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Abstract—We provide a characterization of the peak age of
information (Aol) achievable in a random-access system oper-
ating according to the frameless ALOHA protocol. Differently
from previous studies, our analysis accounts for the fact that the
number of terminals contending the channel may vary over time,
as a function of the duration of the previous contention period.
The exact characterization of the Aol provided in this paper,
which is based on a Markovian analysis, reveals the impact of
some key protocol parameters such as the maximum length of the
contention period, on the average peak Aol. Specifically, we show
that setting this parameter so as to maximize the throughput may
result in an Aol degradation.

I. INTRODUCTION

Internet of things (IoT) systems often involve a large number
of terminals that sense a physical process and report time-
stamped status updates to a common receiver. This scenario is
relevant in, e.g., environmental monitoring and asset tracking,
where a primary objective is to maintain an up-to-date record
of the status of an observed source. A number of performance
metrics related to the notion of information freshness have
recently been proposed to quantify the ability of a system
to reach this goal [1], [2]. Among them, a prominent role is
played by the age of information (Aol) [3], which quantifies the
amount of time elapsed since the newest update available at the
receiver was generated at the source, and has been shown to
effectively capture fundamental trends in a number of relevant
scenarios [4], [5].

Accurate Aol characterizations are available for traditional
grant-based link-layer medium-access policies. Unfortunately,
such policies are often highly suboptimal or non-viable in IoT
networks, because of the need to share a common channel
among a possibly massive number of battery-powered, low-
complexity devices that generate traffic in a sporadic fashion.
Accordingly, random access strategies based on variations of
ALOHA [6] are the de-facto choice in a number of commercial
systems [7], [8]. Preliminary insights on the information-
freshness trade-offs that emerge in random-access systems
were derived in [9], [10]. Specifically, these contributions
illustrate that throughput and Aol can be jointly optimized
under ALOHA policies by properly tuning the channel access
probability. Further improvements in the presence of feedback
were discussed in [11], [12].

In parallel to this line of research, a family of advanced
grant-free protocols for IoT, often dubbed modern random
access [13]-[15], has recently been proposed. Such protocols
allow terminals to transmit multiple copies of their packets
over time, and employ successive interference cancellation
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at the receiver to resolve collisions. This leads to significant
throughput improvements, which makes these solutions ex-
cellent candidates for next-generation IoT networks. Unfortu-
nately, little is known about the behavior of modern random-
access protocols in terms of information freshness. The first
results in this direction were presented in [16], where the focus
was on irregular repetition slotted ALOHA [14]. There, non-
trivial trade-offs between spectral efficiency and average Aol
were revealed.

Contributions: To further tackle this open research ques-
tion, we concentrate in the present work on frameless ALOHA.
This protocol, originally proposed in [15], operates according
to the same principle of rateless codes, and has emerged
as a particularly promising approach. Specifically, frameless
ALOHA allows terminals to transmit copies of their packets
over a contention period whose duration is dynamically tuned
by the receiver. In contrast to previous works, which assume a
fixed number of contending users, we focus on a more general
and realistic setup in which the number of users accessing the
channel may vary over time, driven by the duration of previous
contention periods. We track the rich dynamic evolution of
the system by means of a Markovian analysis, and derive
its stationary throughput. Moreover, by obtaining an exact
formula for the attainable average peak Aol, we provide the
first study of the information freshness achievable by this
protocol. Our analysis highlights the critical role played by
some key protocol parameters, such as the maximum length
of the contention period, and shows that operating the system
to maximize throughput comes at the expense of an Aol
degradation—a trade-off that is fundamentally different from
what previously noted for traditional ALOHA strategies.

II. SYSTEM MODEL AND PRELIMINARIES

We focus on a system in which U users share a wireless
channel to communicate with a common receiver (sink). Time
is divided in slots of fixed duration, equal to the length of a
packet, and all terminals are slot-synchronous. The medium
is shared among all users according to a grant-free approach,
and a collision channel model is assumed. Specifically, the
transmission of two or more packets over a slot leads to a
destructive collision, which prevents immediate retrieval of all
colliding packets at the sink. On the contrary, packets sent over
singleton slots are always decoded correctly.

Channel access is regulated by the frameless ALOHA
protocol [15], which operates in successive contention periods
(CPs) of not necessarily equal length. The receiver initiates
a new CP by broadcasting a beacon, whose duration is
considered negligible throughout our analysis. At this point,
every user with data attempts transmission of its packet over
each subsequent slot with probability ¢, potentially sending
multiple copies of the same packet over the CP. Conversely,



users that do not have a packet to send at the time of beacon
reception refrain from accessing the channel for the whole
duration of the CP. The procedure continues until a new
beacon sent by the sink notifies the end of the current CP
and the start of the next one.

At the receiver side, decoding of a packet over a single-
ton slots triggers successive interference cancellation (SIC).
Specifically, the interference contribution of all the copies
of the retrieved packet is removed, possibly leading to new
singleton slots and thus to the decoding of previously collided
packets.! The receiver proceeds with this operation mode on
a slot-by-slot basis, and terminates the CP when either all
transmitting users have been decoded or a maximum number
dmax Of slots has been reached.? An example of the frameless-
ALOHA operations is discussed in Fig. 1.

As to traffic generation, we assume every user to indepen-
dently generate a new packet over each slot with probability ~.
This packet is stored in a one-packet-sized buffer for later
delivery. A pre-emption policy with replacement in waiting is
implemented, so that, at any given time instant, a user either
has one packet to send (the last generated one) or has an empty
buffer. Accordingly, a user will attempt transmission over a CP
only if it has generated at least one packet over the previous
CP. Assume that the previous CP lasted for d slots. Then, an
arbitrary user has a packet to transmit with probability

Ya=1—(1—7)%

All copies of the packet sent by each user during a CP are
marked with a common time stamp, set to the start time
of the CP. Since all users are assumed to generate traffic
independently, the number U of users that become active at the
end of a CP of d slots is binomial distributed with parameters
(U,~4). In the remainder of the paper, we shall denote the
corresponding probability mass function (PMF) as

U
Pop(uld) = () )t =2

Finally, no retransmissions are considered: if a packet is not
decoded during the CP it is sent over, it is simply discarded.

We are interested in evaluating the ability of the system to
maintain an up-to-date record of the state of each user at the
sink. To this aim, we consider the Aol A(¢) of a generic user:

A(t) :=t—o(t).

Here, o(t) is the time stamp of the last update received by
the sink from the user of interest as of time ¢. This metric
grows linearly over time, and drops each time the receiver
successfully decodes a packet from the user under observation.
For simplicity, we will assume throughout that these refreshes
take place at the end of the CP over which the status update

'Note that, in order to implement this procedure, the sink needs to know
of the position of all the replicas of a packet. This can be achieved, for
instance, by using a hash function of the payload as seed of a pseudo-random
generator, used by the transmitter to determine the slots of the CP over which
to transmit. Upon decoding the payload, the sink becomes thus aware of all the
slots occupied by the user, effectively allowing the removal of the interference
of that user throughout the CP.

ZDetails on how the sink can determine whether all users have been decoded
will be presented in Sec. II-A.

was received, i.e., we do not track the exact slot in which the
corresponding packet was decoded.® This yields the saw-tooth
profile exemplified in Fig. 2.

We will focus on the average peak Aol Q*, defined as the
mean value of A(t) when sampled right before an update from
the user of interest is decoded. This metric, introduced in [17],
characterizes the maximum value reached on average by the
Aol of a user.

A. Operational Details

We next describe some operational details of the protocol
that will be relevant for the subsequent analyses. At the end
of each slot, the sink attempts to decode as many users as
possible, canceling also their interference. When no more users
can be decoded, i.e., when the contention contains no more sin-
gleton slots, the receiver decides whether to terminate the CP
or not. Specifically, the CP is concluded only if all active users
have been decoded, or alternatively if a maximum number of
slots has elapsed since the beginning of the contention. Note,
however, that, without further assumptions, it is in general
not possible for the sink to determine whether all active users
have been decoded, since the sink cannot discriminate between
inactive users, who do not have a packet to transmit, and active
users who do have a packet to transmit, but have not (yet)
transmitted their packet since the beginning of the CP.

To allow the sink to determine whether all active users
have been decoded, we set the slot access probability to 1
in the first slot of every contention period. This implies that
all active users will transmit their packet in the first slot.
Furthermore, we make the reasonable assumption that the
receiver can distinguish among empty slots, singleton slots
containing exactly one packet, and collided slots containing
two or more packets. Under this assumption, the sink can use
the first slot of every CP to determine whether all active users
have been decoded or not. In particular, after canceling the
interference from a decoded user, the sink can check whenever
the first slot becomes empty to infer whether there are no more
undecoded active users and the CP can be terminated. This
strategy allows the receiver also to detect empty CPs. Indeed,
these CPs are characterized by an empty initial slot. Note that
the minimum CP duration in our setting is one slot, reached
when either no users or a single user have data to transmit.

We emphasize that more realistic and sophisticated methods
may be devised to estimate the number of active users in
the CP, as discussed for instance in [18]. For the purpose
of the analysis provided in this paper, the proposed technique
suffices, in the sense that it provides a simple model for the
cost (i.e., overhead) required for the estimation of the number
of active users.

B. Notation

In the remainder of the paper, we denote a discrete r.v.
and its realization as X and x, respectively, whereas the
corresponding PMF is indicated by Px (). A conditional PMF

3As will be clarified in Sec. V, this assumption does not change the
fundamental trade-offs of interest, and the analysis can be easily adapted
to account for this additional factor.
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Fig. 1. Example of operations for frameless ALOHA over two successive CPs. We assume U = 4 users in the system and a maximum contention duration
of dmax = 6 slots. Within the first CP, only three users are active. The receiver decodes the first packet in slot 5, retrieving the status update of user uwi. By
removing its interference contribution from slot 2, the sink can then decode the packet of user u3. Finally, after removing the interference caused by user 3,
the sink can also obtain the packet of user 2. Having decoded all users, the sink sends a new beacon at the end of slot 5, initiating the next CP. All four
users attempt transmission. The first decoding occurs at slot 3, leading to the retrieval of u3. Removal of such packet from slot 2, however, does not resolve
completely the existing collision, and SIC stops. The situation does not change after slot 4 (collision not involving u3), slot 5 (idle), or slot 6, which contains
the transmission of a resolved user, and the receiver terminates the CP as the maximum number of slots has been reached, even if some users (i.e., w1, u2
and ug4) have not been decoded. Note that the first slot of each CP is used by all active users to send a packet, allowing the sink to infer when complete

decoding has occurred (see Sec. II-A).
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Fig. 2. Evolution over time of the Aol A(t¢) for a user. In the plot, Y’
denotes the duration (in slots) of an inter-update period, possibly composed
by multiple CPs. The value at which Aol was reset upon reception of the last
update from the node is denoted by A, which in our case corresponds to the
duration of the CP in which the previous update was received. Accordingly, €2
indicates the value reached by A(¢) at the end of the CP over which the next
update from the node is decoded. An in-depth discussion of these quantities
will be presented in Sec. V.

is denoted as Px|y(z|y). We further write the state of a
discrete-time Markov chain at time ¢ as X©, and express
its one-step transition probability from state ¢ to state j as

px(i,j) = P{XHY = | X =}

In the case of bi-dimensional Markov chains, we maintain the
same notation, but denote the state by means of a two-element

vector, e.g., 7 = (j1, j2).

III. FRAMELESS ALOHA ANALYSIS

Following [19], we model the iterative SIC process at the
sink using a finite-state machine. A state is identified by the
triplet (w, ¢, r), where w denotes the number of unresolved
users, ¢ denotes the number of collided slots (ignoring the
initial slot), and r is the number of singleton slots. We denote
by Prey the pre-decoding state, i.e., the state right after the
sink observes the d-th slot within a CP and before it tries
to decode any new packets, whereas Pos; denotes the post-
decoding state, i.e., the state after SIC decoding. To describe
the decoding process, we next provide a characterization of
the conditional probability of Pos; given Pre; and of the
conditional probability of Pre; given Posg_1.

A. State Initialization

Assume that u users are active. The state is initialized as

(0,0,0) ifu=0
Pre; =< (1,0,1) ifu=1
(u,0,0) if u>1.

B. Conditional Probability of Posy Given Prey

We next derive the conditional probability of the post-
decoding state Pos; given the pre-decoding state Pre; =
(w,c,r). Two cases need to be distinguished: » = 0 and
r = 1. Indeed, in the pre-decoding state, we always have
r € {0,1}, since the reception of a new slot yields at most
one new singleton slot. If » = 0, the state remains unchanged
since no users can be resolved. Hence, we have

P{Posy = (w’, ', r")|Preq = (w,c,0)}

1 ifw=wd=c¢c1=0

0 otherwise.

Let us now focus on the case » = 1. It is convenient to
describe SIC decoding as an iterative process in which one
user is resolved at a each iteration, potentially resulting in
new singleton slots. The iterative process is terminated when
no singleton slots are available. This implies that the post-
decoding state must have » = (0. To characterize the state
evolution at each SIC iteration, we use [19, Theorem 1]. This
theorem, when specialized to the scenario considered here,
implies that, if the state is (w,c¢,r) with w > 1 and r > 1,
after resolving exactly one user, the state becomes (w—1,¢c—
J,r — i+ j + a) with probability

m(ea-n=(1) ) (-5)

for0<a<1,0<j<¢,1<i<r—landi—j—a<m,
where
1 ifw#2,a=0

I,(a) =11
0 otherwise

fw=2a=1
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where Ay = ()" (1 —q)*7*.

To derive the desired conditional probability P{Pos; =
(w',c,0)|Preq = (w,c,1)} for all values of w’, and ¢/, we
apply the result just stated iteratively, stopping when we reach

a state with no singleton slots.

S )
kgo Ay

C. Contention Termination

The CP is terminated after d < dy.x slots only if all u
active users are resolved, i.e., only if the post-decoding state
is Posy = (0,0,0). However, when d = dpax, the CP is
terminated, no matter what the value of Pos,  is.

‘max

D. Conditional Probability of Prey Given Posg_1

We now analyze how the state changes when one slot
is added to the CP. To do so, we derive the conditional
probability of the pre-decoding state Pre; given the post-
decoding state Pos;—1 = (w, ¢,0), for d > 2. Three different
cases must be considered. In the first case, the extra slot
contains no packet from any of the w unresolved users. This
event, which occurs with probability (1 — ¢)%, yields a pre-
decoding state Preq = (w, ¢, 0). Hence, we have

P{Preg = (w, ¢,0)|Posq—1 = (w,¢,0)} = (1 —¢q)".

In the second case, the extra slot contains the packet of exactly
one of the w unresolved users. It can then be verified that

P{Prey = (w, ¢, 1)|Posg_1 = (w,c,0)} = wq(1l —q)* .

Finally, in the third case, the extra slot contains the transmis-
sion of two or more unresolved users, which yields

P{Pres = (w,c+ 1,0)|Posg_1 = (w,¢,0)} =1 — (1 —¢)¥

—wq(1—q)" .

E. Derivation of Some Useful Quantities

We will next use the state-transition probabilities just in-
troduced to derive three main quantities that will turn out
important for the characterization of the average peak Aol.

The first quantity is the probability that the contention
period is terminated after exactly d slots, given that the number
of active users is u. We denote this quantity by Pp(d|u).
To characterize it, we need to consider three different cases.
The first one is d = 1. In this case, we have

Ppiy(1u) = {

The second case covers 1 < d < dyax. Recall that, in this case,
the CP is terminated only if all u active users are resolved.
Hence,

1 ifu<ll

0 otherwise.

PD|U(d|u) = ]P){POSd = (Oa 07 O)} (2)

The probability of the remaining case, d = dp,x, can be easily
obtained as
dmax—1
Ppjy(dmaxu) = 1= > Ppju(dlu). 3)
d=1
The second quantity we are interested in is the conditional
probability that exactly m users were decoded given that u
users were active. We denote this quantity by Py (m|u). To
characterize it, we must distinguish two cases: m < u and
m = u. When m < wu, since not all users were resolved, the
CP was terminated after d,x slots. Hence, we have

Py (mlu) = ZP{POSdmax = (u—m,c,0)}.

Assume now m = u. To obtain Pyjy(u|u), we need to add
the probabilities of all post-decoding states in which all users
are decoded:

dmax
Py (ufu)=>_ P{Poss = (0,0,0)}
d=1
u—1
m=0

The third quantity of interest, which we denote by 3(m,u),
is the conditional probability that m users are resolved, given
that u users accessed the CP and that the CP ran until its
maximum duration d,x. We can obtain 5(m,u) by summing
the probabilities of all post-decoding states Posg,, in which
exactly u—m active users are unresolved, and then normalizing
by the sum of the probabilities of all states Posg,_, :

_ > P{Posq,,. = (u—m,c,0)}
2w 2e P{Posg,, = (w,c,0)}

IV. THROUGHPUT PERFORMANCE

B(m,u)

We provide in this section an analysis of the stationary
throughput achievable with the frameless ALOHA protocol.
This analysis will turn out useful for the characterization of
the Aol. Previous works, e.g., [15], [18]-[20], have studied
the protocol behavior either over a single CP, or under the
assumption that the number of contending terminals is fixed.
For this scenario, the number of packets that can be decoded
under an optimized access probability has been characterized.
The setting under consideration in this paper, however, is
characterized by a richer dynamic, since the number of users
with packets to transmit, and thus the level of contention, may
vary over time. To appreciate this aspect, observe how, for
instance, a long CP increases the probability for more users to
generate at least one packet over its duration. This leads to a
harsher contention over the successive period, which, in turn,
is likely to last longer. Similarly, contentions resolved in few
slots will instead drive the system on average towards shorter
and less loaded CPs.

To capture the impact on throughput of this non-trivial
evolution, we focus on the homogeneous Markov processes
D® and U, tracking the duration of the /-th CP and
the number of users contending over it, respectively. Let
us first consider the former, which takes values in the set



{1,...,dmax}. Recalling that the duration of the (¢ + 1)-th
CP is driven by the number of users contending over it, we
compute the transition probabilities for the chain as

U
poli,j) =Y P{DFY =j| U = u}
u=0

x P{UYD = 4| DO =}

U
(@) . ,
= Z Ppu (jlu) Pup(uli)

u=0
where (a) follows from (1), (2), and (3). Similarly, the transi-
tions for the finite-state chain U) are

Amax

puli,j) =Y PUY = ;| DY = d}
d=1
x P{DY) =d|U® =i}
dmax
=" Puip(jld) Ppy (dfi).

d=1
In both cases, it is easy to verify that the finite-state chains are
irreducible and aperiodic, and thus ergodic. In the remainder of
the discussion, we shall indicate their stationary distributions,
derived by solving the corresponding balance equations, as
mp(d) and 7y (u), respectively.

Let us now denote by M the number of successfully

decoded users over the ¢-th CP. The system throughput S,
defined as the average number of decoded packets per slot, is

1yt (€)

. > M

S:= lim ):12_7112 @)
t—o00 i E =1 D( )

Observing now that

u
P{M® =m} = Z Py (mfu) P{U® =u}

u=0

we conclude that the statistics of M) can be directly de-
rived from that of the number of contending users over the
corresponding CP. Hence, this process has also a stationary
distribution. Accordingly, both numerator and denominator
in (4) admit finite limits for ¢ — oo by virtue of the ergodicity
of the involved chains. This allows us to to compute S as
the ratio of the expected values of the processes in stationary
conditions:

Zl:n:o 23:0 m PIVI|U(m|u) 7rU(u)

i dp(d)

Leaning on this result, we provide a first characterization of
the behavior of the system in Fig. 3. The plot shows how the
stationary throughput changes as a function of the transmission
probability ¢, considering a population of U = 100 users, and a
maximum duration for a CP of d,,x = 100 slots. The reported
results were obtained by setting the activation probability ~y
such that the average number of users generating a new packet
over each slot, yU, equals 0.6. The exhibited trend confirms
the existence of an optimal medium access probability for
throughput performance. Indeed, too low values of ¢ tend to
result in successful yet unnecessarily long CPs, where many
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Fig. 3. System throughput S vs transmission probability g. A population
of U = 100 users and a maximum CP duration of dmax = 100 slots are
considered. The packet generation probability is set so that YU = 0.6.

slots may remain unused. Conversely, when users become
too aggressive, collisions become predominant, leading to the
sharp decrease in throughput which is typically observed in
grant-free schemes that resort to SIC.

Such a behavior is confirmed in Fig. 4, which shows the
stationary distribution of the CP duration, mp(d), and of the
number of decoded packets per CP, denoted as s (m), for
low (¢ = 0.01), intermediate (¢ = 0.1) and high (¢ = 0.15)
values of the transmission probability. Consider first the case
g = 0.01. In this situation, an active node will send no copy
of its packet even over a CP of maximum duration with
probability (1 — ¢)%= ~ 0.37. As a result, the sink tends
to operate with long CPs, awaiting for packets of users that
have not yet transmitted. In terms of throughput, while an
average of around 45 users will participate in the contention
for a CP of dy.x = 100 slots, only a significantly lower
fraction of them is decoded, as reported by the stationary
distribution 7, (m). Notably, the system operates at CPs
of maximum duration also for high values of transmission
probability (¢ = 0.15). In this case, though, hardly any packet
is decoded, due to the excessive level of congestion, which
leads to unresolvable collisions. Both settings result in poor
throughput performance, as illustrated in Fig. 3. An efficient
utilization of the channel is instead achieved for ¢ = 0.1,
where a proper balance between frame duration and number
of active users is reached. A first relevant trade-off driven by
the dynamics of the system thus emerges, calling for a proper
balance of the operating parameters.

V. AVERAGE PEAK AGE OF INFORMATION

We now analyze the performance of frameless ALOHA in
terms of information freshness. We start with some preliminary
results that will facilitate the characterization of the average
peak Aol Q*.

A. Preliminaries

Fix a generic user for which the Aol is tracked, and
denote by v(u,d) the conditional probability that the user
delivers a status update over the current CP, given that u users
contend, and that the CP is terminated after d slots. Recall that
whenever the CP is terminated prior to its maximum duration,
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Fig. 4. Stationary distribution of the CP duration, 7p(d), and of the number of decoded users per CP, s (m), for three different values of transmission
probability q. In all cases, results were generated considering U = 100, dmax = 100, and YU = 0.6. The average number of active users per CP in stationary
conditions in the different cases is 45.22 for ¢ = 0.01, 14.49 for ¢ = 0.1, and 41.68 for ¢ = 0.15.

all contending users are successfully decoded. The user of
interest belongs to this pool with probability u/U. Conversely,
if the CP runs for dy,,x slots, the conditional probability for the
user to deliver a packet given that m users are successfully
decoded is (m/U)B(m,u). Combining these two results we
then have:

d< dmax

v(u,d) = 5)

B(m,u) d

U
U

u
Z dmax-
m=0

Next, we introduce a simple ancillary Markov chain, whose
state is defined as Z(¥) = (D® S®). The first component,
which we have already discussed, characterizes the duration
of the (-th CP, whereas S) is a binary r.v. taking value 1
if an update from the user of interest has been successfully
received over the /-th CP, and 0 otherwise. Consider now the
probability for the chain to transition from state (j, s) to state
(d, 1). By definition, this event occurs when the current CP has
duration d slots, and the user delivers an update. Observing
that the user’s success does not depend on its outcome over
the previous CP, we can simplify the transition probability to

cl3

pz((G5), (. 1)) == P{ZHV = (d,1) | 29 = (j, 5)}
=P{S“Y =1, DD = q| DO = j}.

Conditioning now on the number of users contending over the
CP, we further have

P{s(@+1) _ 1,D(Z+1) _ d|D(Z) :]}

U
=3 P = 1|u“HY) =4, D = a}
u=0

x P{UY = 4, D) = | DY) = 5}

U
= P{SUY = 1|U"H) =, DD = d}

u=0

x P{DH V= q| U V= 4} P{U V= o | DO= j}.

Finally, using (5), (1), (2), and (3), we can write
pz((j,5),(d,1)) compactly as
U
pz((4,s),(d,1)) = Z v(u,d) Ppjy(dlu) Pyip(ulj). (6)
u=0

Following similar steps, we can express the transition prob-
abilities from a generic state (4, s) to a state (d,0) in which
the user does not deliver an update as

U
pz((4,5),(d,0)) = > (1 = v(u,d)) Pp(du) Pyjp(ulj).

u=0
(7

It is immediate to verify that the finite-state Markov chain
Z® is irreducible and aperiodic, and admits thus a stationary
distribution, which we denote as 7z(d, s).

B. Average Peak Aol

Let us now focus on the calculation of the average peak Aol
achieved by the frameless ALOHA policy. To this aim, denote
by Q the r.v. describing the value of the Aol in stationary
conditions at the end of a CP over which the user of interest
delivers an update. As exemplified in Fig. 2, this quantity
can be conveniently expressed as 2 = Ay + Y. Here, Ay
captures the value at which the Aol A(t) was lastly reset, and
corresponds to the duration of the CP in which the previous
update was received. The r.v. Y accounts for the duration
of the inter-update time, i.e., the number of slots that have
elapsed between the last and the current successful reception
of a status update from the user. The average peak Aol can
then be computed as

O =E[Ag] + E[Y]. )

Consider first Ag. Its PMF Pa,(dg) can be readily com-
puted from the stationary distribution of the Markov chain
Z(®)_ We have indeed
Pa,(60) = M
s mz(6,1)
where the numerator denotes the probability for the system to
be in a CP of duration g slots in which the tracked user



is decoded, and the denominator is a normalization factor,
capturing that we are interested only in CPs with successful
updates from that user. The first addend in (8) can be evaluated
simply by applying the definition of expected value.

We analyze now E[Y]. We start by noting that the statistics
of Y depends on the r.v. Ag. In fact, the duration of the CP
over which the last update was received does influence the
number of users contending on the subsequent one, impacting
both the probability for the user of interest to transmit and be
decoded as well as the duration of the subsequent CPs. It is
then convenient to express E[Y] as

imax
E[Y]= Y E[Y|A¢=6o] - Pa,(do)- €))
So=1
Without loss of generality, let us denote by ¢ = 1 the
index of the first CP that contributed to the inter-update time
being tracked. Accordingly, we reformulate the conditional
expectation in (9) considering the value of Z(1) as

E[Y | Ag = o]
=Y E[Y[2W= 2 A0 = 6] P{ZV= 2| A = 6o}

WS EY | Z20= 2] P{zM= 2| A¢ = 5} (10)
where the summation is taken over all the possible states
z=(d,s),de€{l,...,dma}, s € {0,1}, and (a) follows from
the Markov property of the involved processes. Note that the
factors P{Z(M= 2| Ay = &y} on the right-hand side of (10)
can be computed using (6) and (7).

The conditional expectation of Y given the outcome of the
first CP of the inter-update period, E[Y | Z W= 2 Ag = o),
can be derived resorting to a first step analysis [21]. To this
aim, let us denote by A the set of states for the Markov
chain Z() corresponding to an update delivery for the user
of interest:

A:={z=(d,s)|de{l,...,dnx},s=1}.
We refer to A as the set of absorbing states, and define the
chain absorption time as
¢ :=min{l > 129 e A}

Furthermore, let us assign to each state z = (d, s) a cost

9((d, s)) = d.
Then, the overall duration (in slots) of the inter-update period
Y is simply given by the sum of the costs undergone for all
states traversed by the process Z () from time ¢ = 1 until
absorption, i.e.,
o~
EY |ZM =2 =E [ Zg(z(f))

{=1

Z(l)z].

To compute this quantity, consider first the situation in which
the packet from the user of interested is decoded already in
the initial CP. In this case, the chain is immediately absorbed,
and Y coincides with the length of the initial CP:

E[Y | ZWM = (d,1)] = d. (11)
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Fig. 5. Average peak Aol 2* vs. transmission probability g. Results obtained
with U = 100 users, dmax = 100 slots. The packet generation probability
has been set such that YU = 0.6.

When Z() = (d,0) ¢ A, instead, the average cost prior to
absorption can be computed by conditioning on the outcome
of the first transition. Specifically,

EY |2V = (d,0)] =d+ Y E[Y |2 = 2]-pz((d,0),2)
: (12)

where the Markov property ensures that the average cost once
the transition to state z is taken is equal to the one that we
would have by starting from such state. Combining (11) and
(12), we get a full-rank system of d,.x equations in the dyx
unkowns E[Y | Z(1) = (d,0)]. We obtain E[Y] by solving such
system, and by insert the results into (10) and (9). Finally, the
sought average peak Aol 2* follows as per (8).

In Fig. 5, we plot the average peak Aol against the channel
access probability q for the same setting considered in Fig. 3,
ie., U = 100, dmx = 100, YU = 0.6. As illustrated in
the plot, both too low and too high values of ¢ result in
poor performance in terms of Aol. In the former case, an
excessively conservative behavior is likely to result in a user
missing opportunities to deliver a status update, refraining
from transmission for the whole duration of a CP even when
a packet is available. Conversely, collisions dominate when
users become too aggressive, hindering the capability of the
receiver to decode transmitted updates prior to reaching the
maximum contention duration.

It is also important to note that, for a given traffic profile (U,
) and a given maximum frame duration, the optimal operating
points in terms of throughput and average peak Aol coincide.
In other words, there exists a value ¢* of the transmission
probability that jointly maximizes S and minimizes 2*. This
outcome is common to other random access solutions under
symmetric traffic conditions, as epitomized by the inverse
proportionality of Aol and throughput exhibited by slotted
ALOHA [9], [16]. From this standpoint, indeed, any choice
of ¢ # ¢* reducing the probability to deliver a status update
would also be harmful in terms of information freshness.

In contrast, frameless ALOHA exhibits a more complex
behavior when performance are analyzed versus dmax. In
Fig. 6, we report the optimal throughput and peak Aol pairs
that can be achieved by tuning the maximum CP duration.
Specifically, we explore different values of dp,x between 10
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Fig. 6. Maximum throughput and minimum average peak Aol obtained when
varying the maximum CP duration dmax in the range {10,150} slots. In all
cases, U = 100 users were considered.

and 150 slots, and pick, for each setting, the optimal access
probability ¢*, plotting the corresponding values obtained for
S and Q*. Distinct curves in the figure refer to different packet
generation probabilities. In all cases, U = 100.

Consider first the case YU = 0.6, represented by the solid
curve in Fig. 6, and focus on throughput performance. For low
values of dy.x, the system operates in the lower-left corner of
the plot. Too short CPs hinder packet decoding, not allowing
enough slots for SIC to be fully efficient. By increasing the
maximum duration of the CP, S improves, approaching the
elbow exhibited by the reported trend. After a certain point,
though, a further increase of dp,x enables to decode only
a limited additional number of users, and such diminishing-
return behavior leads to a decrease in throughput.

Notably, while a similar trend emerges also for the average
peak Aol, the impact of operating over excessively long CPs
is far more pronounced. The rationale behind this lies in the
dependency of 2* on the inter-update time, i.e., the number
of CPs between two updates as well as their duration in slots.
From this standpoint, higher values of dp,x may reduce the
former (increasing throughput), yet entail a larger average cost
in terms of elapsed slots over a CP. While initially the first
factor prevails, and Q* improves together with S, the impact
of longer CPs quickly emerges and yields a reduction of 2*.

This trend is confirmed when analyzing the results obtained
by increasing the channel load yU. As shown in Fig. 6,
frameless ALOHA can reach larger values of throughput by
supporting higher levels of channel congestion. Yet operating
in this region is detrimental in terms of average peak Aol.

VI. CONCLUSIONS

We provided a characterization of the average throughput
and the average peak Aol achievable in a random access
system operating according to the frameless ALOHA protocol.
One novel aspect of our analysis, compared to results available
in the literature, is that we are able to capture the rich
system dynamics that result from letting the number of users
contending on a given CP depend on the duration of the
previous CP. We show that this modeling assumption is critical
to capture practically relevant trade-offs in the design of the
system. Specifically, choosing the maximum length of the CP

so as to maximize the system throughput may result in a
significant deterioration of the average peak Aol. We hasten
to add that the performance of frameless ALOHA protocol
considered in the paper can be further improved by making
some of the protocol parameters dependent on the duration of
the previous CP. Such a generalization will be addressed in a
future work.
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