Second WAW Quantum Computing Introductory Talk

Wissen für Morgen

Michael Epping Peter Ken Schuhmacher

- based on talks of the HPC Seminar -

Quantum Computing Group

High-Performance Computing Institute for Software Technology

November 3rd, 2021

Outline

How to build a quantum computer

State of Development

What Quantum Computers can do

And what they can't

Original Idea

- Challenge: the Hilbert space dimension of a quantum system scales **exponentially** with the number of particles
 - $\rightsquigarrow\,$ Simulation of quantum systems is hard for classical computing machines
- Solution: Use the exponentially large Hilbert space of quantum systems as a **resource** for computing

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy." Richard Feynman, "Simulating Physics with Computers", 1st conf. on Phys. and Comp., MIT (1981)

Superposition

- Single qubit basis: $|0\rangle$, $|1\rangle$
- Composite system via tensor product. Basis: $|0\rangle \otimes |0\rangle$, $|0\rangle \otimes |1\rangle$, $|1\rangle \otimes |0\rangle$, ...
- Superposition-principle introduces "intermediate" states, e.g.

$$|\psi
angle = rac{1}{\sqrt{2}}\left(|0
angle \otimes |0
angle + |1
angle \otimes |1
angle
ight)$$

•
$$|\psi
angle
eq$$
 $|\phi
angle\otimes|\chi
angle$ \rightsquigarrow entanglement

DiVincenzo's Criteria

Requirements for quantum computers¹:

- 1. scalable
- 2. initializable
- 3. low noise
- 4. a universal set of gates
- 5. readout

¹D.P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschr. Phys. **48**: 771-783 (2000)

Quantum Error Correction (QEC)

- Quantum information is prone to noise.
- Any noise can be decomposed into:
 - 1. bit-flips $|0\rangle \mapsto |1\rangle, |1\rangle \mapsto |0\rangle$
 - 2. phase-flips $|0\rangle \mapsto |0\rangle, |1\rangle \mapsto |1\rangle$
- It's not possible to copy quantum states (No-Cloning-Theorem)!
- Create redundancy via entangled multi-qubit states, e.g.

$$\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle \longrightarrow \alpha \left| 000 \right\rangle + \beta \left| 111 \right\rangle$$

• We need five qubits to correct both error types.

Threshold Theorem

- Error correction is implemented via noisy gates.
- Increasing the code size improves the capabilities, but requires more gates.
- There is a threshold gate fidelity for where more error correction helps.
- High fidelities (e.g. 99.99%) with many qubits (e.g. 10⁶) enable arbitrary long computation.

Image: Google (Martinis group)

www.DLR.de • Chart 8 > 2021-11-03 > DLR-SC > 2nd WAW Intro

How to build a quantum computer

State of Development

What Quantum Computers can do

And what they can't

Development Levels¹

- Level A: Basic functionality
 - \geq 2 qubits, gate operations, readout
- Level B: Quality

Gate error rates below error correction threshold

- Level C: Quantum Error Correction Quantum error correction helps
- Level D: Fault-tolerant operations Fully error corrected universal gates
- Level E: Algorithms
 Complex algorithms have been

Complex algorithms have been executed

¹ F.K. Wilhelm et. al., Entwicklungsstand Quantencomputer, BSI Studie 283 (2020)

Hardware Platforms: State of Development

¹ F.K. Wilhelm et. al., Entwicklungsstand Quantencomputer, BSI Studie 283 (2020)

Photons

- Qubits based on non-classical states of light: Single photons, Multi-photon squeezed states, ...
- Circuits are waveguides integrated into micro-chips.
- Gates are formed by Beam splitters, phase shifters, interferometers and more.
- · Pro: No cooling, easily integrates with networks
- Con: Difficult interaction, photon loss

Image: Xanadu

Nitrogen-Vacancy-Centers

- The NV-center is a charged defect in diamond.
- The electron spin forms the qubit.
- The spin is read via photoluminescence.
- Pro: Long lifetime.
- · Con: Each center has different characteristics.

Rydberg-Atoms

- Rydberg-Atoms are highly excited Atoms, with larger diameter.
- They can be trapped in optical lattices.
- Multi-qubit gates via strong interaction with neighbours.
- Pro: Many qubits
- Con: Lower gate fidelities, atom loss

Image: University of Stuttgart

Superconducting Qubits

- Macroscopic (μm) circuits, e.g. rings or junctions
- Cooled to low temperatures ($\lesssim 100 {\rm mK})$
- Commercial front-runner (IBM, Google, ...)
- Pro: Established manufacturing, scalable
- Con: Cryogenic cooling, noise, different qubits

Image: Fraunhofer

Ion Traps

- Charged atoms are trapped in a time-dependent electromagnetic field.
- The qubit states are atomic levels.
- Qubits interact via motion.
- Pro: Low noise, multi-qubit interactions
- Con: Difficult scaling, ion loss

Image: IonQ

How to build a quantum computer

State of Development

What Quantum Computers can do

And what they can't

The input-output-problem

- State preparation
 - can set all amplitudes in the state
 - may require exponentially many gates

- State tomography
 - unveils the 2ⁿ complex amplitudes of the state
 - takes an exponential amount of measurements (and copies of the state!)
- good problems for quantum computers
 - 1. are difficult
 - 2. are specified by few parameters
 - 3. have a short answer (yes, no, few integers)

Grover search

• Every quantum operation acts linearly on all states in a superposition. For example:

$$G \ket{\psi} = rac{1}{\sqrt{2}} \left(G \ket{00} + G \ket{11}
ight)$$

- An oracle is a black box which marks solutions, e.g. $G|00\rangle = |00\rangle$, $G|11\rangle = -|11\rangle$.
- Grover (roughly): Start with uniform superposition, iteratively suppress unmarked states.
- For problems without structure:

Classically try all $N = 2^n$ possible solutions $\mathcal{O}(N)$ Grover $\mathcal{O}(\sqrt{N}) \rightsquigarrow$ quadratic speed-up. Known to be optimal.

Quantum Fourier transform (QFT)

• The QFT performs the discrete fourier transform on quantum amplitudes

$$|j\rangle\mapsto\sum_{k=0}^{2^n-1}{\rm e}^{2\pi{\rm i} jk/2^n}\,|k\rangle$$

- It uses $\mathcal{O}(n^2)$ gates, while Fast Fourier Transform (FFT) requires $\mathcal{O}(n2^n)$ gates
- Preparing and accessing amplitudes is difficult!
- QFT is a key component of many quantum algorithms:
 - Phase estimation
 - Period finding
 - Discrete logarithm and factorization
 - ...

How to build a quantum computer

State of Development

What Quantum Computers can do

And what they can't

No-Signalling

- Despite entanglement we can't communicate faster than light.
- Every quantum operation on Alice's subsystem only has no measurable effect on Bob's system.
- Useful: Any idea that violates no-signalling is unphysical.

No-Cloning

• It is impossible to copy an unknown quantum state:

 $| \varphi
angle \not \longrightarrow | \varphi
angle | \varphi
angle$

- Cloning would violate the no-signalling principle: The choice of measurement basis on one half of an entangled pair could be determined from the second half.
- No-cloning makes quantum error correction difficult.
- It enables quantum cryptography.

www.DLR.de • Chart 23 > 2021-11-03 > DLR-SC > 2nd WAW Intro

Thank you! Do you have questions?

