
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
TECHNISCHE FAKULTÄT • DEPARTMENT INFORMATIK

Lehrstuhl für Informatik 10 (Systemsimulation)

Geometric multigrid for the gyrokinetic Poisson equation from
fusion plasma applications

Christina Schwarz

master thesis

Geometric multigrid for the gyrokinetic Poisson equation from
fusion plasma applications

Christina Schwarz
master thesis

Aufgabensteller: Prof. Dr. U. Rüde
Betreuer: Philippe Leleux, Martin Kühn
Bearbeitungszeitraum: 15.06.2021 – 15.12.2021

Erklärung:

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angege-
benen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenom-
men wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.

Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Systemsimulation (Informa-
tik 10), wird für Zwecke der Forschung und Lehre ein einfaches, kostenloses, zeitlich und örtlich
unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der master thesis einschließlich etwaiger
Schutzrechte und Urheberrechte eingeräumt.

Erlangen, den 14. Dezember 2021 .

Contents
1 Introduction 1

2 Plasma fusion for energy creation 2
2.1 What is plasma fusion? . 2
2.2 Magnetic confinement of particles in tokamaks . 3
2.3 Current research and projects . 6

3 Plasma simulation with GyselaX 8
3.1 Gyrokinetic code . 8
3.2 Project EoCoE . 9

4 Geometric polar multigrid for a 2D Poisson-like equation with implicit extrap-
olation 11
4.1 The given problem: a 2D quasi-neutrality Poisson-like equation 11
4.2 The finite difference discretization of the Poisson equation on disk-like domains . . . 13
4.3 Introduction to Multigrid . 16

4.3.1 Direct vs. iterative solvers . 16
4.3.2 The 2-level multigrid . 18
4.3.3 The multigrid V-cycle . 19

4.4 Two problems arising with the choice of polar coordinates 21
4.4.1 Singularity at the origin . 21
4.4.2 Anisotropy . 21

4.5 Multigrid with implicit extrapolation . 27

5 Implementation of the solver GmgPolar 34
5.1 Structure of the code . 34

5.1.1 Namespace param . 35
5.1.2 Namespace gyro . 35
5.1.3 Class gmgpolar . 36
5.1.4 Class level . 37

5.2 Implementation of the multigrid cycle . 38
5.2.1 Matrix-free implementation . 39
5.2.2 Problem setup . 40
5.2.3 The multigrid cycle itself . 44

5.3 Numerical experiments . 49

6 Improving the solver GmgPolar 51
6.1 Code optimization . 51
6.2 Decoupled circle-radial smoothing . 53
6.3 Implicit extrapolation with full grid smoothing . 55
6.4 Parallelisation . 56

6.4.1 Parallelisation with OpenMP . 57
6.4.2 Parallelisation with GPUs and Cuda . 60

6.5 Further optimizations . 63

7 Conclusion 64

iv

List of Figures
1 Binding energy per nucleon for the atoms in the periodic table; by Wikipedia Com-

mons. (Left) Elements for fusion reactions, e.g. the fusion of deuterium-tritium into
helium is represented, generating energy ∆E. (Right) Elements for fission reactions,
e.g. U235 is split into Kr89. 2

2 Toroidal magnetic confinement of charged particles; republished with permission of
John Wiley & Sons - Books, from Fusion Plasma Physics, Stacey, W. M., 2005 ;
permission conveyed through Copyright Clearance Center, Inc. [61]. 4

3 Fusion reactors with toroidal magnetic confinement; reprinted with permission of
The Economist [20]. 4

4 Creation of the magnetic fields with external coils; reproduced with permission of the
Licensor through PLSclear, from Tokamaks, Wesson, J., 1997, John Wesson 1987,
1997 [66]. 5

5 Induction of a current in the plasma; reproduced with permission of the Licensor
through PLSclear, from Tokamaks, Wesson, J., 1997, copyright John Wesson 1987,
1997 [66]. 6

6 Concept of a tokamak with spirlaing trajectory of the particles around the helical
magnetic field; reprinted with permission of Eurofusion [24]. 6

7 International project ITER in France. 7
8 Schematic development of the 2D Poisson equation from a 6D Vlasov equation. . . . 8
9 Schematic view of the GyselaX code where a 2D Poisson equation must be solved at

each time step [26]; courtesy of V. Grandgirard. 9
10 Variation of the diffusivity coefficient α over the radius r. 11
11 Mapping of the grid from Cartesian (Ω) to polar coordinates (Ω̃), for the inverse

mapping we have to exclude the origin (r0 > 0) to avoid a singularity 12
12 Different geometries for the poloidal cross-section. 13
13 Schema of a multigrid V-cycle with N grids, denoting the finest level by 0. The final

approximation of the solution after the V-cycle u∗0 is more accurate than u0 from the
start. 19

14 An example grid of size 4 × 4, using periodicity conditions in θ-direction. The in-
dicated nodes are smoothed simultaneously, i.e. line relaxation in resp. circle and
radial direction. 22

15 Different zebra line smoothers. 24
16 An example grid of size 4× 7, using a combination of circle and radial smoother. . . 25
17 System matrix corresponding to the example grid of size 4 × 7: The red line in-

dicates the separation between circle and radial smoother. Sections of the matrix
corresponding to the four matrices Asc are coloured in either black or white. The
remaining elements correspond to the matrices A⊥sc. 26

18 The four different bases: linear, h-hierarchical, p-hierarchical and quadratical, func-
tions on the fine grid are marked in violet and functions on the coarse grid in red. . 29

19 The already presented example grid of size 4 × 7 (compare to Figure 16) with the
elimination of the coarse nodes for the smoothing procedure in case of implicit ex-
trapolation. As a consequence, the node numbering changes in comparison to the
previous example. 32

20 Extrapolated smoothing matrix corresponding to the example grid of size 4 × 7 in
Figure 19. The elimination of the matrix rows corresponding to the coarse nodes is
visualized with green lines. The red arrows indicate the matrix columns correspond-
ing to the coarse DOFs, with the red circles showing all elements which have to be
shifted from the matrix Aexsc to Aex,⊥sc . 33

21 Structure of the GmgPolar C++ implementation. The class gmgpolar contains several
instance of the class level, then the colors represent calls of methods in level from the
methods in gmgpolar. 34

22 Anisotropic refinement of the grid around rα = 2/3R in the r-direction. 40
23 Stencil representation for 4 different types of nodes, depending on their position with

respect to the neighbouring coarse nodes [36]. 41
24 Example 4×7 grid with both global numbering and numbering local to each smoother. 42

v

25 Stencils of the matrices Asc and A⊥sc for each smoother in the polar plane [22]. . . . 43
26 Principle behind the application of the operator A. In the original version, for each

point we compute the coefficient of neighbouring points to update the local operator
entries. In the optimised version, for each point, the local coefficients are computed
to update the operator entries of neighbouring points. 52

27 Comparison of the run time of the method level::apply_A of the original and the
optimised version. 52

28 Conflicts in red cross resulting from the parallel update of two consecutive radii ri
and ri+1 in the function apply_A. 57

29 Splitting of the workload in three different parts, where each task group is independent. 58
30 Dependencies of the OpenMP tasks. The relations are read from bottom to top. . . 58
31 Speed-up of the function level::apply_A using OpenMP parallelisation for two differ-

ent grid sizes m. 60

vi

List of Tables
1 Parameters of the namespace param. 35
2 Functions from namespace gyro. 36
3 Variables from the class gmgpolar. 36
4 Functions from class gmgpolar. 36
5 Variables from class level. 37
6 Functions from class level. 38
7 Identification of the smoother for a node i/j. 42
8 Mapping from global coordinates (i, j) in the grid, to local coordinates (row, col) for

all smoothers. 42
9 Application of the stencil to build the matrix Asc. PB: indicates that a node lies

on the periodic boundary. AOD: denotes the across-the-origin discretization. nt =
ntheta_int. 43

10 Application of the stencil to apply the matrix A⊥sc. PB: indicates that a node lies
on the periodic boundary. BRI: base_row_index. nt = ntheta_int, and dc =
delete_circles. 46

11 Mapping from the local index k of a vector of the smoother sc, to global coordinates
(i, j) in the grid. nt = ntheta_int, dc = delete_circles. 47

12 Mapping from global coordinates (i, j) in the grid, to local coordinates (row, col) for
the smoother sc when the implicit extrapolation is active on the finest level. 47

13 Results of the multigrid solver, for a test problem with Dirichlet boundary conditions
on the inner radius (10−5) and outer radius for the Shafranov geometry. Iteration
count its, mean residual reduction factor ρ̂, errors of the iterative to exact solution
evaluated at the nodes in the weighted 2- and ∞-norms with corresponding error
reduction order. 50

14 Run time (in s) of the code versions for test problems of increasing size using the
Shafranov geometry, with Dirichlet boundary conditions on the inner radius (r0 =
10−5) and outer radius. 53

15 Iteration count and run times when applying GmgPolar with the two different smooth-
ing procedures, for a test problem of increasing sizes using the Shafranov geometry,
with Dirichlet boundary conditions on the inner radius (r0 = 10−5) and outer radius. 54

16 Iteration count and error norms of the different extrapolation variants, for a test
problem with Dirichlet boundary conditions on the inner radius (10−5) and outer
radius for the Shafranov geometry, using the circle-radial coupled smoothing version.
Notations as in Table 13. 56

17 Comparison of the runtime in seconds of the sequential CPU and the parallel GPU
version. 62

vii

1 Introduction
In order to face climate change and to preserve our ecosystem, we have to reduce the overall emission
of carbon dioxide into the atmosphere by omitting the use of fossil fuels. In the urgent context
of energy transition, we mostly talk about renewable energies, but there exists another promising
alternative for a CO2-neutral energy source.

Nuclear fusion, also taking place in the sun’s interior, is the reversed nuclear fission process
and the only known energy source on earth not yet harnessed [42]. In contrast to the fission
process, nuclear fusion is safe and emits only short-lived nuclear waste. Delivering an almost infinite
amount of clean energy and with almost inexhaustible resources on earth, the plasma fusion would
solve all the world’s climate and energy problems [15]. However, being extremely complex and
extraordinarily challenging from a scientific point of view [69], the reaction cannot be maintained
for sufficient long time, yet, for a satisfactory energy balance, as it is extremely unstable. For
many years, multiple scientists and researchers have been already working on the replication of the
sun’s fusion process on earth with the goal of finally converting the produced heat into electrical
energy [69].

As the construction and operation of fusion reactors, e.g. tokamaks, is exceptionally expensive,
and thus real-life experiments are in many cases impossible, numerical simulations are required in
order to gain more knowledge about the fusion process and to improve the reactor conception. One
existing code for plasma simulations in a tokamak is called GyselaX, in which a five dimensional
Vlasov-equation and a three dimensional Poisson-equation need to be solved. The latter one may
be reduced to the repeated solution of a two dimensional Poisson-like equation on many disk-like
cross-sections of the tokamak geometry. In this context, the EoCoE (Energy Oriented Center of
Excellence) project, funded by the European Commission, aims for the improvement of the current
solver for the 2D equation in order to reduce the simulation time of GyselaX.

In [38, 39], a geometric multigrid approach has been developed, using finite differences for the
discretization. Due to a given variable coefficient of the problem and the usage of generalised po-
lar coordinates, some challenging difficulties arise. To overcome the introduced singularity at the
origin and to handle the anisotropy of the grid, different approaches are possible. Additionally, an
implicit extrapolation technique is proposed to increase the approximation order of the solution. In
this master’s thesis, the multigrid solver, called GmgPolar, shall be implemented in a matrix-free
manner in C++.

The thesis is structured as follows. In Sections 2 and 3, the physical basics of plasma fusion
and the mathematical description for the simulations are explained. After outlining the goal of the
underlying project EoCoE, the given problem and our approach to solve it with geometric polar
multigrid and implicit extrapolation are described, as proposed in [38, 39], in Section 4. Finally,
the implementation of the solver GmgPolar as well as several improvements and optimizations to
the code are presented in the Sections 5 and 6.

1

2 Plasma fusion for energy creation
2.1 What is plasma fusion?
It is well known that the sun converts its mass into energy according to Einstein’s famous law
E = mc2. This process is called plasma fusion or nuclear fusion. Based on [61, chapt. 1] and [66,
chapt. 1], in this section, we introduce the principles of nuclear reactions, where the binding energy
of atoms is released.

The actual mass of an atomic nucleus is not equal to the sum of the masses of its separate
nucleons, i.e. its protons and neutrons, of which it is composed. The difference, the so called mass
defect ∆m, is converted into energy when the nucleus is formed. The amount of externally supplied
energy necessary to disassemble a nucleus into its separate nucleons, we call the binding energy
per nucleus. Then, by converting atoms with low binding energy into atoms with higher binding
energy, kinetic energy is released. The binding energy for all elements of the periodic table is given
in Figure 1. On the left side of the diagram, the binding energy increases with the number of
nucleons. Hence, nuclear energy can be released through the combination of these small atoms, i.e.
with the fusion process. Whereas, on the right side of the diagram, the binding energy decreases
with the number of nucleons and thus, the fission process can be used to release energy by splitting
large atoms.

Figure 1: Binding energy per nucleon for the atoms in the periodic table; by Wikipedia Commons.
(Left) Elements for fusion reactions, e.g. the fusion of deuterium-tritium into helium is represented,
generating energy ∆E. (Right) Elements for fission reactions, e.g. U235 is split into Kr89.

Let’s compare the energy released from fusion and fission with a simple example taken from [66,
chapt. 1]. The most promising fusion reaction is that of the nuclei deuterium and tritium (hydrogen
isotopes, H2

1 and H3
1) which fuse to an alpha particle, i.e. an helium nucleus, with the release of a

neutron n1
0. We then have the reaction

H2
1 +H3

1 → He4
2 + n1

0 + ∆E, (1)

where ∆E is the energy, corresponding to a mass deficit of 0.01888286u, released as kinetic energy
of the reaction products

∆E = ∆m · c2 = 0.0188862u · c2 = 2.819 · 10−11 J = 17.592MeV, (2)

2

with 1u = 1.660539 · 10−27 kg being the unified atomic mass unit.
The most common fission reaction is that of Uranium-235 [32, 25], defined as

U235
92 + n1

0 → Ba144
56 +Kr89

36 + 3n1
0 + ∆E, (3)

where the energy released in the fission process is

∆E = ∆m · c2 = 0.186017u · c2 ≈ 2.776 · 10−11 J = 173.273MeV. (4)

Taking into account that the mass of the reactants is 50 times larger in this fission reaction
compared to the fusion reaction, the energy released from fission is significantly inferior. Moreover,
deuterium, which is used for the nuclear fusion, is a plentiful resource on earth and contained in
sea water. The radioactive tritium though, does not occur naturally, but can be bred from lithium,
of which there are large reserves, using the released neutrons. In fact, just 1 kg of this fuel would
release about 108 kWh of energy and would provide the requirements of 1GW electrical power
station for a day. Additionally to its relatively lower energy release, the fission process is quite
dangerous since it is explosive and thus implies the risk of a core meltdown. In contrast, the fusion
process is quite safe as the instability of the created plasma breaks the reaction at the smallest
disturbance with no risk of a chain reaction or meltdown. Also less dangerous radioactive waste
is produced, as the alpha-radiation (positively charged helium particles) is less long-lived than the
gamma-radiation from fission. Moreover, the most common reactants, deuterium and tritium, are
available in large quantities and almost inexhaustible on earth [69]. Consequently, the realization of
nuclear fusion would be an important step within the energy transition towards carbon neutrality
as it is an inexhaustible source of clean, green energy. However, in practice, the fusion process is
quite complex to realize on earth and not yet possible to be used for energy creation [1, 15].

In order for the fusion reaction to take place, the two involved nuclei must overcome the long-
range electrostatic, or Coulomb, repulsion force due to their positive charges, and approach suf-
ficiently close so that the short-range nuclear attraction forces become predominant, and the for-
mation of a compound nucleus becomes possible. The chance for a fusion of two nuclei increases
with the atoms velocity, and thus, with the temperature [15]. Owing to this, the authors of [61,
chapt. 1] state that high energies are required of the order of 10 keV to 100 keV , corresponding to
thermonuclear temperatures of 108K to 109K which are comparable to those of the sun’s interior.
In these conditions, light atoms are entirely stripped of their orbital electrons and we obtain an
ionized but macroscopically neutral gas, composed of positively charged atomic nuclei and elec-
trons. This type of gas is called a plasma. Whereas the sun has about 333 000 times the mass of
our planet and consequently an extremely high pressure (150 g/cm3) in its core, it is not possible
to meet such consitions on earth [42]. Consequently, to achieve the same amount of energy as in
the sun’s core, temperatures about six times the sun temperature (100 to 150 · 106 K) are necessary
for fusion reactions to take place.

Controlled fusion reactions to produce energy are in principle obtained as follows. First, the
plasma is heated by radio frequency heating, neutral beam injection and/or ohmic heating. When
heated to thermonuclear conditions, the released alpha particles, i.e. helium nuclei, then transfer
their energy to the plasma through collisions [1], thus providing an increasingly large fraction of
the total heating. The event, when the plasma temperature can be maintained solely by internal
alpha-particle heating and the burning process becomes self-sustained without any further applied
external heating, is called ignition. 80 % of the reaction energy is carried by the neutrons, which
are channeled via a surrounding blanket and transformed into heat, i.e. the reactor power output.
See [66, chapt. 1] for practical details on this processes in fusion reactors.

In the end, the challenge of plasma fusion is to heat the plasma to sufficiently high temperature
and confine it for a sufficiently long time. In order to get a positive energy balance, the thermonu-
clear energy produced needs to significantly exceed the energy required to heat the plasma, and
thus, the charged particles must retain their energy and remain in the plasma for sufficient time.

2.2 Magnetic confinement of particles in tokamaks
The plasma, being heated to thermonuclear temperatures, would immediately vaporize the reactor
walls upon direct contact. Therefore, another method of confinement is needed for the plasma,
namely magnetic confinement, which is explained in detail in [66, chapt. 2,4] and [61, chapt. 2,3].

3

Charged particles, including nuclei and electrons in plasma, spiral around magnetic field lines
due to the Lorentz force which deflects them perpendicular to the field and their own velocity.
Since the plasma particles are free to move uniformly along the field lines but constrained in their
perpendicular motion, they spiral around the field lines with a radius which is inversely proportional
to the strength of the magnetic field. Theoretically, a magnetic field may then be configured in a
circular shape in order to confine the particles in a toroidal region, gyrating endlessly around the
magnetic orbits [1], see Figure 2.

Figure 2: Toroidal magnetic confinement of charged particles; republished with permission of John
Wiley & Sons - Books, from Fusion Plasma Physics, Stacey, W. M., 2005 ; permission conveyed
through Copyright Clearance Center, Inc. [61].

There are two main types of such toroidal plasma confinement systems using vacuum chambers
for the plasma: the tokamak and the stellarator, which differ mainly in the shape of the magnetic
coils used to create the strong external magnetic fields [69].

Figure 3: Fusion reactors with toroidal magnetic confinement; reprinted with permission of The
Economist [20].

In a stellarator, see Figure 3 (right), the whole magnetic field is constructed by external coils.
On the contrary, tokamak reactors, see Figure 3 (left), use a current in the plasma additionally
to external coils. As a result, tokamaks are much easier to understand and to control, because

4

they only have 2D coils instead of 3D coils [15]. The device has been invented in the USSR in the
mid-1960s and the word ‘tokamak’ is derived from the Russian words ‘toroidalnaya kamera’ and
‘magnitnaya katushka’, meaning ‘toroidal chamber’ and ‘magnetic coil’. Tokamaks are the most
advanced and widely investigated type of fusion reactors worldwide.

Tokamaks use a combination of different magnetic fields to create the confinement of particles
in a toroidal region, with a D-shaped cross-section. The main magnetic field is the toroidal field.
It is produced by poloidal currents in external toroidal field coils which encircle the plasma, see
Figure 4a. However, in order to keep all particles within the toroidal shape, the magnetic field has
to be stronger on the inside of the torus than on the outside due the smaller inner radius. This
non-uniformity of the magnetic field produces forces which act upon the charged particles to drift
outward - perpendicular to the magnetic field - to low field regions. In fact, curved magnetic fields
tend to straighten themselves and any deviation from a uniform field, such as field gradients, curva-
ture or polarization, leads to particle drifts. Those drifts then carry positive and negative particles
differently, causing charge separation which leads to additional electric fields and instabilities of the
principal magnetic field [42, 1].

In order to compensate these drifts and to have an equilibrium in which the plasma pressure is
balanced by all magnetic forces, a poloidal magnetic field must be superimposed upon the toroidal
field. This poloidal field is typically produced by a toroidal current flowing in the plasma, see
Figure 4b. The current is induced by a transformer action of a set of primary coils in the centre of
the torus, see Figure 5a. Hereby, a change in the magnetic flux through the torus, corresponding
to the primary winding, induces a toroidal electric field which then drives the toroidal current, see
Figure 5b. Ideally, this current should be continuous in time. However, since the driving electrical
field is induced by an increasing magnetic flux, this can only be continued for a limited period,
possibly one hour. Consequently, a tokamak reactor can only be operated in a pulsed behaviour.
In contrast to this, a stellarator produces the poloidal field by external coils and hence is able to
operate continuously.

(a) Toroidal field (b) Poloidal field

Figure 4: Creation of the magnetic fields with external coils; reproduced with permission of the
Licensor through PLSclear, from Tokamaks, Wesson, J., 1997, John Wesson 1987, 1997 [66].

At last, combining the toroidal and the poloidal field results in a magnetic field of the form of a
helical trajectory around the torus. As a consequence, the charged plasma particles gyrate around
the helical magnetic field lines, see Figure 6. Additionally to this complex motion of the particles,
there occur multiple, complicated, yet unexplored disturbances within the plasma, which make all
predictions and computations even more difficult, e.g. particle interactions, inhomogenities, insta-
bilities or turbulence.

Remark: To point out the difference of a tokamak to a particle accelerator, in a tokamak, the
particles are not accelerated all into the same direction. On the contrary, from the prevailing high

5

(a) Creating a magnetic field by a primary
winding

(b) Induction of a current by a
change of the magnetic flux

Figure 5: Induction of a current in the plasma; reproduced with permission of the Licensor through
PLSclear, from Tokamaks, Wesson, J., 1997, copyright John Wesson 1987, 1997 [66].

Figure 6: Concept of a tokamak with spirlaing trajectory of the particles around the helical magnetic
field; reprinted with permission of Eurofusion [24].

temperature follows that the particles’ velocities and moving directions are defined by a Gaussian
distribution. Besides, the differences in mass and charge of the particles lead to different refraction
and drifts within the torus [60].

2.3 Current research and projects
So far, the reactions in a tokamak are not completely understood yet, as they are extremely complex.
Due to the limits of the magnetic field, such as impurities of the plasma, thermal losses being
caused by conduction, convection or radiation, and massive instabilities, the largest problem is to
permanently maintain the rather unstable plasma current. In fact, the maximum confinement time
attained is still way too short and thus no satisfactory energy balance could be achieved, yet [66].

One of the most promising projects is the HL-2M tokamak in Chengdu, China, which was
finished in December 2020. The so called artificial sun achieves temperatures up to 150 million
degrees and was able to attain the current world record with a fusion process maintained during 10
seconds [15].

Another promising project is ITER (International Thermonuclear Experimental Reactor), a

6

collaboration of 35 states worldwide [1], see Figure 7. The ITER agreement was signed in the year
2006, the construction in Cadarache in Southern France started in 2010 and the first plasma is
currently planned for 2025 [30, 42].

(a) The whole plant in May 2020, reprinted
with permission of Business Wire [48]

(b) A model of the tokamak, reprinted with
permission of Eurofusion [30]

Figure 7: International project ITER in France.

The construction of this world’s largest tokamak is extremely complex [1]:
• The 18 toroidal field coils are among the largest and most precise magnets that were ever

build.

• To improve efficiency they are superconducting in order to have less electrical resistance and
to carry higher current while consuming less power.

• The necessary Helium-cooling down to almost the absolute zero-point (4K) is in fact an
immense challenge, while temperatures of about 150 million degrees prevail in the inner of
the tokamak.

• Extra research projects are carried out to investigate for example the welding work or to
improve autonomous robots for the exchange of modules in the radioactive inner of the reactor.

• Due to the pulsed behaviour of the tokamak, about one hour is necessary between the pulses
for the system to restart [42].

As a consequence, the project is the world’s most expensive science project of all time. The initial
budget of the experimental reactor was estimated at 6 billion dollars, but the total cost is now
estimated at around 22 billion dollars or even higher [17].

The principle question is whether a tokamak reactor will ever be able to create a self-sustained
fusion reaction to actually produce energy and thus be competitive with other power systems, such
as fossil fuels, someday. Even though power outputs of up to 10% of the input power have been
already reached in 1997 with the JET tokamak [66], it is still a long way to go until the commercial
use of fusion power. Since 2018, the current world record is hold by the Japanese Torus (JT-60)
with a total positive energy output of 20 % [30, 47], however still not enough for ignition. It has to
be indicated that all existing reactors, including ITER, are only experimental devices and meant
to conduct long-term research on how to overcome all previous listed issues in order to improve the
fusion process. Similarly, in the field of the stellarator, so for example at the Max-Planck-Institute
for plasma physics in Greifswald, Germany, at the Wendelstein 7X reactor, only basic research is
conducted, yet [42].

Despite all the involved issues, China announced to be aiming for the first industrial prototype
in 2035 right after the first successful operation of HL-2M tokamak [15]. The professor of physics
at the Tsinghua University in Peking Gao Zhe stated:

“There is no guarantee that all these problems will be solved. But if we don’t do it, the
problems will definitely not be solved” [15].

7

3 Plasma simulation with GyselaX
As fusion reactors are very expensive and complex, real-life experiments are mostly impossible
and numerical simulations are required to increase our knowledge about fusion plasma and how
to improve tokamaks. Therefore, a mathematical description of the plasma particles is necessary.
Among all the possible models for the simulation of plasma, the so-called gyrokinetic theory is the
theoretical framework chosen in the GyselaX code to study plasma behavior [26].

According to Bouzat et al. in [8], gygrokinetic simulations are able to capture the turbulent
transport of ions and electrons which is a limitation for the performance of fusion reactors. However,
efficient and robust numerical schemes, accurate geometric descriptions, as well as efficient HPC
(high performance computing) techniques and good parallelisation algorithms are required to reduce
the immense simulation time and thus the expensive cost of such simulations.

3.1 Gyrokinetic code
The six dimensional gyrokinetic Vlasov equation describes the time evolution of the distribution
function of plasma particles [26], meaning “the probability of finding a particle at a given position,
with a given velocity [...] at a given time” [69]. The differential equation defines the toroidal
geometry as a three dimensional space along with the particle’s velocity in three supplementary
dimensions [8] and is solved for each ion species [26].

As we are mainly interested in the turbulent fluctuations, we can neglect high-frequency dynam-
ics, corresponding mostly to the gyromotion (i.e. the fast spiraling motion around the magnetic field
lines), and focus on the lower frequencies expressing the slower drift motions of interest [26]. The
higher frequencies are removed via the so-called gyroaverage operator and a phase-space coordinate
transformation, see [26, 69] for details, and the guiding center distribution is transformed into the
actual particle distribution, reducing the 6D problem to a 5D one [8].

Furthermore, the authors in [40] state that in tokamak configurations, we can assume the overall
quasi-neutrality of plasma, even though particles are locally charged. Hence, different ion species
are ignored and inertia of electrons, magnetic fluctuations and particle collisions are neglected [71].
To express this idea in the gyrokinetic code GyselaX [8], the 5D Vlasov equation is non-linearly
and self-consistently [26] coupled to a 3D quasi-neutrality Poisson-like equation. This 3D solver
computes the electric field or potential that corresponds to the particle distribution at each time
step, and can be written in dimensionless variables [40]. The operator of this equation is tightly
coupled to the geometry in the poloidal plane, i.e. perpendicular to the the magnetic field lines,
and can be decoupled from the periodic toroidal direction, which is aligned with the field lines,
via a Fourier projection [8]. Thus, the three dimensional quasi-neutrality equation can be reduced
to a 2D equation expressed on the poloidal cross-section of the torus, with inseparable radial (r)
and poloidal (θ) dimensions. At each time step of the simulation, an instance of the resulting 2D
Poisson equation must be solved, i.e. with the help of finite elements or differences in GyselaX
[8, 26]. Figure 8 summarizes this reduction of dimensions for the Vlasov and quasi-neutrality
equations.

Figure 8: Schematic development of the 2D Poisson equation from a 6D Vlasov equation.

As stated in [26], the electrostatic code GyselaX (gyrokinetic semi-Lagrangian) “is one of the
few international 5D gyrokinetic codes able to perform global, full-f and flux-driven simulations”.

8

In other words, not only perturbations with respect to some prescribed background equilibrium are
computed, but the whole distribution function is evolved and long time behavior of plasma turbu-
lence and transport is explored. The code is based on a semi-Lagrangian method, which is a mixture
between PCI (particle-in-cell), see [41], and Eulerian approaches, see [12], and where the grid points
of a discretization move along the characteristic trajectories of the transport equation [69].

GyselaX solves the described 5D Vlasov equation coupled with the reduced 3D quasi-neutrality
equation [23] as described before. The code is parallelised using an hybrid OpenMP-MPI paradigm [8].
Figure 9 shows the overall flow of the GyselaX code, with the solution of the Poisson equation at
each time step in a red circle, which is the focus of this master’s thesis.

Figure 9: Schematic view of the GyselaX code where a 2D Poisson equation must be solved at each
time step [26]; courtesy of V. Grandgirard.

3.2 Project EoCoE
The following paragraph is based on the official website [23] of the EU project EoCoE II (Energy
oriented Center of Excellence: towards exascale for energy), which aims to accelerate the transition
to a cheap and reliable low carbon energy supply with the help of High Performance Computing. At
the crossroads of the digital revolution and energy transition, EoCoE II develops modern computa-
tional methods in order to improve the management, production and storage of clean, decarbonized
energy. The main goal of the project is to create a multi-disciplinary platform, a network of experts
in High Performance Computing, numerical mathematics and sustainable energies. By improving
underlying models, the objective is to improve the accuracy and to reduce the number of core hours
of simulations in the application areas: meteorology, materials, hydrology and fusion.

As stated in [22], solving linear algebra problems is a core task in EoCoE II scientific challenges,
and thus the goal of the work package WP3 is to design and implement scalable, exascale-enabled
linear algebra solvers for selected applications and to integrate them into the application codes. Re-
garding the simulation of magnetically confined plasma in tokamak reactors, it is intended within
WP3 to improve the current in-house solver for the solution of the 2D quasi-neutrality equation
in GyselaX [26], which is a bottleneck for large scale simulations being not efficient enough. For
this purpose, the contributing teams - the Max-Planck-Institute in Munich, the FAU Erlangen-
Nuremberg, CERFACS in Toulouse and CEA from Paris - met in November 2018 for the first time
[21] and regular meetings have then taken place since the beginning of 2021 [22]. The idea is to
conduct an extensive comparison between three different solvers: the framework AMRex, a spline
based and a geometric polar multigrid approach. After establishing the advantages and disadvan-
tages of each method in terms of accuracy, convergence and cost with respect to the requirements
of GyselaX, one or several of these solvers can be integrated into the plasma simulation.

The first approach [35] is a geometric multigrid solver for linear systems in Cartesian coordi-
nates, using block-structured adaptive mesh refinement, which is based on the parallel C++ software

9

framework AMRex [68]. The second approach [71, 70], based on a 2D guiding-center model is a
combination of two solvers. The hyperbolic part of the target model equation is solved with the
method of characteristics (a semi Lagrangian advection solver employing pseudo-Cartesian coordi-
nates) and the elliptic Poisson equation with a finite element solver based on globally C1-smooth
polar B-splines [70].

The last solver is called GmgPolar and uses geometric multigrid in polar coordinates together
with an implicit extrapolation technique [38, 39]. It was developed by the FAU in collaboration
with CERFACS and is the main subject of this thesis. In the next Section 4, after a reminder of
sparse linear solvers and multigrid methods, we introduce the underlying principles of GmgPolar.
In Section 5, we then present the implementation of the solver, which is an adaptation of the already
existing Matlab code from Martin Kühn into C++. The goal of our task is to improve the efficiency
of the code, and to enable parallelisation for a future integration into the GyselaX code [37].

10

4 Geometric polar multigrid for a 2D Poisson-like equation
with implicit extrapolation

In this section, we first describe the given two dimensional Poisson problem, before explaining how
to construct it in generalised polar coordinates due to the disk-like domain. Next, we detail our
approach, used in GmgPolar, for solving it with the help of finite difference discretization and multi-
grid. Given some general instruction on multigrid methods, we observe two major issues arising due
to the polar coordinates: a singularity at the origin and an anisotropy of the grid. In this context,
a special combined circle-radial zebra line smoothing procedure is developed. Furthermore, an im-
plicit extrapolation technique is investigated in order to improve the accuracy of the approximated
solution, as well as its suitability of being integrated into the multigrid scheme.

4.1 The given problem: a 2D quasi-neutrality Poisson-like equation
We focus on the solution of a simplified version of the two dimensional quasi-neutrality equation.
This partial differential Poisson equation is defined on the cross-section Ω ⊂ R2 of the tokamak as

−∇ · (α∇u) = f in Ω
u = 0 on ∂Ω,

(5)

see [39], where α is called the diffusivity coefficient, or density profile, and expressed as

α(r) = 2
2.6 + 3.14

(
1.3 + arctan

(
1− r
0.09

))
. (6)

The coefficient introduces an anisotropy due to the non-linear turbulence structures stretched along
the magnetic field and models the rapid decay of the particle density from the core to the edge
region in the tokamak cross-section, with a steep variation around 2/3 of the maximum radius [39],
see Figure 10.

0 0.5 10
0.2
0.4
0.6
0.8

1

Figure 10: Variation of the diffusivity coefficient α over the radius r.

As the equation has to be solved on the disk-like cross-section, polar coordinates (r, θ) are
more natural than Cartesian coordinates to represent this geometry. The actual physical domain
Ω ⊂ R2 can be described by a mapping F from a logical domain Ω̃ : (0, 1.3) × [0, 2π) as shown in
Figure 11 [39].

In polar coordinates, the Poisson equation (5) reads

f = −∇x(r,θ),y(r,θ) · [α(r)∇x(r,θ),y(r,θ)u(x(r, θ), y(r, θ))],
= −∇x,yα(r)∇x,yu(x, y) + α(r)(−∇x,y · ∇x,yu(x, y)),

= −∂α(r)
∂r

∂u(x, y)
∂r

− α(r) ∆x,yu(x, y),
(7)

see [39], with the derivative of α (6)

∂α(r)
∂r

= − 2
(2, 6 + 3.14)(0.09 + (1−r)2

0.09

, (8)

11

F−1

F
(r0, 0)

(r0, 2π)

(1.3, 0)

(1.3, 2π)

Figure 11: Mapping of the grid from Cartesian (Ω) to polar coordinates (Ω̃), for the inverse mapping
we have to exclude the origin (r0 > 0) to avoid a singularity

and the Laplacian operator expressed in polar coordinates

∆x,yu(x, y) = ∂2u(x, y)
∂x2 + ∂2u(x, y)

∂y2 ,

= ∂2u(x, y)
∂r2 + 1

r

∂u(x, y)
∂r

+ 1
r2

∂2u(x, y)
∂θ2 .

(9)

Proof. Equation (9) can be proven as follows: Let’s start by expressing function u with respect to
r and θ as

ũ(r, θ) = u(r cos θ, r sin θ) = u(x, y), (10)

with the derivatives of the variables x(r, θ) and y(r, θ) with respect to r and θ being
∂x(r, θ)
∂r

= cos θ, ∂y(r, θ)
∂r

= sin θ, ∂x(r, θ)
∂θ

= −r sin θ, ∂y(r, θ)
∂θ

= r cos θ, (11)

and the first and second derivatives of u(x(r, θ), y(r, θ)) with respect to r and θ
∂u(x, y)
∂r

= ∂u(x, y)
∂x

cos θ + ∂u(x, y)
∂y

sin θ,

∂u(x, y)
∂θ

= ∂u(x, y)
∂x

(−r sin θ) + ∂u(x, y)
∂y

r cos θ,

∂2u(x, y)
∂r2 = ∂2u(x, y)

x2 cos2 θ + 2 ∂
2u(x, y)
∂x∂y

sin θ cos θ + ∂2u(x, y)
∂y2 sin2 θ,

∂2u(x, y)
∂θ2 = r2

[
∂2u(x, y)
∂x2 sin2 θ − 2 ∂

2u(x, y)
∂x∂y

sin θ cos θ + ∂2u(x, y)
∂y2 cos2 θ − 1

r

∂u(x, y)
∂r

]
.

(12)

Inserting these derivatives in (9) and with with sin2 θ + cos2 θ = 1, we get

∂2u(x, y)
∂r2 + 1

r

∂u(x, y)
∂r

+ 1
r2

∂2u(x, y)
∂θ2

=∂2u(x, y)
x2 cos2 θ +

����������

2 ∂
2u(x, y)
∂x∂y

sin θ cos θ + ∂2u(x, y)
∂y2 sin2 θ,

+
��

���1
r

∂u(x, y)
∂r

+ ∂2u(x, y)
∂x2 sin2 θ −

����������
2 ∂

2u(x, y)
∂x∂y

sin θ cos θ + ∂2u(x, y)
∂y2 cos2 θ −

���
��1

r

∂u(x, y)
∂r

,

=∂2u(x, y)
x2 + ∂2u(x, y)

∂y2

(13)

and in fact obtain again the Laplacian operator in Cartesian coordinates, which completes the
proof.

12

In this work, three different physical domains are considered:

1. The simplest one, the circular geometry, see Figure 12a can be described by a standard polar
coordinate transformation [38] defined as

F1 : x = r cos(θ), y = r sin(θ). (14)

2. In order to improve realism and to describe more realistic tokamak cross-sections [39], a map-
ping from polar coordinates to more realistic plasma shape is used [8]. The so-called Shafranov
geometry, a stretched and shifted ellipse, see Figure 12b, is defined by the transformation

F2 : x = (1− κ)r cos(θ)− δr2, y = (1 + κ)r sin(θ), (15)

see [39], with the elongation κ = 0.3 and the Shafranov shift δ = 0.2. For κ = δ = 0, the
Shafranov geometry reduces to a simple circular shape.

3. The third possibility, the Czarny geometry, see Figure 12c, is even more complex as it adds a
triangularity to the shape

F3 : x = 1
ε

(
1−

√
1 + ε(ε+ 2r cos θ)

)
,

y = y0 + eξr sin θ
2−

√
1 + ε(ε+ 2r cos θ)

,
(16)

see [36], with y0 = 0 being the mapping center, ε = 1.4 the inverse aspect ratio, e = 1.4 the
ellipticity and ξ = 1/

√
1− ε2/4.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

(a) Circular

−1 0 1

−1

0

1

x

y

(b) Shafranov

−1 −0.5 0 0.5

−1

0

1

x

y

(c) Czarny

Figure 12: Different geometries for the poloidal cross-section.

4.2 The finite difference discretization of the Poisson equation on disk-
like domains

The original, elliptic boundary value problem, defined in the continuous domain Ω, may be dis-
cretized on a finite discrete grid [59, chapt. 3], e.g. using finite differences. In this case, the
differential equation is replaced by a difference formula for every grid point [28, chapt. 2], with a
finite number of degrees of freedom (DOFs) [59, chapt. 3]. We then obtain a discrete problem, which
can be expressed in matrix form [10] as a sparse system of equations

Au = f, (17)

see [64, chapt. 2], where A is of size m×m.

In this section, based on [38], we introduce a linear system of type (17), obtained from a
discretization of the PDE (5), which allows us to compute an approximated solution of the original

13

boundary value problem. For this purpose, we use a grid in the logical domain with respectively nr
and nθ nodes in the r and θ directions.

In [59, chapt. 3], the authors state that a “discretization method should preserve symmetry[, in
other words] when the PDE is symmetric, the coefficient matrix A should be symmetric as well”.
This property holds for example for a standard finite-difference discretization on uniform grids,
which relates the discrete solution on a specific node to the continuous solution in the neighbouring
grid points, which are together called a stencil [65, chapt. 3]. In the case of anisotropy or non-
uniformity of the grid, a standard derivation of the finite difference discretization may lead to
asymmetries. To maintain the symmetry of the stencil, the authors in [38] propose to consider
the energy functional corresponding to the partial differential equation, and to derive a particular
finite difference discretization using difference formulas to approximate the derivatives as well as
elementary numerical integration rules.

The problem of finding a solution of the given partial differential equation (5) can be traced
back to the energy minimizing problem

min
u

J(u), with J(u) =
∫

Ω

1
2∇u

Tα∇u− fu d(x, y), (18)

where J(u) is the energy functional in the domain Ω. Using polar coordinates (r and θ), we can
consider a rectangular mesh which is subjected to a curvilinear transformation, or mapping, F from
Cartesian to generalised polar coordinates

F (Ω̃(r, θ)) = Ω(x, y), (19)

as introduced in the previous Section 4.1. Let’s consider the Jacobian matrix DF of the mapping
F , and its inverse DF−1 defined as

DF =
(
∂x(r,θ)
∂r

∂x(r,θ)
∂θ

∂y(r,θ)
∂r

∂y(r,θ)
∂θ

)
, and DF−1 = 1

det(DF)

(
∂y(r,θ)
∂θ −∂x(r,θ)

∂θ

−∂y(r,θ)
∂r

∂x(r,θ)
∂r

)
, (20)

where det(DF) is the determinant of DF . As done in [38] to simplify further notations, we also
define arr, arθ, aθθ ∈ R as

1
2DF

−1αDF−T |det(DF)| =
(
arr 1

2a
rθ

1
2a
rθ aθθ

)
. (21)

Using equations (18), (20), and (21), we express the solution u within the energy functional
J(u) in polar coordinates, using the transformation F with

J(u) =
∫

Ω

1
2∇u

Tα∇u− fu d(x, y),

=
∫

Ω̃

((
uTr
uTθ

)T 1
2DF

−1αDF−T
(
ur
uθ

)
− fu

)
|det(DF)| d(r, θ),

=
∫

Ω̃

(
uTr
uTθ

)T (
arr 1

2a
rθ

1
2a
rθ aθθ

)(
ur
uθ

)
− fu |det(DF)| d(r, θ).

(22)

The global energy J(u) can be express as a sum over the local energies JRi,j (u) of all rectangular
grid elements Ri,j of the logical domain Ω̃

J(u) =
∑
i,j

JRi,j
(u), with JRi,j

(u) =
∫
Ri,j

arru2
r + arθuruθ + aθθu2

θ − fu |det(DF)| d(r, θ),

(23)

with 0 ≤ i < nr − 1 and 0 ≤ j < nθ − 1. As in [38], the local energy can now be approximated by
applying the midpoint rule to the coordinates according to which the summands in the expression are
differentiated. Subsequently, the partial derivatives can be approximated by a difference operator
and the intermediate values can be replaced by an averaging operator using linear interpolation.

14

Finally, the remaining integral terms may be integrated using trapezoidal rule and we get a quadratic
form for the approximated energy

J̃(u) =
∑
i,j

J̃Ri,j (u) ≈
∑
i,j

JRi,j (u) = J(u), (24)

where only function evaluations at the grid points (ri, θj) ∈ [0, R] × [0, 2π) remain. In order to
minimize J̃(u), we have to set its derivative with respect to us,t, with (i, j) ∈ {(s, t), (s − 1, t),
(s, t− 1), (s− 1, t− 1)},

∂J̃

∂u
=
∑
i,j

∂J̃Ri,j
(u)

∂us,t
= 0 (25)

to zero. Consequently, considering node r(i, θj) with following interval size hi and kj , the expression
in (25) has to be evaluated at the point itself as well as on the eight surrounding points, i.e. for
every i − 1 ≤ s ≤ i + 1 and j − 1 ≤ t ≤ j + 1. This yields for all nodes, after reordering of the
summands, a 9-point stencil. We here use the fixed letters a to i as short names for the position of
the updates within the stencil. top left top top right

left middle right
bottom left bottom bottom right

 ≡

g h i
d e f
a b c

 , (26)

The stencil updates are given in [26], depending on the coordinates and interval sizes of the
current and neighbouring points,

ui+1,j : top :=− 1
2
kj + kj−1

hi
(arri,j + arri+1,j),

ui−1,j : bottom :=− 1
2
kj + kj−1

hi−1
(arri,j + arri−1,j),

ui,j+1 : right :=− 1
2
hi + hi−1

kj
(aθθi,j + aθθi,j+1),

ui,j−1 : left :=− 1
2
hi + hi−1

kj−1
(aθθi,j + aθθi,j−1),

ui+1,j+1 : top right :=− 1
4(arθi,j+1 + arθi+1,j),

ui+1,j−1 : top left := 1
4(arθi,j−1 + arθi+1,j),

ui−1,j+1 : bottom right := 1
4(arθi,j+1 + arθi−1,j),

ui−1,j−1 : bottom left :=− 1
4(arθi,j−1 + arθi−1,j),

ui,j : middle :=− (top + bottom + left+right),

(27)

with the corresponding right hand side

(hi + hi−1)(kj + kj−1)
4 fi,j |det(DFi,j)|. (28)

Note that in the case of a circular domain without any anisotropy, the 9-point stencil reduces
to a 5-point stencil as all diagonal entries become zero. The entire derivation of the stencil can be
found in [38].

As given in (5), the domain is restricted by Dirichlet boundary conditions on the outer radius
rmax = R [36]. When handling a Dirichlet boundary, the boundary conditions are incorporated
into the system by eliminating the corresponding values [28, chapt. 2] from the system matrix A,
and moving them to the right hand side f . In (29), the authors demonstrate how the incorporation
of the boundary condition u∂ = g∂ induces ones on the diagonal corresponding to the fixed values

15

on the boundary ∂ of a domain Ω. In order to conserve symmetry, we transform the system with
A and f being both composed of the parts corresponding to the boundary and resp. the interior
domain, as (

A∂∂ A∂Ω
AΩ∂ AΩΩ

)(
u∂
uΩ

)
=
(
f∂
fΩ

)
→

(
I 0
0 AΩΩ

)(
u∂
uΩ

)
=
(

g∂
fΩ −AΩ∂ g∂

)
. (29)

The stencil for the Dirichlet boundary is therefore given as

stencil =

0 0 0
0 1 0
0 0 0

 . (30)

Furthermore, periodic boundary conditions in θ-direction introduce the equivalence of the points
at θ0 = 0 and θmax = 2π [36]. In Section 4.4.2, we will discuss several different approaches to handle
the singularity at the origin created by the use of generalised polar coordinates, including Dirichlet
boundary conditions at r0 > 0.

4.3 Introduction to Multigrid
We now want to solve the discretized problem Au = f given in (17) with the help of multigrid
methods, based on [59, chapt. 6]:

“The multigrid iterative method is a powerful tool for the numerical solution of large
sparse linear systems arising from the discretization [of partial differential equations]”.

Multigrid methods are especially used for elliptic PDEs but are also applicable for parabolic
and hyperbolic PDEs, integral equations, evolution problems, etc. [10]. The characteristic feature
of multigrid is its fast convergence [28, chapt. 1] and asymptotic optimal complexity [54]. Besides,
it is one of the very few scalable algorithms and can be parallelised readily and efficiently [10].
According to [54], multigrid is not merely a single algorithm but rather a design principle for highly
efficient solution algorithms. It is based on a recursion that cleverly combines different fine and
coarse resolutions of the given differential equation, and a fast transport of information through the
solution domain.

In this section, we remind the principles behind the solution of sparse linear systems of equations,
and focus on the geometric multigrid method. For detailed introductions to multigrid methods,
please refer to [64, 9, 28, 59, 65, 11].

4.3.1 Direct vs. iterative solvers

In order to solve the equation (17), i.e Au = f , multiple methods have been developed which are
separated in two main categories: direct and iterative methods.

Direct methods are based on techniques for the elimination of variables in a matrix most com-
monly derived from the Gaussian elimination method [63]. In this method, a LU-factorization is
performed on the matrix, such as A = LU , where L is lower triangular and U upper triangular. The
factorization algorithm is given in Algorithm 1. Once the factorization has been performed, consid-
ering any right hand side vector f and defining a vector y = Ux, the equation Ax = LUx = Ly = f
can be solved for y by forward substitution, see Algorithm 2, and finally Ux = y is solved for the
solution x via backward substitution [63], see Algorithm 3. These substitution techniques are very
simple and cheap, having a complexity in the order of O(2m2). Thus, most of the cost is spent in the
former computation of the factorization which computational complexity is of the order O(2

3m
3).

For very large systems, this computational complexity may become forbiddingly expensive, and one
has to turn to iterative methods.

16

Algorithm 1: Gaussian Elimination without pivoting
Input: U = Am×m, L = Im×m
for k=0:m-2 do

for j=k+1:m-1 do
ljk = ujk/ukk
for i=j:m-1 do

uji = uji − ljk · uki
end

end
end
Output: U , L

Algorithm 2: Forward Substitution
Input: Lm×m, bm×1
for j=0:m-1 do

yj = (bj −
j−1∑
k=0

yk · ljk)/ljj

end
Output: y

Algorithm 3: Backward Substitution
Input: Um×m, ym×1
for j=0:m-1 do

xj = (yj −
m−1∑
k=j+1

xk · ujk)/ujj

end
Output: x

An iterative method, such as Jacobi or Gauss-Seidel, can be applied to (17). As an example,
one iteration of the Gauss-Seidel scheme is given by

ui+1 = (D −A)−1(U ui + f) (31)

see [28, chapt. 3], with A = D−L−U , D being the diagonal, −L the lower triangular and −U the
upper triangular part of the matrix A.

When solving the discretized equation for one specific point, using the Gauss-Seidel scheme in
contrast to the Jacobi iterative method, the new value for the current node is immediately updated
by directly introducing it into the solution, and thus utilized when resolving for the next point [10].

However, depending on the problem, the Gauss-Seidel iteration itself can have a slow conver-
gence [54]. In fact, iterative methods, such as Gauss-Seidel, are quite efficient for reducing high-
frequency (oscillatory) components of the error, but the convergence is slow with respect to the
lower frequencies (smooth modes) [28, chapt. 2]. In the context of multigrid, such solver is called a
smoother (or relaxation method) and is said to satisfy the smoothing property, implying the con-
vergence of the iterative method, since they are suitable to smooth the error of the approximated
solution [65, chapt. 7]. This is the first fundamental idea of multigrid methods. The Gauss-Seidel
smoother turns out to have a better, more remarkable smoothing effect than a damped-Jacobi
smoother [64, chapt. 2], and is thus, primarily used in our algorithm GmgPolar.

After a fixed number of k relaxation steps, we get the approximation u(k) of the exact discretized
solution u, and we can denote the error

e(k) = u− u(k) (32)

and the residual
r(k) = f −Au(k). (33)

17

The residual equation
Ae = r (34)

is equivalent to the original equation (17) since the approximated solution u(k) can be corrected by
the error e(k) with

u = u(k) + e(k). (35)

4.3.2 The 2-level multigrid

In [43, chapt. 7], the authors state: “The idea of multigrid is that low frequency errors on a fine
grid become high frequency errors on a sufficiently coarse grid”, which is the second fundamental
principle behind multigrid methods.

Let’s consider that we have a coarser grid level on which the problem has been discretized
additional to the fine grid. We denote h and H the interval sizes of the fine and coarse grids
(h > H), and the corresponding linear problems and residual equations on both levels as

Ahuh = fh, Aheh = rh,

AHuH = fH , AHeH = rH ,
(36)

where rh and rH are the current residual respectively on the fine and coarse grid. In order to
approximately solve the residual equation on the coarser grid, an appropriate approximation of Ah
on the coarser grid is required.

After smoothing the discretized equation on the fine grid, only low frequency errors remain [43,
chapt. 7]. Since, a smooth error appears to be more oscillatory on a coarse grid than on a fine
grid, these low frequency components can then be more effectively damped by relaxation of the
residual equation on the coarser grid [10]. Consequently, the oscillatory part of the error is handled
on the fine grid and the coarse grid is used to eliminate the smooth parts. After approximating the
remaining error on the coarse grid, it can be used to correct the approximated solution on the fine
grid using (35). This process is called the coarse grid correction, and is explained in [64, chapt. 3].

The remaining question is how to form the residual rH on the coarse grid from the residual rh on
the fine grid, and how to use the approximated error from the coarse grid on the fine grid? To trans-
fer data between the different grid levels, linear transfer operators are required [54]. The restriction
operator RHh restricts the residual from the finer to the coarser grid, while the prolongation operator
PhH interpolates the error in the opposite direction [64, chapt. 2]. For the prolongation operator
the classical choice is bilinear interpolation, which is also well-defined for anisotropic meshes [39].
Considering a 2D-problem, the stencil depends on the coordinates of the current point, e.g. r and
θ for our problem in sections 4.1 and 4.2, but for the isotropic case reduces to

stencil =

1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

 , (37)

see [64, chapt. 2]. Hereby, the coarse values are just mapped to the fine grid unchanged, corre-
sponding to the middle of the stencil. The values at fine grid points not being coarse points are
then computed as the averages of their direct neighbouring coarse points [10]. Depending on the
position of the fine nodes to the coarse ones, either the two nodes left and right, or top and bottom
are used with the weighting factor 1/2, or the four diagonal coarse nodes with the factor 1/4. For
our discretization, as in [38, 39], the restriction operator is then simply defined as the transposed of
the prolongation operator RHh = PhH

T [11]. For other discretization, please note, that an additional
weighting factor might be necessary to be integrated into the stencil, see [64, chapt. 2]. The opera-
tor on the coarse grid AH can be defined either directly from a discretization of the PDE operator
on the coarse grid, or using the Galerkin operator AH = RHh AhP

h
H .

Subsequently, one coarse grid correction step consists of the following: Computing the residual
rh on the fine grid h, followed by a fine-to-coarse transfer of information by restricting the residual
to the coarse grid H, i.e. defining rH = PHh

T
rh. Then, the residual equation is solved for the error

eH on the coarse grid, and subsequently, interpolated by coarse-to-fine transfer to finally correct
the approximated solution with u∗h = uh + PhHeH on the fine grid.

18

However, taken on its own, the coarse grid correction process is not convergent [64, chapt. 2]. On
account of its failure for oscillatory modes, the solution has to be smoothed before [10]. This implies
that “it is necessary to combine the two processes of smoothing and [...] coarse grid correction”
[64, chapt. 2]. As explained in [54], this combination, i.e. the alternating execution, leads to a very
fast convergence, since both methods have complementary properties. The relaxations take care of
finely resolved details, while the coarse grid correction transports information globally through the
grid. Finally, we obtain our multigrid method to improve the approximated solution where at each
iteration we apply successively a pre-smoothing, a coarse grid correction and a post-smoothing step
[64, chapt. 2]. This scheme is called the 2-level multigrid, and can be further improved by the use
of multiple coarser grids.

4.3.3 The multigrid V-cycle

In order to construct a hierarchy of N nested grids [39], the classical choice is standard coarsening
[39]. Hereby, starting from a very fine grid, the mesh-size h is doubled in both directions [64,
chapt. 2], so that the coarse grid is constructed by taking every other point from the original fine
grid. Thus only about one fourth of the fine-grid points remain as coarse-grid points [59, chapt. 6]
in a 2D problem. On each of these grid levels l of mesh-size h, the PDE equation is then dis-
cretized to obtain the operator Al, and information is transferred between the grids by restriction
and prolongation, which can be defined as bilinear interpolation again. The subscript l now refers
to the level of the operator/vector instead of the size of the grid intervals. The 2-level multigrid
can then be generalised using this hierarchy of linear systems defined on decreasing grids, whereby
the number of total grids is given as N and the numbering starts with grid level l = 0 at the finest
grid.

Figure 13: Schema of a multigrid V-cycle with N grids, denoting the finest level by 0. The final
approximation of the solution after the V-cycle u∗0 is more accurate than u0 from the start.

The whole multigrid cycle starts with an arbitrary initial guess u0 for the solution on the finest
grid [44], followed by some relaxation sweeps on the initial discretized equation [9, chapt. 6]. After
this step, the error will be sufficiently smooth and ready to be solved for on the next coarser grid
[59, chapt. 6]. Consequently, the residual equation is transferred to the next level l = 1, to make

19

the error more oscillatory, and solved there by another subsequently smaller multigrid cycle [9,
chapt. 6]. To be more precise, a few smoothing steps are performed on the residual equation on
this grid level with the initial guess e1 = 0 using the restricted residual r1 as right hand side [10].

Successively, continuing this recursion using the given grid hierarchy and applying a smoother
on all grids from the finest to the coarsest would, thus, annihilate all but the lowest frequency
modes of the error on the coarsest grid [43, chapt. 7]. Furthermore, smoothing on a coarse grid is
much cheaper than on a fine grid owing to the fact that less grid points need to be treated [10].
Assuming that the size of the problem on the coarsest grid is very small, the error at this level can
then be eliminated by a direct solver [43, chapt. 7]. Ideally, the coarsest grid consists only of a few
points [64, chapt. 2] and its order is so small that the cost of solving is negligible [59, chapt. 6].
Following, the approximated error on the coarse grids are transferred up the sequence of grids back
to the finest grid as coarse grid corrections as in (35), combined with a few post-smoothing steps
on each level [43, chapt. 7] “to smooth out any oscillatory error modes that may have contaminated
the coarse-grid correction[s]” [59, chapt. 6].

The entire iterative procedure can be described schematically with the shape of the Latin letter
‘V ’, and is hence called a V-cycle [59, chapt. 6]. The whole multigrid V-cycle algorithm is illustrated
in Figure 13 and detailed in algorithm 4.

Algorithm 4: The multigrid V-cycle on level l: MG(l, ul, fl)
while k < max_its iterations && no convergence attained do

1. Pre-smoothing:

for v1 iterations do
Smoothing on Alu(k)

l = fl
end

2. Coarse grid correction:

− Compute the residual r(k)
l = fl −Alu(k)

l

− Restrict the residual r(k)
l+1 = PT r

(k)
l

− if l < N − 1 (coarsest grid) do
Call the multigrid cycle on level l + 1: MG(l + 1, e(k)

l+1, r
(k)
l+1)

else
Solve exactly on the coarsest grid: e(k)

l+1 = A−1
l+1r

(k)
l+1

end
− Prolongate of the error e(k)

l = Pe
(k)
l+1

− Correct of the solution u(k∗)
l = u

(k)
l + e

(k)
l

3. Post-smoothing:

for v2 iterations do
Smoothing on Alu(k∗)

l = fl
end

- Set u(k+1)
l = u

(k∗)
l

end

On a wide range of problem classes, multigrid methods display a mesh-independent convergence,
and their complexity is of O(m) operations, where m is the size of the system [43, chapt. 7] on the
finest level. In order to solve the PDE problem introduced in sections 4.1 and 4.2, we use this
V-cycle multigrid scheme, as defined in Algorithm 4, which poses several issues explained in the
next Section . For more details about multigrid, consider [64, 65, 62, 43, 59, 9, 28, 10, 11, 49, 54, 44].

20

4.4 Two problems arising with the choice of polar coordinates
Multigrid methods for meshes in polar coordinates were already considered in, e.g., [3, 7, 44, 62,
64, 31] but are still less studied [39]. One of the reason are the two major problems arising with
the coordinate transformation from Cartesian to generalised polar coordinates which treatment we
detail in this section: the singularity at the origin and the anisotropy of the operator [3].

4.4.1 Singularity at the origin

The transformation from curvilinear to Cartesian coordinates introduces an artificial singularity at
the origin for r → 0 as the entire line (r = 0× [0, 2π]) is mapped to the single point (x = 0, y = 0)
and thus, multiple unknowns coincide geometrically. In [39], three approaches to overcome this
problem are described.

The first workaround is to choose r0 > 0 with, e.g., r0 ∈ {10−2, 10−5, 10−8} and to simply
enforce Dirichlet boundary conditions for the artificial boundary line at r0. Obviously, these con-
ditions are easily feasible for a manufactured solution, but hard (or even impossible) to determine
in practical cases. Nevertheless, this approach is currently used in the GyselaX implementation as
presented in [26].

Another method is to establish a discretization across the origin. To be more precise, we adapt
the difference stencil by removing entries a ≡ bottomleft and c ≡ bottomright, and changing entry
b ≡ bottom

stencil =

g h i
d e f

0 b̃ 0

 . (38)

The new obtained entry
b̃ = −1

2
kt + kt−1

2r0
(arr0,t + arr0,t̃) (39)

establishes a link between node (r0, θj) and the node t̃ across the origin (r0, θj ± Π), 0 ≤ j < nθ
by considering the size of the interval h−1 = 2 r0, since the geometrical distance between these two
nodes is twice the minimum radius r0, and also by assuming that nθ is odd, see [36].

A further, natural approach consists in integrating the node (r0, θ) = (0, 0) into the mesh.
Explicitly using the origin as discretization node, however, needs an adaption of the discretization
of all nodes on r0 = 0 using an average of the values corresponding to r1 [3]. This workaround is
studied in [39] where the authors find out that this discretization method has a negative impact on
the convergence of the multigrid method, compared to the two previous approaches. Thus, we do
not discuss this approach any further here.

4.4.2 Anisotropy

As a consequence of using polar coordinates, the mesh spacing at distinct radii is different [10],
which naturally results in an anisotropic operator in the r-direction [3]. Furthermore, an additional
refinement of the grid is required in order to capture the steep variation of α, see Figure 10, again
leading to anisotropy in r [39]. Finally, the use of non-circular geometries, e.g. Shafranov or Czarny,
creates an anisotropy also in the θ direction.

For highly anisotropic problems, point relaxation, such as Gauss-Seidel, in combination with
standard coarsening does not yield satisfactory results [39] since the convergence factor highly in-
creases [64, chapt. 5]. The reason for this is that point-wise relaxation has a strong smoothing effect
only with respect to strongly-coupled degrees of freedom while it has poor smoothing properties
with respect to weakly-coupled DOFs in the operator [64, chapt. 5]. In the context of multigrid,
strong coupling between two points implies that the corresponding off-diagonal entry in the system
matrix is relatively large compared to the other off-diagonal entries of the same DOF. On the con-
trary, we speak of weak coupling, if the entry is relatively small [39, 65].

The two classical workarounds to overcome anisotropy are semi-coarsening and line relaxation,
which are explained in [64, chapt. 5]. In the case of semi-coarseining, a point-wise relaxation is
kept, while the grid coarsening is adjusted. The coarse grid is, hence, defined by doubling the mesh
size only in the direction of the strong-coupling, where the error appears smooth. However, since

21

more points remain on the coarse grid, this approach is not as fast as standard coarsening [10].
Additionally, we have anisotropy in both directions in our case, which also varies depending on the
radius, so it would be quite complex to adapt the coarsening to the problem expressed in curvilinear
coordinates.

The other possibility is changing from point-wise to line-wise relaxation while keeping stan-
dard coarsening. This means, the system is solved for entire lines of unknowns (constant r or θ)
simultaneously. For each grid line i of unknowns, we define the sub-matrices of the matrix A:

• Ai, corresponds to the stencil connections between nodes in same line i,

• fi, the corresponding part of the right hand side,

• ui, the corresponding part of the approximated solution,

• A⊥i , corresponds to the stencil connections between nodes in line i, and the nodes in neigh-
bouring lines,

• u⊥i , corresponds to the part of the approximated solution of the neighbour lines.

Let’s consider the use of block-Gauss-Seidel for our problem. Successively for each line, one must
solve the linear system

Ai · ui = fi −A⊥i · u⊥i (40)
for ui, and update the corresponding part of the current approximated solution.

For the solution of our problem, we adapt the smoothing operation as explained, while keeping
standard coarsening [39]. On a disk-like domain using polar coordinates, two natural line smoothing
operations can be distinguished: the splitting of the grid in circular or radial lines [39]. Let’s consider
the example 4×4 grid shown in Figure 14, where the numbering of unknowns follows the θ-direction
first.

(a) Circle line smoothing (b) Radial line smoothing

Figure 14: An example grid of size 4× 4, using periodicity conditions in θ-direction. The indicated
nodes are smoothed simultaneously, i.e. line relaxation in resp. circle and radial direction.

In the case of circle line smoothing all degrees of freedom of a circle with a constant r are relaxed
together [36], see Figure 14a. For example, using the given stencil (26), and updating the unknowns
u8 to u11 (ui) of the circle line collectively, gives the instance of (40) expressed as

e f d
d e f

d e f
f d e

u8
u9
u10
u11

 =

f8
f9
f10
f11

−

b c a h i g
a b c g h i

a b c g h i
c a b i g h

u4
u5
u6
u7
u12
u13
u14
u15

. (41)

22

The matrix Ai hereby takes a tridiagonal form with two additional elements in the upper right and
the lower left corner due to the periodicity conditions. The connections of ui to the unknowns from
the previous (u4 to u7) and following line (u12 to u15), i.e. u⊥i , are gathered in A⊥i on the right
hand side of the equation.

In the case of radial line smoothing, a line i corresponds to a constant θ [36], see Figure 14b.
For instance, with the given stencil, the radial line composed of unknowns u1, u5, u9, and u13 gives
the instance of (40) expressed as

e h
b e h

b e h
b e

u1
u5
u9
u13

 =

f1
f5
f9
f13

−

d g f i
a d g c f i

a d g c f i
a d c f

u0
u4
u8
u12
u2
u6
u10
u14

. (42)

In this case, the matrix Ai is tridiagonal, and the unknowns on the right hand side of the equation
(u⊥i) are ordered according to the two neighbouring lines.

In [3] it was shown that both line smoothing operations behave very differently depending on
the position within the circular domain [39]. In fact, circle relaxation shows better smoothing
behaviour [39] around the origin than near the outer boundary, whereas radial smoothing is more
efficient for r → rmax compared to the interior of the domain [3]. This is explained by the fact
that the polar coordinates imply strong connections between degrees of freedom on circle lines
[36] in a neighbourhood around the origin and, on the other hand, near the boundary, the strong
connections lie in radial lines [3]. While updating strongly connected unknowns collectively works
perfectly, resulting in smooth errors [39], line relaxation fails to achieve satisfactory convergence in
the direction of weak coupling.

In [3], it was proposed to use a so called alternating-direction relaxation, where the whole
domain is first treated by a circle smoother and subsequently by a radial smoother. In our case, in
order to obtain a good convergence factor on the entire domain, we always update strongly coupled
points together by a combination of the two line smoothing procedures on the domain, using circle
relaxation near the origin and radial smoothing near the outer boundary. Thus, the domain is
partitioned into two sections, where the two different smoothers are used [39]. In [39, 36], the
authors show empirically that the best convergence is obtained when switching from circle to radial
smoothing when

ki
hj
rj > 1. (43)

In contrast to lexicographic line Gauss-Seidel smoothing, where the lines are handled one after
the other, zebra line Gauss-Seidel smoothing consist of two half steps [64, chapt. 5], where all even
and odd lines, respectively, are processed simultaneously [39]. Accordingly, all grid points with even
line index are defined to be black and treated in the first half step while the remainder being white
and handled in the second half step [65, chapt. 7]. In fact, the zebra line smoother has an improved
convergence factor and a high degree of parallelism as all lines of the same colour are independent
and thus, can be processed in parallel [64, chapt. 5]. Note that this only holds in case of using a
stencil of length one which simply takes into account the direct neighbours. Otherwise, considering
points from more lines for an update, additional colours have to be defined, and only the lines of
one colour may be processed in parallel.

Figure 15 shows the colouring of a circular domain according to a circle, radial and combined
circle-radial zebra smoother.

At each iteration of the combined smoother, we then alternate circle black, circle white, radial
black, and radial white smoothers. Let’s define for further notations the index sc, which indicates the
smoother s ∈ {circle, radial}, and the colour c ∈ {white, black}, identifying the current smoother.
For one sweep of zebra line relaxation all lines of the matrix belonging to the node indices of
one smoother (circle or radial) and one colour (black or white) are then considered. We define
the matrices and vectors Asc, fsc, usc, A⊥sc, and u⊥sc, as was done before but considering all lines
corresponding to a smoother sc. Thus, using the definition (40), we have

23

(a) Circle (b) Radial (c) Combined

Figure 15: Different zebra line smoothers.

Asc =

Ai0 . . .
Aik

 , fsc =

fi0...
fik

 , usc =

ui0...
uik

 , u⊥sc =

u
⊥
i0...
u⊥ik

 , Asc
⊥ =

A
⊥
i0...

A⊥ik

 ,

(44)
where Isc = {i0, . . . , ik} is the set of lines for a smoother sc. Consequently, there exist four different
matrices Asc and A⊥sc for every combination of smoother and colour. As a consequence of using
line relaxation, the collective solution of all equations corresponding to one smoother sc requires to
solve a linear system of equations corresponding to each matrix Asc in every smoothing step.

In this case, a LU-factorization by Gaussian elimination shall be applied to the matrix Asc once
during setup, followed by simple forward and backward substitution to solve the system in every
iteration [36]. The decomposition of a matrix A into the lower triangular matrix L and the upper
triangular one U can be performed using algorithm 1 [63]. Note that the number of operations
required for the factorization is reduced drastically when considering the specific structures of the
matrices corresponding to each smoother, as in (42) and (41).

Let us introduce another example grid of size 4 × 7 with Dirichlet boundary conditions on the
inner radius and outer radius. Based on the criterion (43), the splitting between circle and radial
smoothers is done between the third and fourth circle lines, see Figure 16.

Incorporating the Dirichlet boundary conditions into the system, as in (29), we get ones on the
diagonal of the system matrix for all nodes on the boundary. Moreover, the connection between
the circle and the radial smoothers needs to be considered for all radial lines, using the links to the
circle points additionally in the vector u⊥sc. Therefore, except for the boundary, (41) still holds for
the smoothing of one circle line, but (42) needs to be adapted for the radial line relaxation. For
example, for the radial line of unknowns u13, u17, u21 and u24 in the 4 × 7 grid, the equations is
reformulated as

e h
b e h

b e
1

u13
u17
u21
u25

 =

f13
f17
f21
f25

−

a b c d g f i
a d g c f i

a d c f
0 0

u8
u9
u10
u12
u16
u20
u24
u14
u18
u22
u26

. (45)

The structure of the whole matrix A, based on the 4 × 7 grid from Figure 16, can be seen
in Figure 17 with the separation between the unknowns of the two smoothers represented by a
red line. Hereby, for the matrices Asc, being the restrictions of A on the degrees of freedom of

24

Figure 16: An example grid of size 4× 7, using a combination of circle and radial smoother.

the corresponding smoother sc and indicating all connections to the same smoother, the color of
each smoother (black or white) is shown explicitly. On the other hand, the complement matrices
A⊥sc, corresponding to the remaining parts of the rows of A [22], consist of all non-coloured (grey)
elements within the considered matrix lines.

25

Figure 17: System matrix corresponding to the example grid of size 4 × 7: The red line indicates
the separation between circle and radial smoother. Sections of the matrix corresponding to the
four matrices Asc are coloured in either black or white. The remaining elements correspond to the
matrices A⊥sc.

26

4.5 Multigrid with implicit extrapolation
Implicit extrapolation is an efficient technique to improve the accuracy of a multilevel solver [34]
by exploiting the information between grids on different discretization levels [6]. The basic idea
is to use the extra information provided by multi leveling - through monitoring the change in
the approximate solution from one level to the next - in order to give an estimate of the local
error [56]. Eliminating certain dominating error terms, the convergence order of the approximated
solution can be raised implicitly and inexpensively [52]. The approach might be suitable even for
nonuniform [34], unstructured meshes [33] as well as for nonlinear problems [5] and could be easily
integrated into a basic low order multigrid solver [34, 56].

In contrast to an explicit approach, i.e. the well-known Richardson extrapolation - where several
discrete solutions on different levels are used directly in order to combine them linearly and to
improve the error expansion - τ -extrapolation is more efficient [34, 55]. In fact, τ -extrapolation,
which was originally introduced in [9, chapt. 8], is applicable in a more general case as it extrapolates
the equation instead of the solution. In other words, the extrapolation is applied indirectly to
intermediate quantities of the solution process [34] such as the truncation error, the residual, the
energy, or the system matrix [6]. τ -extrapolation is particularly simple [45], because it avoids the
explicit construction of higher order operators and complicated difference stencils [6]. It may be
used implicitly [55] and can be applied in a natural form within the multigrid algorithm [34].

The τ -extrapolation is mathematically motivated by the asymptotic expansion of the truncation
error [34] and based on the combination of such errors of several grid levels [55]. In general, the
truncation error is defined as the correction to the right hand side that would make the solution uh
coincide with the true differential solution

Ahuh = fh + τh, (46)

see [9, chapt. 8]. With τH being the local truncation error on the coarse grid with mesh size H,
and τh respectively on the fine grid with mesh size h < H, the following equality is valid up to a
higher order in h

τH ≈ τh + τHh , (47)

see [9, chapt. 8]. The so-called relative truncation error τHh := τH − τh is therefore defined as the
difference of the coarse grid truncation error relative to the fine grid one. Being used to improve
the approximated solution on the fine grid, τHh is a correction term which would make the coarse
grid error coincide with the fine grid error [9, chapt. 8].

In fact, higher order solutions can be obtained by appropriately combining systems of lower
order equations [53] in such a way that the low order error terms cancel out [45]. Choosing suitable
parameters [55] for a systematical linear combination [45], only higher order perturbations of the
solution remain [56].

In [56], the energy extrapolation method in hierarchical basis formulation is discussed. Therein,
the sequence of numerical methods Eh(f) to approximate the energy of a function f

E(f) =
∫

Ω
a (∇f(x, y))2d(x, y) (48)

with a constant coefficient a has an h2-expansion in the error

Eh(f)− E(f) = h2e1 + h4e2 + ...+ h2N+2RN+1, (49)

see [56] The remainder term RN+1 depends on the derivatives of f such that it vanishes if the
derivatives of f of order N + 2 vanish. When f is a quadratic polynomial, its derivatives of order
3 = N + 2 vanish and thus, (with N being 1) also RN+1 = R2 does so:

Eh(f)− E(f) = h2e1 + h4R2 = h2e1. (50)

This means that the error expansion degenerates and that quadratics can be integrated correctly
by using one single step of extrapolation

E(f) = 4/3Eh/2(f)− 1/3Eh(f), (51)

27

see [56]. In the hierarchical basis representation higher order is simply obtained by multiplying
certain matrix entries by the extrapolation factors 4/3 or 1/3 [56]. This is proven in [53] and can
be quickly explained in the following way:

Consider a h2 and a (2h)2 solution and its error. Applying the following linear combination

4/3h2 − 1/3(2h)2 = 4/3h2 − 1/3 · 4h2 = 0, (52)

the h2 error terms cancel out and, thus, the solution is of higher order than h2 [57].
The theoretical basis for this is the global error expansion, whose existence depends on the

smoothness of the solution [45]. Only if the solution is “sufficiently smooth, extrapolation leads
to a convergence order which is higher than the approximation order of the basic discrete system” [5].

In our case, an implicit extrapolation method based on τ -extrapolation shall be employed. In the
context of finite elements, a discretization based on linear elements is equivalent to a discretization
with quadratic elements [45]. Typically, the convergence order is then raised from two to three
by this extrapolation step [38] without explicitly calculating the solution on the coarser grid [55].
Moreover, in the experiments [39], we can see that an accuracy of even h4 is reached, which can be
explained by the canceling of all uneven order terms in the asymptotic h2 error expansion in the
case of uniform grid refinement [55].

In the multigrid context, we consider a coarse mesh, consisting of the set of coarse nodes denoted
by the index c, and refine it by adding the intermediate points of all intervals to the set [38]. For
an easier representation, a block partitioning of the matrix system is induced by ordering the nodes
such that the coarse degrees of freedom appear first [34] and the intermediate fine ones, which are
not in the set of coarse nodes and indicated by the index f , come second [38].

Consequently, two matrices AC and AF for resp. the coarse and the fine nodes can be assembled
[38], where the fine matrix can be split according to the block partitioning

AF =
(
AF,cc AF,cf
AF,fc AF,ff

)
. (53)

The extrapolated system is then a linear combination of both, with the extrapolated matrix Aex
and the corresponding right hand side fex given as [38, 33, 34, 53, 6]

Aex =
(

4/3AF,cc − 1/3AC 4/3AF,cf
4/3AF,fc 4/3AF,ff

)
,

fex =
(

4/3fF,c − 1/3fC
4/3fF,f

)
.

(54)

In the code, the extrapolated system is constructed without explicitly forming a block parti-
tioning,

Aex = 4/3 ·AF − 1/3 · (Pinj ·AC · PTinj),
fex = 4/3 · fF − 1/3 · Pinj · fC ,

(55)

by the use of the transposed injection operator PTinj which maps the fine grid operators onto the
coarse grid by simply taking the coarse nodal values unchanged while dropping all values on the
fine nodes [53].

In [38], the following is proven for finite elements with nonstandard integration, and experimen-
tally shown that it works accordingly for finite difference discretizations: When using two levels,
a linear, nodal, non-hierarchical basis (Al) can be transformed to an h-hierarchical basis (Ah) by
a transformation T . The h-hierarchical can then be converted to a p-hierarchical basis (Ap) by
implicit extrapolation (index ex) [34], which is then again equivalent up to the transformation TT
to a quadratic basis (Aq):

Al,ex = TTAh,exT = TTApT = Aq

f l,ex = TT fh,ex = TT fp = fq.
(56)

Figure 18 shows these four different bases.

28

Figure 18: The four different bases: linear, h-hierarchical, p-hierarchical and quadratical, functions
on the fine grid are marked in violet and functions on the coarse grid in red.

As the implicitly constructed, linear, extrapolated system matrix and respectively the right hand
side coincide with the quadratically discretized operators, the following two systems yield the same
solution [38, 33, 34, 6]:

Al,exu = f l,ex,

Aqu = fq.
(57)

The convergence theorem is stated in [34]: The iterates of a multigrid algorithm using discretiza-
tions with piecewise linear functions and implicit extrapolation - by means of linear combination
of the matrices of two different levels [56] - converge to the same solution with the same order
of discretization error which we get by a discretization with piecewise quadratic functions. In
summary,

“the implicitly extrapolated multigrid algorithm for linear elements can be interpreted
as a multigrid algorithm solving the original PDE when discretized by quadratic nodal
basis functions” [39].

Since multigrid algorithms use a hierarchy of successively refined, nested grids [5], where the
coarse levels are true subspaces of the finer levels [56], extrapolation is especially attractive to be
included into the Algorithm [5]. Since we are not interested in the extrapolation of the error on
the coarser grids but only on extrapolating the actual approximated solution, the “extrapolation
step is only conducted between the two finest levels of multigrid hierarchy” [39]. In the interest
of a successful extrapolation, the refinement between the two considered grids has to be uniform.
Therefore, the mesh on the finest level l = 0 is constructed by uniform refinement from the second
finest grid l = 1 by incorporating the midpoints of the intervals [38], resulting in an odd number of
nodes in both directions.

As already mentioned, the grid points of the coarser mesh are denoted by c and the set of
newly added fine nodes by f [56]. In a modified smoothing procedure all coarse nodes belonging
to the set c are excluded and thus, only the fine nodes f not being coarse nodes are treated. The
reason for this is that “a smoothing on the untransformed system is incompatible with the higher
order accuracy of the extrapolated system” [56]. In order to avoid the explicit setup of the higher
order system, we can just use the lower order equations for the smoothing step by neglecting the
coarse nodes [57]. This special smoothing procedure [39] demarcates our implicit extrapolation
from normal τ -extrapolation, where either the problem is ignored and thus all points are smoothed
[56] or the relaxation on the finest grid is avoided at all after once having used extrapolation [64,
chapt. 5].

29

Consequently, equation (40) with (44) for the smoothing procedure is reformulated for the finest
level l = 0 as

Aexsc,ff · usc,f = fexsc,f −Aex,⊥sc · uex,⊥sc , (58)

with sc denoting the smoother, as explained in Section 4.4.2. As the coarse nodes are excluded
from the smoother sc, all elements of the corresponding nodes have to be shifted to the right hand
side of the equation into the matrix Aex,⊥sc (see example: fig. 19 and 20).

After the smoothing, which delivers the fine solution vector usc,f , the complete solution vector
usc needs to be build from the coarse and fine solution:

usc =
(
usc,c
usc,f

)
(59)

Again, in the code, we do not use the reordering of the nodes as block partitioning form.

Subsequently, the residual of the extrapolated system needs to be calculated and restricted to
the next level l = 1. Hereby, a modified restriction operator PTex is used [39], which differs from
general transposed bilinear interpolation due to the derivation of the stencil in the context of finite
elements with the help of triangles. Therefore, the coarse nodes are just injected directly [39], while
the fine nodes are examined whether they are connected to a coarse node by an edge of the coarse
triangulation [56]. If there exists a direct link to a coarse node, the stencil entry for the fine nodes
is 1/2 and else 0 [39]:

Pex =

1/2 1/2 0
1/2 1 1/2
0 1/2 1/2

 . (60)

As the refinement between the two finest grids is uniform, the stencil entries are always constant
even in the case of anisotropy.

By applying PTex to the residual of the extrapolated system on level 0 and inserting the given
formulas (55) for the extrapolated matrix and right hand side (for l = 0, with F = 0 and C = 1),
we get a detailed equation for the extrapolated residual restricted to level 1 [39, 33, 6, 34]:

rex1 = PTex r
ex
0 ,

= PTex [fex0 −Aex0 u0],
= PTex [(4/3 f0 − 1/3Pinj f1)− (4/3A0 − 1/3 (Pinj A1 P

T
inj))u0],

= 4/3PTex f0 − 1/3PTexPinj f1 − 4/3PTexA0u0 + 1/3PTexPinj A1 P
T
inju0,

= 4/3PTex(f0 −A0u0)− 1/3PTex(Pinj f1 − Pinj A1 P
T
inju0).

(61)

As PTexPinj = I reduces to the identity and f0 − A0u0 = r0 is the residual of the non-extrapolated
system on the fine level l = 0, we finally get

rex1 = 4/3PTex r0 − 1/3 (f1 −A1 P
T
inj u0). (62)

The multigrid algorithm with implicit extrapolation is given in algorithm 5. As explained, the
extrapolation step is only conducted on the finest grid l = 0 and subsequently, a standard multigrid
V-cycle (algorithm 4) is called on level l = 1 [39, 5].

30

Algorithm 5: The multigrid V-cycle on level l = 0 with implicit extrapolation:
MGex(u0, f0)
while k < max_its iterations && no convergence attained do

1. Pre-smoothing:

for v1 iterations do
- Smoothing only on the fine nodes of u(k)

0
- Build the complete solution from the coarse and the fine solution

end

2. Coarse grid correction:

- Compute the residual rex,(k)
0 = fex0 −Aex0 u

(k)
0

- Restrict the residual rex,(k)
1 = PTexr

ex,(k)
0

- Call a standard multigrid cycle on level l − 1: MG(l = 1, e(k)
l+1, r

ex,(k)
l+1) (Algo. 4)

- Prolongation of the error e(k)
0 = Pexe

(k)
1

- Correction of the solution u(k∗)
0 = u

(k)
0 + e

(k)
0

3. Post-smoothing:

for v2 iterations do
- Smoothing only on the fine nodes of u(k∗)

0
- Build the complete solution from the coarse and the fine solution

end

- Set u(k+1)
0 = u

(k∗)
l

end

In Figure 19, the already presented example grid (compare fig. 16) of size 4× 7 is adjusted by
removing all the coarse nodes for the smoothing step on level 0. For the extrapolation to work, it
is important to have an uneven number of grid points in both directions. Due to the periodicity
condition in θ-direction the last line at θ = 2π which is equivalent to the first line at θ = 0 is left
out, resulting in Figure 19 in an even number of points again.

Figure 20 shows the structure of the resulting system matrix Aex based on the grid from Fig-
ure 19. In fact, all lines corresponding to the coarse nodes have to be eliminated from the matrix
and are hence, crossed out (in green) owing to the exclusion from the smoothing procedure. As
already mentioned in this section, these coarse nodes need to be put to the right hand side of the
equation into the matrix Aex,⊥sc . Consequently, the coloring (referring to the matrix Aexsc) of all
elements within the corresponding columns (indicated by a red arrow) is disposed of, compared to
Figure 16, in order to additionally incorporate the (red) encircled elements into the matrix Aex,⊥sc .
Thus, a square form is achieved again for the matrix Aexsc .

To conclude, implicit extrapolation can be naturally combined with multigrid methods which
then provides a very efficient solver for discrete systems [6] with an asymptotically optimal conver-
gence [33]. It is competitive with multilevel methods using higher order directly [33] and therefore
one of the most efficient approaches to the high accuracy solution of partial differential equations [6].

According to [39], a direct discretization with higher order, in contrast, typically leads to a
dense matrix structure and thus, to a high flop cost per matrix-vector multiplication or smoother
application. Using a clever recombination of low order components from the multigrid solver, an
equivalent high order discretization can be constructed without the explicit setup of any more ex-
pensive, higher order, densely populated matrices, avoiding additional memory, memory traffic and
high flop cost. Consequently, while resulting in a comparable convergence rate and numerical work
per iteration, implicitly extrapolated multigrid has the advantage of a possibly simpler structure

31

Figure 19: The already presented example grid of size 4 × 7 (compare to Figure 16) with the
elimination of the coarse nodes for the smoothing procedure in case of implicit extrapolation. As a
consequence, the node numbering changes in comparison to the previous example.

[33] and thus leads to a qualitatively equivalent high order discretization at reduced cost.
Compared to general multigrid without modification, the additional work for the extrapolation

is very small [5]. In fact, except for the computation and restriction of the extrapolated residual,
the cost is the same as for standard low order multigrid [39]. After all, implicitly extrapolated
multigrid delivers higher order at only minimally raised cost [22].

On the other hand, as presented in [39], we can expect a slower algebraic convergence, meaning
the iteration count is slightly larger. Furthermore, it is necessary to solve the discrete system up
to a higher accuracy in order to exploit the lower discretization error. As a consequence of these
two effects, the cost for the computation of a proper solution with extrapolated multigrid is still
expected to be more expensive than with a general, basic, low order multigrid algorithm. Despite
this fact, the iteration count still remains modest and independent of the mesh size, following that
the solver is asymptotically optimal and scalable.

For any further literature about implicit extrapolation, please refer to [64, chapt. 5], [9, chapt. 8],
[28, chapt. 14], others e.g. [55, 33, 34, 53, 5, 6, 56, 45].

32

Figure 20: Extrapolated smoothing matrix corresponding to the example grid of size 4 × 7 in
Figure 19. The elimination of the matrix rows corresponding to the coarse nodes is visualized with
green lines. The red arrows indicate the matrix columns corresponding to the coarse DOFs, with
the red circles showing all elements which have to be shifted from the matrix Aexsc to Aex,⊥sc .

33

5 Implementation of the solver GmgPolar
The multigrid algorithm for the gyrokinetic Poisson equation in polar coordinates, described in Sec-
tion 3, with combined circle-radial zebra line smoothing and implicit extrapolation was implemented
by Martin Kühn in Matlab within the project EoCoE. The next step is to convert the existing code
to an object oriented C++ code in order to tackle larger problem sizes by improving efficiency and by
enabling parallelisation as well as the simple integration of the solver into GyselaX. The purpose of
the Matlab implementation was a simple development of the whole algorithm for research purposes,
and thus contains also the comparison of several different options such as finite element and finite
difference discretization, 5-, 7- and 9-point stencils, Jacobi and Gauss-Seidel smoothing, circle, ra-
dial and combined zebra line smoothing as well as different variants of extrapolation. Based on the
results in [39] obtained with the Matlab implementation, we focus for the C++ implementation on an
efficient, matrix-free implementation using a 9-point finite difference discretization with combined
circle-radial zebra line Gauss-Seidel smoothing and the described implicit extrapolation method.

The implementation was done in the course of this master’s thesis as a teamwork together
with my supervisor Dr. Philippe Leleux, who provided a simple structure of classes and already
implemented some of the basic functions concerning the setup of the problem, e.g. the construction
of the right hand side f , and the application of the matrix A and the prolongation operator P .
During this project my task was mainly to focus on the multigrid cycle with implicit extrapolation
itself, while Dr. Leleux worked on the optimization of the functions.

In this Section, we first introduce the structure of the code, including the different parameters
and object classes. Then we detail the implementation of the different elements required in the
multigrid cycle, and finally, we demonstrate the efficiency of this new code in a series of numerical
experiments.

5.1 Structure of the code
Our implementation has a very simple structure, shown in Figure 21. The code contains the two
namespaces param and gyro as well as the two classes gmgpolar and level, which are all described
in the following four subsections.

Figure 21: Structure of the GmgPolar C++ implementation. The class gmgpolar contains several
instance of the class level, then the colors represent calls of methods in level from the methods in
gmgpolar.

34

5.1.1 Namespace param

This namspace contains an enumeration for the definition of some global constants, listed in Table 1,
which can be given to the program as parameters by the command line or are set to default values
if not provided. The parameters define in particular how the grid is constructed, what geometry
should be used, as well as what multigrid cycle is utilized.

By default, we use the optimised matrix-free code, with the Shafranov geometry (κ = 0.3,
δ = 0.3) on the ring with r0 = 10−5, R = 1.3, and a V-cycle multigrid with one pre- and post-
smoothing step of the combined circle-radial smoother, as introduced in Section 4.4.2, and implicit
extrapolation.

Type Name Description

co
de optimised Whether to use the optimised code version or not.

matrix_free Whether to use a matrix free implementation or not.

di
sc
re
tiz

at
io
n nr_exp Defines the number of nodes in both direction: nr, nθ = O(2nrexp).

fac_ani Number of refinements around the steep jump of the coefficient α, i.e.
around r = 2/3R.

divideBy2 Defines how often to split the intervals of the grid at the midpoint.
DirBC_Interior Defines the treatment of the origin (0: across the origin discretization /

1: Dirichlet boundary).

ge
om

et
ry

r0 / R Interior/ exterior radius of the disk-like shape.
mod_pk Defines the shape of the geometry (0: circular geometry / 1: Shafranov

geometry / 2: Czarny geometry).
kappa_eps Parameter κ for the Shafranov geometry, parameter ε for the Czarny

geometry.
delta_e Parameter δ for the target geometry, parameter e for the Czarny geom-

etry.

V
-c
yc
le

cycle Type of multigrid cycle (1: V-cycle / 2: W-cycle).
maxiter Maximum number of iterations.

smoother Defines the smoothing version (3: coupled circle-radial version/ 13: de-
coupled circle-radial version), see Section 6.2.

v1 / v2 Number of pre- / post-smoothing steps.
extrapolation Defines the extrapolation version (0: no extrapolation / 1: implicit ex-

trapolation / 2: implicit extrapolation with full grid smoothing, see Sec-
tion 6.3).

Table 1: Parameters of the namespace param.

5.1.2 Namespace gyro

The namespace gyro contains the actual values of the parameters from param in the arrays icntl and
dcntl as well as some fundamental functions for the computation of the right hand side, the exact
solution, and the coefficients α, det(DF), arr, arθ, aθθ from Section 4.2. Moreover, the namespace
implements the mapping from Cartesian to polar coordinates. The most important functions are
listed in Table 2.

35

Name Parameters Description
def_solution (x, y) or (r, theta) Returns the solution at the point (x,y) or (r,θ) or a vector

of the solution on all grid points.
eval_def_rhs (r, theta) Returns a vector with the original right hand side f of the

Poisson equation for all grid points.
coeff r Returns the diffusivity coefficient α depending on the ra-

dius.
detDFinv (r, theta) Returns the determinant of the derivative of F−1 at the

point (r, θ), or a vector with the same for all points.
arr, art, att (r, theta) Returns the coefficient arr/ arθ/ aθθ at the point (r, θ), or

a vector with the same for all points.
trafo, trafo_back (r, theta) and (x, y) Transformation of the couple (r, θ), or of all points on the

radius r, respectively from Cartesian to polar coordinates,
and from polar to Cartesian coordinates.

Table 2: Functions from namespace gyro.

5.1.3 Class gmgpolar

The class gmgpolar stores a list of instances from the class level representing the multigrid hierarchy,
numbered from the finest level l = 0 to the coarsest level l = levels− 1.

Name Description
levels Number of levels of the multigrid hierarchy.

v_level Contains all grid levels of class level (1D array of instances of the class level).

Table 3: Variables from the class gmgpolar.

The functions defined in gmgpolar operate on all levels with a purpose such as the creation of
the grid hierarchy, or the execution of the multigrid cycle, see Figure 21. In the tables 3 and 4, an
overview over the most important variables and functions of the class is given.

Name Parameters Description
create_grid_polar – Creates the polar grids on all level.

create_grid_polar_divide – Refines the existing grid uniformly, by dividing at
the center of the intervals.

polar_multigrid – Solves the linear problem with multigrid.
define_coarse_nodes – Defines the coarse nodes on all levels.

prepare_op_levels – Prepares the levels by constructing the operators.
multigrid_iter – Launches the overall multigrid cycle iterations.

multigrid_cycle_extrapol l Launches one multigrid cycle on level l.
compute_residual l, extrapol Computes the residual on level l, with or without

extrapolation.
compute_error – Computes the error compared to the solution of the

PDE equation.

Table 4: Functions from class gmgpolar.

36

5.1.4 Class level

This class represents one grid level of the multigrid hierarchy, identified by the number l, and thus,
contains structures and variables that belong to one specific level, see Table 5. In particular, the
class level stores, for instance, the solution u, the right hand side f and the residual res, which
exist for every node on the 2-dimensional grid as one-dimensional vectors of length m in a row wise
manner. Also, the matrices Asc are stored in a sparse matrix format as three 1D arrays containing
for each non-zero entry the row and column index, and the value.

Type Name Description

G
rid

l Index of the current level.
nr, ntheta Number of points in the r-, θ-direction.

nr_int, ntheta_int Number of intervals in r-, θ-direction.
r, theta List of coordinates in r-, θ-direction (1D-array).

hplus, thetaplus List of interval sizes in r-, θ-direction (1D-array).

Li
ne

ar
Sy

st
em

m, nz Dimension and number of non-zeros of the matrix A.
row_indices, col_indices, vals Row / column / values of the nonzero elements in the sparse

matrix A (1D-array).
fVec, u, and res Right hand side f , approximated solution, and residual vec-

tors (1D-array).
u_previous_c, u_previous_r Approximated solution from the previous iteration of the

circle / radial smoother (1D-array).

C
oa
rs
er

le
ve
l

coarse_nodes Number of coarse nodes.
coarse_nodes_list_r, _theta Indicating which nodes are fine (-1), and which are coarse

(r and θ coordinates of the point) (1D-array).
coarse_nodes_list_type Indicating the position of coarse and fine nodes relative to

each other (0: coarse node, 1: fine node with a coarse node
on the same r-coordinate, 2-4: fine node with a coarse node
on the same θ-coordinate, 5-8: fine node with diagonal links
to coarse nodes) (2D-array).

mc Dimension of the matrix A on the next coarser level.

Sm
oo

th
er delete_circles Index of the last circular line belonging to the circle

smoother.
m_sc Dimensions of the four matrices Asc (1D-array).

A_Zebra_r, _c, _v Row / column / values of the nonzero elements in the four
sparse matrices Asc (2D-array).

Table 5: Variables from class level.

The class also defines functions which serve the construction of the grid on this level, the building
and application of the operators A and P , as well as the smoothing procedure including the solving
of the linear systems with the matrices Asc, see Table 6. Most operators are not explicitly build
and stored but applied directly to a vector in a matrix-free manner using a stencil representation.
This is discussed in more detail in Section 5.2.1. For many of the functions, there exist an original
naive implementation as well as an optimised version, see Section 6.1.

37

Type Name Parameters Description

G
rid build_r, _theta – Builds the vector r, θ.

define_coarse_nodes finer_level Defines the coarse nodes on one level.
O
pe

ra
to
rs

apply_A u, Au Applies the matrix A to a vector u, mainly
used for the residual computation.

build_rhs – Builds the right hand side of the derived en-
ergy equation (f · u · detDF).

apply_prolongation_bi,
_inj, _ex

u, trans Applies the prolongation operator Pbi, Pinj ,
Pex for the bilinear interpolation. Option
trans=1 apply the restriction (transposed pro-
longation). Returns the vector Pu.

Sm
oo

th
er

multigrid_smoothing smoother Smoothing procedure for one smoother sc
solving for usc and inserting it into the overall
solution u.

define_line_splitting – Defines the switch circle to radial smoother.
build_Asc – Builds the matrix Asc for the smoother sc.
build_fsc f_sc, smoother Builds the vector fsc for the smoother sc from

the vector fVec.
apply_Asc_ortho Au, u, smoother Applies the matrix A⊥sc for the smoother sc to

a vector.

Li
ne

ar
Sy

st
em

facto_gaussian A_row_indices,
A_col_indices,
A_vals,
m_solution

Gaussian elimination to get the LU decompo-
sition of a matrix A.

solve_gaussian A_row_indices,
A_col_indices,
A_vals, f

Forward-backward substitutions to solve a lin-
ear system of equations from the LU decom-
position and right hand side vector f , return
the solution vector.

Table 6: Functions from class level.

5.2 Implementation of the multigrid cycle
In this section, the implementation of the overall code is explained using the structure of classes
introduced before. The whole code is divided into two steps: First, the setup phase constructs the
grid hierarchy with its different levels, vectors and operators. Secondly, the multigrid cycle is called
using elements constructed during setup.

In the main function, the following steps are carried out one after another:

1. call gmgpolar::create_grid_polar:

• create the finest level (l=0)
• call level::build_r and level::build_theta to create the vectors r and theta with the co-

ordinates of the grid nodes
• call gmgpolar::create_grid_polar_divide to refine the grid again

2. call gmgpolar::polar_multigrid:

• call gmgpolar::define_coarse_nodes
– call level::define_coarse_nodes_onelevel to create all coarser levels

• call gmgpolar::prepare_op_levels
– call level::build_A to create the operator on the coarsest level (l=N-1)
– call level::build_rhs to build the right hand side for level 0 (and 1, in the case of

extrapolation)

38

– call level::facto_gaussian_elimination to factorize the operator A on the coarsest
level (l=N-1)

– call level::define_line_splitting to define the smoother and colour for every node
– call level::build_Asc on all levels except for the coarsest
– call level::facto_gaussian_elimination to factorize the operators Asc

3. call gmgpolar::multigrid_iter:

• call gmgpolar::compute_residual and store the 2-norm of the residual vector on level 0
• while (stopping criterium is not fullfilled) {

– call gmgpolar::multigrid_cycle_extrapol on the finest level to perform one multigrid
cycle

– compute the convergence criterium
}

• call gmgpolar::compute_error to compute the 2- and inf-norm of the error vector

In the following subsections, we detail the contributions brought to each part of the code in the
context of this master’s thesis. First, we introduce the principle of matrix-free operations, essential
for the performance of the solver, then we detail the multigrid solver split into the two steps: the
setup phase, followed by the multigrid iterations with a specific focus on the implementation of the
smoothing and the extrapolation scheme.

5.2.1 Matrix-free implementation

In the case where all operators are fully assembled and stored, a huge amount of memory would
be required [36]. In order to overcome these memory issues, especially when considering large
scale problems, a matrix-free implementation is of great importance, see [4] for more details. In
such an implementation, the operators A, P and Asc are not assembled (and stored in memory)
but rather applied directly on vectors [36] using the stencil representation introduced in Section 4.2.

According to [36], the elements that we keep in memory for each level are the vectors r and theta
of size resp. nr and nθ defining the grid, as well as the right hand side f of size m, and the values
for the coefficient α for every radius. In order to avoid the redundant computation of trigonometric
functions, vectors with the values of cos θ and sin θ of size nθ are stored as well. Additionally, the
whole operator A on the coarsest grid (O(9mc) floats), and the matrices Asc (O(3m) floats) on
every finer levels are required to be kept in memory in order to invert these matrices by applying
a direct solver. In order to save memory, these matrices are stored in a sparse format, which
means that only the subsequent nonzero elements of the matrix are stored in contiguous memory
locations. However, this requires a scheme for knowing where the elements are positioned in the
full matrix [18].

The simplest structure to store a sparse matrix is the coordinate list (COO), where the sparse
matrix is represented as three one-dimensional arrays of size equal to the number of nonzero elements
in the matrix [19, chapt. 2]. Hence, the nonzero values of the matrix are stored in a row-wise
fashion in the floating point array val, while the corresponding column and row indices of the
matrix elements are stored in the integer arrays col [18] and row. This results in a total storage
of #non_zeros values [27], counting only the floats for the memory complexity in HPC. Another,
even more efficient, way is the compressed row storage (CRS), where row pointers are stored instead
of the row indices [27]. The row pointer array stores the location of the nonzero values in the array
val that start a new row in the matrix [18]. Other possible sparse storage formats are for example
the block CRS, compressed column storage (CCS) or compressed diagonal storage (CDS) [18]. The
disadvantage of these formats is the difficulty of an indirect addressing step for every single value
[18] as well as the insertion or deletion of matrix entries [27]. Therefore, at this moment, the simple
COO format is used in order to keep matrix vector operations as simple as possible while only
storing the nonzero values.

In conclusion, as derived in [36], the memory cost on a level l is of the order O(4m) (f and
Asc), where m is the total number of the grid points. Neglecting the storage of the coarsest level

39

operator and considering that the number of points is divided by approximately 4 when going to a
coarser level, we get the total cost in memory

Mem =
levels∑
l=0
O(4m4l) −−−−→L→∞

O(5.33m). (63)

The complexity of the whole solver can be considered as linear with O(m · (Csetup + it ·Cit)) flops,
where m ·Csetup and m ·Cit are the costs resp. for the setup and per iteration. In [36], the authors
show that the final implementation of GmgPolar has Csetup = 56 and Cit = 268.

5.2.2 Problem setup

The setup of the solver is only done once at the beginning of the code and then used in every
iteration of the multigrid cycle. It consists of several steps for each level: the construction of the
grid, the definition of the next coarse grid, and the construction of the smoother matrices Asc.

Construction of the grid
The construction of the fine grid is performed by the functions level::build_r and level::build_theta,
first defining the coordinates of the nodes in r-direction and subsequently in θ-direction. The
parameter fac_ani allows to switch on additional refinements around the radius where there exists
a steep variation of the coefficient α, i.e. rα = 2/3 r, resulting in a larger number of total nodes
and creating an anisotropy in r-direction:

• Without anisotropy, a total number of nr = 2nr_exp−1 equally distributed nodes in the r-
direction is obtained.

• However, when anisotropy is established, the grid is additional refined around approximately
rα . First, nr = 2nr_exp− 2fac_ani equally distributed nodes are created and next, the grid is
refined fac_ani times at the center of the intervals in the region around rα. For instance, with
nr_exp=4 and fac_ani=3, we get nr = 10 equally distributed nodes, and then recursively
split the intervals around rα in the middle three times, resulting in a total number of 25 nodes
in the r-direction, see Figure 22.

equally distributed nodes

refinement level 1

refinement level 2

refinement level 3

Figure 22: Anisotropic refinement of the grid around rα = 2/3R in the r-direction.

Lastly, regardless of using any anisotropy or not, the whole grid is refined again uniformly in
the r-direction by splitting at the center of all intervals in order to enable a uniform grid refinement
between the two finest levels for a successful extrapolation, as defined in Section 4.5. In the example
case with nr = 25, we thus get a total number of nr = 2 · 25− 1 = 49 nodes in the r-direction.

After the creation of the coordinates in r-direction, the number of points in θ-direction is calcu-
lated from nr via nθ = 2ceil(log2(nr)). For nr = 49, the total number of nodes in θ-direction is, hence,
nθ = 2ceil(log2(49))=26=64. We define a uniform division for the θ-direction, i.e., all coordinates are
distributed equally over the angle of 2π. Hereby, the first θ-coordinate (θ = 0) coincides with the
last one (θ = 2π).

Finally, in the case of having a parameter divide_by2 greater than zero, the grid is again refined
uniformly in both directions by splitting all intervals at their center points divide_by2 times by

40

calling the function level::create_grid_polar_divide.

Coarse nodes and prolongation
For the application of the prolongation operator of dimension mc×m, four different types of nodes
need to be considered with the specified stencil [36]. In Figure 23, the empty circles correspond to
the coarse nodes and the plain circles to the fine ones respectively [22]. As the prolongation of a fine
node depends on its position in the grid with respect to the neighbouring coarse nodes [22], there
are three different types of fine nodes to distinguish: nodes with neighbouring coarse nodes resp.
in the radial or polar direction, and nodes with neighbour coarse nodes only in the diagonals [22].

Figure 23: Stencil representation for 4 different types of nodes, depending on their position with
respect to the neighbouring coarse nodes [36].

In the code, the 2-dimensional array coarse_node_list of class level is used to store these types
of nodes. Hereby, the indices of the nodes on the fine grid are stored in the 1D array which corre-
sponds to the type of the node within the 2D array. Additionally, the indices of the neighbouring
coarse nodes on the coarse grid are stored for every fine node in the same array, which allows for
a fast application of P . In order to distinguish the index of the fine node from the ones of the
neighbour nodes, the variables shift and start indicate the number of values in the list per node as
well as the position of the fine index itself within these values.

Matrices Asc for the smoothing of the grid
In order to build the matrices Asc explicitly on all levels at the beginning of the code, the function
build_Asc is called for all levels l except the coarsest. This function creates the four matrices Asc,
as defined in Section 4.4.2, and stores them in COO sparse format in the 2D arrays A_Zebra_r,
A_Zebra_c and A_Zebra_v. The four matrices are stored in the following order:

0. circle black smoother

1. circle white smoother

2. radial black smoother

3. radial white smoother,

with their size stored in the array m_sc[4]. For example, A_Zebra_r[0], A_Zebra_c[0], and
A_Zebra_v[0] stores the matrix ACircleBlack.

Within the function build_Asc, we iterate over all grid points, using the indices i ∈ {0, . . . , nθ}
and j ∈ {0, . . . , nr} resp. for θ and r, which is different to the indexing described in 4.2. Identifying
the corresponding smoother for every node (0 to 3) as defined in Table 7, every point is then treated
accordingly to this smoother.

First, we define a local numbering for each smoother, again following points first in the θ-
direction, see Figure 24 for an example of global and local numbering in a 4 × 7 grid. Thus, the
local coordinates (row, col) of the node within its smoother have to be computed from the global
ones (i, j), as less points are used for the matrices Asc than for the whole matrix A. For the circle
smoothers, the coordinate in θ-direction (col) stays the same while the coordinate in r-direction
(row) is divided by two. For the radial smoothers, on the other hand, col is divided by two and row
has to be reduced by the number of lines in the circle smoother. Table 8 summarizes this mapping
between local and global coordinates for all smoothers.

41

Smoother Black White

Circle j < delete_circles
even index j odd index j

Radial j ≥ delete_circles
even index i odd index i

Table 7: Identification of the smoother for a node i/j.

(a) global numbering (b) local numbering

Figure 24: Example 4× 7 grid with both global numbering and numbering local to each smoother.

Smoother col row
Circle i floor(j/2)
Radial floor(i/2) j − delete_circles

Table 8: Mapping from global coordinates (i, j) in the grid, to local coordinates (row, col) for all
smoothers.

As (row, col) only represent the coordinates of the node in the grid, the index within the matrix
Asc needs to be computed subsequently:

circle smoother: index = row · ntheta+ col

radial smoother: index = row · n_cols_r + col,
(64)

where ntheta is the number of points in the θ-direction, and n_cols_r = ntheta_int/2 is the
number of radial lines in the grid for the two radial smoothers. Another approach to obtain this
index, which was used later throughout optimizations, is to keep count of all previously treated
nodes as we iterate over them. We store the current number of nodes separately for the four
smoothers in the array count_nodes[4], and then use the current amount of nodes as index.

Subsequently, we need to go through the 9 points of the stencil for every node. Figure 25
shows the decomposition of the polar plane into circle and radial smoothers with the black/white
coloring [22]. Additionally, the stencils for the matrices Asc and A⊥sc are displayed together with
the function evaluations arr, art and att, which are given to the stencil for each update [22]. We

42

can observe that the matrix Asc only uses the middle as well as the right/left updates in case of
the circle smoother (resp. top/bottom for the radial smoother). On the other hand, the matrix
A⊥sc employs the diagonal updates along with the top/bottom updates for the circle smoother (resp.
right/left for the radial smoother).

Figure 25: Stencils of the matrices Asc and A⊥sc for each smoother in the polar plane [22].

Having computed the index of each point, i.e. their row index within the matrix, with (64),
we still need to compute the column index c for each nonzero entry. This index is defined by the
position in the 9-point stencil, indicating whether it corresponds to a link to itself or to the top,
bottom, right or left neighbour. Table 9 shows which links are treated depending on the smoother,
and how the column index c is computed for the different updates of the stencil.

Exceptions PB: add nt to c PB: subtract nt from c

not for the

top left

top:

top rightlast row c = index+ n_cols_r
only for radial smoothers

left: middle: right:
c = index− 1 c = index c = index+ 1

only for the circle
smoothers

for all smoothers only for the circle
smoothers

bottom left

bottom:

bottom rightnot for the c = index− n_cols_r
first radial

line
only for the radial

smoothers
(AOD: first line of the

circle smoother)

Table 9: Application of the stencil to build the matrix Asc. PB: indicates that a node lies on the
periodic boundary. AOD: denotes the across-the-origin discretization. nt = ntheta_int.

Obviously, no top update is required for the last row (rj = rmax = nr−1) and no bottom update
for the first radial row (rj = delete_circles) as the link from the radial to the circle smoother is
part of the complement matrix A⊥sc. Furthermore, for any point on the periodic boundary, the
number of nodes per line (ntheta_int) have to be either added or subtracted depending on the
left or right side of the stencil. In the case of an across-the-origin discretization, the first row of
the circle smoother has an additional bottom update, as the nodes are linked in this direction with
points from the same line and thus of the same smoother.

Lastly, the value of the matrix entry is computed according to the stencil using the global
functions from the class gyro for the computation of the coefficients α, arr, arθ, aθθ and det(DF−1).

43

Finally, this entry is added to the sparse representation of Asc by including index into A_Zebra_r,
c into A_Zebra_c and the value into A_Zebra_v.

5.2.3 The multigrid cycle itself

The multigrid cycle starts with a call to the method gmgpolar::multigrid_cycle_extrapol on level
l = 0, which then recursively calls itself again on level l+1 - and thus again and again - down to the
coarsest grid. The structure of the function multigrid_cycle_extrapol is presented in the following:

1. Pre-smoothing:

• call level::multigrid_smoothing for all four smoothers

2. Coarse-grid-correction:

• call gmgpolar::compute_residual
• if (extrapol=1 and level=0){

– restrict the extrapolated residual by calling level::apply_prolongation_ex and
level::apply_prolongation_inj (with trans=1) , as well as level::apply_A

} else {
– restrict the residual by calling level::apply_prolongation_bi (with trans=1)

}
• if (second coarsest level) {

– call level::solve_gaussian_elimination to compute the coarse error on the coarsest
grid

} else {
– recursively call gmgpolar::multigrid_cycle_extrapol to do a multigrid cycle on the

next coarser level
}

• if (extrapol=1 and level=0) {
– prolongate the extrapolated residual by calling level::apply_prolongation_ex (with

trans=0)
} else {
– prolongate the residual by calling level::apply_prolongation_bi (with trans=0)

}
• correct the solution by adding the fine error to the current solution u

3. Post-smoothing:

• call level::multigrid_smoothing for all four smoothers

A particularly important aspect about the code, which has to be mentioned, is that the error
at level l becomes u on level l + 1, while the residual on the fine level becomes the right hand side
f on the coarser level, according to the principle of the coarse grid correction. Therefore, after the
computation of the residual on level l, it is restricted to the coarser level and stored there in fVec.
The solution u, corresponding to the error on the finer level, needs to be reset to zero in every
iteration on each level except the finest, where it in fact represents the approximated solution.

After the smoothing and the residual restriction, we need to check which level we are currently
on, before recursively calling the function gmgpolar::multigrid_cycle_extrapol again on level l + 1.
When reaching the second coarsest level (l == levels − 2), the system on the next level (coarsest
level) has to be solved for the error with a direct solver. The resulting error is then prolongated
as usual and used as correction to the current solution u on the next finer level. Finally, the
post-smoothing is conducted exactly in the same way than the pre-smoothing procedure.

44

The whole multigrid cycle is called iteratively in a while-loop until the convergence criterion is
fullfilled, or the maximum number of iterations is reached. To monitor the convergence of the solu-
tion we use the relative residual which is computed by dividing the 2-norm of the current residual
by the 2-norm of the initial residual.

Smoothing
The function level::multigrid_smoothing is called four times to execute the smoothing procedure
for each smoother (0 to 3) within one smoothing step.

As already mentioned in the previous section, the matrix Asc is of smaller size compared to the
whole matrix A and therefore, also the vectors usc and fsc are only subvectors resp. of u and f ,
whose size is stored in the array m_sc[4]. For example, for a grid of size nr × nθ = 49× 64 = 3136
with 11 lines belonging to the circle smoother, the number of points of the different smoothers are
m_sc[0] = 6 · 64 = 384, m_sc[1] = 5 · 64 = 320, m_sc[2] = m_sc[3] = (49− 11) · (64/2) = 1216.

The most important steps of the function level::multigrid_smoothing are as follows:

• Call level::build_fsc to create a subvector of the right hand side vector fVec.

• Call level::apply_Asc_ortho to apply A⊥sc to u.

• Call level::solve_gaussian_elimination to solve the linear system for usc using the LU-factorization
of Asc from the setup.

• Insert the subvector usc into the overall solution u.

Firstly, the subvector fsc is build from the total right hand side vector fVec by iterating over the
latter one, and copying only the values corresponding to the given smoother and colour. Therefore,
for every entry, the global coordinates within the grid in the r-direction (j) and θ-direction (i) have
to be computed as

j = ind/ntheta_int,
i = ind− r_index · ntheta_int,

(65)

where ind is the index of the current entry within the vector fVec. For the identification of the
smoother and colour of a point the coordinates are then analyzed as presented in Table 7. Using
the subvector fsc, we can compute the right side of the equation as

ftotal = fsc −A⊥sc u⊥, (66)

using the function level::apply_Asc_ortho by applying Ã⊥sc on the whole vector u. This function is
called for a specific smoother and colour and computes the vector

Au = Ã⊥sc · u
(msc × 1) (msc ×m) (m× 1)

(67)

by just just treating the values in u corresponding to the subvector u⊥, or equivalently considering
Ã⊥sc as an extension of A⊥sc where zeros are present in the place of the nonzero entries of Asc from
the matrix A.

In principle, the method is similar to the function level::build_Asc, starting by an iteration over
all points using the coordinates i ∈ {0, . . . , nθ} and j ∈ {0, . . . , nr} resp. for θ and r. Differently to
build_Asc, as apply_Asc_ortho is only executed for one individual smoother, we check here if the
coordinates of the current point fit together with the given smoother. Analysing the coordinates i
and j to be even or odd, see Table 7, the current point is just skipped if it does not belong to the
indicated smoother. Subsequently, the local coordinates of the node within the smoother as well
as the index of the point in the matrix are computed in the same way as in the method build_Asc
and described in Section 5.2.2. Furthermore, due to Ã⊥sc being not square but of size msc ×m, we
need two different indices to define the location of a node within the matrix Ã⊥sc:

• index: The index local to the smoother sc, computed beforehand (64), indicates the row
within the matrix Ã⊥sc.

45

• base_row_index = j · ntheta_int+ i: The index global to the whole grid, denotes the index
of a node in the whole matrix A ∈ Rm×m, and serves as column index within the matrix Ã⊥sc.

Going through the 9 cases of the stencil, the actual column index c of a matrix entry is again
defined by the position in the 9-point stencil which denotes the link to a neighbouring point, as
defined in Table 10.

Exceptions PB: add nt to c PB: subtract nt from c

not for the top left: top: top right:
last row c = BRI + nt− 1 c = BRI + nt c = BRI + nt+ 1

for all smoothers, only for the circle
smoothers,

for all smoothers,

left:

middle

right:
c = BRI − 1 c = BRI + 1

only for the radial
smoothers,

only for the radial
smoothers,

bottom left: bottom: bottom right:
not for the c = BRI − nt− 1 c = BRI − nt c = BRI − n+ 1

first row for all smoothers, only for the circle
smoothers (And: r = dc
for radial smoothers),

for all smoothers,

Table 10: Application of the stencil to apply the matrix A⊥sc. PB: indicates that a node lies on the
periodic boundary. BRI: base_row_index. nt = ntheta_int, and dc = delete_circles.

No top updates are required for the last row (j = nr−1) and no bottom updates for the first row
(j = 0 or j = 1, resp. when using Dirichlet boundary conditions, and across-the-origin discretztaion
at the origin). For any points on the periodic boundary, the number of nodes per line have to be
added or subtracted to get the column index and, as there is a link between the last line of the
circle smoother and the first line of the radial smoother, there is a bottom update for this line
(j = delete_circles). Finally, contrary to build_Asc where the matrix entries where stored, here,
the value is directly summed in the resulting vector Au as follows:

Au[index] + = val · u[c]. (68)

Having computed the right side of the equation ftotal from (66), the linear system

Asc usc = ftotal (69)

can be solved for the vector usc via forward-backward substitutions. The next step is then to insert
this solution vector usc into the overall solution u, overwriting the current values in u, by iterating
over the entries in usc with the index k ∈ [0,msc[. In order to know where to insert the elements
of usc, the corresponding index ind in the vector u global to the whole grid has to be computed.
Before setting this index according to

ind = i · ntheta_int+ j, (70)

the global coordinates i and j of the point in the grid are required. Table 11 shows the computation
of these coordinates for the four different smoothers, n_lines_r indicating the number of radial
lines belonging to the colour of the smoother.

Whenever the implicit extrapolation is activated, the computation of these indices as well as
the stencils are modified, which we will explain in detail later.

46

Smoother Black White
n_lines_r = ceil(nt/2) n_lines_r = floor(nt/2)

Circle j = 2 (k/nt) j = 2 (k/nt) + 1
i = k%nt i = k%nt

Radial j = k/n_lines_r + dc j = k/n_lines_r + dc
i = 2 (k%n_lines_r) i = 2 (k%n_lines_r) + 1

Table 11: Mapping from the local index k of a vector of the smoother sc, to global coordinates (i, j)
in the grid. nt = ntheta_int, dc = delete_circles.

Direct solver
The function level::facto_gaussian executes a Gaussian elimination to create a LU-factorization of
a matrix A according to algorithm 1. The matrices L and U are both stored in the sparse matrix
A, overwriting the latter one with possibly additional entries due to fill in [19]. This function is
called for all matrices Asc as well as for the whole matrix A on the coarsest level only once during
the setup of the problem in the beginning of the code. To speed up the computations, we hereby
skip zero elements during the algorithm, thus using a sparse Gaussian elimination. All the entries
in the matrices are ordered in ascending rows, and this information can be used in order to guide
the algorithm.

Using this matrix decomposition, the function level::facto_gaussian then performs at every it-
eration of the multigrid cycle forward-backward substitutions conforming to the algorithms 2 and
3 in order to solve a linear system.

Implicit extrapolation
The global parameter extrapol indicates whether to use extrapolation, as defined in Section 4.5,
within the multigrid cycle or not. Additionally, we have to check for the level, as the extrapolation
is only conducted on the finest level (l == 0). Our implicit extrapolation consists of two compo-
nents: the smoothing only on the fine nodes, and the computation of the extrapolated residual.
Concerning the smoothing, we need to know for each node if they are fine or coarse. As a conse-
quence of smoothing only on the fine nodes, the matrix Asc becomes smaller in size due to the extrap-
olation, and all links of fine to coarse nodes are shifted to the matrix A⊥sc. In order to check for a fine
or coarse node within the function level::build_Asc, we use the variables level::coarse_nodes_list_r
and _theta, which contain a ‘-1’ if all nodes on the corresponding index are fine. Consequently, a
point is only treated if it is fine, otherwise it is just skipped in the iteration.

Due to the omitted coarse points, the coordinates of the nodes in the grid (and thus the indices
in the matrix) change compared to the smoothing on all nodes. The adapted local coordinates of the
nodes (row, col) corresponding to each entry inside the smoother can be obtained from the global
coordinates (i, j) in the whole grid by dividing either the row or column coordinate by two, using
Table 12. The index of a point within the matrix Asc, representing the row index of the entries, is
then computed again with (64). Alternatively, we may also count all previously treated fine node
as already explained in Section 5.2.2, and use the current number of nodes as index. The following
computation of the column index c within the matrix stays the same, as well as the update of the
points corresponding to the stencil, defined in Table 9. However, for all fine black points, only the
middle update is performed while all others are skipped owing to the fact that every such point has
two coarse neighbours and these links are shifted to A⊥sc.

Smoother col row
Circle i/2 floor(j/2)
Radial floor(i/2) (j − delete_circles)/2

Table 12: Mapping from global coordinates (i, j) in the grid, to local coordinates (row, col) for the
smoother sc when the implicit extrapolation is active on the finest level.

47

When using the function level::apply_Asc_ortho, the matrix is merely applied to the fine nodes
of the vector u instead of actually building a subvector and removing the coarse unknowns. Identical
to the function build_Asc, every node is analyzed whether it is fine or coarse, skipping all coarse
nodes. In contrast to the function build_Asc, and to the case without extrapolation, the updates
corresponding to a link between a fine and a coarse node need to be treated additionally. In fact, for
every fine black point, the black circle smoother also executes the left and right updates, whereas
the black radial smoother performs the bottom and top updates from Table 10.

In the construction of the subvector fsc, the coarse nodes are actually left out also leading to a
vector of smaller size. While the procedure remains unchanged for the two white smoothers, half
of the black points need to be skipped in the two black smoothers, due to the coarse points being
always black. In the case of the circle black smoother, only uneven coordinates in the θ-direction
from fV ec are added to fV ec, and for the radial black smoother, only uneven coordinates in the
r-direction are taken.

At the end of the smoothing, the solution vector usc has to be inserted into the overall solution
u again. In order to distribute the entries of usc over the vector u according to the position of the
fine nodes, their global index ind within the vector u is computed using (70). The computation
of the required global coordinates in the grid i and j is done according to Table 11 using nt =
ntheta_int/2. Again, only the treatment of the black points has to be adapted in Table 11:

black circle smoother: i = 2 (k%nt) + 1
black radial smoother: j = 2 (k/n_lines_r + delete_circles+ ((delete_circles+ 1) % 2)).

(71)

The second decisive part of the implicit extrapolation is the adjustment of the residual compu-
tation and restriction on the finest grid. The final residual is then computed as

r0 = A0 · u0 − f0,

r1 = PTexr0,

Aucoarse = A1 · PTinj · u0,

residual = 4/3 · res1 − 1/3 · (f1 −Aucoarse),
= 4/3 · PTex · r0 − 1/3 · (f1 −A1 · PTinj · u0),

(72)

where A1, f1 are the operator and the right hand side vector on level l = 1. In the first step, the
classical residual r0 of the non-extrapolated system is calculated on the fine level, and restricted to
the coarser level as r1 using level::apply_prolongation_ex. Subsequently, a vector Aucoarse is com-
puted as intermediate step using the functions level::apply_prolongation_inj and level::apply_A.
Finally, the residual, stored in the vector fV ec of level 1 in the code, is set to a linear combination
of information of the two grids as defined in Section 4.5 in (62). As the initial right hand side vector
on level 1 (f1) is required here, it has to be stored in the beginning of the multigrid cycle to keep
it from being overwritten by the restricted residual.

At the end of each multigrid iteration, the residual of the extrapolated system on the finest level
can be computed via the function gmgpolar::compute_residual using the parameter extrapol=1. In
comparison to (72), where the residual is used on the coarser grid, in this case, we are interested in
the residual on the fine level. Thus, the restriction operator PTex is left out and the vector fV ec1
as well as the matrix A1 are prolongated to the fine level using the injection operator Pinj . In the
end, the residual is computed as:

r0 =fex0 −Aex0 · u0,

=[4/3 · f0 − 1/3 · Pinj · fV ec1]− [4/3 ·A0 − 1/3 · (Pinj ·A1 · PTinj)] · u0,

=4/3 · res0 − 1/3 · (Pinj · fV ec1 −Pinj ·A1 · PTinj · u0).
(73)

Using all of these elements in the C++ code, we obtain a functional implementation. In the next
section, we compare the numerical results from the initial implementation, as used in [39], to our
new implementation in terms of solution accuracy and execution time.

48

5.3 Numerical experiments
The initial goal of this thesis was the reproduction of the results from paper [39] which were
produced with the help of the formerly existing matlab code. Evaluating several test cases for
different geometries, inner radii and discretizations at the origin, in fact, the same results could be
generated by the new C++ code.

In this section, the results of the multigrid solver are presented for a specific test problem, as
defined in Section 4.1. We base our computations on a specific manufactured solution u, and the
corresponding right hand side of the equation for a representation on the Shafranov geometry. This
solution has two interesting properties which are challenging for the multigrid solver: it is oscillating
and not aligned with the polar grid [36]. The solution is expressed as

u(x, y) = (1.32 − r2(x, y)) cos(2πx) sin(2πy). (74)

Moreover, in this Section , we use the Shafranov geometry and an innermost circle around the
origin of a radius r0 = 10−5. The grid is defined using nr_exp = 4 and fac_ani = 3, resulting in
49×64 nodes, and then refined again three times in order to get consecutive grids with an increasing
number of unknowns.

We carry out our experiments on a computer at the FAU Erlangen-Nuremberg with a Linux
operating system, a memory size (RAM) of 64GiB, one socket with 4 cores, and 8 threads in
total. The timings may be not quite representative as they are not run on a cluster, and hence,
background processes could not be definitely avoided.

The mean residual reduction factor is defined as

ρ̂ = its

√
||rits0 ||2
||r0

0||2
, (75)

using the residuals on the finest level (l = 0) in the 2-norm, from the last compared to the first
iteration [39]. Solving the same problem on four consecutive refined grids with different size m, the
error reduction order is computed by a comparison of the corresponding error norms. Using the
beforehand computed weighted 2-norm or ∞-norm of the final error vectors of the current (k) and
the previous (k − 1) grid

||ek−1||
||ek||

=
(√

mk

mk−1

)ord
, (76)

we can solve the equation for the order

ord =
log(||ek−1||

||ek||)

log(
√

mk

mk−1
)
, (77)

see [39].

In Table 13, we present the results from running the C++ implementation of GmgPolar on all
problem sizes with and without implicit extrapolation activated. For every run of the solver, the
number of iterations (its), the mean residual reduction factor ρ̂, the error in the scaled 2-norm and
in the∞-norm together with the corresponding reduction order as well as the run time of the solver
are displayed.

Since using a Dirichlet boundary at the origin requires the knowledge of the exact solution, this
treatment of the singularity cannot be used for a real world application problem. Thus, the approach
of discretizing across the origin has been established as alternative and investigated regarding its
suitability. The obtained results are identical to the configuration in [39] with Dirichlet boundary
conditions if r0 → 0. For r0 being too large, for instance r0 = 10−2, we get unsatisfactory results.
Moreover, obtaining the most considerable deviations from the exact solution around the origin, we
can observe that the error in the ∞-norm may take higher values than in the 2-norm, being more
extensively influenced of a large error at a single point.

Considering the error reduction order of the multigrid solver without extrapolation, we achieve
up to quadratic convergence in both norms as expected. In the case of integrating implicit ex-
trapolation into the algorithm, fourth order would be achieved for simpler geometries without any

49

Multigrid without extrapolation
nr × nθ its ρ̂ ||err||2/sqrt(m) ord ‖err‖∞ ord time[s]
49×64 46 0.67 7.1 · 10−2 - 1.4 · 10−1 - 0.12
97×128 45 0.66 1.8 · 10−2 2.0 4.1 · 10−2 1.9 0.87
193×256 44 0.66 4.6 · 10−3 2.0 1.1 · 10−2 2.0 10.73
385×512 44 0.65 1.1 · 10−3 2.0 2.6 · 10−3 2.0 164.02

Multigrid with implicit extrapolation
nr × nθ its ρ̂ ||err||2/sqrt(m) ord ‖err‖∞ ord time[s]
49×64 73 0.77 7.5 · 10−3 - 2.6 · 10−2 - 0.16
97×128 77 0.79 5.6 · 10−4 3.8 3.0 · 10−3 3.2 0.79
193×256 78 0.79 4.2 · 10−5 3.7 3.6 · 10−4 3.0 7.19
385×512 78 0.79 3.0 · 10−6 3.7 4.5 · 10−5 3.0 98.81

Table 13: Results of the multigrid solver, for a test problem with Dirichlet boundary conditions
on the inner radius (10−5) and outer radius for the Shafranov geometry. Iteration count its, mean
residual reduction factor ρ̂, errors of the iterative to exact solution evaluated at the nodes in the
weighted 2- and ∞-norms with corresponding error reduction order.

singularities and additional refinement. In our case, the symmetry of the grid is not completely
maintained and thus, some 3rd order error terms may not be canceled out entirely. Consequently,
we get a cubic convergence order in the∞-norm and an order between 3.5 and 4.0 in the 2-norm [39].

50

6 Improving the solver GmgPolar
We have introduced the different aspects of the solver GmgPolar in Section 4 as well as the details
of the C++ implementation in Section 5. The preliminary performance of the solver was shown in
the previous Section 5.3 where the same accuracy but a faster execution are obtained compared to
the Matlab implementation. In order to improve the efficiency of GmgPolar, different possibilities
exist.

In this Section, some optimizations that were applied in the course of the thesis are presented.
First, we improve the implementation, in particular the application of the matrices (operator,
prolongation, smoother), in order to make the best use of modern computing architectures (vector-
ization, etc.). Secondly, it is proposed to modify the smoother in order to improve the potential
for parallelism. Thirdly, an alternative extrapolation scheme is studied which combines fast conver-
gence (similar to no extrapolation) and a high order approximation (similar to the extrapolation).
Then, we parallelise the GmgPolar solver using an OpenMP multitreaded parallelism, and GPU
parallelism. Finally, some future possibilities to optimise the solver further are suggested.

6.1 Code optimization
The preliminary implementation of the multigrid solver was a literal translation of the Matlab code,
and the algorithms used could be said to be naive. Here, our goal is to improve the computational
efficiency of the solver through an optimization of its different components with respect to the
computing architecture.

The code optimizations mainly focus on the construction and application of the different opera-
tors, i.e the functions build_A, apply_A, build_rhs, build_Asc, apply_Asc_ortho, apply_prolongation
from class level. The implementation of these optimised functions were conducted by my mentor
Dr. Leleux. In terms of optimization, there are two aspects we consider. First, the number of op-
erations within the functions must be decreased. Secondly, on modern computing architectures, it
is possible to perform more than one instruction during each clock cycle of a core in the computing
processor. We say that we increase the number of IPC (instruction per cycle). This effect is made
possible by the combination of several modern technologies, in particular vectorized processors.

Let’s consider the example of the application of the operator A (level::apply_A). The principal
difference between the two versions is then the following:

• In the original implementation, when iterating over the grid, the stencil is applied to one
point after another computing the values of α, det(DF)−1, arr, art and att of the surrounding
points, see Figure 26a. Consequently, those coefficients have to be computed several times
throughout the iteration, serving as different links (top, bottom, right, ...) to distinct nodes.

• In the optimised implementation, all coefficients are computed for the current point in the
iteration and then given to the neighbouring nodes for their update, see Figure 26b. In other
words, the computation of those values is done only once for every point and thus, the stencil
updates are not conducted in one integrated step but split up nine separated sub-steps.

By avoiding redundant coefficient computations, we decrease the overall number of operations re-
quired. Additionally, in the optimised implementation, we can compute easily the coefficients for a
whole line of points at the same time, thus vectorizing the corresponding operations and improving
the computational efficiency even further.

In order to demonstrate the positive effect of this optimization on the method level::apply_A,
we apply it on 10 random vectors and measure the execution time. Figure 27 shows the resulting
execution time for vectors of size increasing from m = 40 to m = 9.4 · 106. We observe that the
execution time of the optimised implementation is 100 times lower in average. Also, the execution
time increases linearly with the problem size, which empirically confirms the linear complexity of
applying this operator, which was introduced in [22].

The principle of the optimization for apply_A is directly applied to optimise the functions
build_A, build_rhs, build_Asc, and apply_Asc_ortho. Concerning the function apply_prolongation,
we use our knowledge on the grid coarsening and on the stencil of the prolongation operator, see

51

(a) original (b) optimised

Figure 26: Principle behind the application of the operator A. In the original version, for each
point we compute the coefficient of neighbouring points to update the local operator entries. In the
optimised version, for each point, the local coefficients are computed to update the operator entries
of neighbouring points.

Figure 27: Comparison of the run time of the method level::apply_A of the original and the opti-
mised version.

Section 4.3, in order to vectorize its application in a simple way. The latter optimization is very
straight-forward and we do not detail it here.

Another performance optimization has been applied to the LU-factorization and the direct
solver, which were a significant bottleneck of the whole algorithm. The first implementation was a
direct writing of the Gaussian elimination algorithm, by accessing each entry A(i, j) of the matrix
with functions level::get_element and level::set_element which search through all non-zero entries
of A. These two functions were running really slow due to the repeated iteration over the whole
matrix. Both were completely left out in the optimised versions because an iteration over the whole
matrix is not necessary as the matrix entries are sorted by ascending rows and, as the number of
elements per row is exactly known, they can be directly accessed. Alternatively, we included the
possibility to use the external sparse direct solver MUMPS [46, 2] in GmgPolar.

In the beginning of the coding process, when only focusing on computing the correct approxi-
mations, we still had run times for the whole solver about 1 000 to 2 000 seconds for a test problem
of size 49 × 64. In the course of the optimizations, the run time was then reduced down to only
an eighth of one second. In Table 14, the reduction of the run time at specific dates throughout
the optimization process can be seen for a test problem and different grid sizes. The specificities of

52

each version are:

• 11.08.2021: The first working code version is a direct C++ translation of the Matlab code.
There is still no option for implicit extrapolation, and only the direct solver had been opti-
mised, yet.

• 01.09.2021: The second version, including the extrapolation, is already optimised with respect
to the application of the matrices A and P .

• 11.10.2021: Finally, this version contains all major performance optimizations.

nr × nθ
Multigrid without extrapolation Multigrid with extrapolation
11.08.21 01.09.21 11.10.21 01.09.21 11.10.21

49× 64 1.45 0.53 0.12 0.89 0.16
97× 128 6.00 2.59 0.87 5.83 0.79
193× 256 31.66 18.03 10.73 51.19 7.26
385× 512 268.75 198.95 164.02 688.63 101.93

Table 14: Run time (in s) of the code versions for test problems of increasing size using the Shafranov
geometry, with Dirichlet boundary conditions on the inner radius (r0 = 10−5) and outer radius.

6.2 Decoupled circle-radial smoothing
In Section 4.4.2, we introduced the combined circle-radial smoother used in GmgPolar, which we
call coupled circle-radial smoothing. At each iteration of this smoother, detailed in the paper
[39], we successively apply the circle black, circle white, radial black and finally radial white block
smoothers. In the course of coding, it occurred that this smoothing procedure was not ideal in terms
of parallelism potential. In this section, we introduce an alternative smoothing procedure called
decoupled circle-radial smoothing. In the code, the smoothers coupled and decoupled circle-radial
are activated resp. with the parameter smoother = 3 and smoother = 13.

For both smoothing procedures, we follow [39] and first smooth on the black unknowns before
treating the white points. When relaxing on the white unknowns, the updated approximations of
the neighbouring lines are directly used [64, chapt. 5], i.e., the results from the corresponding black
smoother are included into the vector usc, which is used in the application of the matrix A⊥sc for
the white nodes. Consequently, the relaxation procedure on the black and white nodes is done,
sequentially because the white smoothing step depends on the previously executed smoothing of
the black points [39].

The dissimilarity of the two versions, in fact, lies in the interaction of the two circle smoothers
with respect to the two radial smoothers. The interior boundary, representing the switch from the
circle to the radial smoother, actually only affects the points next to it, thus all nodes in the last
circle line as well as ones positioned at the first r-coordinate of the radial smoother.

As stated above and described in [39], originally the circle and radial smoothers are applied
successively, resulting in a block Gauss-Seidel like iteration. Thus, in order to update the points
next to the interior boundary, the values of the previous iteration are directly used for the other
smoother. We alternate between circle and radial smoothers, thus the name coupled circle-radial
smoothing. The challenge hereby lies in a later scheduled parallel version, for which we propose to
decouple the circle and radial smoothers. In this new relaxation procedure, at each iteration of the
smoothing, the circle and radial smoothers are simultaneously applied on the same approximated
solution, thus resulting in a block Jacobi like iteration. Potential for a better parallelism then comes
from the fact that both smoothers can be applied independently in parallel.

In order to implement the coupled circle-radial smoothing in C++, the four smoothers are just
called one after the other and the solution vector usc is inserted into the solution u right after
every smoother. Owing to the fact that all four smoothers directly insert their sub-solution usc
into the vector u, the updated unknowns are already used in the following smoothers. However,

53

the parallelisation of this version is quite challenging as the radial smoothers use information from
the circle smoothers [39]

Actually envisaged as parallel procedure, the sequential implementation of the decoupled circle-
radial smoothing whereas is more complex. In a consecutive application, it has to be ensured,
that the radial smoothers do not already use the results from the circle smoothers. Therefore, the
solution from the previous iteration needs to be stored for use by each smoother. Consequently,
two vectors u_previous_c and u_previous_r, corresponding resp. to the circle and the radial
smoothers, are both set to the current solution vector u in the beginning of the whole smoothing
procedure. Subsequently, the two smoothers operate on their own version of the vector enforcing
also the method apply_Asc_ortho to be applied on u_previous instead of on u. After the smoothing
procedure, the solution vector u is created from the two emerged vectors, using u_previous_c for
all circle points and u_previous_r respectively for the radial unknowns. This version now has a
good potential for parallelisation. While the white smoothers depend on the the already updated
values from the corresponding black smoothers, the two circle smoothers could work in parallel with
the two radial smoothers, using the results from the previous iteration for the interior boundary.
Nevertheless, the processes have to wait for at least the previous iteration of the other smoother to
be finished in order to use these values for their updates.

Table 15 shows the number of iterations and execution time obtained from applying both smooth-
ing procedures sequentially on problems of increasing sizes, when using the Shafranov geometry with
r0 = 10−5 and Dirichlet boundary conditions on the inner and outer boundaries. We observe that
the number of iterations doubles when using the decoupled circle-radial smoothing, compared to the
coupled version. This is expected since there is less exchange of information between the two kind
of smoothers when using the decoupled version. While the decoupled version can be more easily
parallelised, the coupled version convergences in half of the number of iterations.

Coupled circle-radial smoothing Decoupled circle-radial smoothing
nr × nθ its time (s) its time (s)
49× 64 46 0.12 80 0.18
97× 128 45 0.87 75 1.06
193× 256 44 10.73 72 11.47
385× 512 44 164.02 70 168.92

Table 15: Iteration count and run times when applying GmgPolar with the two different smoothing
procedures, for a test problem of increasing sizes using the Shafranov geometry, with Dirichlet
boundary conditions on the inner radius (r0 = 10−5) and outer radius.

However, converging in considerably less iterations, we could investigate a workaround in order
to parallelise the combined circle-radial smoothing. As already mentioned, the link between the
two circle and the two radial smoothers only affects the points right next to the interior boundary.
Moreover, executing the circle smoothers first, only the updates of the radial points depend on the
previously conducted smoothing of the last circle line. When starting the procedure with smoothing
the colour corresponding to the last circle line, the new information could be directly used by the
radial smoothers. Consequently, the radial smoothers then only have to wait until half of the circle
smoothing procedure is done and can be conducted in parallel with the second half of the circle
lines. The smoothing of the radial lines, being approximately of half the length than the circle lines,
then is assumed to finish in almost the same time than the smoothing of the remaining circle lines.

Due to time constraints, results from the actual parallelisation of both smoothing procedures
could not be obtained and should be the subject of future research, in order to find out in which
cases each of the smoother should be used.

Finally, one could try to parallelise the smoothing even further by decoupling the black and
white smoothers for the radial and circle smoothers. However, we expect a drastic degradation
of the convergence since all white points would lose the updated information of the neighbouring
black points. In the decoupled circle-radial smoothing, only the update of the points close to the
switch between circle and radial smoothers was affected, thus a relatively small degradation of the
convergence. Therefore, we do not investigate this any further here.

54

6.3 Implicit extrapolation with full grid smoothing
This Section is mainly based on a private communication with Prof. Rüde [57] as well as the
extensive research work on extrapolation techniques for multigrid methods contained in [9, 28, 56,
34].

The application of implicit extrapolation to the multigrid algorithm results in an improved order
of accuracy, see Section 4.5. To be more precise, while our discretization scheme allows to get an
error in the order of h2, when using implicit extrapolation, we may achieve an error in the order
of up to h4. On the other hand, due to the smoothing on the fine nodes only, information requires
more time to travel through the grid, than in the case of smoothing on all grid nodes. Therefore, the
algebraic convergence of multigrid with implicit extrapolation is slower than of standard multigrid.

The idea in this context, in order to improve the convergence, is the combination of standard
multigrid with extrapolated multigrid. Inspired from the discussion at the end of Section 4 in [56],
we propose here to use our classical smoother applied on the full grid from the standard multigrid,
as introduced in Section 4.4.2, while computing and restricting the residual according to the theory
of the prescribed implicit extrapolation [56]. Here, we call this approach implicit extrapolation with
full grid smoothing.

As stated in [45]:

“This leads to an algorithm that is paradoxically based on two competitive iterations
with different fixed points”.

In other words, the full grid smoothing resolves the high frequencies of the solution and converges
to a low order h2 solution. The extrapolated coarse-grid-correction whereas contributes the low
frequencies, and converges to the more accurate, high order h4 solution. The described mixture
of these two iterations then will obviously converge to something in between the h2 and the h4

solution. However, as detailed in [28], it turns out that the sequence rather converges to the h4

solution. Consequently, the resulting solution has a slightly higher error compared to the classical
implicit extrapolation but, on the other hand, the performance of the solver is expected to improve
significantly and to converge much faster, thanks to the smoother also working on coarse nodes.
The loss in accuracy should not be much worse than the discretization error itself [56].

Owing to the fact that the solution now consists of two components with different quality, we do
not have one fixed matrix system anymore, but two different ones. Since the solution is positioned
somewhere in between, neither of the residuals of both systems will be close to zero and, thus, the
convergence of the method cannot be measured by the residual anymore. Using the backward error

backward error = ||b−Ax||∞
||A||∞ · ||x||1 + ||b||∞

(78)

also does not lead to satisfactory results. Instead, the scaled 2-norm of the error vector ||e||2/
√
m

is used as convergence criterion, m being the size of the matrix. However, we cannot define a
fixed threshold on this norm for using it as stopping criterion. Indeed, the error depends on the
order of the solution that we reach in the end, which again depends i.e. on the geometry, the grid
size, the boundary conditions and on the parameters of the multigrid cycle (number of smoothing
steps, cycle type, etc.). Consequently, the iteration should stop as soon as the error norm does not
decrease any further and, thus, the last two consecutive iterates do not differ anymore. We can
either use the relative error norm to the last iteration

||ek||2
||ek−1||2

>= 1 (79)

as convergence criterion, or the difference between the norms, scaled by the initial error

abs (||ek||2 − ||ek+1||2)
||e0||2

< 10−8. (80)

In both cases, the scaling by
√
m cancels out. In our case, knowing the exact solution of the PDE

problem, we choose the criterion based on difference of the error norms (80). However, in a real
world application problem, the exact solution is not known a priori and thus, the error cannot be
used as convergence criterion in such a case.

55

In the code, this alternative variant of the implicit extrapolation can be activated using the
parameter extrapol=2. Hence, we merely adapt the if-conditions of the implicit extrapolation so
that the adjusted smoothing procedure is only executed in the case of extrapol == 1 and the
extrapolated coarse-grid-correction for extrapol ≥ 0.

In Table 16, the performance of the alternative extrapolation version with full grid smoothing is
compared to the multigrid solvers with standard implicit extrapolation and without extrapolation.
It can be observed that, as expected, the order of the error of the new variant is in between the
ones of the two other solvers, but closer to the higher order obtained with implicit extrapolation.
Furthermore, less iterations are required than in the case of implicit extrapolation, meaning that
the scheme tends to converge faster to the higher order solution. Surprisingly, we observe that the
number of iterations is even lower than in the case of multigrid without extrapolation. A conceivable
reason is that the comparison of the iteration count is actually just not reasonably, using another
convergence criterion for the implicit extrapolation with full grid smoothing. A future investigation
for further reasons as well as the analysis of alternative convergence criteria which do not require
the exact solution could be the work of an entire PhD.

nr× ntheta its ||e||2/sqrt(m) ord ||e||∞ ord time(s)
No extrapolation

49× 64 46 7.1 · 10−2 – 1.5 · 10−1 – 0.12
97× 128 45 1.8 · 10−2 1.99 4.1 · 10−2 1.89 0.87
193× 256 44 4.6 · 10−3 1.98 1.1 · 10−2 1.91 10.73
385× 512 44 1.1 · 10−3 2.07 2.6 · 10−3 2.08 164.02

Implicit extrapolation
49× 64 73 7.6 · 10−3 – 2.6 · 10−2 – 0.16
97× 128 77 5.6 · 10−4 3.79 2.9 · 10−3 3.19 0.79
193× 256 78 4.2 · 10−5 3.75 3.6 · 10−4 3.02 7.26
385× 512 78 3.0 · 10−6 3.00 4.5 · 10−5 3.01 101.93

Implicit extrapolation and full grid smoothing
49× 64 35 1.3 · 10−2 – 5.5 · 10−2 – 0.12
97× 128 33 1.4 · 10−3 3.24 8.3 · 10−3 2.75 0.87
193× 256 32 1.2 · 10−4 3.56 8.7 · 10−4 3.27 11.03
385× 512 31 9.0 · 10−6 3.74 7.1 · 10−5 3.62 169.72

Table 16: Iteration count and error norms of the different extrapolation variants, for a test problem
with Dirichlet boundary conditions on the inner radius (10−5) and outer radius for the Shafranov
geometry, using the circle-radial coupled smoothing version. Notations as in Table 13.

6.4 Parallelisation
As the size of problems resulting from the simulation of real-life applications increases, such as
the ones constructed in the context of plasma simulation, parallelisation becomes necessary and is
enabled by modern supercomputer centers on the road to exascale computing. The primary goal of
parallel computing is the acceleration of computations which is achieved by dividing large problems
into smaller ones and solving them simultaneously [14, chapt. 1].

As already mentioned for GmgPolar, the circle and radial smoothers might be applied in parallel,
depending on the variant of the smoother. Additionally, since using a 9-point stencil of length one,
black lines are pair-wise independent from each other and so are white lines for both smoothers
[22]. Following, all lines with the same colour can be treated simultaneously, resulting in a very
high potential of the code for parallelism [22].

Furthermore, the workload of single methods applying for instance a matrix to a vector can be
distributed onto several processes, too. In the course of this thesis, the function level::apply_A,
which applies the whole matrixA to a vector, was chosen for parallelisation. In order to be integrated
in the simulation code GyselaX in the future, we propose here to use OpenMP parallelisation, see
Section 6.4.1. It has to be mentioned, that the parallelisation of this function was only intended

56

as a proof-of-concept of the potential for parallelisation, but the parallelisation of the whole solver
is still out of the scope of this thesis. Moreover, a simplified code version of the GmgPolar solver
without extrapolation has been ported to GPUs and parallelised with Cuda by the team throughout
the Hackathon CSCS 2021, see Section 6.4.2.

6.4.1 Parallelisation with OpenMP

OpenMP is a parallel programming model for shared memory parallelism [13] consisting of a set
of compiler directives, and a library of support functions [51, chapt. 17]. In this Section we detail
the principle behind our parallelisation of the function apply_A using OpenMP, and task-based
scheduling.

The function level::apply_A mainly consists of two nested for-loops (for the r- and θ-directions)
to iterate over all grid points, in order to apply the matrix A to a vector u, by adding the computed
values to the vector entries of Au. The simplest approach for the parallelisation of such a repeated
application of a binary operator is the use of #pragma omp parallel for reduction [13, chapt. 3] in
order to:

1. parallel for: distribute the iterations of the outer loop, corresponding to each radii, to the
OpenMP threads,

2. reduction: sum the resulting local values of the vector Au.

However, the reduction clause can only be applied to single variables or arrays but not to std::vectors,
which we use in the code for the representation of the vector Au.

Another option is the usage of so called tasks - sequential code fragments which are executable
by one thread [29, chapt. 6]. Hereby, the workload is divided into several tasks which are then
distributed at run-time to the different threads to be processed concurrently [13, chapt. 4]. Using
the update of each radius of the grid as a separate task group, we have to be careful that the distinct
groups do not disturb each other. Since there is no implicit synchronisation established between the
distinct tasks, the programmer has to ensure by himself that no dependencies exist between the task
groups [29, chapt. 6]. Owing to the beforehand applied performance optimization, when iterating
over the grid, all neighbouring entries of a current point may be changed. Thus, when treating
one specific point (ri, θj) in the matrix, also the values of the neighbouring points (ri±1, θj±1) are
updated. If one value is accidentally accessed to be modified by more than one thread at the same
time, we get a so called race condition. This phenomena occurs in case of multiple threads accessing
a shared variable at the same time, with at least one of them by writing [51, chapt. 17]. As the
result of the computation truly depends on the order of the executions [29, chapt. 3] while having
no guaranteed ordering among the multiple threads [13, chapt. 2], the computation may exhibit
a non-deterministic behaviour [51, chapt. 17]. Using the optimised application of A introduced in
Section 6.1, Figure 28 shows the conflicts resulting from the simultaneous update of two consecutive
radii in the absence of synchronization mechanisms.

Figure 28: Conflicts in red cross resulting from the parallel update of two consecutive radii ri and
ri+1 in the function apply_A.

Consequently, such access on a shared variable in a parallel region must be controlled through
some form of synchronization that allows a thread exclusive access to it [13, chapt. 2]. Therefore, we
can only treat every third line in parallel because handling one single point may update values from

57

three different lines in total. Having completed the treatment of every third line, we can start with
the next bunch of lines, splitting the whole application of the matrix into three parts, according to
Figure 29. Hereby, we use the statement #pragma omp taskwait after each of the three parts to
wait for the previous task group to be finished before starting with the next one.

Figure 29: Splitting of the workload in three different parts, where each task group is independent.

The next step is to get rid of the #pragma omp taskwait which enforce a synchronization of
all threads and can lower the parallel performance. We thus need to implement a mechanism for
the task synchronisation [29, chapt. 6] by inserting task dependencies (available since OpenMP-4.0)
which enforce additional constraints on the scheduling of tasks or loop iterations by the creation of
a directed acyclic graph (DAG) of dependencies [50]. Therefore, the treatment of one specific radial
line in the grid can start as soon as all dependencies have been finished. As shown in Figure 30, we
start with the first task group executing all radial lines with index 0, 3, 6, 9, and so on. Then, the
second task group does not need to wait until the whole first task group is done, but only for the
underlying blocks of grid lines. For instance, line 1 can be treated as soon as line 0 and 3 are done
and, respectively, line 2 only needs to wait for the lines 1 and 4. In fact, considering the integers
0 ≤ i < nr/3, we define three rules for the dependencies:

• radius 3i is independent of all other radii,

• radius 3i+ 1 depends radii 3i and 3i+ 2,

• radius 3i+ 2 depends radii 3i+ 1 and 3i+ 3.

Figure 30: Dependencies of the OpenMP tasks. The relations are read from bottom to top.

The following code fragment presents the structure of the parallelised function apply_A using
tasks and dependencies as described above. In C++, task dependencies can only be defined based
on the address of variables, and the array dep hereby only contains a list of addresses which are
used to control the access on the distinct matrix rows.

58

void l e v e l : : apply_A (std : : vector <double> u , std : : vector <double>& Au) {
int ∗ dep = new int [nr] ;
int s t a r t _ j = 0 ;
#pragma omp p a r a l l e l shared (dep){

#pragma omp s i n g l e {
#pragma omp task {

// p o s s i b l y t r e a t the inner D i r i c h l e t boundary
s t a r t _ j = 1 ;

}
#pragma omp task depend (out : dep [s t a r t _ j]) {

// t r e a t the f i r s t l i n e
}
for (int j=s t a r t _ j + 3 ; j < nr_int ; j += 3) {

#pragma omp task f i r s t p r i v a t e (j) depend (out : dep [j]) {
for { int i = 0 ; i < ntheta_int ; i++) {

// t r e a t the i n t e r i o r par t 1
}

}
}
For{ int j=s t a r t _ j +1; j<nr_int ; j+=3 }{

#pragma omp task f i r s t p r i v a t e (j) depend (in : dep [j −1])
depend (out : dep [j]) {

For{ int i =0; i<ntheta \ _int ; i++}{
// t r e a t the i n t e r i o r par t 2

}
}

}
For{ int j=s t a r t _ j +2; j<nr_int ; j+=3 }{

#pragma omp task f i r s t p r i v a t e (j)
depend (in : dep [j −1] , dep [j +1])
depend (out : dep [j]) {

For{ int i =0; i<ntheta_int ; i++}{
// t r e a t the i n t e r i o r par t 1

}
}

}
#pragma omp task depend (in : dep [nr_int −2])

depend (out : dep [nr_int −1]){
// t r e a t the l a s t l i n e

}
#pragma omp task depend (out : dep [nr_int]) {

// t r e a t the outer D i r i c h l e t boundary
}

}
}

}

Hereby, we use one #pragma omp parallel statement for the definition of a general parallel
region around the whole function to express parallel execution [13, chapt. 4]. Moreover, #pragma
omp single is used once in the beginning, having only one single thread entering this region, reading
the code and creating all tasks as they are defined. The other threads then repeatedly fetch and
execute the tasks as they appear in the shared task queue [13, chapt. 4]. When defining the tasks,
depend-clauses depend(dependence-type: list) are used which are specified by the dependence-type
(in/out) and a list of dependent storage locations. If the storage location of one item within the list
of an in-type clause is the same as of a list item from another depend clause with an out-type, then
this task will be dependent on the previously generated sibling task [50]. Using the firstprivate-
clause in addition, the compiler allocates a private copy of the specified variable for each thread
executing the block [51, chapt. 17]. Furthermore, all private instances are initialized to the value of
the masters copy [13, chapt. 3], inheriting the value of the shared variable instead of being undefined
[51, chapt. 17]. Additionally, all globally used variables such as coefficients or indices need to be
redefined as local instances inside every task so that they can be accessed and modified at the same
time within distinct tasks. We define the speed-up of a program as

speed-up = tsequential
tparallel

. (81)

We now run the final parallel version of the function apply_A on 10 random vectors of size m =
2.1 · 106 and m = 8.4 · 106, and show the resulting speed-up for different numbers of threads in

59

Figure 31. Since the run-time of codes, in particular parallel codes, can vary from one execution to
another, several runs of the program are required using lastly the mean value of the run times as
representative time.

Figure 31: Speed-up of the function level::apply_A using OpenMP parallelisation for two different
grid sizes m.

Based on the parallelisation of the function build_A, the functions build_rhs, build_Asc, and
apply_Asc_ortho can be adapted, too. Concerning the function apply_prolongation, when applying
P to a coarse vector uc, all resulting entries of Puc can be treated independently and thus, the
parallelisation is much simpler, not requiring any task dependence mechanism.

Eventually, we have to use some monitoring tool in order to analyze the workload of the different
processes over time and to get a satisfactory scaling of the algorithm. This, however, goes beyond
the course of this thesis.

6.4.2 Parallelisation with GPUs and Cuda

Over the last decades, high-performance computing has evolved significantly, particularly because
of the emergence of heterogeneous architectures [14, chapt. 1], containing both central (CPUs) and
graphics processing units (GPUs) [58, chapt. 1]. GPUs, being multithreaded graphical interfaces [58,
chapt. 1] which are optimised to perform hundreds of computations in parallel [58, chapt. 4], have
been originally designed to perform specialized graphics computations. However, they have recently
become more powerful and generalised, enabling them to be applied to arbitrary “general-purpose
parallel computing tasks with excellent performance and high power efficiency” [14, chapt. 1]. On a
heterogeneous platform, an application is typically initialized by the CPU, which is responsible for
control intensive, serial tasks such as the management of the environment, code and data. With the
GPUs executing the compute-intensive, data-parallel workload, large data sets are distributed across
multiple cores and operated on at the same time. This conjunction is a very powerful combination
[14, chapt. 1].

The CUDA architechture by NVIDIA is a general-purpose parallel computing platform and
programming model [14, chapt. 1] which aims at making GPUs more convenient to use for general-
purpose computations [58, chapt. 1]. With just some small extensions to the standard C pro-
gramming language [14, chapt. 2], the CUDA C language helps to improve the performance and
programmer productivity on heterogenous architechtures enabling the simple access of the GPU for
arbitrary computations [14, chapt. 1].

Within this context, we call the CPU with the system’s memory the host and the GPU with its
attached memory the device. A function defined in a .cu-file and intended to be executed on the
device but called from the host is called a kernel and qualified with the keyword __global__ [58,
chapt. 3]. The __device__-qualifier on the other hand indicates a function which is called from
and executed on the device [14, chapt. 2]. When using the CUDA runtime, kernels can be invoked

60

in-line on the device with a special triple-angle-bracket syntax [67, chapt. 3] and executed by an
array of threads all running the same code [14, chapt. 1]. A kernel is called from a host thread by
the syntax kernel_name <<<gridsize, blocksize >>> (parameters) [67, chapt. 7] using a numerical
tuple of parameters that will influence how the runtime will launch the device code [58, chapt. 3].
The grid, which is used to execute our kernel, is specified by the gridsize and consists of several
parallel blocks of dimension blocksize containing multiple threads [67, chapt. 7]. In order to use
memory on the GPU it has to be allocated via cudaMalloc() on the device, taking as arguments
a pointer to the pointer holding the address of the memory as well as the size of the allocation.
After the computations, obviously we need to free this allocated memory again using cudaFree()
[58, chapt. 3]. As host pointers can only access memory from the host code and device pointers
respectively from device code [58, chapt. 3], data must be copied explicitly between host and device
memory in order to be processed by the GPU [67, chapt. 5]. Therefore, cudaMemcpy() is used with
the parameter cudaMemcpyDeviceToHost or cudaMemcpyHostToDevice indicating the direction of
the data transfer [58, chapt. 3].

As already mentioned, a simplified version of the C++ code has been ported onto GPUs in the
course of the CSCS GPU Hackathon [22]. During the event, which took place from the 20th to the
29th of september 2021, the supercomputer Piz Daint from the Swiss National Supercomputing
Centre was used as main system [16]. Being an important perspective for the optimization of the
solver, however, a full realization of GPU parallelism of the whole algorithm was not possible before
the end of the project [22].

Here, we present an example of porting the computation of the residual to the GPU. Therefore,
we add an extra device function specified with the __global__-qualifier for the parallel computa-
tions. Before calling the kernel with the triple-angle-brackets by the corresponding CPU function,
all required arrays are allocated on the device, denoted by _dev (for device) to help differentiating
between the different memory spaces. Then, the input data is copied to the GPU memory and
the kernel is called to be executed simultaneously by n_blocks · n_threads threads in total. The
objective hereby is to use as many threads as there are elements in the vectors we want to treat
so that no iteration is required anymore within the GPU function and each thread only executes
one single computation. In order to use enough threads, we define n_threads = 32 and calcu-
late n_blocks = ceil(m/n_threads) with m being the size of the vectors. Within the kernel, an
identification number of each thread is determined via

id = blockIdx.x · blockDim.x+ threadIdx.x, (82)

using the ID blockIdx.x and dimension blockDim.x of the current blocks as well as the ID of the
thread threadIdx.x, followed by an execution of the corresponding computation. Since the indexing
system of the grid is intended for 2-dimensional domains such as matrices or image processing, the
addition ‘.x’ is required for the identification within a simple 1D grid [58, chapt. 4]. After the
kernel execution, the resulting data is copied back from the device to the host and the allocated
GPU memory is released. The following code fragment presents the structure of the functions
gmgpolar::compute_residual applied on the CPU, and compute_residual_gpu parallelised using
CUDA as described above.

61

void gmgpolar : : compute_residual (int l) {
int m = v_leve l [l]−>m;
std : : vector <double> Au(m, 0) ;
v_leve l [l]−>apply_A (v_leve l [l]−>u , Au) ;
v_leve l [l]−> r e s = std : : vector <double>(m) ;
double ∗dev_Au , ∗dev_fVec , ∗ dev_res ;
int n_threads = 32 ;
int n_blocks = c e i l (m / n_threads) ;

cudaMalloc ((void ∗∗) &dev_Au , m∗ s izeof (double)) ;
cudaMalloc ((void ∗∗) &dev_fVec , m∗ s izeof (double)) ;
cudaMalloc ((void ∗∗) &dev_res , m∗ s izeof (double)) ;

cudaMemcpy(dev_Au , &Au [0] , m∗ s izeof (double) , cudaMemcpyHostToDevice) ;
cudaMemcpy(dev_fVec , &(v_leve l [l]−>fVec [0]) , m∗ s izeof (double) ,

cudaMemcpyHostToDevice) ;
cudaMemcpy(dev_res , &(v_leve l [l]−> r e s [0]) , m∗ s izeof (double) ,

cudaMemcpyHostToDevice) ;

compute_residual_gpu<<<n_blocks , n_threads>>>(m, dev_Au , dev_fVec , dev_res) ;

cudaMemcpy(&(v_leve l [l]−> r e s [0]) , dev_res , m∗ s izeof (double) ,
cudaMemcpyDeviceToHost) ;

cudaFree (dev_Au) ;
cudaFree (dev_fVec) ;
cudaFree (dev_res) ;

}

__global__ void compute_residual_gpu (int m, double ∗Au, double ∗ fVec , double ∗ r e s) {
int id = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f (id < m){

r e s [id] = fVec [id] − Au[id] ;
}

}

Eventually, all functions of the multigrid algorithm have been ported to the GPU by the same
principle, allocating all data on the device only once in the beginning. Since CUDA is based on
standard C language, all C++-specific elements and the object oriented programming style have to
be removed. Consequently, we had to convert all std::vectors to simple arrays, for example, and
pass the variables directly to the functions as arguments instead of using class attributes. This, in
fact, results in a separation of data from the numerics of the algorithm. In Table 17, the evolution
of the runtime for the GPU parallelisation of a reduced version of the multigrid algorithm can be
seen. As the runtime does not increase yet for the parallelised version, this also needs to be analysed
further in future work.

CPU version GPU version
nr × nθ Computation time Smoother/ Direct-Solver (non-optimised)
49× 64 0.02 0.84 0.04
97× 128 0.07 0.92 0.15
193× 256 0.22 1.34 0.48

Table 17: Comparison of the runtime in seconds of the sequential CPU and the parallel GPU
version.

62

6.5 Further optimizations
Having already discussed several approaches and ideas for the optimization of the multigird solver,
what else could be done to go beyond the scope of this thesis?

Libraries
One possibility is the use of libraries either for the storage of sparse matrices, for the sparse matrix
vector multiplications, or for the solving of linear matrix systems.

Further code optimizations
Vectorization and cache efficiency could be greatly improved in our solver. In particular, the next
step would be to use monitoring tools in order to identify parts of the code as bottlenecks in terms
of performance, and target these parts in code optimizations.

Improvement of the numerical method
Furthermore, there are several ideas for the modification of the mathematical discretizations and
multigrid algorithm, such as an additional refinement in θ-direction on the outer radii of the ge-
ometries in order to obtain grid elements of about the same size.

Also, reconsidering again the treatment of the singularity at the origin, an even better approach
may be found, using for example the origin as discretization node in combination with a special
stencil which only takes the average of about ten naturally distributed points from the next radius
instead of all neighbouring nodes.

The solving of tridiagonal linear systems of equations for the radial smoothers, or systems with
periodic conditions for the circle smoothers, in the course of the multigrid cycle, could be improved
by another more efficient solver than classical Gaussian elimination, e.g. Thomas algorithm [63].

Improvement of the implicit extrapolation
While currently using an uniform refinement between the two finest grid levels for the implicit
extrapolation, the effect on dividing the intervals not exactly in the middle could be studied.
However, in this case, also the prolongation operator Pex needs to be modified.

Furthermore, an adaption of the whole multigrid cycle using successive steps of different multi-
grid iterations in order to improve the quality of the solution while reaching the solution much
faster after less iterations could be analyzed. For example, we could have the following successive
steps:

• a few (3,3)-cycles of standard multigrid,

• a few (1,1)-cycles of standard multigrid,

• a few (3,3)-cycles of multigrid with alternative extrapolation,

• a few (1,1)-cycles of multigrid with alternative extrapolation,

• one final (1,1)-cycle of multigrid with normal implicit extrapolation.

The numbers in the brackets hereby indicate the number of pre- and postsmoothing steps. This
combination of distinct iterations is arranged in a way that we begin with a solver which delivers a
low-order solution as fast as possible and then add some more time consuming steps that contribute
to an improvement of the accuracy. Since already using a good approximation of the solution when
starting the more expensive iterations, higher order is expected to be achieved much faster than
without the prior steps. Using for instance (3,3)-cycles before (1,1)-cycles is the result of the fact
that, the more smoothing we use, the faster the convergence but the poorer also the quality of the
solution.

63

7 Conclusion
In this thesis, we have presented our solver GmgPolar for the two dimensional Poisson-like equation
arising from the gyrokinetic code GyselaX for plasma simulations. Within the European project
EoCoE, we implemented the matrix-free geometric multigrid solver with implicit extrapolation and
combined zebra line smoothing in C++ achieving the same convergence and accuracy as with the
already existing Matlab code. We hereby used line relaxation in order to overcome the anisotropy,
arising due to the use of generalised polar coordinates, and combined the line splitting in circle
and radial direction depending on the position within the domain. The application of the implicit
extrapolation to the multigrid scheme increases the convergence order of the solution from two to
up to four with only a small amount of additional computational work.

Furthermore, we optimized the code to increase the computational efficiency, focusing on the
construction and application of large matrices. We reduced the overall number of operations by
getting rid of naive implementations and redundant computations. Moreover, a decoupling of the
circle and the radial smoothers was investigated in order to enable a simple parallelisation - but
in fact, it turns out that this approach almost doubles the iteration count. Therefore, the coupled
circle-radial smoothing emerges as superior among the two smoothing variants, requiring a future
study of its suitability for parallelisation. Using full grid smoothing in combination with the im-
plicit extrapolation reduces the number of iterations while decreasing the approximation order of
the solution only slightly. However, the standard convergence criterion does not work anymore and
thus, the error is used instead. Requiring the exact solution for the error computation in this case is
an immense issue for the application to real world problems. Finally, the code has been investigated
regarding its potential for parallelisation. Some parts of the code have already been parallelised us-
ing OpenMP or GPUs, but the complete and scalable parallelisation exceeds the scope of this thesis.

Therefore, future work will be required to fully optimise and parallelise the GmgPolar solver
[22], before comparing it to other possible approaches (e.g. AMRex, or a splines solver) in terms
of accuracy, convergence and cost throughout the overall project. Finally, the integration of the
solvers into GyselaX is expected to result in drastic a reduction of the overall simulation costs.

To conclude, plasma fusion is an important recent topic within the context of the energy transi-
tion. However, being still far away from a commercial use of fusion power and without the definitive
knowledge of the final success of all research, we might ask whether all those extremely expensive
research projects are actually worth it. Not knowing whether nuclear fusion might ever be compet-
itive with other energy sources at all, the political support and funding might only be an immense
waste of money and a huge mistake. On the other hand, we might just have to give the research
enough time to learn from errors and current failures, as well as focus on simulations instead of
real-world experiments first. Nevertheless, knowing the immense potential and incredible possibil-
ities of nuclear fusion, we have the responsibility as one of the richest continent of the world to
investigate such options [42].

Finally, I would like to cite Harald Lesch at this point:

”ITER heißt nicht nur International Thermonuclear Experimental Reactor ; es heißt im
Lateinischen auch der Weg - und der Weg ist das Ziel” [42].

In english: ”ITER does not only stand for International Thermonuclear Experimental Reactor, but
it also means the journey in Latin - and the journey is the destination”; German saying meaning
that the efforts and procedures to achieve a goal are already worth it.

64

References
[1] Altfeld, H.-H. Ein Blick auf Kernfusion und ITER, Deutsche Physikalische Gesellschaft e. V.,

2021, www.youtube.com/watch?v=5kjvHoYpLZQ.

[2] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y.; Koster, J. A fully asynchronous multifrontal
solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applica-
tions, 2001, vol. 23, no 1, p. 15-41.

[3] Barros, S. The Poisson equation on the unit disk: a multigrid solver using polar coordinates,
Elsevier Inc, New York, 1988.

[4] Bergen, B. K.; Hülsemann, F. Hierarchical hybrid grids: data structures and core algorithms
for multigrid. Numerical linear algebra with applications, 2004, 11(2-3), 279-291.

[5] Bernert, K. Tau-extrapolation - theoretical foundation, numerical experiment, and application
to navier–stokes equations, Siam Publications, Philadelphia, 1997.

[6] Bernert, K.; Jung, M.; Rüde, U. Multigrid Tau-Extrapolation for Nonlinear Partial Differential
Equations, ICOSAHOM 95, 1996.

[7] Börm, S.; Hiptmair, R. Analysis of tensor product multigrid, Numerical Algorithms 26,
Springer, 2001.

[8] Bouzat, N.; Bressan, C.; Grandgirard, V. et al. Targeting realistic geometry in Tokamak code
Gysela, EDP Sciences, 2018.

[9] Brandt, A.Multigrid Techniques: 1984 guide with applications to fluid dynamics, St. Augustin,
1984.

[10] Briggs, W. L.; Henson, Van E. A Multigrid Tutorial, part 1 and 2, presentation.

[11] Briggs, W. L.; Henson, Van E.; McCormick, S. F. A Multigrid Tutorial, Siam publications,
2000.

[12] Büchner, J. Vlasov code simulation. Advanced Methods for Space Simulations, 23-46, 2007.

[13] Chandra, R.; Dagum, L.; et. al. Parallel Programming in OpenMP, Academic Press, 2001.

[14] Cheng, J.; Grossman, M.; McKercher, T. Professional Cuda C Programming, John Wiley &
Sons, 2014.

[15] Clixoom Science & Fiction. Durchbruch: Rekord-Kernfusion in China erreicht, United Creators
PMB GmbH, Berlin, 2020, www.youtube.com/watch?v=GF2ikwq-_V0.

[16] CSCS - Swiss National Supercomputing Centre. Piz Daint, 2021, www.cscs.ch/computers/
piz-daint/.

[17] De Clercq, G. Nuclear fusion reactor ITER’s construction accelerates as
cost estimate swells, London, Reuters, 2016, www.reuters.com/article/
us-france-nuclear-iter-idUSKCN1271BC.

[18] Dongarra, J. Data Structures, Netlib Repository at UTK and ORNL, 2020, www.netlib.org/
linalg/html_templates/node89.html.

[19] Duff, I. S.; Erisman, A. M.; Reid, J. K. Direct methods for sparse matrices, Oxford University
Press, 2017.

[20] Economist. Stellar work, 2015, www.fusion4freedom.com/stellar-work/.

[21] EoCoE-II D3.1 Co-design of LA solvers, Specification of characteristics and interfaces of the
LA solvers for all target applications, European Commission, INFRAEDI-824158, 2019.

[22] EoCoE-II D3.3 Updated results and new releases of LA solvers, European Commission,
INFRAEDI-824158, 2020.

a

www.youtube.com/watch?v=5kjvHoYpLZQ
www.youtube.com/watch?v=GF2ikwq-_V0
www.cscs.ch/computers/piz-daint/
www.cscs.ch/computers/piz-daint/
www.reuters.com/article/us-france-nuclear-iter-idUSKCN1271BC
www.reuters.com/article/us-france-nuclear-iter-idUSKCN1271BC
www.netlib.org/linalg/html_templates/node89.html
www.netlib.org/linalg/html_templates/node89.html
www.fusion4freedom.com/stellar-work/

[23] EoCoE official website, https://www.eocoe.eu/.

[24] Eurofusion homepage, www.euro-fusion.org/.

[25] Evers, M. Kernspaltung, Physikunterricht-online, 2021, www.physikunterricht-online.de/
jahrgang-12/kernspaltung/.

[26] Grandgirard, V. et al. A 5d gyrokinetic full-f global semi-lagrangian code for flux-driven ion
turbulence simulations, Elsevier B.V, 2016.

[27] Greiner, G. Algorithmik kontinuierlicher Systeme: Matrizen - Datenstruckturen und praktische
Verfahren, Friedrich-Alexander-Universität, lecture slides, 2016.

[28] Hackbusch, W. Multigrid methods and applications: with 48 tab., Springer, Berlin, 1985.

[29] Hoffmann, S.; Lienhart, R. OpenMP - Eine Einführung in die parallele Programmierung mit
C/C++, Springer-Verlag, 2008.

[30] Iter organization, 2020, www.iter.org/.

[31] Iyengar, S. R. K., Goyal, A. A note on multigrid for the three-dimensional Poisson equation
in cylindrical coordinates, Elsevier B.V, Amsterdam, 1990.

[32] Joachim Herz Stiftung. Kernspaltung und Kernfusion, Leifiphysik, 2021, www.leifiphysik.
de/kern-teilchenphysik/kernspaltung-und-kernfusion/grundwissen/kernspaltung.

[33] Jung, M.; Rüde, U. Implicit extrapolation methods for multilevel finite element computations,
Society for Industrial and Applied Mathematics, Philadelphia, 1996.

[34] Jung, M.; Rüde, U. Implicit extrapolation methods for variable coefficient problems, Siam
Publications, Philadelphia, 1998.

[35] Kang, K. S., Kormann, K., Grandgirard, V. Solving Poisson’s equation based on AMReX,
Max-Planck-Institute for plasma physics, 2021.

[36] Kühn, M. J.; Kruse, C.; Leleux, P.; Rüde, U. Gmgpolar/ iexmg: complexity analysis, unpub-
lished yet.

[37] Kühn, M. J.; Kruse, C.; Leleux, P. et al. GMGpolar/iexmg: implementation in C++, presenta-
tion, 2021.

[38] Kühn, M. J.; Kruse, C.; Rüde, U. Energy-Minimizing, Symmetric Discretizations for
Anisotropic Meshes and Energy Functional Extrapolation, SIAM J. Sci. Comput. Vol. 43(4),
pp. A2448-A2473 (2021).

[39] Kühn, M. J.; Kruse, C.; Rüde, U. Implicitly extrapolated geometric multigrid on disk-like
domains for the gyrokinetic Poisson equation from fusion plasma applications, Preprint:
https://hal.archives-ouvertes.fr/hal-03003307/, Submitted to Journal of Scientific
Computing, 2021.

[40] Latu, G.; Grandgirard, V. et al. Improving conservation properties of a 5D gyrokinetic semi-
Lagrangian code, Springer, Berlin/Heidelberg, 2014.

[41] Lee, W. W. Gyrokinetic approach in particle simulation, Physics of Fluids 26 (2), 556-562,
1983.

[42] Lesch, H.. Kernfusion: Klimaretter oder Milliardengrab?, ZDF Terra X Lesch & Co, 2020,
www.youtube.com/watch?v=nVTcirxdRWM.

[43] Lui, S. H. Numerical Analysis of Partial Differential Equations, John Wiley & Sons Inc., 2011.

[44] Masturah, N. et al. On comparison of multigrid cycles for poisson solver in polar plane coor-
dinates, IEEE, 2015.

b

www.euro-fusion.org/
www.physikunterricht-online.de/jahrgang-12/kernspaltung/
www.physikunterricht-online.de/jahrgang-12/kernspaltung/
www.iter.org/
www.leifiphysik.de/kern-teilchenphysik/kernspaltung-und-kernfusion/grundwissen/kernspaltung
www.leifiphysik.de/kern-teilchenphysik/kernspaltung-und-kernfusion/grundwissen/kernspaltung
https://hal.archives-ouvertes.fr/hal-03003307/
www.youtube.com/watch?v=nVTcirxdRWM

[45] McCormick, S. F.; Rüde, U. On Local Refinement Higher Order Methods for Elliptic Partial
Differential Equations, International Journal of High Speed Computing, 1990.

[46] MUMPS. MUMPS : a parallel sparse direct solver, 2021, http://mumps.enseeiht.fr/.

[47] National Institutes for Quantum Science Technology. JT-60U Experimental Report - JT-60U
Reaches 1.25 of Equivalent Fusion Power Gain, 2018, www.qst.go.jp/site/jt60-english/
5593.html.

[48] NTT. Conclusion of a Cooperation Agreement with ITER, busi-
nesswire, 2020, www.businesswire.com/news/home/20200514005951/en/
NTT-Conclusion-of-a-Cooperation-Agreement-with-ITER.

[49] Olson, L. Multigrid Methods, Copper Multigrid Conference, Illinois, 2021.

[50] OpenMP Architecture Review Board. OpenMP API specification - depend clause, 2018, www.
openmp.org/spec-html/5.0/openmpsu99.html.

[51] Quinn, M. J. Parallel Programming - in C with MPI and OpenMP, McGraw-Hill, 2003.

[52] Rüde, U. Extrapolation and related techniques for solving elliptic equations, TU München,
1991.

[53] Rüde, U. Extrapolation techniques for constructing higher order finite element methods, TU
München, 1993.

[54] Rüde, U. Mehrgittermethode, Springer Nature B.V, Heidelberg, 2019.

[55] Rüde, U. Multiple tau extrapolation for multigrid methods, München, 1987.

[56] Rüde, U. The hierarchical basis extrapolation method, Society for Industrial and Applied
Mathematics, 1992.

[57] Rüde, U., Private communications, 05.08.2021, 08.09.2021, and 06.12.2021.

[58] Sanders, J.; Kandrot, E. Cuda by example - An Introduction to General-Purpose GPU Pro-
gramming, Nvidia Corporation, Addison-Wesley, 2011.

[59] Shapira, Y. Matrix-based Multigrid: Theory and Applications, Springer Science+Business
Media, LCC, 2008.

[60] Sonnendrücker, E., Private discussion, 18.05.2021.

[61] Stacey, W. M. Fusion Plasma Physics, Wiley-VCH, Weinheim, 2005.

[62] Stüben, K.; Trottenberg, U. Multigrid methods: Fundamental algorithms, model problem
analysis and applications, in Multigrid methods, Springer, 1982.

[63] Trefethen, L. N.; Bau, D. Numerical Linear Algebra, Siam, 1997.

[64] Trottenberg, U.; Oosterlee, C.; Schüller, A. Multigrid, Acad. Press, San Diego, 2001.

[65] Wesseling, P. An introduction to multigrid methods, John Wiley & Sons, England, 1992.

[66] Wesson, J. Tokamaks, Clarendon Press, Oxford, 1997.

[67] Wilt, N. The Cuda Handbook - A Comprehensive Guide to GPU Programming, Pearson
Education, Addison-Wesley, 2013.

[68] Zhang, W. et al. Amrex : a framework for block-structured adaptive mesh refinement, The
Journal of Open SOurce Software, 2019.

[69] Zoni, E. Theoretical and numerical studies of gyrokinetic models for shaped Tokamak plasmas,
TU München, 2019.

c

http://mumps.enseeiht.fr/
www.qst.go.jp/site/jt60-english/5593.html
www.qst.go.jp/site/jt60-english/5593.html
www.businesswire.com/news/home/20200514005951/en/NTT-Conclusion-of-a-Cooperation-Agreement-with-ITER
www.businesswire.com/news/home/20200514005951/en/NTT-Conclusion-of-a-Cooperation-Agreement-with-ITER
www.openmp.org/spec-html/5.0/openmpsu99.html
www.openmp.org/spec-html/5.0/openmpsu99.html

[70] Zoni, E.; Güçlü, Y. Solving hyperbolic-elliptic problems on singular mapped disk-like domains
with the method of characteristics and spline finite elements, 2019.

[71] Zoni, E., Güçlü, Y., Sonnendrücker, E. Solving the guiding-center model on singular mapped
disk-like domains, Garching, 2018.

d

	Introduction
	Plasma fusion for energy creation
	What is plasma fusion?
	Magnetic confinement of particles in tokamaks
	Current research and projects

	Plasma simulation with GyselaX
	Gyrokinetic code
	Project EoCoE

	Geometric polar multigrid for a 2D Poisson-like equation with implicit extrapolation
	The given problem: a 2D quasi-neutrality Poisson-like equation
	The finite difference discretization of the Poisson equation on disk-like domains
	Introduction to Multigrid
	Direct vs. iterative solvers
	The 2-level multigrid
	The multigrid V-cycle

	Two problems arising with the choice of polar coordinates
	Singularity at the origin
	Anisotropy

	Multigrid with implicit extrapolation

	Implementation of the solver GmgPolar
	Structure of the code
	Namespace param
	Namespace gyro
	Class gmgpolar
	Class level

	Implementation of the multigrid cycle
	Matrix-free implementation
	Problem setup
	The multigrid cycle itself

	Numerical experiments

	Improving the solver GmgPolar
	Code optimization
	Decoupled circle-radial smoothing
	Implicit extrapolation with full grid smoothing
	Parallelisation
	Parallelisation with OpenMP
	Parallelisation with GPUs and Cuda

	Further optimizations

	Conclusion

