffowcs-Williams²⁴ is; Same jet nozzle

relevant for temperature behaviour of ops

$$I \propto \frac{\rho_{_{m}}^{2} U_{_{j}}^{8} D_{_{j}}^{2}}{\rho_{_{o}} a_{_{o}}^{5} R^{2}} \frac{1}{\left|1 - M_{_{c}} \cos(\theta)\right|^{5}}$$
(6)

Same microphone position

[24] Ffowcs-Williams, J. E. The Noise from Turbulence Convected at High Speed Phil. Trans. Royal Society, 1963.

Temperature effects according to Ffowcs-Williams

Ffowcs-Williams:
$$I \sim \frac{\rho_m^2 U_j^8}{\rho_0 a_0^5}$$
 (5)

& mixed density (rough assumption):
$$\rho_m \sim \sqrt{\rho_j \rho_0}$$
 (6)

& ideal gas law jet, subsonic outlet
$$\rho_j = \frac{p_0}{RT_j} \tag{7}$$

FW rewritten:
$$I \sim \gamma p_0 \frac{U_j^2}{\gamma R T_j} \cdot U_j \cdot \frac{U_j^5}{a_0^5}$$
 (8)

FW with Mach # def.:
$$I \sim \gamma p_0 \cdot M_j^2 \cdot U_j \cdot M_{ac}^5$$
 (9)

FW
$$\gamma p_0 = const.$$
:
$$I \sim M_j^2 \cdot U_j \cdot M_{ac}^5$$
 (10)

Please, feel invited to comment on this and/or provide your favorite correction for testing jet noise at non-isothermal static temperatures christian.jente@dlr.de

Correction terms for testing with acoustic Mach number, jet Mach number or jet speed

$$I \sim \frac{U_j^2}{T_j} \cdot U_j \cdot \frac{U_j^5}{T_0^{5/2}}$$

$$I \sim U_j^8 \cdot \frac{1}{T_j} \cdot \frac{1}{T_0^{5/2}}$$
(12)

Acoustic Mach number testing

$$I \sim M_{ac}^8 \cdot \frac{T_0^{3/2}}{T_i} \tag{11}$$

Jet Speed testing

$$I \sim M_j^8 \cdot \frac{T_j^3}{1} \cdot \frac{1}{T_0^{5/2}} \tag{13}$$

Isothermal measurement?

→ Jet noise scales with power 8 of jet velocity as well as acoustic and jet Mach number

AWB-conditions?

 \rightarrow Jet too cold T_{tj}=13°C / ac. room too warm T₀=23°C (compared to 15°C ISA)

Correction curves for operations at AWB

- Sensitivity:
 U_{jet} & M_{ac} opposite to M_i
- For smallest delta to ISAconditions:

Choose jet speed U_j as control parameter at AWB

Questions / Comments?

Acknowledgements

The EU DJINN (Decrease Jet Installation Noise) project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861438. DJINN is a collaborative effort between CFD-Berlin (coordinator), Airbus SAS, Dassault Aviation, Safran Aircraft Engines, Rolls-Royce Deutschland, ONERA, DLR, University of Southampton, CERFACS, Imperial College London, von Karman Institute, CNRS, and Queen Mary University of London.

