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Abstract: Paving the way to future mobility, teleoperation of vehicles promises a reachable solution
to effectively use the benefits of automated driving as long as fully automated vehicles (SAE 5) are
not entirely feasible. Safety and reliability are assured by a human operator who remotely observes
the vehicle and takes over control in cases of disturbances that exceed the vehicle automation’s
skills. In order to integrate the vehicle’s automation and human remote-operation, we developed a
novel user-centered human-machine interface (HMI) for teleoperation. It is tailored to the remote-
operation of a highly automated shuttle (SAE 4) by a public transport control center and based on
a systematic analysis of scenarios, of which detailed requirements were derived. Subsequently, a
paper-pencil prototype was generated and refined until a click-dummy emerged. This click-dummy
was evaluated by twelve control center professionals. The experts were presented the prototype
in regular mode and were then asked to solve three scenarios with disturbances in the system.
Using structured interview and questionnaire methodology, the prototype was evaluated regarding
its usability, situation awareness, acceptance, and perceived workload. Results support our HMI
design for teleoperation of a highly automated shuttle, especially regarding usability, acceptance,
and workload. Participant ratings and comments indicated particularly high satisfaction with the
interaction design to resolve disturbances and the presentation of camera images. Participants’
feedbacks provide valuable information for a refined HMI design as well as for further research.

Keywords: human-machine interaction; interface for remote-control; teleoperation; automated
driving; usability evaluation; expert evaluation; situational awareness; workload; user acceptance

1. Introduction

The automation of driving tasks is proceeding rapidly [1]. However, until full au-
tomation of driving tasks will be achieved, there is still a long way to go [2]. Urban
mixed-traffic environments with complex driving maneuvers and the spontaneous en-
counter of a plethora of traffic participants pose requirements on the automation that are
yet to be fulfilled [3]. A possible interim solution to use potential of today’s advanced
automation without compromising the passengers’ safety is outsourcing the monitoring
task from the driver’s on-board cabin to a higher-level actor, such as a control center that
remote-controls and commands the vehicle if necessary [4,5]. Teleoperation is seen as
a prerequisite for the introduction of SAE level 4 [6] highly automated driving features
on public roads as remote intervention by a human can take over critical situations that
the highly automated vehicle cannot handle itself [7]. To achieve efficient and safe tele-
operation, not only technological developments such as the data connection need to be
considered but also the interaction between operator and the remote-control workstation
needs to be designed [8,9].
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1.1. Automated Driving and Public Transport

Automated driving is a disruptive technology with the potential to reduce driver
stress, energy consumption and pollution while increasing road capacity, granting mobility
to those without a driver’s license, and, most importantly, raising safety [10,11]. However,
fully automated driving (SAE level 5) that can cope with any conceivable scenario is not
feasible in the next years [12]. Highly automated vehicles (SAE level 4) need an operator
to intervene in certain situations that exceed the system’s capabilities [13]. This operator
can either be on board of the vehicle [14–16] or somewhere else and remote-control it (see
Section 1.2). In the latter case, remote-operation could serve as an interim technology
to exhaust the present and near-future potential of automated systems. This paper will
therefore focus on SAE level 4 automation.

An area in which automated vehicles (AVs) could have a particularly large impact is
the public transport sector. Combining AVs with on-demand mobility may further reduce
energy consumption and help to save greenhouse gas emissions [17]. Models suggest that
shared AV-based mobility may only require a tenth of the number of cars necessary in case
of personal vehicle ownership [18]. Shared AVs bear the potential to extend the existing
schedule-based means of transportation by flexible on-demand mobility options [19].

1.2. Teleoperation

Teleoperation of vehicles represents an approach to be able to already use the advan-
tages of automated driving as an interim stage without having to give up the advantages
of human information processing. Instead of an attendant on board who monitors the
automation on site and intervenes if necessary, the operator in teleoperated driving is
located elsewhere and is connected to the vehicle via a communication link. This enables
location-flexible control of multiple vehicles at the same time. Based on these characteris-
tics, highly automated vehicles could be used as a complementary on-demand service in
public transport and monitored and controlled from a public transport control center. Two
main designs for vehicle teleoperation interfaces are conceivable (inspired by Fong and
Thorpe’s [20] classification): While the direct approach mimics the manual driving process
and therefore relies on the remote-operator’s continuous attention, the indirect approach, in
turn, only requires an occasional human intervention while using computational power to
translate human decisions into driving actions. This does not only make remote-control
more efficient but also more adaptive to lagged connections as the remote-operator’s input
consists of high-level goals that algorithms use to calculate control signals [9]. Kay [21]
suggests waypoints to be used as high-level goals. On a map, the remote-operator selects
positions that the computer will use to calculate a trajectory which the vehicle will follow
if no obstacles are detected on the way. Kim and Ryu [22] demonstrated the capability of
algorithms in dealing with problems of time delay in teleoperation. Alternatively, the entire
trajectory may be created directly by the operator, such as in the “free corridor” approach
proposed by Chen [23]. It targets the issue of connection losses. In this approach, a colored
area is laid over the video images which represents a corridor for safe braking even when
the connection may be suddenly interrupted. Gnatzig et al. [9] showed that trajectory-based
driving is at least fast enough for inner-city traffic. Chucholowski et al. [5] adapted the
approach of using a predictive display to anticipate the position of the teleoperated vehicle
as well as other traffic participants in mixed traffic environments. By interpolating the
trajectory of a traffic participant, the HMI proved capable of mitigating the latency of the
connection and presenting the operator an as-if-present view of the traffic situation.

1.3. Psychological Background

Teleoperating vehicles requires the remote-operator to engage in multiple tasks. Sheri-
dan [24] lists five generic functions that supervisory control entails: planning what task to
do and how, teaching the computer, monitoring automatic actions, intervening, and learn-
ing from experience. This paper focuses on two of them: monitoring the situation, which
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requires vigilance, and intervening, that is, taking over the vehicle when the automation is
no longer able to do so.

1.3.1. Monitoring

Identifying when to take over control of a vehicle requires continuously monitoring
the system, a mentally very taxing task that requires constant vigilance. In the context of
AVs, a driving simulator study by Greenlee et al. [24] found slower reaction times and
tremendously decreasing hazard recognition during a 40-minutes long virtual ride in a
highly automated vehicle. Thus, an underload of cognitive demand can lead to impaired
vigilance but the same is true for an overload [25]. Thus, a human-automation interface
for teleoperation should impose medium cognitive requirements onto its user. Ideally,
the HMI does not depend on the remote-operator’s vigilance at all but directs attention
quickly and effortlessly to relevant stimuli. And even if the operator manages to maintain
attention, its allocation to stimuli is still an issue. Wickens et al.’s SEEV Model predicts the
distribution of attention when information is presented on multiple screens [26]. Wickens
postulates four factors that influence attention allocation: salience, effort, expectancy, and
value. While the first two factors are bottom-up stimuli emanating from the environment,
the last two factors stem from existing prior knowledge and are therefore considered
top-down factors. In “ideal scanning” [27] (p. 749), attention is only distributed based
on the user’s assessment of its value and their expectations based on experience, i.e. how
often information has changed in the past [28]. “Actual scanning” considers the impact
of factors of the environment, such as the effort to move the head to look at another
screen [29], for instance, or the physical properties of a stimulus that attract attention,
such as contrast and size [30]. For creating an interface, these findings imply that relevant
information be presented in a way that not only conforms with user-related factors such as
the user’s expectations to find the information on a particular screen, for example. Relevant
information also needs to be presented in a salient, that is, highlighted, way to reduce the
effort of directing one’s attention there.

1.3.2. Intervening

When an incident occurs that requires the remote-operator’s attention, a smooth
and quick takeover from the automation to the remote-operator is crucial. An essential
factor that determines the takeover is the point when the system’s capability is depleted
and human action is required. A central prerequisite for takeover is the presentation of
stimuli from the environment. They determine the perception of a situation and therefore
influence monitoring and controlling the AV. Sensations are integrated into a holistic
impression, which is then used to analyze the situation and obtain situation awareness, i.e.
“the knowledge, cognition and anticipation of events factors and variables affecting the safe,
expedient and effective conduct of the mission” [31]. According to this conceptualization,
situation awareness is the difference between attentional demand and attentional supply.
That is, when the demand imposed on an individual’s attention exceeds their resources,
situation awareness can no longer be assumed. Merat et al. transferred this concept to
the realm of automation-operator transition framed as "Out-of-the-Loop" Model [32]. The
authors distinguish between the physical control of a vehicle and the monitoring of the
situation. They argue that to be "out of the loop," the vehicle driver (1) neither has physical
control of the vehicle nor monitors the driving situation or (2) has physical control of the
vehicle but does not monitor the driving situation. Therefore, monitoring the situation,
rather than direct physical control, is critical for an operator to be considered “out of the
loop”. Monitoring the situation is therefore a necessary, but not sufficient, for situation
awareness. A concept related to this is telepresence. It is a prerequisite for the teleoperation
of vehicles [33,34] and was defined by Minsky [35] as an amendment to teleoperation. For
Sheridan, it is central to the concept that “the operator feels physically present at the remote
site” [24] (p. 6).
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1.4. Study Objectives

Although software and hardware solutions for teleoperation of vehicles exist, to the
authors’ knowledge, no systematic research has been conducted to develop an HMI for
teleoperation of highly automated vehicles that follows a human-centered design and us-
ability evaluation process. In particular, there is a gap in research on HMIs for teleoperation
of vehicles in the context of public transport that are tailored to the needs, expectations,
and operation styles of control centers in this domain. Therefore, the goal of this work
is the creation of a human-machine interface for the teleoperation of highly automated
vehicles in a user-centered design process and its evaluation regarding usability and other
essential concepts mentioned in Section 1.3. by experts in the field of controlling public
transport. Usability is crucial in the evaluation process because it determines how well
the user is able to “interact with the object of interest”, following ISO’s conceptualization
of usability, according to which it is required to be effective, efficient, and satisfying [36].
User acceptance refers to the evaluation of a system’s ergonomics. It is imperative for the
success of newly introduced technology that the user embraces it [37]. Resulting from these
considerations, the central research question is whether the HMI is suitable to meet the
following seven criteria that will be considered during the evaluation study:

1. Features: The remote-operation workstation must provide necessary features to moni-
tor the automation, provide disturbance information and support remote-operator
with resolving the disturbance.

2. Information: The remote-operation workstation must provide necessary information
to monitor the automation, provide disturbance information and support them with
resolving the disturbance.

3. Situation Awareness: The remote-operation workstation must provide a high level of
situation awareness to the remote-operator.

4. Usability: The remote-operation workstation must have good usability.
5. User Acceptance: The remote-operation workstation must have a high user acceptance.
6. Attention: The remote-operation workstation must direct the user’s attention to infor-

mation that is currently relevant.
7. Capacity: The remote-operation workstation must not overwhelm the user’s mental

and physical capacities.

2. Materials and Methods
2.1. Prototype

The prototype was developed to provide an HMI concept for the setup of a remote-
operation workplace to conduct research studies in the field of teleoperated driving within
a variety of research projects at the German Aerospace Center, such as “RealLab Ham-
burg” [38], “U-Shift33” [39], and “AHEAD” [40]. It is based on ISO’s user-centered design
process [41]. In an initial step, potential scenarios relevant in teleoperation were defined
and analyzed. These were brought about using video analysis of critical scenarios regard-
ing the interaction of highly automated shuttles with other traffic participants, observations
of and interviews with control center professionals, as well as brainstorming sessions
of experts in the field of automated driving and future mobility. For instance, relevant
functional roles for a teleoperation control center in public transport were identified using
a card-sorting method [42]. Next, user requirements were derived from the relevant scenar-
ios. A low-fidelity prototype was generated that fulfilled the essential requirements. It was
further refined until a click-dummy prototype emerged.

This click-dummy consists of seven monitors, six of them are regular wide-angle
PC screens that can be operated with mouse and keyboard. The seventh monitor is a
touchscreen integrated in the desk. Figure 1 provides an overview of the prototype. Table 1
presents the distribution of elements across the monitors and the menu structure.
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2.1.1. “Video Screens”

The top row consists of three screens that stream video images. Regular screens
were chosen for video streaming. In regular mode, the front view is displayed over all
the screens, creating a wide scope to see objects in the periphery and assuring situation
awareness due a wide visual angle. Other camera views can replace the right and left
screens by manual selection or by the automation in case of disturbances. The continuous
video stream contributes to telepresence and helps the teleoperator to stay on the loop,
even while resolving several disturbances simultaneously. The central screen is always
occupied by the front view images. The centrality of this screen, together with the also
highly relevant “disturbances screen”, assures sustained attentional distribution to the
most essential screens, considering the “actual scanning” phenomenon mentioned above.

Figure 1. Overview of the prototype evaluated in this study. Each box represents a monitor, six of them are regular computer
monitors that are operated with keyboard and mouse. The top row of monitors consists of three Video screens. The central
row consists of (from left to right) the “details screen”, the “disturbances screen”, and the “map screen”. The bottom screen
is the “touchscreen” embedded in the workstation’s desk is therefore operator with fingers or a stylus. The “details screen”
contains a search bar on the top left corner and three navigation tabs reading “State”, “Position”, and “Video” below it.
Next to them, different state-related categories are listed, such as “Actorics”, “Sensorics”, “Battery”, and “Brakes”. The
“disturbances screen” provides a communication bar on top, and two tables below that make up the disturbances ticker.
It consists of two sections, “Notifications in Progress” and “Incoming Notifications”. The pop-up window on the right
shows details on the selected disturbance and steps to resolve it. The “map screen” contains a search bar on the top left
corner, checkboxes to select specific shuttles below, and layers to be added to the map, such as “Stops” and “Trajectory”.
The “touchscreen” shows the original trajectory as a red dotted line. The area where waypoints can be set is shown in white,
while no waypoints can be set in the red area.
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Table 1. Overview of menu structure and elements of the HMI prototype.

Screen Elements Level 1 Elements Level 2

“Video screens” Video images -

“Details screen” State Actuators
Sensorics
Battery
. . .

Position Street name
Schedule

Video Available cameras

“Disturbances screen” Communication bar Available communication partners

Disturbances ticker Notifications in progress
Incoming notifications

“Map screen” Map -

Layers Stops
Trajectories
Traffic density
. . .

“Touchscreen” Map -

2.1.2. “Details Screen”

On the second row, the “details screen” provides an overview of the current state of a
single shuttle. The number of the shuttle selected and its position are shown in a navigation
menu. A shuttle can be selected either via a search bar or a dropdown menu. Below, three
buttons reading “State”, “Position”, and “Video” are located. For the first and the last one, a
colorful symbol represents the overall state of the subsystem: a green checkmark indicates
regular operations, a yellow exclamation mark symbolizes a singular disturbance, and a
red X sign displays a total breakdown. The color-coding was chosen to increase salience of
disorders, following Wicken’s SEEV model. “State” opens a list of technical systems, such
as “Actuators”, “Sensorics”, or “Battery”. “Position” shows the current location as a street
name. Below, a schedule of the following five stops is presented, with the imminent stop
highlighted. Scheduled and estimated departure times are provided for each stop. “Video”
shows the available camera perspectives presented on the top monitor row.

2.1.3. “Disturbances Screen”

The “disturbances screen” consists of a communication bar and a table with incoming
notifications about disturbances, the disturbances ticker. The communication bar enables
the remote-operator to call relevant actors. The disturbances ticker consists of two sections,
“Notifications in Progress” and “Incoming Notifications”. The former section lists distur-
bances currently under review by a remote-operator, the latter one those that are not yet
being reviewed. The parameters presented under “Notifications in Progress” are “Shuttle
No.”, “Notification”, indicating the kind of disturbance, e.g., “Technical Malfunction”, the
parameters “Position”, “Next Stop”, “Editor”, showing which remote-operator is currently
editing, and “Action”, for reviewing details on the disturbance. The parameters of “In-
coming Notifications” are similar but the parameter “Editor” is not shown and pressing
“Accept” is the only action available. By clicking on the action “Edit” on the first section,
a pop-up window with details on the disturbance appears. A list of potential actions is
shown. After successfully implementing them, a window with prerequisites pops up. Only
after all the boxes are checked, the ride can be resumed by clicking on “Give Clearance”.
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2.1.4. “Map Screen”

The last screen on the central row shows a map of all shuttles or a single shuttle’s
surrounding. The shuttles’ trajectories are shown by dashed lines on the map. The shuttles
are represented as little arrows on the map, bearing the shuttle number and indicating the
direction of travel. On the left margin, there are a navigation column with a search bar and
boxes to check shuttles for display. Additional layers, like stops, trajectories and traffic
density, can be selected.

2.1.5. “Touchscreen”

The final monitor is the “touchscreen”. It is integrated in the table and used to set
waypoints with a hairline cross. An adjustable map with the environment around the
shuttle is displayed. Areas where no waypoints can be set are indicated by a red layer.
The original trajectory is represented by a dashed red line. By touching a point, the
remote-operator can set waypoints, which are used to calculate the shuttle’s trajectory. The
automation’s security mechanisms cannot be overruled by the remote-operator.

2.2. Scenarios

In order to assess whether the HMI concept is suitable for scenarios occurring in the
teleoperation of self-driving vehicles in public transport, three relevant scenarios were
chosen as representatives for monitoring the shuttle, giving clearance, and executing
remote control via waypoints. They were selected from the list of relevant scenarios in
teleoperation as described in Section 2.1. based on their representativity for the list of
scenarios overall. All scenarios contain an irregularity in the operation of the shuttle
that cannot be solved by the automation on its own but requires the remote-operator to
take action.

In Scenario A, a technical malfunction restricts the steering angle of the shuttle’s
actuator to max. 120 degrees. Therefore, the shuttle cannot follow the calculated trajectory.
Instead, a field engineer needs to be contacted and sent to the shuttle to fix the malfunction.
The passengers need to be informed about the incident and the next steps need to be
communicated. In order to bring the shuttle to a safe halt and have the passengers alight,
the remote-operator needs to determine waypoints for a new trajectory that parks the
shuttle at the closest parking lot. The waypoints need to be located in a specified area
so that the resulting trajectory does not require steering of more than 120 degrees. After
the waypoints have been determined and a list of prerequisites has been checked, the
remote-operator gives clearance so the shuttle can drive to the lot, following the updated
trajectory, park there, and wait for inspection.

In Scenario B, an unclear detection situation requires the remote-operator to check
whether an object is blocking the sensor. The system notifies the remote-operator that an
obstacle has been detected by one of the vehicle’s sensors. This leads the shuttle to stop and
wait for clearance by the remote-operator. On the “details screen”, the remote-operator can
ascertain that the sensors’ hardware and software are intact but that there is uncertainty
whether an obstacle blocks the trajectory. After screening the video images and making
sure no object is in the way, the remote-operator checks a list of prerequisites and gives
clearance so the shuttle can resume its ride.

In Scenario C, the shuttle’s doorway is blocked by an object so the door can’t be
closed. After inspecting the camera images and identifying the object as a suitcase, the
remote-operator calls the shuttle’s cabin to ask the passengers to remove the suitcase from
the doorway. Upon removal, the remote-operator checks a list of prerequisites and gives
clearance so the shuttle can resume its ride.

2.3. Participants

As an expert sample, a group of 13 male employees in public transport control centers
in Germany with different lengths of experience in control center work where chosen. Their
work is compromised of monitoring the operations of public transport within an urban
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area, and taking action in case of disturbances, such as accidents, medical emergencies,
or technical malfunctions, by deploying alternative means of transport, communicating
expected delays to passengers, and ensuring a timely resolution of the disturbance to
resume regular operations. To fulfil these tasks, they are in touch with a variety of actors,
such as bus drivers and train conductors, blue light organizations, field engineers and
technicians, dispatchers, and traffic information services.

One participant had to be excluded due to irregularities during the study and was not
considered in the analyses. The remaining 12 participants were between 25 and 64 years
old. Of these, 6 participants were between 45 and 54 years and each 2 were in the age
groups from 25 to 34, 35 to 44, and 55 to 64 years, respectively. All participants had at
least four years of experience as public transport control center professionals. They had
average values above the mean of the Likert scale (1 = “not true at all” to 6 = “absolutely
true”), 3.5 (M = 4.09, SD = 0.38) on the Affinity for Technology Interaction Scale (ATI [43]),
indicating technological affinity slightly above average. Participation was voluntary. All
participants were able to abort the study at any time and were debriefed afterward. All
subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki.

2.4. Study Design

This usability study followed a mixed method design. Due to limitations set by the
Covid-19 pandemic, the study was conducted remotely via a conference meeting interface.
The HMI prototype was set up as a click-dummy using a website builder. Data was
collected to assess whether the criteria for a user-centered design of a remote-operation
workplace stated above tended to be fulfilled. The data were collected using a combination
of quantitative and qualitative methods, following the idea of method triangulation. The
quantitative data are self-report data collected in questionnaires via Likert scales. The
qualitative data resulted from a structured interview.

The methods used are suitable for the objective of optimizing the HMI prototype
because, on the one hand, they encourage the evaluator to make quantifiable assessments
of the design via standardized questionnaires, but on the other hand they also provide
sufficient space for individual feedback and suggestions for optimization that cannot be
directly quantified, such as a structured interview.

2.5. Dependent Variables

Participants were asked to fill in online well-established standardized questionnaires
provided by the interviewer, in order to measure usability, situation awareness, user
acceptance and perceived workload. Additionally, a structured interview was used to gain
further insights.

2.5.1. Questionnaires

The questionnaires used relate directly to the criteria mentioned above. They are as
follows: The NASA Task Load Index (NASA-TLX [44,45]), which measures the degree of
task stress; the Post-Study System Usability Questionnaire (PSSUQ [46]), which measures
the usability of a system, including its user interface; the Van der Laan Scale (VDL [37]),
which quantifies the acceptance of an HMI by its user; the Situation Awareness Rating
Technique (SART [47]), which indicates situational awareness; selected questions based on
the SEEV model [26] that contain attention-related indicators considering the resolution of
disturbances, the presentation of information, and the projection of the future.

2.5.2. Structured Interview

The main goal of the structured interview was to encourage spontaneous recall of
particularly liked, disliked, missing and redundant features. It provided a both structured
and open format to address shortcomings regarding the HMI’s features and presented
information parameters, and indicate concrete ideas for improvement. In addition to this
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qualitative part, a structured interview assessed the meaningfulness of functions of the
HMI and the importance of information presented quantitatively on Likert scales.

2.6. Procedure

After welcoming the participants and documenting their consent to the terms and
conditions of the study, basic demographic data was collected in an online questionnaire.
Next, participants were introduced to the click dummy realized through a website builder.
Setup and basic features were explained in the regular operation mode. Participants were
given time to familiarize themselves with the prototype and ask questions about it. Like
buttons on a website, participants could click on the essential buttons to explore the basis
features of the prototype on every screen, including the “touchscreen”. Whenever a button
was not clickable, the participant was told so and informed about the intended functionality
of this button. Afterwards, participants completed the VDL questionnaire for the first time
and were then given the task of resolving three scenarios with disturbances in randomized
order using the HMI prototype. Again, they were able to click through the click-dummy
to resolve the disturbance. A final notification indicated a successful resolution of the
disturbance. After each scenario, they were asked about the particular reason for the
disturbance and the suggested steps to fix it. In the online questionnaire, they completed
SART, NASA-TLX, and the SEEV-based questionnaire. Next, a structured interview took
place. Finally, the participants filled in the PSSUQ questionnaire and the second turn of the
VDL questionnaire. The study concluded with a short debriefing. The whole procedure
took approx. 75 minutes per participant.

2.7. Data Analysis

Quantitative data was analyzed using descriptive and basic inferential statistical
methods. The primary tests were nonparametric Wilcoxon rank sum tests to investigate
whether the empirical means differed significantly from the scale mean in the direction
the respective criterion suggested. Qualitative data was analyzed using elements of the
qualitative content analysis approach by Mayring [48]. Methods were chosen to summarize
and structure the data. To summarize the verbal comments of the participants, a summary
content analysis was carried out. Its objective is the consideration of all material and
to systematically reduce it to the key points. In order to structure the verbal data, first
scaling structuring was performed as a frequency analysis that counted how often features
and information parameters were mentioned. Furthermore, the participants’ importance
rating of features and information parameters missed were evaluated. A list of features
and information parameters organized by decreasing mean importance ratings and the
decreasing number of mentions was created. Finally, formal structuring was achieved by
classification using a pre-existing categorization system.

3. Results

The following section presents the results of this paper. Mostly, inferential tests were
executed in comparison to the scale mean since no other scheme for assessing the results
existed. All inferential statistics are the result of nonparametric tests as for some of the
scales tested, the normality assumption was violated.

3.1. Criterion 1: Features

According to Criterion 1, the remote-operation workstation must provide necessary
features to monitor the automation, provide disturbance information and support remote-
operator with resolving the disturbance. Table 2 presents inferential statistics regarding
Criterion 1. For all three tested scenarios, the mean of the subscale “Resolving Distur-
bances” of the SEEV-related questionnaire that measures the HMI’s capability to resolve
disturbances (1 = “poor” to 5 = “good”, or equivalent) was significantly greater (all p < 0.05)
than the subscale mean, Mcrit = 3.00 (H1: µ > 3, H0: µ 5 3), indicating that the experts
found the prototype effective to help to resolve disturbances. For all features, the means
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of the usefulness ratings (1 = “not useful at all” to 5 = “very useful”) were significantly
greater (all p < 0.01) than the subscale mean, Mcrit = 3.00 (H1: µ > 3, H0: µ 5 3), indicating
that the features of the prototype were considered useful.

Table 2. Descriptive and inferential statistics regarding the criterion “features”.

Construct Memp SDemp
95% CI

[LL, UL] 1 Mcrit V2 p (est.) 3

SEEV: Resolving Disturbances
Scenario A 3.80 1.16 [3.06, 4.53] 3.00 56.00 <0.05
Scenario B 3.92 1.38 [3.04, 4.79] 3.00 63.00 <0.05
Scenario C 4.67 0.44 [4.38, 4.95] 3.00 78.00 <0.001

Usefulness Rating of Features
“Map screen”
Selection of shuttles 4.83 0.39 [4.59, 5.08] 3.00 78.00 <0.001
Adjustment of map 4.92 0.29 [4.73, 5.10] 3.00 78.00 <0.001
Display of following stops 5.00 0.00 [5.00, 5.00] 3.00 78.00 <0.001
Display of driving path 4.58 0.90 [4.01, 5.16] 3.00 76.00 <0.01
Display of traffic density 3.75 0.62 [3.36, 4.14] 3.00 36.00 <0.01
Overall 4.64 0.22 [4.50, 4.78] 3.00 78.00 <0.01

“Disturbances screen”
Communication bar 4.50 1.00 [3.86, 5.14] 3.00 64.50 <0.01
Display of incoming disturbances 4.92 0.29 [4.73, 5.10] 3.00 78.00 <0.001
Display of disturbances currently processed 4.58 0.67 [4.16, 5.01] 3.00 66.00 <0.01
Pop-up-window to overcome disturbance 4.67 0.49 [4.35, 4.98] 3.00 78.00 <0.001
Pop-up-window to check assumptions 4.17 0.94 [3.57, 4.76] 3.00 36.00 <0.01
Overall 4.61 0.46 [4.32, 4.90] 3.00 78.00 <0.01

“Video screens”
Overall 4.75 0.62 [4.36, 5.14] 3.00 66.00 <0.001

“Details screen”
Display of state 4.33 1.07 [3.65, 5.02] 3.00 53.50 <0.01
Display of position 4.25 0.62 [3.86, 4.64] 3.00 66.00 <0.01
Display of next stops 3.92 0.51 [3.59, 4.24] 3.00 55.00 <0.01
Display of estimated times of departure 4.25 0.45 [3.96, 4.54] 3.00 78.00 <0.001
Display of actual times of departure 4.33 0.49 [4.02, 4.65] 3.00 78.00 <0.001
Selection of cameras 4.50 1.00 [3.86, 5.14] 3.00 64.50 <0.01
Overall 4.30 0.45 [4.01, 4.58] 3.00 78.00 <0.01

“Touchscreen”
Overall 4.58 0.67 [4.16, 5.01] 3.00 66.00 <0.01

Features overall 4.57 0.26 [4.41, 4.73] 3.00 78.00 <0.01
1 LL and UL indicate the lower and upper limits of a confidence interval, respectively. 2 V is the test statistic and indicates the sum of
positive rank numbers. 3 Parameter p can only be estimated since ties exist in the data.

Table 3 provides an overview of liked features named by at least two experts, how
many experts mentioned them, the category they are associated with, and a typical utter-
ance related to the respective feature (the complete Table S1 with all mentions can be found
in the Supplementary Materials). Categories with most mentions are the “disturbances
screen” (14 mentions), design (12), camera view (5), “touchscreen” (2), shuttle details
(1), and map view (1). Liked features that were mentioned by one expert only are the
adjustment of menus, the number of menu levels, integration of disturbance notification
and map view, and the acceptance of disturbance notifications, for example.

Table 4 presents missed features as openly named by at least two experts, categorized
by screen, their average importance ratings (1 = “not important at all” to 5 = very impor-
tant”), and the number of participants who mentioned them (the complete Table S2 with
all mentions can be found in the Supplementary Materials). Missed features that were
mentioned by one expert only are the display of vehicle type, an option to directly order a
substitute vehicle, one click only necessary to accept disturbance notifications, the display
of street names, a camera with 360◦ view inside the vehicle, and the documentation of
previous trajectories, for instance.
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Table 3. Overview of features liked.

Feature Liked N Typical Utterance

Overall Design
Division of Screens 4 “I like how the information is distributed across several monitors.”

Clarity 2 “I liked the interface very much, it is very clear and
logically structured.”

Display of Relevant Information 2 “I was not disturbed by unnecessary notifications.”

“Disturbances Screen”
Steps to Overcome Disturbance 4 “The process is logical, practicable, and pretty clear.”
Communication Link 2 “You can directly get in touch with other people.”

Presentation of Disturbances 2 “Whenever something was not in order, the details about it were
presented with an exclamation mark.”

“Disturbances Screen” 2 “I appreciate that the central screen is reserved for incoming
disturbance notifications.”

Distribution of Tasks for Processing Disturbances 2 “Accepting a task makes clear who is responsible for what.”

“Touchscreen”
Waypoints 2 “Setting waypoints is useful to get the shuttle away from the road.”

“Video Screens”
Video Images 5 “The video images are very helpful.“

Table 4. Overview of features missed.

Feature Missed N MImportance Typical Utterance

“Details Screen”
Relevant Information about Disturbances 2 4.50 “It would be better to focus on important things”
Less Screens 2 4.50 “There should not be more than five monitors”

“Disturbances Screen”
Prioritization of Disturbances (Using
Color-Coding) 3 5.00 “Priority should be given to passenger

emergency calls.”

Visual Highlighting of Incoming Notifications 3 4.67 “Incoming notifications should be
visually highlighted”

Auditory Highlighting of Incoming Notifications 2 4.50 “I want to hear a sound when a notification comes in”

“Map Screen”

Clear (Colorful) Display of Trajectory 2 4.50 “Highlight the trajectory by making it bold or using
colors. The dashed lines are not clear”

“Video Screens”

Moving Cameras 3 4.00
“Being able to control the cameras, for example
move them or zoom in, would be a
meaningful improvement”

Less Screens 2 4.00 “One monitor is enough”

Camera Showing Vehicle from Outside 2 3.50 “Having a bird-view outside camera would help
avoiding the blind spot”

3.2. Criterion 2: Information Parameters

According to Criterion 2, the remote-operation workstation must provide necessary
information to monitor the automation, provide disturbance information and support them
with resolving the disturbance. Overall, the experts assessed the information parameters
provided by the prototype as very important (M = 4.43, SD = 0.91, 1 = “not important at
all” to 5 = “very important”). The highest mean ratings were given for the information
presented on the “details screen” (M = 4.54, SD = 0.54), followed by “touchscreen” and
“map screen” (M = 4.58, SD = 0.90; M = 4.48, SD = 0.77) and, finally, the “disturbances
screen” (M = 4.27, SD = 1.08).

Table 5 presents missed information parameters as openly named by at least two
experts, categorized by screen, their average importance ratings, and the number of partici-
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pants who mentioned them (the complete Table S3 with all mentions can be found in the
Supplementary Materials). Missed information parameters that were mentioned by one
expert only are previous stops, the view of the vehicle’s bottom, the overall system state,
lateral cameras, and numbers of vehicles available, for example.

Table 5. Overview of missing information parameters.

Information Parameter Missed N MImportance Typical Utterance

“Details Screen”

Occupancy 4 4.25 “I want to know how many passengers are in
the vehicle.”

“Map Screen”
Exact Position with Street Names and
House Numbers 2 5.00 “The exact position with street names house numbers

should be shown in the map”
Information on Infrastructure and Other
Additional Layers 2 3.00 “Elements from the infrastructure, such as cameras on

stops, should be visible on the map”

3.3. Criterion 3: Situation Awareness

According to Criterion 3, the remote-operation workstation must provide a high level
of situation awareness to the remote-operator. Table 6 presents the statistics of measures
related to situation awareness. The overall means of the SART questionnaire (1 = low to
5 = high situation awareness) were not significantly different (all p > 0.05) from the scale
mean of 3 for any scenario (H1: µ 6= 3, H0: µ = 3). This result suggests an average degree of
situation awareness perceived in each scenario. Regarding the SEEV-related items’ subscale
Projection of Future (1 = poor to 5 = high projection of future), the empirical means are
significantly larger (p < 0.05) than the scale mean of 3 for Scenarios A and C (H1: µ > 3, H0:
µ 5 3), with an insignificant difference for Scenario B (p > 0.05).

Table 6. Descriptive and inferential statistics regarding situation awareness.

Construct Memp SDemp
95% CI

[LL, UL] 1 Mcrit V2 p (est.) 3

SART Overall
Scenario A 3.18 0.48 [2.87, 3.48] 3.00 54.50 0.24
Scenario B 3.05 0.33 [2.84, 3.26] 3.00 40.50 0.53
Scenario C 2.98 0.37 [2.74, 3.22] 3.00 37.50 0.93

Projection of Future (SEEV)
Scenario A 3.88 1.03 [3.22, 4.53] 3.00 58.50 <0.05
Scenario B 3.21 1.23 [2.42, 3.99] 3.00 33.50 0.28
Scenario C 4.17 0.58 [3.80, 4.53] 3.00 78.00 <0.01

1 LL and UL indicate the lower and upper limits of a confidence interval, respectively. 2 V is the test statistic and
indicates the sum of positive rank numbers. 3 Parameter p can only be estimated since ties exist in the data.

3.4. Criterion 4: Usability

According to Criterion 4, the remote-operation workstation must have good usability.
As Table 7 shows, usability (1 = low to 7 = high usability) is significantly larger (all p < 0.05)
than the scale mean (H1: µ > 4, H0: µ 5 4), both overall and for each of the three subscales.

3.5. Criterion 5: User Acceptance

According to Criterion 5, the remote-operation workstation must have a high user
acceptance. As shown in Table 8, overall user acceptance (1 = low to 5 = high user
acceptance) is significantly greater (p < 0.01) than the scale mean (H1: µ > 3, H0: µ 5 3).
This is true both for the assessment immediately after the trial period, as well as after
the resolution of the disturbance scenarios. No significant difference between the pre-
test and the post-test was reported (V = 63, p > 0.05). This finding indicates a high
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degree of acceptance that did not decrease after the prototype was used by the experts in
realistic scenarios.

Table 7. Descriptive and inferential statistics regarding usability.

Construct Memp SDemp
95% CI

[LL, UL] 1 Mcrit V2 p (est.) 3

PSSUQ Overall 5.51 1.17 [4.77, 6.26] 4.00 63.00 <0.01
System Usefulness 5.74 1.14 [5.02, 6.46] 4.00 66.00 <0.01
Information Quality 5.40 1.10 [4.70, 6.11] 4.00 73.00 <0.01
Interface Quality 5.25 1.70 [4.17, 6.33] 4.00 57.00 <0.05

1 LL and UL indicate the lower and upper limits of a confidence interval, respectively. 2 V is the test statistic and
indicates the sum of positive rank numbers. 3 Parameter p can only be estimated since ties exist in the data.

Table 8. Descriptive and inferential statistics regarding user acceptance.

Construct Memp SDemp
95% CI

[LL, UL] 1 Mcrit V2 p (est.) 3

VDL Overall
Pre-test 3.93 0.71 [3.48, 4.37] 3.00 54.00 <0.01
Post-test 4.02 0.84 [3.49, 4.55] 3.00 74.00 <0.01

1 LL and UL indicate the lower and upper limits of a confidence interval, respectively. 2 V is the test statistic and
indicates the sum of positive rank numbers. 3 Parameter p can only be estimated since ties exist in the data.

3.6. Criterion 6: Attention

According to Criterion 6, the remote-operation workstation must direct the user’s
attention to information that is currently relevant. Table 9 shows that the means of all SEEV
scores (1 = low to 5 = high attention or respective construct) are significantly larger than the
scale mean, 3, for all scenarios investigated (H1: µ > 3, H0: µ 5 3). In addition, the subscale
presentation of information that is conceptually linked to attention shows the same result:
For every scenario, the subscale mean scores are significantly larger than the scale mean.

Table 9. Descriptive and inferential statistics regarding attention.

Construct Memp SDemp
95% CI

[LL, UL] 1 Mcrit V2 p (est.) 3

SEEV Overall
Scenario A 3.75 0.94 [3.15, 4.35] 3.00 67.00 <0.05
Scenario B 3.51 1.26 [2.71, 4.31] 3.00 57.50 0.08
Scenario C 4.34 0.43 [4.07, 4.62] 3.00 78.00 <0.01

SEEV Presentation of Information
Scenario A 3.67 0.96 [3.06, 4.27] 3.00 55.00 <0.05
Scenario B 3.46 1.35 [2.60, 4.32] 3.00 55.00 0.11
Scenario C 4.27 0.62 [3.88, 4.66] 3.00 66.00 <0.01

SART

Scenario A
Att.4 Demand 2.36 0.64 [1.95, 2.77]

132.00 <0.001 5
Att. Supply 3.88 0.62 [3.48, 4.27]

Scenario B
Att. Demand 2.03 0.89 [1.46, 2.60]

138.00 <0.001Att. Supply 3.98 0.76 [3.50, 4.46]

Scenario C
Att. Demand 1.64 0.76 [1.16, 2.12]

138.00 <0.001Att. Supply 3.60 0.58 [3.24, 3.97]
1 LL and UL indicate the lower and upper limits of a confidence interval, respectively. 2 V is the test statistic
and indicates the sum of positive rank numbers. 3 Parameter p can only be estimated since ties exist in the data. 4

“Att.” = “Attentional”. 5 Wilcoxon rank sum test between Subscales “Attentional Demand” and “Attentional Supply”.

An important aspect of this criterion is the use of attentional resources. For all scenar-
ios, attentional demand is significantly lower (all p < 0.001) than attentional supply, both
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measured by the respective subscales of the SART questionnaire (1 = low to 5 = high atten-
tional demand or supply, respectively), H1: MSupply > MDemand, H0: MSupply 5 MDemand.
This finding implies that attentional resources are not depleted or even exceeded by using
the remote-operation workstation.

3.7. Criterion 7: Capacity

According to Criterion 7, the remote-operation workstation must not overwhelm
the user’s mental and physical capacities. As indicated in Table 10, for all scenarios, the
mean scores for the overall NASA-TLX questionnaire (1 = low to 21 = high workload) are
significantly lower (p < 0.01) than the scale mean, 11 (H1: µ < 11, H0: µ = 11), indicating a
lower workload.

Table 10. Descriptive and inferential statistics regarding capacity.

Construct Memp SDemp
95% CI

[LL, UL] 1 Mcrit V2 p (est.) 3

NASA-TLX
Scenario A 5.63 4.56 [2.70, 8.55] 11.00 5.00 <0.01
Scenario B 6.04 4.76 [3.01, 9.07] 11.00 6.00 <0.01
Scenario C 3.47 2.75 [1.72, 5.22] 11.00 0.00 <0.01

1 LL and UL indicate the lower and upper limits of a confidence interval, respectively. 2 V is the test statistic and
indicates the sum of positive rank numbers. 3 Parameter p can only be estimated since ties exist in the data.

3.8. Additional Improvement Suggestions

As an additional explorative section that did not consider subjective importance,
participants could make further suggestions for improvements at the end of the structured
interview, as shown in Table 11 (at least two mentions, complete table with all mentions see
Table S4 in Supplementary Materials). Most mentions concerned the “disturbances screen”
(16 mentions), followed by design (11), “touchscreen”, “details screen”, “map screen”
(4 each), and finally, “video screens” (2). Examples for improvements suggested by one
expert only are a customizable distribution of information across screens, the integration of
the interface in existing control center operations systems, showing actual departure times
only, and the exact position of shuttle.

Table 11. Overview of additional suggestions for improvements.

Improvements Suggested N

Design
Only Relevant Information/Clear Presentation 3
Prioritize/Highlight Particularly Important Information 2
Less Monitors/All Video Images on one Monitor 2
Monitor for Overview 2
“Disturbances Screen”
Only one Click for Accepting and Editing Disturbance Notification 3
Categorizing Incoming Disturbance/Delay Notifications 3
Highlighting/Prioritizing Incoming Disturbance Notifications 3
Improving Check of Prerequisites for Clearance (Making Them
Faster/Customizable/Immediately After Each Step in Disturbance Resolution Process) 3

Documenting Prerequisite Checks for Clearance/Disturbances 2
“Touchscreen”
Marking Bypasses 2

4. Discussion

This study evaluated the usability of a prototype of a novel HMI for the teleoperation
of highly automated vehicles (SAE level 4). The quantitative questionnaire indicators
as well as the qualitative feedback provided in a structured interview confirm the HMI
concept’s usability and capability to monitor and control AVs by fulfilling all claimed
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criteria and provide valuable insights for refinement of the prototype. The following
section discusses implications of the results, delineates potential optimizations of the
prototype, transfers the HMI concept to other scenarios as well as other vehicles types, and
points out limitations of the study.

4.1. Interpretation of Results

Overall, our findings support the presented HMI concept and establish it as a suitable
interface design for the teleoperation of highly automated vehicles in public transport. All
criteria were fulfilled to a satisfying extent regarding its early stage in the design process
with some potential for further optimization in the following iterations. All the features
the prototype contains were considered highly relevant by the participants (Criterion 1).
The “video screens” and the “map screen” received particularly high ratings. Watching
the video stream, getting notified about disturbances, and being guided through the
disturbance resolution process can therefore be considered inevitable. In a similar vein,
the features the expert evaluators liked were related to the display of video images, the
process to overcome disturbances, and the distribution of information across the screens. A
common feature missed by the participants was the prioritization of important disturbance
notifications, such as emergency calls, and increasing their salience by using color-coding.
Highlighting incoming notifications in general, both visually and acoustically, was another
feature that was mentioned multiple times and obtained high importance ratings. The
results regarding the prototype’s information parameters (Criterion 2) are similar to those of
the features (Criterion 1). Multiple participants missed information about occupancy of
each shuttle and its exact position including numbers of the closest building. Information
on the infrastructure were mentioned twice but regarded less important.

A number of constructs was investigated using quantitative measures. Regarding situ-
ation awareness (Criterion 3), the results were around the scale mean. Thus, a medium extent
of situation awareness was reached. This finding either concerns the HMI concept, which
would make it relevant for optimization, or it is a contingency of the way the prototype was
implemented, its lack of visual sophistication resulting from its early developmental stage
as an early prototype. Another argument in favor of the latter explanation is the subscale
Projection of Future of the SEEV-related questionnaire. Situation awareness is defined by
anticipating upcoming developments in the environment, based on accurately perceiving
and comprehending the situation. Thus, if the future can be projected, the fulfillment of
the prior steps can be assumed. For Scenarios A and C, this subscale’s score is significantly
above the scale mean, supporting the presence of situation awareness.

A key construct investigated in the study is usability (Criterion 4). The system’s
usefulness is particularly appreciated by the participants but also the other two subscales
information quality and interface quality were given mean scores ratings significantly
above the scale mean. Of similar importance are the results obtained for user acceptance
(Criterion 5), a construct related to usability and an indicator for the satisfaction with the
HMI concept. The participants assigned rating values significantly above the scale mean.
Hence, the concept can be considered user-friendly. The construct attention (Criterion 6)
was investigated in two different aspects: On the one side, the HMI concept’s capability to
support the remote-operator to maintain sustained attention, or vigilance, was measured
following Taylor’s approach [47]. For all scenarios, average subscale scores for attentional
supply outweighed those for attentional demand, indicating a surplus of attentional
resources. On the other side, attention can be examined as the distribution of attention
across monitors. The questionnaire following the SEEV Model [26], particularly its subscale
Presentation of Information, provided evidence that information was spread out across
screens in a way that assured attention was directed where it was needed, particularly
in Scenarios A and C, both of which showed subscale means significantly above the
theoretical scale mean. This finding might have been influenced by the setup of the
monitors as classic screens instead of head-mounted displays (HMDs). HMDs were not
found to improve driver’s performance or controllability but even increased error rates



Multimodal Technol. Interact. 2021, 5, 26 16 of 22

under some circumstances [33,49]. Finally, the physical and mental capacities (Criterion 7)
as operationalized by workload was significantly below the scale mean in all scenarios
examined. This implies a rather low workload. This is an ambivalent finding since in
monitoring automated processes, an underload of mental demand can lead to poorer
performance when taking over control from the system. However, other findings came
to the opposite conclusion, blaming an overload for a decrease in performance [25]. This
implies that a future optimization of the prototype might come with additional workload
to achieve optimum performance.

All in all, the findings provide considerable value for the evaluation of the HMI
concept for several reasons. First, the expert sample was highly suitable for assessment
since it consisted of the selective group of experienced control center professionals from
public transport services across Germany. They will be the primary users of the interface so
taking their needs into account is pivotal for the acceptance of the interface. Even with an
affinity for technology that was found to be only slightly above the scale mean, the novel
interface was openly accepted, with acceptance ratings remaining stable after it was put to
the test by having the experts resolve three relevant scenarios with disturbances. Second,
the methodology chosen was thorough and tailored to the assessment of the current status
of the prototype so that the HMI concept’s suitability to monitor shuttle operations and
intervene, when necessary, could be confirmed. Concrete ideas for modifications could be
obtained. To fulfil the former objective, quantitative evaluation methods were used. The
latter objective was reached by conducting in-depth structured interviews that provided
both the time and the framework needed. Open mentions helped avoid imposing ideas
onto the participants and thus restrain their creative thinking, existing categories helped
structure the participants’ thoughts and encouraged them to explore areas they might not
have thought about by themselves.

4.2. Refinement of the Prototype

From the most frequent mentions with the highest urgency ratings, a list of improve-
ments was extracted. The most concrete, substantial, and feasible ones were selected to
provide a list of solutions that can be applied in the following iterative cycle. In order to
raise situation awareness, the HMI concept should display realistic video stream instead
of static images after the next iteration of the design process. Additional camera perspec-
tives should be provided to rule out the possibility of blind spots. A 360◦ view might
not significantly improve situation awareness, though. Instead, camera views should be
adjustable, for example by physically moving the camera. Situation awareness could be
further improved by providing more exact information on the current position that relates
to the remote-operator’s pre-existing knowledge as a control center professional, such as
the display of street names, building numbers, important landmarks, and intersections.
On the “disturbances screen”, a visual signal should be provided to highlight incoming
disturbance notifications. An acoustic signal could be added for notifications with top
priority only to prevent an inflation of notifications and a distraction of coworkers in the
control center. Disturbances should be prioritized depending on their severity and the need
for immediate action. Different categories of disturbances should be distinguishable by
color to raise salience of particularly urgent notifications. The colors should be unequivocal
for users suffering from color vision deficiencies. The disturbance resolution process should
be sped up by combining the “Accept” and “Edit” commands. Checking the assumptions
to continue the shuttle’s ride should not be at the very end of the disturbance resolution
process but immediately after the respective step. The actions taken should be documented
in a system to support reporting procedures. On the “details screen”, shuttle operation
features should only be highlighted in color when a malfunction exists to provide a better
overview. Instead of many information parameters on each shuttle’s state, a quick overview
of the aggregated state of the whole fleet should be provided. Finally, since the current
workload proved to be rather low, bearing potential negative implications for vigilance as
described above, it is conceivable to increase the number of shuttles for which a remote
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operator is responsible to increase the remote-operator’s workload so that a medium level
of mental demand is assured.

4.3. Transfer of the Prototype

This section investigates the transferability of the HMI concept both to other scenarios
as well as other vehicle types.

4.3.1. Transfer to Other Scenarios

In this evaluation study, the proposed HMI concept was assessed based on three
relevant scenarios. However, this HMI concept can cope with a wide range of scenarios
beyond the tested ones. It should still be considered that there are situations that can be
handled from the control center to a limited extent only, such as in the following scenarios.
First, a person gets injured in an accident the shuttle is involved in. The proposed HMI can
only partially assist to resolve this issue: For summoning medical assistance, an immediate
call can be placed via the communication bar on the “disturbances screen”. However, first
aid cannot be provided since no driver or operator is on board of the shuttle. This can
be particularly fatal in case no other passengers are on board to assist the injured one. A
loudspeaker through which the remote-operator could address the immediate surrounding
of the shuttle could help to communicate with passersby to seek immediate medical aid.

Second, weather events or construction sites could emit disturbing objects such as slush
or dirt that block both the sensors and the cameras. This would result in diminished
situation awareness, preventing the remote-operator from checking the local situation and
giving clearance to continue the ride. Collecting additional information from other local
sources, such as intelligent road-site units or additional sensors that are not susceptible to
blocking objects or sending staff to the location to clean sensors and cameras, could prevent
this. To request a substitute vehicle, an automated or at least visualized process dialogue
could be added to the interface in addition to simply using the communication bar. In case
that curious passersby block the doorway, a loudspeaker to address them could help the
remote-operator resolve the case, just as in the scenario outlined above.

Third, the communication link to the passengers could be impaired, resulting in noise
that could prevent the remote-operator from understanding important passenger calls.
This would be particularly troublesome in case of emergencies. Installing a backup system
such as a second communication mode to put through high-priority calls could remedy
this shortcoming. Again, intelligent road-site units that are themselves linked to a stable
cable-based connection could work as a relay, maintaining a connection to the shuttle when
wireless connection fails. For the interface, this would imply channeling all communication
modes into the existing system, the communication bar, and automatically select the most
stable connection to assure optimal connectivity.

Fourth, a scenario is conceivable in which the GPS receiver on board of the shuttle is
out of order, failing to report the shuttle’s position to the remote-operator. To overcome this
problem, an algorithm that interpolates the shuttle’s trajectory based on the latest velocity
data could provide an estimation of the current position. The interpolated trajectory could
be presented on the “map screen” using a dashed line in another color, provided that the
GPS-based trajectories are presented by solid lines.

Fifth, in case of a software issue that disables the calculation of trajectories based on
waypoints that were set by the remote-operator, the semi-automated process of parking
the shuttle in a designated area is not available any longer. In this scenario, adding manual
teleoperation to the set of features could take over. This option would require adding
manual driving facilities such as for example a steering wheel and pedals to the interface
and integrate the suggestion of manual teleoperation into the established disturbance
resolution process. The process itself, however, could be directly transferred from the
existing solution.
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4.3.2. Transfer to Other Vehicle Types

It is generally feasible to upscale the HMI to either other categories of vehicles and/or
a context of use other than the shuttle. The following section is a non-exhaustive list
of vehicle and context types, how an HMI for teleoperation could be used with them,
whether adjustments to the current design would need to be made for this, and how. First,
cars that are part of a corporate-owned vehicle fleet could benefit from teleoperation. In
addition to taking over control to resolve disturbances, teleoperation could serve as an
integral part of the fleet. Teleoperation could be utilized to supply vehicles to employees
or customers as well as maintenance facilities, so the ride or walk to and from the pickup
facility would become obsolete. The basic setup and functionality of the HMI proposed
here would also work in this context. However, additional elements and interfaces with
disposition, planning and payment tools are conceivable. A likely difference is the size of
the geographical area the vehicles would cover. A solution could be shared responsibilities
for subareas with a separate remote-operator in charge of each subarea.

Second, vehicles could be used in the context of delivering goods. For this scenario,
the current HMI would fit as well. However, some features would need to be adapted.
The option to speak to the vehicle’s passengers would not be necessary since only goods
would be transported. Likewise, emergency calls from the passengers would not play
a role. However, the safe securing of cargo would be key. The HMI could enable the
remote-operator to monitor the goods by viewing a video stream from the cargo section
of the vehicle. The “details screen” could show additional information on the customer,
the route, and the goods transported. Instead of stops to pick up and drop off passengers,
logistic centers and customers would be displayed on the “map screen”. In the event of
disturbance, no passenger can be consulted, thus all the information required to resolve
the disturbance must be provided by the interface.

Third, a combination of multiple purposes could be controlled by this HMI. An ex-
ample for such a vehicle is DLR’s research project series “U-Shift”, an automated driving
module that can be used to transport both passengers and goods using different types of
capsules [39]. In this case, all the features described above could be combined to a “tool-
box”. Just like the intermodal setup of the vehicle, a set of modules that could be included
or excluded, based on the current context’s requirement. The current HMI provides a
solid basis for this idea of a modular purpose-oriented HMI as it comes with a plethora of
features already.

Fourth, the HMI could be applied to crisis intervention vehicles that deliver goods in
dangerous terrain with poor infrastructure without risking attacks on the intervention staff.
The automated vehicle would need to be operated in difficult terrain, where standardized
automatable use cases are hard to implement due to a variety of events that cannot be
anticipated. To recognize particularly different terrain that is covered with land mines, for
instance, a “heat map” could be added as an additional layer on the “map screen” of the
HMI. Within the project Autonomous Humanitarian Emergency Aid Devices (AHEAD),
a collaboration of DLR with the World Food Programme, remote-controlled trucks will
deliver supplies to their destinations without risking the staff’s physical integrity [40].

Fifth, mobile objects other than vehicles are also conceivable to work with this HMI.
Examples are delivery bots that use the walkways for delivering small goods, such as food
or orders from retailers [50,51], and ships, both for off-shore and inland shipping. Since
the context of use differs considerably from the original one, particularly for the latter, the
HMI would require more fundamental adjustments to comply with the common control
practices and kinds of data needed to monitor and control the respective object. However,
setting waypoints might provide a feasible solution in these contexts as well. Additional
requirements could be met by enhancing the HMI with modules, e.g., a display to present
radar data and intercom connections to water police and other ships, in the latter case.
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4.4. Limitations

There is the need to emphasize that the prototype evaluated in this paper is still on
an early stage of development. Its main purpose is getting a first impression on whether
the development is in the right direction, particularly whether its overall setup is valid.
Compared to the final interface, it possesses some shortcomings: Not all of its features are
fully implemented and clickable. The interface design is not yet fully developed and thus
not visually appealing. This criticism had been made by some of the participants. It cannot
be ruled out that this might have biased their impression of the prototype and therefore the
evaluation feedback they gave. In addition, the HMI prototype was designed for control
center professionals within public transport in urban mobility networks in Germany. Even
though using it in other contexts of use appears feasible with minor adaptations, this must
be accompanied by further research. Since control centers of public transport and the
tasks of their employees differ considerably by country, further studies to validate the
HMI concept in other countries need to be conducted. Task and skill analyses of control
center professionals may help to adjust the prototype to the respective country. It is also
conceivable that a distinct group of professionals specifically trained for teleoperations
needs to be deployed, as their tasks will differ substantially from traditional work in
control centers.

Moreover, the generalizability of the evaluation is limited since the participants that
served as evaluators were experts for control center operations. That means they know the
context of use well and represent the typical users that are the benchmark of the design
process as their skills and workflows need to be considered to assure a smooth transition
from the work as a regular control center professional to a remote-operator of automated
vehicles. However, due to their professional background, they are only able to focus on the
limited context of use in a public transport control center and are not experts for usability.
Therefore, they do not come with a structured understanding of the requirements that need
to be met in order to identify potential downfalls of using the interface, particularly those
that did not become evident in the evaluated prototype.

Regarding the quantitative data, only basic statistical analyses could be conducted
due to the low number of participants. The failure to meet assumptions needed to use tests
with a higher power might have resulted in not detecting significant differences between
groups. Instead, the theoretical scale means were mostly used to provide a crude estimation
of whether a criterion was met or not. In the next step, several HMI designs could be
developed and systematically tested against each other or against a baseline, such as an
existing remote-operation solution from a different context of use. This procedure could
help assess suitability of the HMI for its future context of use more precisely.

Furthermore, future research could consider the specific requirements for monitoring
and operating an entire fleet of vehicles by a small number of remote-operators. This
helps to make operations more efficient and thus cost-effective but likely poses additional
cognitive demands onto the remote-operators. Also, a wider range of scenarios could be
implemented in the prototype and evaluated. Finally, an alternative or updated HMI con-
cept could be created, e.g., considering the results of this evaluation study, and empirically
tested against the presented one.

5. Outlook

Not an abundancy of HMI concepts exists for teleoperation, at least not in the context
of public transport. To the authors’ knowledge, the presented concept is the first HMI
tailored to the context of public transport control centers, equipped with a guided step-
by-step disturbance resolution process and semi-automated steering by setting waypoints.
Thus, unlike many other HMIs, it does not rely on direct control. Following the notion of
user-centered design, this paper presents an early stage of the HMI that was evaluated by
a highly selective group of experts, its future users. The results of this evaluation study
support the design and delineate approaches to further optimize it. The next steps in this
research project will therefore be the refinement of the prototype and a repeated evaluation
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process that keeps its future users on the loop but at the same time involves usability
experts to determine its overall user-friendliness. This could turn out as crucial when it
comes to the transfer of the HMI to other scenarios and/or vehicle types. Subsequently, a
physical, fully operable remote-operation workstation will be developed and set up. It will
then be able to be tested extensively in a setting that is closer to the real world and may
therefore provide clearer and more detailed insights into its usability, suggesting further
potential for optimization and eventually paving the way to pilot studies in actual control
centers of public transport. Hence, teleoperation combined with a user-friendly, widely
accepted interface could open the door for automated driving in public transport, enabling
a wide range of people to benefit from the possibilities of system automation.
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