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Abstract

Due to the current trend towards sustainable, environmentally friendly, and digitally net-
worked aircraft, it is necessary to integrate new revolutionary technology. This increases
complexity and necessitates the investigation of novel aircraft designs and configurations early,
quickly, and cost-effectively. Innovative concepts and approaches are necessary to handle this
complexity. Model-based Systems Engineering (MBSE) is a fundamental approach to support
and manage complex system development. Notable benefits are achieved compared to more
traditional document-based methods. Therefore, researchers at the DLR Institute of System
Architectures in Aeronautics are developing a process to fully digitalize and virtualize an air-
craft. This enables it to be completely represented as a virtual product, allowing for the rapid
implementation, visualization, and validation of novel design concepts. This work extends
the digital design process with a model-based methodology for developing and integrating
the functional system architecture. An application use case on passenger service functions
serves as a proof of concept (PoC) during the methodology evaluation. At the beginning, the
system is analyzed and it’s architecture is modeled using the Systems Modeling Language
(SysML). The system requirements are defined and all model elements are linked together.
This improves the traceability and enables early error detection as well as the validation of
requirements. The system model is then linked to existing models. Model integration allows
the system architecture to be configured with cabin design parameters from CPACS and the
architecture data to be used for geometrical cabin design. To illustrate advantages of ar-
chitecture integration, multidisciplinary optimization is investigated based on the interaction
between the different models. A trade-off analysis is performed using multidisciplinary design
parameters regarding electrical power distribution and cable length. The interactions and

effects between the design domains are therefore identified and analyzed.
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Kurzzusammenfassung

Aufgrund aktueller Trends zu nachhaltigen, umweltfreundlichen und digital vernetzten
Flugzeugen, miissen neue revolutionire Technologien integriert werden. Dies steigert die
Komplexitiat und erfordert eine frithzeitige, schnelle und kostengiinstige Untersuchung neuer
Flugzeugdesigns und Konfigurationen. Um diese Komplexitdt zu beherrschen sind neue
Konzepte und Methoden erforderlich. Das Model-based Systems Engineering (MBSE) ist
ein grundlegender Ansatz fiir die Entwicklung von komplexen Systemen, welcher deutliche
Vorteile gegeniiber klassischen dokumentbasierten Ansétzen erzielt. Am DLR-Institut fiir
Systemarchitekturen in der Luftfahrt entwickeln die Forschenden ein Verfahren zur vollstéandi-
gen Digitalisierung und virtuellen Darstellung des Flugzeugs. Neue innovative Konzepte im
Flugzeug- und Kabinendesign kdnnen somit schnell umgesetzt, visualisiert und validiert wer-
den. Diese Arbeit erweitert den digitalen Entwurfsprozess um eine modellbasierte Methodik
zur Entwicklung und Integration der funktionalen Systemarchitektur. Zur Bewertung der
Methodik dient die Anwendung an Passagierservicefunktionen als Proof of Concept (PoC).
Zunichst wird das System analysiert und die Systemarchitektur mit der Systems Modeling
Language (SysML) modelliert. Dabei werden die Systemanforderungen definiert und alle
Modellelemente miteinander verkniipft. Somit wird die Riickverfolgbarkeit von Informatio-
nen verbessert, sowie die friithzeitige Fehlererkennung und die Validierung von Anforderungen
ermoglicht. Anschliefend wird das Systemmodell mit bestehenden Modellen verbunden. Die
Modellintegration ermdglicht es, die Systemarchitektur mit Kabinenentwurfsparametern aus
CPACS zu konfigurieren und die Architekturdaten fiir die Kabinenauslegung zu nutzen. Um
Vorteile der Architekturintegration zu verdeutlichen, wird eine multidisziplindre Optimierung
anhand der Interaktion zwischen den verschiedenen Modellen untersucht. Dabei wird eine
Trade-off Analyse mithilfe von multidisziplindren Designparametern zur elektrischen Leis-
tungsverteilung und Linge der Versorgungskabeln ausgefiihrt. Die Wechselwirkungen zwis-

chen den Designdoménen werden identifiziert und analysiert.

iv



Acknowledgment

This thesis was written at the Hamburg University of Applied Sciences in cooperation with

the German Aerospace Center’s (DLR) Institute for System Architectures in Aeronautics.

To begin, I want to express my heartfelt gratitude to my advisor, Prof. Dr.-Ing. Jutta
Abulawi, for her unwavering support of my Master’s thesis, for her valuable time, motivation,
enthusiasm, and immense knowledge. Without her recommendation and guidance, this work

would have never emerged.

My sincere thanks go to Dr.-Ing. Bjorn Nagel for providing me with the opportunity to
conduct this research at the DLR institute. I would also like to express my profound thanks
to my two supervisors, Dr.-Ing. Jorn Biedermann and M.Sc. Mara Fuchs, for their precious
suggestions, valuable advice, and active support throughout the entire process of writing this

thesis.

I would like to express my appreciation to my colleagues for their kind welcome into the team
and for our enjoyable collaboration during my Master’s thesis. My heartfelt special gratitude
also go to Prof. Dr.-Ing. Marc Wiegmann, who had an open ear and offered me his precious

advise.

I would also like to thank my parents and sister for the opportunities they’ve provided me in
life, as well as their unwavering love and support throughout my journey. Last but not least,
I’d like to express my sincere thanks to my girlfriend, Leonie Rorup, and my best friend, Rim

Benouahi, for always being there for me and supporting me in all my endeavors.

I dedicate this work to Beate Rorup, a truly remarkable, loving, and supportive mother.



Hochschule fiir Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences

__________________________________________________________________________________________________________________|
FACULTY OF ENGINEERING AND COMPUTER SCIENCE
DEPARTMENT OF AUTOMOTIVE AND AERONAUTICAL ENGINEERING
Prof. Dr.-Ing. Jutta Abulawi

Master Thesis Assignment

Name: Yassine Ghanjaoui

A Model-based Methodology for the Integration of a System Architecture in a
Digital Aircraft Design Process

Introduction

Model-based Systems Engineering (MBSE) is a fundamental approach for the development
of complex systems in today’s and tomorrow’s industry. Especially in the Aeronautics field,
where the complexity of aircraft systems is constantly increasing, new concepts and
methodologies are required to face environmental and socio-economic challenges. This
makes the digital system modeling and the interaction between the generated virtual models
and physical systems promising methods, that offer advantages compared to classic
development methods.

At the DLR’s Institute of System Architectures in Aeronautics, researchers are developing a
methodology and process for the full digitalization and the virtual representation of the
aircraft. Thus, the aircraft is completely depicted as a virtual product and new innovative
concepts in aircraft and cabin design can be rapidly implemented, visualized and validated.
Moreover, the aircraft digitalization and the communication between models and physical
systems deliver valuable and relevant data that help enhance the models themselves and
optimize the digital representation, or the so called “Digital Twin”.

Tasks

This work is a contribution to the existing digitalization methodology at the DLR Institute. It
aims to detect where enhancement is needed and beneficial expansion of the process
through the integration of executable system architecture models. Hence, appropriate
modeling languages and tools will be selected. Knowledge resulting from these analyses will
serve as an input for the definition of the modeling methodology and the integration
approach. This methodology will then be applied. Therefore, the focus will be on cabin
systems and the detailed modeling activities will be applied on a subsystem or component
level. The consideration level will be defined during this work. Finally, the resulting model and
its interaction with the digitalization process will be tested and the methodology evaluated.
Following tasks summarize the main purposes of this work:

Analysis and identification of enhancement abilities and process expansion
Development of a modeling and interaction methodology

Implementation of system modelling and connection to digitalization process
Test and validation of the system model and the interaction

Evaluation and assessment of designed methodology
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1 Introduction

The aviation sector, like many other industries, is facing enormous challenges in meeting soci-
ety’s aspirations for mobility, safety, environment, and economics. To address these issues, the
German government launched the "fourth industrial revolution", also known as Industry 4.0,
accelerating the digitalization through a range of technologies such as the Internet of Things
(IoT), cloud computing, and Cyber-Physical-Systems (CPS) [1]. Industry 4.0 is a term that
refers to the intelligent networking of industrial machines and processes via information and
communication technologies. It aims to create an interconnected manufacturing enterprise,
which communicates, analyzes, and processes data to induce smarter behavior in the physical

world. One crucial technology for Industry 4.0 is the so-called digital twin [2].

A digital twin is made up of three components: the virtual model, the physical product, and
the interaction between them. Its objective is to create the most accurate virtual representa-
tion possible of the physical product [3]. Prior to establishing the digital twin, it is critical
to integrate all data, models, and information collected during the product’s life cycle (PLC)
to create a high-fidelity depiction of this product. This data integration and interlinking is
referred to as the Digital Thread. It enables to create a single source of truth, where all infor-
mation from each discipline are made available in a overall consistent database. To implement
digital thread for development and operation of high-quality complex products, the designs
are optimized to depict all aspects of the product’s life cycle. A huge number of models,
such as PLC-models or engineering domains models, all of which are related but significantly
distinct, are employed to address the optimization problem of the Digital Thread. These
models enable to take use of the synergies inherent in product’s interconnected components

and subsystems [4].

Model-based approaches are crucial to follow and assist product development throughout its
life cycle, especially when it comes to complex and highly interconnected and communicative
systems, as in the aviation industry. These systems must be demonstrated to be exception-
ally safe and reliable even when functionality is enhanced. Thus, proper management and
traceability throughout the PLC is critical. The latter is supported by simulating and testing

executable system models.

The German Aerospace Center’s (DLR) aeronautics research is accelerating the aviation indus-
try’s digitalization. Interconnected models are used to map complex system interrelationships
and to aid in the verification of plausibility and data consistency, as well as data traceability,
life cycle monitoring, and reconfiguration. This work is a contribution to the DLR’s effort

in improving the digitalization in the aviation industry. It leverages model-based design and



1 Introduction

integration approaches to enhance the digital representation and interlinking of aeronautical

products.

1.1 Motivation to Digitalization in Aircraft Design

Typically, the aviation industry’s current trends dictate which technology should be imple-
mented into the aircraft. These are often brand-new technologies that have never been im-
plemented into an aircraft before. Current German government and international aviation
laws require the development of sustainable aircraft and more climate-neutral aviation. This
entails the integration of technologies such as hydrogen propulsion systems or fuel cells. The
technology integration happens both by adapting existing airplanes as well as investigating
and developing entirely new aircraft designs. Digitalization should support a rapid, early, and
thorough knowledge of how new technologies can be integrated into aircraft and how they
interact with the overall system. Both existing aircraft programs, such as the Airbus A320,
as well as novel revolutionary aircraft designs, must be considered, because both cases require
agile and effective design assessment. Digitalization should also uncover synergies and their
effects on the whole system during technology integration. This synergy analysis enables cor-
rect design decisions to be made, the true effects of aircraft modification or new integration
to be examined, and only beneficial design changes to be implemented. This would result in

significantly cost-effective decisions.

A constructed airplane is the culmination of the expertise, knowledge, and wishes of the
several engineers that comprise an aircraft company’s different design and manufacturing
departments. Therefore, design assessments must consider all interrelationships and linkages
between various disciplines. Capabilities of each discipline must all be involved in order to
create and optimize the overall product. This prevents each discipline’s skill from becoming
narrowly focused on itself and failing to consider the implications on other fields. Figure 1.1,
taken from C. W. Miller’s cartoon "Dream Airplane”, demonstrates in a comedic way, what
might happen if each design discipline or manufacturing group were permitted to realize their

ideas and desires and optimize the aircraft for their needs independently from other disciplines
[5]-

Aircraft cabins and cabin systems have always played an important role in civil aircraft
design and are constantly evolving. Due to structural changes and aviation trends mentioned
before, new cabin ideas must be promptly adopted and designed. There is a requirement
for rapid development cycles from design to assembly in this case. The incorporation of new
technologies has a direct impact on the cabin’s architecture, as well as the organization and
layout of the cabin systems. Simultaneously, breakthrough technologies enable new sorts of
cabin system synergy. Airlines want highly customized, high-efficiency cabin configurations.
However, development of novel cabin configurations must proceed more quickly than in the
past. To do this, it is critical to understand the intricate connections between the different
subsystems as thoroughly and as early as possible to assure a holistic and considerable gain

in efficiency.
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Figure 1.1: Aircraft design from each discipline’s perspective (modified from [5])

The ongoing digitalization of the cabin systems development phase should result in ever-
shorter development times and reduced costs. This is accomplished by collecting and for-
malizing the requirements and regulations for the individual systems, as well as the expert
knowledge necessary for design interpretation. The difficulty here is to connect and interpret
the resultant digitalized knowledge. The interdisciplinary approach of Model-based Systems
Engineering (MBSE) employs a variety of techniques and modeling languages to overcome
this challenge. This holistic approach to system development enables the creation of complex
cabin systems by concurrently supporting the different phases of system development, from
specification definition through system design, implementation, testing, and to product’s en-
try into service. Furthermore, this approach should enable early error discovery, potentially
lowering development costs. The consistent use of linked, digital system models and the in-
teraction of models and physical systems offer many advantages over working with isolated

digital sub-models, natural language documents and purely physical prototypes.

At DLR, researchers have devised a process for designing aircraft cabin systems, that auto-
matically translates modeling findings to a virtual design platform. This interactive analytic
environment offers early, virtual reality-based evaluation of design decisions. This thesis de-
tails how the process of developing aircraft cabin systems is extended to incorporate executable
functional designs, as well as how the models are connected with one another within the dig-
italization process. It demonstrates how the model-based design approach facilitates the
integration and reconfiguration of new technologies, fosters digitalization, and hence enables

shorter development time frames.
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1.2 Goals and Structure of this Thesis

The goal of this work is to provide a model-based methodology for functional system design
and integration by means of the Passenger Service Channel (PSC). It will enable multidisci-
plinary model consideration and optimization based on top-level requirements and regulations.
Before interconnecting the system model with other models in the cabin systems design pro-
cess, a methodical derivation of a system architecture based on a grounded system analysis will
be accomplished. Traceability will be realized in the system model by associating all system
requirements and components within different abstraction levels. The approach will adhere
to fundamental modeling concepts addressing the modeling process’s agility and flexibility,
as well as the exchange of knowledge between different models. Furthermore, the system
architecture will be easily and quickly executable and reconfigurable, as well as interopera-
ble within external models. Only so, an early design understanding and assessment can be
achieved. Motivated by the goal of optimizing the overall aircraft, the modeling methodology
will also enable the enhancement and optimization of each system representation in the var-
ious models through the exchange of relevant design parameters. Moreover, a suitable cabin
system or component must be adopted to apply and evaluate the defined methodology for

system modeling and integration.

This work consists of nine chapters. Chapter 2 begins with an overview of the theoretical
foundations of conceptual aircraft design and Model-based Systems Engineering. It covers
both traditional and emerging digital aircraft design approaches. The cabin systems design
process developed at DLR is then outlined. Additionally, an introduction to MBSE’s emer-
gence, advantages and challenges is provided. The modeling language and tool used in this

work are detailed, as are existing modeling methodologies.

Chapter 3 outlines the methodology used to model and integrate the system architecture
in this work. Therefore, it examines pertinent elements and procedures from established
methodologies. The combination and extension of these elements in order to develop the

methodology necessary to accomplish the work’s objectives are then discussed.

Chapter 4 introduces the selected System-of-Interest (Sol), which is the Passenger Service
Channel (PSC). A detailed explanation is provided for the selection of this complex, interdis-
ciplinary and integrative system as a proof of concept for the work’s objectives. The structure
and various functions of this system, as well as the requirements for its design, are described.
Furthermore, the cabin systems that interact with the PSC are discussed, as well as the cor-
responding interactions. The physical fundamentals underlying these interactions are also

explained.

The methodology’s application to the development of the PSC’s model-based system archi-
tecture is detailed in chapter 5. How the model is organized and structured in order to
facilitate concise and correct modeling is demonstrated. Additionally, the process of ana-

lyzing the system and deriving its functional architecture from the system requirements is
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explained. After presenting the emerging logical architecture, an overview of the model’s

traceability is provided.

Subsequently, chapter 6 outlines the integration of the resulting system architecture in the
cabin design process. The interface between the system model and external models is detailed.

The exchange of design parameters and the interaction simulation is described.

Chapter 7 presents a trade-off study for the PSC’s architecture. It defines a use case to
assess and demonstrate the practical benefits of PSC’s architecture modeling and integration.
This use case comprises the PSC’s optimization in connection with the electrical design. The

implementation and results of this optimization study are outlined in this chapter.

Chapter 8 discusses the developed model-based methodology in light of the PSC application
results. The advantages that were explored during the system analysis and architecture
modeling methodologies are discussed. The findings from integrating the system architecture
into the cabin design process are described and compared to similar integration research.

Additionally, results of the trade-off and optimization study are analyzed and discussed.

Finally, Chapter 9 summarizes the thesis’ findings. Additionally, a roadmap for future
work is described, including the use of MBSE for knowledge-based Multidisciplinary Design
Optimization (MDO), the real-time interaction of system models with Virtual Reality (VR),
and the evaluation of futuristic and revolutionary system designs and configurations in aircraft

cabins.



2 Theoretical Basics of Conceptual Aircraft
Design and MBSE

2.1 Digital Aircraft Design Process

The goal of this work is to extend and improve the existing digital design process. Therefore,
a thorough understanding of the process as well as the theoretical fundamentals of aircraft
design and knowledge-based engineering are essential. This will help situating the goals of
this work within its scope and context, as well as identifying the necessary extensions in the

process. The sections that follow provide an overview of these aspects.

2.1.1 Introduction to Conceptual Aircraft Design

Todays’ aircraft design is interlinked with national infrastructure, global politics and natural
resources. Thus, the trends in the aviation sector are closely related to the economic-political
situation in the world. Recession, fuel price rises, the spread of pandemics, and international

terrorism are all impacting civil aviation and influence the aircraft design strategies [6, p. §8].

Despite all of these external influences, the primary goal of aircraft design remains, in the-
ory, to synthesize something new. Any new aircraft design must have a thriving edge over
already manufactured ones. In recent developments, the major manufacturers have opted for
a well established approach to aircraft design, the traditional one. To explain further, this
process is primarily concerned with the geometric description of the new aircraft. Therefore,
a three-view drawing, a fuselage cross-section, a cabin layout, and a list of aircraft parameters
are used to describe the aircraft so that the requirements are optimally met |7]. Typically,
this design process begins with a conceptual stage, where new concepts are investigated and
evaluated based on a market analysis. The requirements are then defined and assessed based
on their significance and the performance goals are established. Engine manufacturers also
offer information on new engine options or answer to requests from the airframer. The most
promising concept is chosen through trade-off analysis and the design engineers proceed to the
preliminary sizing phase [8]. At this stage, design algorithms and codes that rely on aircraft
physics and technologies, design assumptions and optimization rules, deliver characteristics of
the aircraft as such as take-off and fuel masses, wing area, and take-off thrust. The detailed
design of the aircraft takes place at the final stage of the process and can be performed on

different detail levels depending on the level of accuracy sought and the available amount of
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data input and time. At this stage, not only the fuselage cross section and the cabin layout are
specified, but also detailed parameters for aircraft structure and systems (e.g high 1ift system
or landing gear) are defined. Already calculated masses, geometrical and aircraft performance
parameters are then controlled and refined. Finally, the engineers can estimate the operation

costs and continue with further certification, testing, and manufacturing activities |7].

Considering the traditional design process, the aircraft concept is chosen at an early stage,
when information collected from detailed analysis in several disciplines, such as aerodynamics,
propulsion, structures, or controls is unavailable. In these disciplines, high-fidelity models and
studies, such as finite element method (FEM), are only performed once the configuration has
been frozen. At that time, it is exceedingly difficult to make major adjustments to the de-
signed aircraft concept and configuration. Additionally, classical design is defined by the fact
that each of the specialist domains works independently from one another. Each discipline is
optimizing its field based on its own interests and perspective without considering other dis-
ciplines. As a result, an optimal solution for aircraft design cannot be obtained. To overcome
these challenges and enable a better configuration, new approaches for designing aircraft have
been developed. The goal is to improve aircraft design patterns by combining high-fidelity
analysis with numerical optimization techniques. In this context, the Multidisciplinary De-
sign Optimization, or MDO, is gaining significant traction as a decision-support technique for
digital aircraft design and optimization. MDO is defined by Martins and Lambe in [9] as a
branch of engineering concerned with the application of numerical optimization to the design
of optimal systems involving a number of disciplines or subsystems, taking into account that
the performance of a multidisciplinary system is determined not only by the performance of
the individual disciplines but also by their interactions. MDQO has been widely used in the
aviation industry to examine and optimize standard and non-conventional aircraft configura-
tions. It addresses several design factors and disciplines and employs a variety of approaches
depending on the optimization cases. Several recent applications of MDO in aircraft design
are presented in [10], as well as the techniques and computational frameworks used. Further-
more, the European Union has funded the AGILE project to create the next generation of
aircraft MDO processes, which aims to significantly reduce aircraft development costs and

time to market, resulting in more cost-effective and environmentally friendly solutions [11].

Compared to standard design approaches, MDO or MDAO (Multidisciplinary Design Analy-
sis Optimization) techniques and the technologies created to execute such an approach have
been shown by numerous collaborative aircraft design and optimization applications to re-
duce the setup time by more than 40% [12]. The new project AGILE 4.0, which will run
until 2022, builds on the preceding project by including architectural trade-offs and require-
ments engineering into the development process. Thus, it bridges the usual upstream systems
engineering or MBSE phases (more details in section 2.2) to MDAO by leveraging digital
engineering. The project structure and the conceptual framework developed by Ciampa et.
al bridging the MBSE and MDAO are described in [13] and the effect of this investigation on

this work will be discussed in chapter 8.

One of the goals of MDO is to gather information sooner in the design process while retaining
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freedom for a longer period of time. By resolving the optimization problem early in the design
process, the designer can enhance the quality and minimize the design time and cost. Figure
2.1 illustrates these concepts visually. In fact, the designer has considerable leeway to make
significant modifications throughout the early design stages, although his knowledge at the
time may be limited. The second aim is to make a large quantity of information from many
designers accessible and to build mechanisms for sharing this knowledge in a prolific manner,
so that it may be used by other designers during their early development phases. Knowledge-
based Engineering (KBE) is a branch of engineering that investigates this specific issue and
searches for ways to improve information and knowledge sharing. The next section discusses
the fundamental principles of KBE and presents the information exchange platform of the

aircraft design that is used in this work.
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Figure 2.1: Design freedom and knowledge goals in the design process [14]

2.1.2 Knowledge-Based Engineering and CPACS

The success of a design project is based on two stages: the efficient exchange of information
necessary to develop a productive solution and the efficient capture of the resulting solu-
tions [15]. The conventional method of communicating and transmitting critical information
does have some major limitations. In a multi-disciplined context, characterized by highly
integrated products and processes, design efforts can be squandered if they do not consider
exterior design concerns or are unable to be manufactured. Additionally, the accessibility
of the overall product cycle experiences, including manufacturing, is very compromised. An
engineering approach known as Concurrent Engineering (CE) allows not only for the different
knowledge and expertise within the engineering team to be used to accomplish multiple ac-
tivities simultaneously, but also to integrate project considerations early in the development

process. Clearly, in an effort to improve efficiency.
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However, CE cannot function unless all designers and engineers involved in the product cycle
are in agreement in terms of proper information and knowledge exchange. In an engineering
context, knowledge is regarded as processed information with the ability to act effectively.
This information can be thought of as data inside a structured context, which is generated in
different forms (documents, models etc.) during the product’s development, production and
operation [16]. Knowledge management and sharing within the different sectors of one com-
pany is crucial to benefit from competitive advantage in the market. Moreover, increasingly
available information technology and a growing variety of knowledge projects have driven the
growth of knowledge systems. These systems use research into managing, organizing and re-
circulating product life cycle (PLC) knowledge within an organization. To put the concurrent
engineering concept into effect, it is critical to leverage the PLC knowledge early in the design
process to better understand product lifespan. In this regard, knowledge-based engineering is

one of the most appealing application domains.

La Rocca defines KBE as a technique that is based on specialized software tools called KBE
systems, that enable the capture and reuse of product and process engineering knowledge
[17]. KBE’s primary purpose is to reduce the time and expense of product development by
automating repetitive, non-creative design chores and assisting MDO throughout the design
process. Therefore, object-oriented programming (OOP) (detailed definition in section 2.2),
artificial intelligence! (AI) and computer-aided design? (CAD) technologies are used in this
method to support the automated collection of data, the structuring of knowledge, and its
maintainability and usability throughout the PLC [15] [16]. Ontology and logic are the two
basic pillars of formal knowledge representation in knowledge based systems. An ontology is
an explicit description of a domain that represents the domain’s ideas and associations in a
structured way. A formal language, such as predicate logic, is typically used to represent an
ontology’s concepts and relationships, allowing the structuring of knowledge bases on which

reasoning mechanisms can execute logical operations [16].

Due to product complexity, diversity, and huge investment volumes, the aerospace sector is
KBE’s main driver alongside the automobile industry. Furthermore, the extended product
cycles of aircraft necessitate long-term knowledge capture in an organization to minimize
the loss of know-how due to staff fluctuation, rendering KBE suitable for aeronautics. As
a strategy to enhance the interdisciplinary collaboration and the creation of decentralized
MDO architectures, researchers highlighted the importance of knowledge-based data models.
Meaning, the efficiency would greatly improve if a knowledged-base system acted as a common
language. This concept has been validated by the use of the Common Parametric Aircraft
Configuration Schema (CPACS) in advanced preliminary aircraft design activities, including
MDO |[20].

The data model CPACS has been introduced in 2005 by the German Aerospace Center (DLR)

! Al is the science and engineering of making intelligent machines, especially intelligent computer programs.
Every aspect of learning or any other feature of intelligence can in principle be so precisely described that
a machine can be made to simulate it [18].

2CAD is the use of computers (or workstations) to assist in the development, modification, analysis, or
optimization of a design [19].
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and enables the multi-disciplinary information exchange between different tools. It describes
hierarchically the characteristics of air transportation systems and products (e.g. fuselage,
engines, materials, fuels etc.) and also designs processes and workflows for analysis [20]. The
CPACS schema is accessible for free on the GitHub platform and on a dedicated webpage.
Along with substantial technical documentation, it also contains additional information about
the standard’s application. Regular updates to the CPACS schema are also provided, which

include the addition of new elements and concepts [21].

The basis for CPACS is the XML (Extensible Markup Language) language, with CPACS
implemented as an XML Schema Definition (XSD). XML is a markup language created
and published by the World Wide Web Consortium (W3C) [22]. It defines a set of criteria
for encoding texts in a human-readable and machine-readable manner. Programmers have
created several application programming interfaces (APIs) to help process XML data. As the
name suggests, XML schemas describe the structure and content of XML documents, beyond
the fundamental syntactical limitations that are imposed by XML itself [23]. CPACS benefits
from the strength of the open standard XML, which is widely recognized as a modeling
language in the field of information technology. Because XML is so general, it can be used as
a computer-processable meta-language, allowing for the development of an aircraft ontology
as a markup language. Additionally, it decouples the data structure from the content and
enables the semantic? rules to be defined in a separate XSD file. Thus, it enables in the scope
of CPACS the combination of aviation-specific ontology and tool- and process-specific data,
by supporting the use of a diverse set of open source editors and APIs. It is essential to note
that XML is used solely for the purpose of storing and transporting data. Because executable
program code is not included in an XML document, reading and writing XML data must be

performed by an external program [20].

Using XML’s hierarchical data representation, CPACS’s structure decomposes a general def-
inition (like an airplane) into more precise descriptions of its components (see Fig. 2.2).
This comes from the conceptual and preliminary design of aircraft, where the degree of detail
starts off low and increases over time. To create higher-level CPACS concepts, however, a
bottom-up method is used, where components are first specified in depth, then connected to-
gether. The middle-out approach combines these two approaches to completely parameterize
aeronautical systems. The challenge in developing and improving CPACS is to constantly
find a balance between the flexible bottom-up and the strict but semantically more relevant

top-down approaches [20)].

As already mentioned, XML schema definitions are used to represent complex data models in
XML documents. In addition to element and type definitions, the XML schemas also contain
specifications for the hierarchy of elements. There are defined characteristics for each CPACS
type definition, which are indicated in the schema visualization by a blue " @ " symbol (see

fig. 2.2). A fundamental element property shared by nearly all CPACS elements that appear

3The distinction between syntax and semantics is that syntax refers to the rules that govern every statement in
a programming language and may be thought of as the formal relationship between signs, whilst semantics
refers to the meaning associated with any statement in a programming language [24].

10
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Figure 2.2: Extract from the CPACS schema [25]

many times in the design is a unique identifier, abbreviated ID. The ID can be used to refer
to items. This enables the usage of a previously specified profile in many locations across the
CPACS specification.

In this work, the focus is on digital enhancement of cabin and cabin systems design. Al-
though CPACS is used largely in aircraft preliminary design, simple descriptions of cabin
are also feasible. A physical link between the airplane level and the cabin is required for a
proper structural description. In this regard, CPACS serves as the connection between air-
craft preliminary design and cabin design [26]. The following section discusses the process of
moving from preliminary design data to detailed cabin design and optimization. It describes

the current process that this work aims to expand and enhance.

11
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2.1.3 Cabin Systems Design Process

It stands to reason that the aircraft cabin offers great potential for increased efficiency and new
opportunities, as well as for exploiting system synergies. In other words, new cabin layouts
and breakthrough technologies will be developed at a faster rate than before. However, there
are too many subsystems and interdependencies, as well as safety constraints, to allow for
rapid development cycles. In order to achieve a comprehensive and significant improvement
in efficiency, a thorough understanding of the nested interactions between the many subsys-
tems is required. The German Aerospace Center (DLR) is researching several approaches
and methodologies for the digital design and development of aircraft cabins. The goal is to
integrate new technologies faster, evaluate and better understand the interrelationships inside

the cabin and better comprehend the systems architecture [27] [28].

An automated digital cabin systems design and visualization process has been implemented
at the DLR’s Institute of System Architectures in Aeronautics for this purpose and is shown
in figure 2.3. The process begins with the import of preliminary aircraft design parameters.
Because of the CPACS schema’s versatile description options for primary structures, this one
is used as a platform for design data import or exchange [29]. Taking into consideration
that the information imported from CPACS has been generated in previous aircraft design
activities and is required before starting with the cabin design process. Floor elements such
as longitudinal and transverse beams, seat rails and supports can be defined in addition to
stringers, frames and skin panels. There are also descriptions of pressure bulkhead and wing-
fuselage transition structures. Openings in the structure such as doors, windows or loading
hatches can also be described via cutouts, and optionally provided with border structure. For
the cabin description with CPACS, there is an extensive node called "decks". Based on a
simplified description of the outer boundary of the cabin, using contour lines, seats and large
cabin modules and monuments, such as galleys and lavatories, can be placed and extended

with information such as door positions and evacuation clearance areas [26].
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Figure 2.3: Cabin systems design and visualization process (according to [28])
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The data of the aircraft structure can be automatically imported into Matlab’s* cabin systems
design and layout model via a python® interface that can read CPACS data, identify elements,
extract target attributes and values and finally instantiate them in the Matlab Model. Beck-
ert in [25] provides a detailed description of the implemented automation of data exchange
interfaces in the whole process (each of the transition arrows in fig. 2.3). The cabin sys-
tems design model’s goal is to produce the cabin architecture, including systems, by utilizing
basic geometric forms to represent the cabin components. Thanks to its ability to handle
numerical problems and to employ comprehensive graphical functions to illustrate results, the
commercial software Matlab is used for this implementation. It also allows for the use of
object-oriented programming principles, which play an important role in the design process
[32]. An object-oriented structure is used to design the cabin and its systems. As a result,
each cabin component type is given its own class. This is then used to create objects for the
needed cabin components, with component-related information stored as attributes (prop-
erties). This provides information such as the produced cabin object’s name, construction
dimensions, location, or affiliation. In addition to the cabin component class, there are two
other classes: links (relationships) and requirements (safety requirements and human factors).
Specific characteristics are saved in them as well [27]. Moreover, algorithms and guidelines
have been created that consider regulation authorities requirements and user needs, assembly
costs as well as human factors and cabin functionalities. Each of these features is given its
own model, allowing for multi-disciplinary design optimization in the next stage [33]. Several
designs are generated by altering a number of parameters and then assessed by imposing
constraints on the design variables. An optimization algorithm is used to select the design
parameters that result in the best design by meeting the objective functions. Fuchs et al.

provides a comprehensive example of using MDO to design and layout a cabin component in
[34].

A virtual container manages all newly generated items. This contains the object’s identifica-
tion number (ID), which facilitates an accurate assignment. This allows particular objects to
be accessible if they are required for the installation of additional components or for a link. In
addition to central management of all cabin items, link objects and requirement objects are
also kept in a separate virtual container. When two components have a relationship with each
other, a link object is generated. The type of link is also saved as a property. The generated
virtual containers are exportable into an XML format using an export function, allowing the

data to be further processed in other programs [27].

The cabin system layout and design optimization results in objects with simple geometric

shapes (simple boxes). In the following step, high-resolution 3D modeling of these objects

“Matlab is a commercial software program developed by the American company MathWorks that solves
mathematical problems and graphically displays the results. Matlab is primarily intended for numerical
calculations involving matrices, hence the name: MATrix LABoratory [30].

SPython is a high-level, general-purpose programming language that is widely interpreted. It promotes an
easy-to-read, concise programming style. Python is compatible with a variety of programming paradigms,
including object-oriented, aspect-oriented and functional programming. It also supports dynamic typing.
Python, like many dynamic languages, is frequently used as a scripting language [31].

13
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is automated using the Blender graphics softwareb

. 3D models from a library are modified
for each object, or scanned and digitized models of existing physical cabin elements are used
[25]. The implemented method at DLR to scan and digitalize cabin objects is described in
detail by Rauscher et al. in [36]. Finally, the generated data from the design model and
geometric object models are imported into the virtual environment to be modeled, displayed
and controlled in the virtual reality (VR) using appropriate hardware and the development
software Unity’. A standard scene is initially created for the virtual cabin environment. The
lighting of the scene, as well as the script for the import, are saved here. The XML file,
which is generated from the design model in Matlab, and the constructed Blender CAD file
can be imported using the import script. An additional script component enables interaction
between the user and the virtual cabin. The functional procedures for using the controller,
as well as methods for movement and camera settings, are specified. If the user walks in the
virtual world and exhibits a particular item with a pointer, he can interact with it. Both
the object’s information (name, dimensions, ATA chapter) and relationships to other things
can be shown. To implement this, the script returns to the saved XML file and searches for
the appropriate links using the Object ID. When a matching ID is found in a link object,
all subsequent related cabin objects are colored [27|. Further functions to interact with the
cabin in the VR can be flexibly implemented. For example, Fuchs et al. describes in [28]
how the cabin objects can be manipulated and directly visualized within the VR. In order to
integrate new technologies more quickly and effectively, one objective of this approach using
the VR is to make the interdependence between the different system components obvious.
Consequently, the cabin system becomes easier to comprehend, and a variety of issues may be
handled at an early stage. As a result, cross-system dependencies may be taken into account

throughout the design phase, preventing costly adjustments in the future [28].

Obviously, the digitalization process described in this section is based on mapping different
design aspects with the help of models and then linking these models with each other in a
subsequent step. Similarly, the goal of this work is to extend this process with the help of
additional models and to connect them with one another. These models will serve the cabin
systems’ functional analysis and representation and enable further optimization regarding
other system properties (e.g. mass, power etc.). The use of models and their integration is
thus critical. The section that follows explains why models have become so important in the

digital development of future systems.

5Blender is a free and open source 3D creation suite that supports the entirety of the 3D pipeline mod-
eling, rigging, animation, simulation, rendering, compositing and motion tracking, video editing and 2D
animation pipeline [35].

"Unity is a game runtime and development environment developed by the San Francisco-based company
Unity Technologies. Platforms targeted include not only PCs, but also game consoles, mobile devices and
web browsers. The development environment enables the generation of computer games as well as other
interactive 3D graphics applications [37].

14
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2.2 Introduction to Model-Based Systems Engineering MBSE

This work is about the development of a model-based methodology to extend the digital
design process, as the title implies. To understand why models are used in this notion, the
emergence of MBSE must be explained. The sections that follow will illustrate this and

provide an outline of the benefits of MBSE as well as the current issues in this domain.

2.2.1 Emergence of MBSE

A gystem is defined as a combination of interacting elements to achieve one or more set goals.
These elements include products (hardware, software and firmware), processes, people, infor-
mation, procedures, facilities and services. Systems are created by people and are designed
to provide products or services in a determined environment for users and other stakehold-
ers®[39][40]. When it comes to managing systems, the complexity is increasing quicker than
the ability to do so. Information about projects gets rapidly lost, development expenses
and the possibility of late-discovery of design issues are on the rise. In addition, the rapid
technological evolution combined with the incorporation of new technologies creates system
vulnerability and possible obsolescence. The creation of a comprehensive methodology is re-
quired to overcome these problems and enhance system development [41]. In order to deal
with these challenges, the so called Systems Engineering (SE) has emerged as an entire and
independent engineering discipline and its importance in the development of todays’ systems
has increased significantly. The mission of Systems Engineering is to assist in the development
of systems throughout their life cycle, from conception and implementation to integration and
operation. By managing complexity and risk effectively, this multidisciplinary approach en-
ables the development of successful overall systems and provides a solution that meets needs
of the stakeholders. Currently, the International Council on Systems Engineering (INCOSE) is
the world’s largest organization for systems engineering. More than 17,000 members of this
non-profit organization work together with aiming to develop and promote systems engineer-

ing on an international scale [42].

Not only in this work, but in the context of SE in general, the term "System Architecture" and
the activities related to it play a significant role. Dickerson et al. defines a system architecture
as the "[...] organization of the system components, their relation to each other and to the
environment, and the principles gquiding its design and evolution" [43, p. 8]. For a successful
system, a system architect must carefully design the system architecture. He is in charge
of synthesizing the system architecture by breaking it down into components and describing
their interactions and interconnections. Allocating system needs and developing technical
specifications for these components are also part of this process. Hence, numerous tasks must
be completed, each utilizing an effective approach. At the end, the resultant system design
is always just one solution to a particular issue. The resulting architecture must then be

described and communicated to the appropriate stakeholders. An architectural description

8 A stakeholder is a person or group that has a vested interest in the course or outcome of a process or project
[38].
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must explain how a design satisfies stakeholder requirements and needs. Additionally, it must

demonstrate how architecture assessments result in both rationales and architectural decisions
[44][45].

To facilitate in the comprehension of systems architecture and other aspects of systems en-
gineering, a process model of the associated activities and stages is needed. Various models,
often from the software development industry, have been modified to explain or define com-
plex system development lifecycles, including models such as the traditional stage-wise and
waterfall models, as well as the spiral model, or development standards such as VDI2221 [46].
However, the so-called V-Model has received the most significance and attention in SE appli-
cations. The V-Model, which illustrates the macrocycle of product development, represents
the concept of interconnecting all disciplines engaged in engineering activities (see. fig. 2.4).
An elemental system is decomposed into its constituents on the left thigh and gradually inte-
grated into the entire technical system on the right thigh. Aside from these two "V" thighs,
the product’s characteristics are continually evaluated and verified. So the "right" system
(validation) is created in the "right" way (verification). Requirements are displayed graph-
ically as an input box and system implementation are shown at the bottom of the model.
The V-Model represents the whole product, since mechanics, electrics/ electronics, software
as well as pneumatics, hydraulics, optics and other disciplines are all used in mechatronic
and cyber-physical systems (CPS) engineering. A model is graphically framed by a bracket
representing modeling and model analysis that runs between the two thighs. Arrows between

the two V-Model’s thighs depict characteristics requiring verification and validation [47].
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Figure 2.4: V-Model as presented at design 2018 conference in Dubrovnik (according to [47])

Initially, SE’s primary focus was on projects that required a single highly innovative, very large
and complex product or mission. This classic SE is highly process-oriented, with top-down
decisions and a clear hierarchy. It focuses on high quality and adheres to the zero-defect quality

principle in order to provide customized solutions and optimized systems [48]. The traditional

16



2 Theoretical Basics of Conceptual Aircraft Design and MBSE

SE processes provide a proven framework for managing complexity, but they are no longer
adequate for todays’ market demands. The needs for speed, flexibility, personalized solutions,
and cost-effective solutions (together referred to as mass customization) necessitate a renewal
and pragmatic interpretation. SE needs modern features to complete the classical approach.
Systems and processes that display agility are able to operate effectively in unpredictable,
uncertain and changing environments. At this point, system agility must be distinguished
from that of the systems engineering process. While agile systems are defined by their ability
to change or be altered quickly and cost effectively, the term Agile Systems Engineering refers
to something quite different [49]. The engineering process should be intended to be agile, or

adaptable, in order to accept and apply new or amended requirements during development.

The principles of agile architecture design are defined by INCOSE in its Handbook for Systems
Engineering [40]. Tt differentiates between the ideas of reusability, reconfigurability and scal-
ability. Encapsulated modules and loosely linked modules that are reusable and reproducible
and share well-defined interaction and interface standards are characteristics of reusability
principles. The concepts of reconfigurability provide a greater emphasis on peer-to-peer in-
teraction and communication across process modules, which are guided by aims rather than
techniques, so that knowledge is linked locally and available globally. Work activity, response
assembly and response deployment should thus be postponed until the last responsible minute
to avoid costly lost effort that may also hinder a future successful reaction. Scalability princi-
ples advocate for developing standards for module compatibility, redundancy for better failure

tolerance and method variety.

To support the different life cycles stages and implement the agility principles in modern
systems engineering processes, new methods have been developed and implemented. The
document-based technique has been employed for decades and has limitations in the devel-
opment process. Achieving stakeholder alignment with requirements or system aspects is
difficult when designing and building complex aviation systems (engines, control systems,
etc.). Besides, the intricacy makes it tough for designers to choose the best system design
option. Requirements documents, interface standards, development guidelines and similar
artifacts have traditionally defined requirements. However, these papers are created indepen-
dently by different departments inside the business, complicating effective and programmatic
engineering decision making. Because the information is dispersed throughout the several
documents, connecting the requirements, design and test is only achievable with enormous
effort [50].

For this reason, the transition to Model-based Systems Engineering was carried out to enable
improved support in all stages of the development process and synchronization between all
aspects in the V-Modell [51]. INCOSE defines MBSE as the "[...] the formalized application of
modeling to support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and later life
cycle phases" [52]. After all, the industrial usage of models is not a new trend, as model
production has been used for years to not only support discipline-specific or cross-disciplinary

design, but also enriched other fields. The model-based approach has not been reinvented
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with MBSE. However, the use of the term model or system model in the context of MBSE
must be more explicitly specified at this point. In his book, Stachowiak defines it as an
abstraction of an actual or to-be-realized system. By reducing information about a notion to
the essential components, this abstraction recollects elements of the original system and can

be used instead of the original for a specific purpose [53][44].

INCOSE and major industries regard MBSE as critical to the development of next-generation
systems and products [52]. This is owed to various advantages and potentials of this approach,
which will assist in overcoming future challenges. The following section discusses these benefits

and describes MBSE’s challenges based on actual industrial applications and experiences.

2.2.2 MBSE advantages and challenges

The interaction between components from various technical areas is one of the characteristics
of aeronautical systems. Because of these interactions, the system is able to perform more
functions than the sum of its components, resulting in a rapid increase in system complexity.
The MBSE approach assists systems engineers in managing this complexity as well as enabling
better quality, lower risk and lower costs. Many advantages of MBSE have been discussed in

the literature and some of them are summarized in the following points:

e A common reference model for a project standardizes communication and collaboration
across project stakeholders. It makes it easier for the teams to extensively explore the
system’s conceptual and configuration spaces as well as to discover and analyze critical

factors in the evaluation of system alternatives [54].

e Small, iterative activities that can demonstrate incremental benefit and obtain early and
ongoing feedback are supported by the modeling. It is possible to discover mistakes and
inconsistencies sooner since requirements, rules and regulations are incorporated into
the model. There is a clear correlation between the timeliness of mistake discovery in a
development process and projected expenses for fixing these [41]. Delligati describes in
his book proper MBSE practices as a remedy for inconsistency and as a method of doing
systems engineering that offers a higher Return on Investment (ROI) than document-
based SE [55].

e To avoid costly system redesigns at the end of the design life cycle, visualization and
simulation help uncover incompatibilities in interfaces and assembly procedures early
in the process, before hardware expenses are fully committed. By utilizing several
integrated modeling technologies, MBSE assists companies in establishing digital design

traceability across their systems [56].

e The use of models in SE activities allows for the detection of missing concepts or objects,
as well as the emergence of capability from data (can be planned or identified by sur-
prise). It enables more analytical capability and assists engineers in locating problems

earlier, faster, better and cheaper [57].
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Although most authors in the literature agree that MBSE, due to its numerous advantages,
is the solution for developing systems of the future, its adoption in real-world applications
continues to face significant challenges. Organizations and industries are unable to fully
apply it without issues. Chami et al. gives a good overview about this in his survey on MBSE
adoption challenges in [58]. Major challenges of MBSE are the clear definition of its purpose
and scope, the awareness and change resistance within the organization, the clear set up of
required methodology and needed extension, and the tool dependency and integration. As a
result, research must be undertaken using a holistic, accurate and consistent methodology in
order to implement and integrate MBSE. A unified and standardized modeling language must
be made available to address obstacles in intercommunication between models in projects. In
this context, the most extensively used language for MBSE application is known as Systems
Modeling Language (SysML). The next section introduces the major language elements and
concepts, as well as the software tools that facilitate the implementation of MBSE or the use

of modeling languages.

2.3 Modeling Language and Tool

One of the key parts of this work is the use of a standard language. Like any other language, it
contains semantics and elements that define it and enable its usage. The sections that follow
provide an insight into SysML, starting with a brief historical overview. Besides, tools for
applying the language’s parts and concepts are also described. Because the model is designed
to be integrated into this work, this section also includes descriptions of other research that

examines comparable integrations.

2.3.1 A brief story of SysML

INCOSE decided in 2001 to make the Unified Modeling Language (UML) the standard mod-
eling language for SE. UML was originally intended as a modeling language for software
development, and it was already extensively distributed and utilized in this sector, as well as
in SE to a lesser extent. To avoid complicating the language, they opted against adding a
SE viewpoint to the UML for which tools, skilled engineers and best practices were already
available. Instead, a new modeling language was created using the UML profile extension, and
as a consequence, the Systems Modeling Language was released as an Object Management
Group (OMG)? standard in 2006. The SysML is therefore a UML profile, that is, a particular
extension of UML, even though it is considered as a modeling language in its own right [44].
However, many elements of the UML, which were primarily designed for software develop-
ment, have been discarded in the definition of the SysML standard, while a few elements have
been newly defined for the SysML (s. fig 2.5).

90MG is an international, open membership, not-for-profit technology standards consortium. Founded in
1989, OMG standards are driven by vendors, end-users, academic institutions and government agencies.
OMG Task Forces develop enterprise integration standards for a wide range of technologies and an even
wider range of industries [59].
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Figure 2.5: UML extension through the SysML (modified from [60][61])

OMG defines the SysML as "[...] a general-purpose graphical modeling language for specify-
ing, analyzing, designing and verifying complex systems that may include hardware, software,
information, personnel, procedures and facilities" [62, p. 27|. The language is meant to assist
in the description and the architecting of systems. It is also there to specify components that
can subsequently be developed using other domain-specific languages, such as UML for soft-
ware design, VHDL!? for electrical design and 3D geometric modeling for mechanical design.
By using SysML, the MBSE technique can be applied to construct a coherent and consistent
model of the system [51]. SysML should not be viewed as a replacement for existing sys-
tem development tools, but rather as a useful supplement to them. SysML defines a shared
basis and a common foundation for the many disciplines that collaborate in system devel-
opment such as requirements management, electronics and mechanical development, design,
system analysis. Based on this, further development can be done simultaneously to support

concurrent engineering [45|.

Since its first introduction, the SysML has continued to improve over time through numerous
modifications and new specifications that introduce new concepts and aspects to the language.
The goal remains to gain adaptability towards ongoing challenges and to better support the
development of future systems. Current industry aims, such as digitalization and traceability,
are critical in the creation of the new version of the system modeling language SysML.v2.
This version of the SysML is an independently specified language for the purpose of SE and
is no longer a profile of UML. Thus, the flavor of a software modeling language is no longer
attached to it, thing that has caused many problems in past experiences and reduced the
acceptance of the language in the user community. An incredible amount of time has been
invested in analyzing SysML.vl. and to working out the disadvantages and obstacles in its
applicability [64]. The new version is intended to correct the shortcomings of the previous

language version’s formalization and to provide an expressive and exact metamodel (detailed

1OV HDL is a hardware description language that can represent the behavior and structure of digital systems at
many levels of abstraction, from the system level down to logic gates, for design entry, documentation and
verification. The Institute of Electrical and Electronics Engineers (IEEE) has been standardizing VHDL
since 1987. [63].
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explanation of metamodel in section 2.3.2). In addition to that, many new systems aspects
are considered in the new language version such as the geometry for a better linking to
CAD models. Furthermore, it specifies a standardized application programming interface
(API) that enables integrated system modeling as part of a multidisciplinary development
environment. As a result, interoperability across multiple and cross-disciplinary models is

strengthened to allow a holistic digital product life cycle [65].

The version SysML.v1.6 is used in this work because full adoption of the SysML.v2 has not
yet occurred and no tool supports the implementation of this version of the language. The
following section introduces the essential ideas and concepts of SysML.v1.6 and defines the

elements and diagrams required for its use.

2.3.2 The language concepts and elements

The object-oriented nature of SysML comes from the fact that it’s built on UML, which is a
language for describing object-oriented software. As a result, it is essential to understand the
language and the fundamentals of object orientation (00), particularly the terminology. The

most important OO-terms and concepts are presented shortly below and are represented in
figure 2.6:

e Classes and objects: objects are generated from the same blueprint, which is ref-
ered to as a class. Meaning, a class is a data type. It determines which variables
the associated objects have. Objects produced with this blueprint may have different

characteristics (i.e. the values of their variables) (see. figure 2.6).

e Parts: The difference between objects and part elements is that objects can exist on
their own. Parts, on the other hand, are always a part of something and can thus exist

only if the element containing the part element exists.

¢ Encapsulation: The combination of variables and methods in a class serves to hide the
variables from the outside world in particular. The data type and name of the variables
are unknown outside the class, and access is only allowed through the class’s methods.

Variables can therefore be safeguarded from being assigned wrong values.

e Inheritance: To enable modularization and thus simplification of modeling, OO pro-
vides the concept of inheritance, which allows such more general properties to be out-
sourced to separate classes and then used in more specific classes. So, classes can inherit

properties from other classes, just as children inherit properties from their parents.

There are no classes, objects, or parts in SysML; they have been given alternative names.
Here, classes were transformed into blocks, parts into so-called properties and objects into
instance specification elements [45]. The properties play a significant role in the specification
of a block and are classified as follows [55, p. 28|[51]:
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Figure 2.6: Concepts and terms in the context of OO (modified from [66])

e part property: composition connections between blocks are described by parts. A part
specifies how its type is used in a context. The fundamental difference between a
part and an instance is that a part describes the block properties in the context of its

composite blocks, while an instance does not.

e reference property: represents an external structure to a block. Unlike a part property, it
does not transfer ownership. A reference property is a "needs" association; a block with

a reference property provides a service or exchanges material, energy, or information.

e value property: is a measurable characteristic that employs a certain value type. It is
used to specify the quantitative properties (e.g. speed or volume) of a block. They can
also be used to represent vector values like location or velocity. A value property is
defined by a value type, which defines the range of acceptable values that the property
may take. Although a value type does not need a quantity kind or unit, SysML provides
these notions that may be used to further describe it. Value properties can be linked

with default values, and they can also specify a probability distribution for their values.

e constraint property: is a relationship (an equation or an inequality) placed on a collection
of value attributes and are used to build mathematical models of a system. This is a

significant level of model fidelity that is often needed for modeling tasks.

The introduction of the term "stereotype" is necessary before defining a profile. Abstract
syntax specifies the concepts in the language, their relations and a set of rules for how the
concepts can be combined. A metamodel is used to explain the abstract syntax of a modeling
language. Individual notions in a metamodel are represented by metaclasses, which are linked
to one another using generalizations and associations in the same way that blocks may be
associated to one another on a block definition diagram [51, p. 365]. Each metaclass contains
a description, a collection of metaclass characteristics that describe the idea it represents,
and a set of constraints that put restrictions on the values of those attributes. A stereotype

is a customized version of any SysML element that exists within the SysML meta-model
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[62, p. 87]. A stereotype must be based on an existing SysML element; creating a new
element from scratch is not feasible. The elements can be given new names, qualities and
symbols as a result of stereotyping. Thus, SysML can be customized to meet the needs of
various domains and applications. UML reference elements (e.g. metaclass "Class") can
be found at the top level, from which SysML elements have been generated. Finally, a
profile is a sort of package that includes stereotypes, metaclasses and their interrelationships.
Figure 2.7 illustrates an example of a profile (called SimplifiedReqML), and its sub profiles
(SRMLNodes and SRMLRelationships), metaclasses (Class and Dependency) and defined
stereotypes (Requirements and Refinement). The attributes of the stereotype are also defined

and typed (e.g. the attribute "importance" with the enumeration type "ImportanceLevel").

«Profile»
SimplifiedRegML

«Profile» «Profile=
SRMLNodes SRMLRelationships
«metaclass»
Class «metaclass»
T Dependency
«Stereotypes «Enumeration» T
Requirement Importancelevel
description: String [0..1] = <Requirement Description> High «Stereotypes
importance: Importancelevel = High Medium Refinement
id: Integer [0..1] Low

Figure 2.7: Example of a profile with associated metaclasses and stereotypes [67]

SysML follows the model-view separation principle (see fig. 2.8). On the one hand, there
is a repository that contains the entire model. The model repository could be stored in a
database. On the other hand, there are views of the model available. Diagrams in SysML
are used to depict model sections. By projecting a view on them, the user can see specific
model components in the repository and interact with the model. Because SysML separates
model and view, certain model components in the repository may not be mirrored in any of
the accessible views. Despite this, they are also incorporated in the model. In the modeling
tools, a repository of all model components is always available and hierarchies are typically
depicted as a tree. A single model element can thus be displayed in several perspectives. When
generating numerous views of the same project, this can be used for a variety of objectives,

such as providing different viewpoints to different project stakeholders [45].

SysML includes nine diagrams. Some of the diagrams were adapted from UML, while others
were created from scratch (see fig. 2.5). Aside from the requirement diagram (req), which is
a unique feature of SysML, structure diagrams (pkg, bdd, ibd, par) and behavioral diagrams
(pkg, bdd, ibd, par) are roughly distinguished (uc, seq, act, stm). The SysML diagrams are
shortly described as follows [45, p. 40][55, p. 15]:

e Package diagram (pkg): reflects the model’s organizational structure and package hierar-
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chy. Packages are model items that assist in the organization of all other model elements
in the model database. They organize a user’s access to information and model naviga-

tion by including model elements and dividing them into logical and cohesive parts.

e Block Definition Diagram (bdd): allows for the definition of block properties and rela-
tions. It is typically used to illustrate the structural hierarchy of system components.
Specialization and inheritance of block attributes can be modeled here. Additionally, it
may be utilized to identify the system configuration through block instances and their

stated characteristics.

e [Internal block diagram (ibd): is used to depict a block’s internal structure by illustrating
the interfaces and connections between blocks’ internal parts. Together, the interfaces
in the form of ports and the connections in the form of connectors provide an overview

of the internal interaction and communication in a block.

e Parametric diagram (par): is a new diagram in SysML and a specialization of the internal
block diagram. It can be used to link equations and inequalities to system attributes.
Parametric diagrams are used to support engineering studies that include performance,
reliability, availability, power, mass and cost. It can also be used to perform trade
analyses on potential physical designs and in control applications and simulations for

function-oriented analysis (like Simulink).

e Use case diagram (uc): the system’s intended functionality is depicted in this diagram
with the corresponding external users. This allows the stakeholders’ interactions with
the system to be documented. A use case diagram is a black-box representation of the

services provided by a system in cooperation with its actors.

e Sequence diagram (seq): is used to define behavior, with a focus on how the actors
and parts of a block interact with one another via operation calls and asynchronous
signals. The sequence diagram is useful for modeling and simulating real-world events
or demonstrating communication between systems or system components. The signals

and information exchanged between the components are shown along a time axis.
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e Activity diagram (act): is used to model the conversion of input into output via a
predefined sequence of actions. Using the concept of tokens'!, flows are managed across
the actions using various nodes. Activity diagrams are also often used as an analysis

tool to comprehend and articulate a system’s desired behavior.

e State machine diagram (stm): A state machine diagram can describe the behavior of a
system component using states and the transitions between them. Specific behaviors can
be assigned to a system’s and its components’ states (e.g. activities). State machines

are well-known to modelers because they are similar to machine code and statecharts.

e Requirements diagram (req): is very essential and is used to show text-based require-
ments, connections between requirements and interactions between requirements and
other model parts. This might imply that a component satisfies, refines, or associates

with a need.

In addition to the above-mentioned diagrams, the SysML standard provides a few additional
constructs derived largely from the system development context. The so-called allocation is
one of these constructs. The main idea behind the allocation is to offer a way for models to be
linked with one another, which depict the system from various abstract points of view. On the
one hand, architecture components (e.g., block characteristics) from various abstract model
portions can be assigned to each other. In this instance, the allocation is always directed
from the more abstract model element to the more concrete one. The allocation of behavioral
components to architectural elements is a second type of allocation described by the SysML
standard. For example, this can be used to represent the assignment of a behavioral element,

such as an activity or a state, to a specific architectural component [45, p. 61].

This section attempts to provide an overview of the major SysML concepts, constructs and
constituents, that are essential for the understanding of this work. However, Friedenthal et
al. in [51] and Holt et al. in [62] provide a full exposition of the language with examples and
applications in their books. The next part will provide an overview of the existing tools that

allow SysML usage and application, with an emphasis on the selected tool.

2.3.3 SysML Modeling Tools

An MBSE tool follows the principles of one or more modeling languages and is a tool-developer
implementation of the language specification. [t enables and assists the user in producing a
decent model in this language. The MBSE tool is thus utilized for complex system modeling,
visualization and simulation. The modeling tool serves as a conduct between the model data
and the users, acting as a repository in the background when modeling. It should facilitate

the use of linguistic elements, constructs and diagrams.

A token is an executing thread that can be created and terminated. The token represents the logical flow’s
or data-/object flow’s progress. It is possible to apply an automatic verification of Activity-Diagrams,
namely a simulation, using this formal specification of the semantic of activity diagrams [68].
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There are two approaches that explain how MBSE tools interact with other relevant tools in
the end-to-end model-based development tool environment: federated and integrated MBSE.
The federated method outlines the model-based interconnection of several tools through suit-
able interfaces and exchange formats. This guarantees that the most appropriate software
is utilized for each development project and for each MBSE subtask. This often implies
that the company’s existing tool chain has not been totally changed. Individual models are
managed and connected via a federation platform. However, the interface complexity and
technological connection of the different applications are the drawbacks of this collaborative
tool environment. For example, the Phoenix Integration’s tool "ModelCenter" is a frame-
work for creating and automating multi-tool workflows, optimizing product designs and thus
enabling the federated approach for applying MBSE. Figure 2.9 shows the application of the
federated approach by linking SysML Tools to multidisciplinary design and analysis tools
using ModelCenter [69].
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Figure 2.9: ModelCenter platform for federated approach [70]

The integrated tool approach is highlighted by the fact that all of the tools for the different
MBSE use cases are provided by a single vendor. This implies that all models are kept in
this manufacturer’s data model, removing the above-mentioned interface complexity and tool
migration. Consequently, the business becomes reliant on a single manufacturer and faces
the danger of not being able to offer the optimal tool for specific tasks. Dassault Systeines,
with its 3D Experience Platform, or Siemens are two potential vendors that offer integrated
platforms [69].

In this work, a tool that supports the usage of SysML was needed. The SysML tools differ in a
number of ways, making the choice of the correct tool of great importance. There are a number

of factors and criteria that must be examined in the selection process. A decision must be
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made based on the project’s intended usage and goals. Some of these criteria are the modeling
language support, multi-user capability, code and test case generation, model execution and
simulation or document generation and extensibility [45]. The most popular SysML tools
are PTC Integrity Modeler from PTC, Sparx Systems’ Enterprise Architect, IBM’s Rational
Rhapsody and No Magic’s Cameo Systems Modeler. In his study, Rosenow gives a detailed
overview of the MBSE tools characteristics [71]. He also presents a method for selecting an
appropriate MBSE tool. The technique covers several steps, including a framework, and then
recommends which tool is best suited for the user based on his weightings and evaluations of

the tool requirements and features.

The tool Cameo Systems Modeler (CSM), which is accessible from the Institute of Systems

Architectures in Aeronautics at DLR, was chosen for this study due to the following reasons:

The tool

strictly respects SysML well-formedness standards for syntax (notation) and semantics,

e enables a good interoperability by integrating Requirements Management tools (e.g.,
DOORS, PTC Integrity) and Simulation tools (MATLAB/Simulink, Mathematica),

e is a user-friendly SysML modeling tool that supports Agile MBSE and intermediate-level

model simulations,

e allows modelers to conduct engineering analysis for the purpose of evaluating creative

decisions, verifying requirements and constantly checking model consistency.

Interoperability is crucial not only for the tool, but also for the methodology as a whole.
This is because one the primary objective of this research is to integrate the SysML System
architecture with other models used in the digitalization process (see section 2.1.3). Thus,
synergies between models and information exchange can be leveraged to expedite analysis and
validation during the early design phase. The following section discusses the current state of

the art in terms of integrating other programs and tools with SysML models.

2.3.4 Integration of external models

Domain-specific modeling advancements have resulted in strong tools for their primary pur-
pose. Many technologies have a restricted area of modeling or analysis, emphasizing the
necessity to combine information models from several modeling areas. The integration of
analytical and MBSE models has been considered for a long period of time. Typically, there
are conflicts between the form of the analytical models and the form of the MBSE model. To
define models in the MBSE model, a semantic language is required. However, the analytical
models vary in nature and are not necessarily semantically correct. As a result, mapping
between analytical and MBSE models remains difficult. This frequently results in MBSE
models being unable to perform comprehensive analyses or advanced analytics that were not
developed for use with MBSE.
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Nevertheless, models and tools must be combined for larger-scale analysis or simulation (e.g.
aircraft level). Text documents and spreadsheets in proprietary data formats currently pre-
vail for information exchange in MSBE activities, but data exchange standards such as the
AP233 - ISO 10303 Standard for exchanging systems engineering data, XML Metadata In-
terchange (XMI) defined for the UML framework and the Requirements Interchange Format
(RIF) are evolving [72]. SysML makes use of the OMG XMI standard to transmit model-
ing data across tools [73]. Another significant interchange format is the Open Services for
Lifecycle Collaboration (OSLC). It is an open initiative that develops standards for tool inter-
action. These standards enable the data exchange and the cooperation of separate tools from
product lifecycle software |74]. Various working groups under the OSLC project are exploring
the integration of tools for special cases such as change, test, requirements or configuration
management. To enable these scenarios, they provide a standard vocabulary for the relevant
lifecycle artifacts (see fig. 2.10). Each artifact is represented as an HTTP'2 resource, identifi-
able by a Uniform Resource Identifier (URI)'3, and can be accessed and modified using various
methods [77]. Each tool contains information pertinent to its domain and internet URIs point
to accessible resources in other tools (see fig. 2.10). Instead of using separate tools to handle
templates, OSLC enables MBSE tools to act as web servers. To exchange model contents

with other tools and users, online service requests are utilized [78].
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Figure 2.10: Data linking across domains and organizations using OSLC [74][77]

In this work, the focus is on the integration of Matlab/Simulink models in SysML. According
to Vanderperren et al., there are two ways to combine SysML and Matlab/Simulink models:
co-simulation and integration using an executable language [79]. Simulink simulations com-
municate with SysML’s via an intermediary coupling tool. Both simulations exchange signals
and run concurrently during duplex synchronization, while running alternately with each other
during sequential synchronization. Another option is to use a common execution language as
a middleman. Due to the lack of support for Matlab code creation directly from SysML, it
is possible to create C/C++ code using either Matlab Compiler or RealTime Workshop and

12The Hypertext Transfer Protocol (HTTP) is a stateless protocol for application-layer data exchange over a

computer network. It is mostly used to download web pages (hypertext documents) from the World Wide
Web (WWW) [75].

13A URI is a identifier made up of a string of characters that is used to refer to an abstract or physical
resource. URIs are used to identify resources (web pages, other files, etc.) on the Internet, most notably
the World Wide Web [76].
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then connect it to a C++ implementation of the SysML model. The first method improves
simulation speed, while the second improves the temporal accuracy of the signals exchanged.
A few examples from practical applications demonstrating Matlab/Simulink integration with

SysML models and the corresponding data exchange are provided as follows.

A model integration approach from SysML to Matlab/Simulink has been investigated by
Chabibi et al. in [80]. Through the development of a Domain Specific Language (DSL), called
Simulation Modeling Language (SimulML), the authors propose an integration method to unite
the potential given by systems modeling languages and simulation environments. SimulML is
defined by abstract and concrete syntaxes, as well as its semantics and enables the creation
of a simulation model of a given system. This model is made up of components and/or
subsystems that are linked together through ports. The behavior of a system is defined by
the behavior of its components and their interactions. A component’s behavior is described
using mathematical models based on component variables and parameters. A Model-To-Text
(M2T) method is then used to convert the model from this DSL to the Matlab/Simulink
simulation environment. The method suggested is based on a Matlab code creation from
SimulML models.

There are several other research work that investigated the interface between SysML Tools and
Matlab/Simulink Models. At Saab Aerosystems in the context of the Gripen-Avionics-Demo
project, a function prototyping was carried out in a model that included an architectural
model in SysML, a display layout model in VAPS XT, and a Simulink model with scaling,
filtering, and logical functions [72]. Whereas, Rahman et al. provided a unique workspace
that could be used throughout the development cycle [81]. This was accomplished through
the use of a Rhapsody-Simulink-Integration plugin that combined Rational Rhapsody with
Matlab/Simulink. The system level Rational Rhapsody model includes a reference to the
physical system’s Matlab/Simulink behavior model. Finally, Johnson et al. merged modeling
constructs from SysML and Modelica to improve support for Model-Based Systems Engineer-
ing [82]. They used a vehicle suspension to demonstrate the synergies between SysML and
Modelica at three different levels. This study demonstrates dynamic co-simulation and shows
the benefits of the MBSE method of using a SysML model and a calculation model. These
integration examples are discussed and compared with this work’s integration approach (cf.

section 8).

In this section, SysML, as a modeling language, and Cameo Systems Modeler, as a modeling
tool, were presented. However, both of them do not provide a methodology for system mod-
eling. In the next section, the basics of MBSE methodologies, that are relevant in this work,

are described.

2.4 Overview of Existing MBSE Methodologies

This section begins with some key definitions and distinguishes between some relevant terms

like process, tool and methodology. Martin defines the process in his book as a "/.../ logical
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sequence of tasks performed to achieve a particular objective. A process defines "WHAT" is to
be done, without specifying "HOW" each task is performed" [83, p. 54|. In contrast, he claims
that a method is made up of "/[...] techniques for performing a task, in other words, it defines
the "HOW" of each task. At any level, process tasks are performed using methods" [83, p. 55].
Finally he describes a tool as "[...] an instrument that, when applied to a particular method,
can enhance the efficiency of the task provided; it 1s applied properly and by somebody with
proper skills and training. The purpose of a tool should be to facilitate the accomplishment of
the "HOWs"" [83, p. 55]. As a result, a methodology describes according to these definitions
a set of processes, methods and tools that belong together. In general, a methodology may be
considered a kind of plan for applying linked processes, methods and tools to a set of issues

that are all similar or interrelated.

A more specific concept, the MBSE-methodology, can be defined as a set of processes, meth-
ods, and tools used to accomplish particular goals of Systems Engineering, driven by a model-
based framework [84]. There is currently no widely accepted standard methodology for using
SysML in model-based systems engineering. In 2007, a formal survey of MBSE methodolo-
gies has been published by INCOSE [85]. MBSE methodologies that have gained attention in
industry forums and publications are briefly examined in this research. They are created to
support as potential candidates for adoption and customizing to an organization’s SE policies
and processes, but they are not intended to be complete. Some of these methodologies, as well
as others not mentioned in this survey, serve as a reference for the methodology developed

and used in this work and are explained below:

e System Exploration and Definition Approach [86]: Abulawi devised a method-
ology for investigating novel system concepts by combining technology-oriented views
with risk and user-oriented ones. This approach is built on the use of SysML models to
support the many activities that comprise the core of the system exploration and defini-
tion process. The suggested method’s conceptual framework addresses system analysis
and exploration, as well as a specification emerging from a requirements engineering
process that involves information from diverse analytical activities. Figure 2.11 depicts

the main stages of the process.

The method user is directed through the process of building a system concept from an
original, sophisticated system idea first by using an hierarchical analysis, where system
is being studied as a "black box". The attempt to combine a technical push with a
market pull leads to system concepts. This is followed by a functional analysis with an
abstracted picture of the system structure, referred to as the "grey box." The goal here
is to analyze what the system should do to fulfill its functions and what to expect when
specific events emerge. An initial risk analysis is undertaken in conjunction with the
study of the system’s intended purpose in all analysis stages. Finally, a structural anal-
ysis is performed and the system architectural framework is defined (i.e. the technical
solution). To achieve the finest results, architectural ideas should be varied. Alternative
concepts are researched and assessed in trade studies using predetermined criteria in or-

der to arrive at a final, ideal solution. The tasks related to requirements analysis and
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Figure 2.11: Main conceptual stages for the SysML-based system exploration methodology
[86]

management support the whole process stages. It aims to generate, derive, refine and
trace all system requirements at all levels of abstraction. Because the industry is still
hesitant to utilize SysML for requirements engineering and management, the traditional

method to requirement documentation is employed instead.

¢ Object-oriented Systems Engineering Method (0OOSEM) [51]: is a model-based
top-down approach that uses the concept of object orientation and the SysML. The
method covers fundamental system engineering tasks such as stakeholder analysis, re-
quirement analysis, architectural design and analysis and verification. Therefore, it
leverages a variety of methodologies, including causal analysis, black-and white-box de-
scriptions, logical decomposition, partitioning criteria, node distribution and variant
design. To manage complexity, concerns are segregated and merged into a coherent
system model. OOSEM is also designed to make it easier to integrate object-oriented
software development, hardware development and test, to enable architects design more
agile and scalable systems that can handle growing technologies and changing needs
over time. Activities and artifacts used in the approach are shown in figure 2.12. These
activities are clearly in line with the standard systems engineering V-Model, which may
also be performed repeatedly at each level of the system hierarchy. SE principles like
management processes and multi-disciplinary collaboration must be used for any of
these activities to be effective. The development process can be used recursively across
the many stages of development, such as conceptual design, preliminary design, detailed

design, and subsequent stages [85].

e Functional Architecture for Systems Method (FAS) [87]: in 2010, the method
was described in a paper for the german systems engineering conference TdSE. The FAS

method can be applied regardless of any language or tool, however SysML is best suited
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and recommended due to it having all necessary modeling components to support the
method. Through the grouping of use case activities, the approach generates functional
architectures in a block oriented form from use cases. The model-based functional
architecture is used to describe a system in which the goal technologies are independent
of the system functional elements, that transmit modeled information (signal, data),
materials, force or energy [44]. This functional element is stated as "[...] an abstract
system element that defines a relation between at least one input and at least one output
by means of a function.” [87]. This approach does not address the specification of
functional requirements and use cases for the system. Nonetheless, these are the most
important inputs when it comes to designing an architecture. The method starts by
modeling the use cases and the flow of their associated activities that refine functional
requirements. Using use cases, a clearer understanding of how a system’s operations
connect to system actors emerges. It also aids in determining which factors outside
the system communicate with it. Users are clearly included, but so are other systems
and environmental elements. The use case activities are then scraped together using
functional groups to prevent developing several functional components for the same
capability and to ensure that the system is characterized by an appropriate collection
of functional components. This is the most significant step and necessitates therefore
architect’s expertise. Lamm et al. provide a detailed overview of heuristics that might be
utilized to help in grouping [88]. For example, some heuristics include that abstract and
secondary use cases form a functional group, that one functional group accepts functions
linked to system actors and that functions that share data may be grouped. Lastly,
functional blocks are generated from functional groups and linked through functional
interfaces to create the final functional structure. On higher abstraction levels, the FAS

approach works effectively but complex interactions between system operations at lower
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levels of abstraction may result in emergent behavior. Furthermore, plugins are available
for some modeling tools such as enterprise architect and cameo systems modeler and
have been developed to support and automate certain parts of the FAS approach tasks
[89].

¢ Systems Modeling Toolbox (SYSMOD) [90]: is a technique for developing require-
ments and architectural specifications that is mostly used to define updated and new
products. A collection of commonly used and well-known procedures (such as use case
analysis) can be customized to meet special needs. The suggested modeling language
for SYSMOD is SysML and can be used in conjunction with any SysML modeling tool.
SYSMOD guides systems engineers from system goals, stakeholder needs, stakeholder
requirements, domain, and functional analysis to architectural descriptions. SysML’s
SYSMOD specification defines the Model semantics and relationships explicitly. Differ-
ent types of diagrams provide stakeholders with varying perspectives on the development
of a model [91]. One of the main patterns that SYSMOD suggests, states that each de-
velopment is predicated on an existing technical basic solution. This solution is referred
to as the base architecture and it serves as the beginning point for the continuous evo-
lution of requirements and architectural solutions (zigzag pattern). When developing

a solution, it is constantly attempted to keep needs and technologies in alignment (see

fig. 2.13).
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Figure 2.13: Zigzag pattern of the SYSMOD toolbox (modified from [90])
Other methodologies and techniques used in industrial applications are presented and dis-

cussed in the MBSE survey by FEstefan et al. [85]. These are not included here since they

were not considered in the methodology of this research. The following chapter analyzes,
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combines, and expands on the major methodological aspects and concepts mentioned in this

section in order to build a methodology that accomplishes the work’s objectives.
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3 Development of Methodology for System
Architecture Modeling and Integration

In this chapter, the model-based methodology developed in this work is presented and ex-
plained. SysML is utilized as a modeling language in this study and its use is facilitated by
the tool Cameo Systems Modeler (CSM). The goals of this work (given in chapter 1) define
the problem and specify what is intended to be accomplished. Whereas the SysML describes
which syntax, semantics and concepts are utilized to solve the defined problem. A method-
ology, for specifying how the SysML using the CSM-tool can be utilized to meet the goals
of this work, is required. The methodology outlined in this chapter is the consequence of
these concerns. However, it was not created out of thin air, rather, it emerged from previous

methodological notions, which are presented in section 2.4.

The initial steps in developing an acceptable methodology are to analyze existing methods
and to determine relevant concepts for the research’s aims. Both Abulawi’s method for inves-
tigating novel system concepts and INCOSE’s OOSEM method are top-down approaches in
nature. Both begin at a high degree of abstraction and analyze the system in its context and
according to its top-level requirements. These abstraction levels are classified based on the
type of analysis, rather than the physical system hierarchy. Abulaw: focuses on the system’s
functional features, allowing for additional function-driven analysis. OOSEM distinguishes
between logical and physical abstraction levels in structural analysis. It describes how the
functions can be carried out using certain logical components and scenarios. Physical systems
or subsystems can also be logical components, but only their logical behavior is examined and
classified at this level. At the lowest abstraction level, discipline-specific and detailed develop-
ment, such as hardware, software, or data, occurs, allowing for system synthesis. The analysis
throughout the complete system abstraction levels helps develop new knowledge and infor-
mation about the system. Each analysis step also helps generate new systems requirements

for the next level which together constitute at the end the system specification.

The core of this work’s methodology is its systematic segregation into context-based, func-
tional, logical and physical analysis and design elements. It allows agility by modularizing the
system analysis and design stages, which is a requirement for this work. When these steps
are separated from one another, it is simple to change one without impacting the others. It
also allows for the investigation of buttom-up effects (e.g. the effects of the modification of
physical architecture on the logical or functional architecture). To understand which modeling
activities are conducted throughout each of these stages, an overview of the methodology is

shown in figure 3.1, using a SysML activity diagram.
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The separation is based on two factors: the analysis and the model type. It is represented
by partitions (swimlanes) that are both horizontal (for analysis) and vertical (for modeling).
There is no consideration given to the type of system-of-interest (Sol), implying that this
methodology can be implemented at the component, subsystem, or system level. However,
similar to Abulawi’s approach, it is advised that a specific degree of Sol complexity exists
in order to justify the effort of analysis and integration. A model organization and system
analysis, a functional analysis and a logical analysis are all part of the analysis. Because
the requisite specific data at this abstraction level is not available, the physical analysis is
not addressed in this work. Furthermore, communication and data exchange with specialized
models (such as aerodynamics, FEM, CAD or multi-physics) are not necessary in this research.
Nevertheless, the methodology enables for the extension and integration of this physical layer

in future research.

First, the aircraft design and configuration information is incorporated as system require-
ments for all design phases. This information is obtained from CPACS and imported into the
requirement management platform. This includes top-level system requirements as well as
configuration parameters like passenger number and aircraft class definitions. This interface
also enables the evaluation of the effects of reconfiguration (for example, a new cabin configu-
ration in CPACS) on the system architecture, as well as the automatic system customization
and architecture adjustments. Thus, as specified in the objectives of the work, all information
from the design are linked to the system architecture. This interface between CPACS and the
system model is tool specific and shall be designed to automatically update and share data
between the two platforms. Though, it is not possible to transfer the resulting system archi-
tecture information back to CPACS because the considerations regarding systems (specifically
cabin systems) are still not given in the CPACS representation, it is an important step that
should be considered in the future, as the knowledge exchange platform CPACS develops and

expands.

Not only top-level requirements obtained or derived from CPACS data, but in general all
requirements are continuously identified, derived, refined, traced, and analyzed in parallel with
the architecture development process. They play a central role in the design and integration
methodology. These requirements management activities are similar to Abulawi’s method but
with the difference that here SysML is used for the platform for requirements management. It
can be done with special requirements management programs (e.g. DOORS) and integrated
into SysML models via corresponding interfaces. SysML contains a range of requirements

elements, relationships, and diagrams to support the requirement management and analysis.

The digital cabin design and visualization process (cf. section 2.1.3) is examined before be-
ginning the development of systems modeling methods. The goal is to identify the extensions
required for a more consistent digital representation of cabin systems. The system architec-
ture was adopted without any analysis, as evidenced by the process description. As a result,
the structure, functions, and behavior of the system are assumed. Furthermore, the system

design elements are not derived from a system analysis and it is impossible to trace why or how
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each architecture element exists. Hence, the emphasis in this work is mainly on the function-
oriented system architecture. Its systematic derivation, development, and integration are the
primary purpose of this work. The model preparation and setup (similar to OOSEM) is the
initial step in the model organization and system analysis phase. In contrast to OOSEM, the
scope is now reduced to several simple activities to simplify and permit a quick transition to
further analysis stages. The initial step, modeling standards and rules related to the model
format and style can be checked and determined. For example, OOSEM recommends using
upper case for the first letter of each word in all definitions and types, such as blocks, value
types, packages, and requirements, with a space between compound names that contain more
than one word. Implementing automated model validation is an optional step depending on
the required model consistency. This ensures that the modeling rules and guidelines are fol-
lowed. Then, a system ontology must be defined and modeled. As stated in Chapter 2, a
reference for this can be the CPACS ontology which is enhanced using common terminology
in the context of an aircraft systems. To describe the ontology, a UML profile diagram can be
used to extend SysML model elements with additional stereotypes and corresponding char-
acteristics. Furthermore, the relations between the stereotypes must be specified in order to
constrain the ontology application. Model organization activities take place throughout the
modeling process, but the model structure, which defines how the model will be organized,
must be specified before beginning modeling. As a result, the modeler has complete control
over whether the model is structured according to the system hierarchy, analysis aspects or
any other logical grouping. Packages and package diagrams are commonly used for this and

they can be interconnected to enable model navigation.

The Sol stakeholders are then identified and analyzed in a subsequent step. There are some
broad categories that can be used to identify the main stakeholders, such as user, manufac-
turer, operator, or regulator. Depending on the Sol modeling goals, the emphasis will be set
on different types of stakeholders. Furthermore, the top-level requirements that are available
can be used to identify which parts, organizations, or people are interested or involved. Fol-
lowing that, the identified stakeholders are modeled using SysML actor elements. Fach of
these actors should be assigned a requirement that represents the Sol requirements from their
perspective. After that, the requirements are transferred to the requirement management

platform.

The first system analysis, like Abulowi’s and OOSEM approaches, is based on a black box
representation. The modeler identifies and associates in a block definition diagram actors,
environmental elements or external components and systems that interact with the Sol. These
associations are then refined in an internal block diagram and the interfaces are specified. The
information, data, energy, or material that flows between the Sol and the outside world is
defined at this stage. Based on these interactions, flow items are translated into context
requirements from the perspective of each external element. The system analysis concludes
with the collection and sorting of all requirements generated during the analysis stage. Only
functional requirements are to be considered in this work. As a result, these must be filtered

out of the requirements and used as input for the next analysis.
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The system’s functional requirements are interpreted in functional scenarios and use cases in
the second part of the analysis, known as "functional analysis". The goal is to specify various
use cases that, when combined, lead to the accomplishment of all required system functions.
As a result, the use cases are modeled and functional requirements are defined to refine these
use cases. Linking these two model elements is critical for the desired traceability. This is
the first design and specification activity in the methodology that defines how the system
will behave. The modeler can use use cases from previous system configurations or create
new ones. Use case diagrams and related relationships are used to develop and relate the use
cases with each other as well as with external actors. These use cases are very broad and
need to be refined. The FAS method is used to achieve this goal. The actions in the activity
diagram are used to specify which behaviors are executed in which chronological order in
the use cases. The actions are assigned based on whether the system functions are internal
or interfacial. The FAS partition "I/O" is used for latter and the corresponding actor is
specified. Following that, the steps for function grouping and the development of a block-
oriented functional architecture are applied (as described in section 2.4). This results in a
pure functional representation of the system, which is generally valid and independent of the

technical solution.

The transition to the logical abstraction level, like the functional specification, necessitates
architecting actions. As a result, the SYSMOD pattern is employed to assist in the logical
specification. If the Sol isn’t entirely new (which is usually the case), the base architecture is
either the standard architecture or a modified or upgraded version of it. To define the base
architecture of a completely new system, engineering expertise and innovation are required.
This does not, however, imply that this is the final solution in either case. On the contrary,
the primary goal of the subsequent analysis is to refine and optimize it through a series of
recursive steps in order to validate it. A bdd is used to decompose the logical components of
the base architecture into subordinate hierarchical subsystems or components. An ibd is then
used to node the logical interfaces, i.e. the flows or interfaces that exist between the logical
components. It is important to note at this point that the logical system’s boundary interface
must conform to the ones already defined in the black box representation. Furthermore,
the logical architecture is linked to the functional architecture. As a result, using allocation
matrices, all logical components are linked to functional blocks. Here more than one function
can be allocated to the same component and one function can be allocated to several logical

components.

Finally, the system architecture is linked to the external models for the purpose of cabin de-
sign and visualization process extension. The CPACS-imported cabin design parameters and
requirements are used to configure and instantiate the developed logical architecture. The
logical architecture instance is passed to the design model in Matlab, where it is used as ad-
ditional parameterization rules and design requirements. To accomplish this, the two models
of ontologies and object-oriented structure must be adapted to one another in order to avoid
communication conflicts. Each system component in the Matlab geometrical design model

is now linked to a traceable architecture element in the CSM model. The geometric results
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are returned to the architectural description for further analysis after the design algorithm
has placed the various systems components in the cabin. This necessitates a thorough exam-
ination of design data and information that may be useful for system analysis in the system
architecture model. Thus, the interaction between the design and system models opens up a
new opportunity for identifying and exploiting synergies between different design and analysis
perspectives. The effect of geometrical design parameters can be used to optimize and refine

the system architecture that has been implemented.

Moreover, SysML is used to model functional scenarios for the developed system. To depict
the logical and chronological system behavior, structural and behavioral SysML modeling
elements and diagrams (such as state machines, activities and sequence diagrams) are used.
The modeling results must be converted into structured data that can be used by the VR
platform. They are then rendered in the virtual environment for interactive exploration and
modification. Feedback on visualization results is also provided to the system architecture for
further tracking and validation of the specified requirements. The visualization of behavioral
data in VR reduces complexity by representing complex interrelationships in a simple, fast and
intuitive way. The system architecture and its interaction with the cabin design can thus be

better understood by bringing together a large amount of data in the virtual environment.

Thus, the model-based methodology for achieving the work’s objectives is established. To
apply it, an appropriate system-of-interest must be selected. The following chapter discusses

the rationale for choosing this work’s Sol and describes its main technical aspects.
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Description

Understanding the system-of-interest (SoI) one of the most important prerequisites of any
modeling effort and is a necessary condition for realistic modeling and analysis. The system
is chosen for the application of the proposed model-based methodology in this work. As a
result, a thorough justification of the choices is required. The sections that follow address the
selection of the system and describe it. They also provide an overview of current industry

alternatives as well as the key research and development in relation to them.

4.1 The Passenger Service Channel (PSC)

An appropriate cabin system is required to apply and validate the model-based system archi-
tecture integration methodology, which is developed in this work. Therefore, the Passenger
Service Channel (PSC) was chosen for the application. The PSC is a critical cabin module that
integrates several service and safety functions and is leveraged as an interface between the
aircraft crew and the passengers. The European Aviation Safety Agency (EASA) distinguishes
in the CS-25 document between primary and secondary PSC functions [92]. The primary
functions are safety related and include oxygen masks, fasten seat belt indication, smoking
allowance indication and announcement speaker. The secondary functions depend on the
airline and related to passenger services. They include, among others, individual air supply,
attendant call, reading lights or boarding music. Reading lights, attendant call, signs and
speakers are integrated in the Passenger Service Unit (PSU), which in turn includes the Pas-
senger Interface and Supply Adapter (PISA) [34]. This component is an integrated electronic
circuit and enables the power supply and data communication for the control of the PSU
components. Some cabin architectures also include a Stand-alone PISA (STA PISA), which is
functionally identical with PISA but is used outside the PSC (e.g.in galleys or doors areas)
[93]. Figure 4.1 shows an example of the interfaces of an A380 PSU (some of the terms related

to the data buses or power supply are described in detail in section 4.2).

The cabin concepts vary between airlines and allow for customized designs according on
the passengers’ preferences. This has an impact on the positioning of the PSC’s numerous
components. PSCs are typically installed in the Overhead Storage Compartment (OHSC),
which is located above the passenger seats in most modern designs. In addition, screens

for In-Flight Entertainment (IFE) can be fitted whereas appropriate signal interfaces must
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Figure 4.1: PSU components and interfaces (modified from [93])

be included into the PSC. Because of the growing tendency of more accompanying luggage
in recent years, more storage space in the cabin was required, which resulted in innovative
storage options and larger overhead storage compartments. Hence, the PSC has to evolve and

must be designed as to remain customizable [34] [94].

The numerous interfaces to external systems, the variety of implemented functions, the close
connection to the cabin design for installation and assembly or the required flexibility for cus-
tomization: all of these aspects increase the PSC’s complexity and make it an ideal candidate

for the application of the MBSE methodology in this work (see fig. 4.2).

The methodology established in this study focuses on the context of the Sol, in order to gain a
better understanding of how it interacts with other systems. It also allows for the examination
of the influence of the PSC as well as the external systems on each other. As a result, an
overview of these systems, their architectures and behaviors is important for modeling and

analytic activities. The overview is covered in the next section.

4.2 Overview of Cabin Systems

Functionality distinguishes aircraft systems, that are often grouped together according to the
Air Transport Association of America’s Specification (ATA). Aircraft equipment is designated
by an equipment identifier consisting of three two-digit components, according to ATA100.
For example, a system 21, subsystem 11 and unit 01, are according to the identification
specification, all part of 21-11-01. ATA 100 became a part of the ATA 2200 standard, which

has also made minor adjustments and upgrades to aircraft system specifications [95].

As the name suggests, cabin systems are all aircraft systems that have an impact on the

aircraft’s cabin and hence have an effect on its passengers. Table 4.1 lists the partially
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Figure 4.2: Complexity due to PSC Interfaces with other systems and disciplines (modified
from [94])

included cabin systems according to ATA100. Not included here are new Chapters 44 and
50 from ATA 2200. According to the new specification, cabin systems (ATA 44) are defined
as "[...] those units and components which furnish means of entertaining the passengers
and providing communication within the aircraft and between the aircraft cabin and ground

stations. Including voice, data, music and video transmissions [...[" [96, p. 57].

Table 4.1: Cabin systems according to ATA 100 [95]

Identifier Name of Cabin System Type
21 Air conditioning Cabin system
23 Communications Cabin system (partially)
25 Equipment/ Furnishings Cabin system
26 Fire protection Cabin system (partially)
31 Indicating/ recording systems | Cabin system (partially)
33 Lights Cabin system (partially)
35 Oxygen Cabin system
38 Water/ waste Cabin system

Among all cabin systems, the Cabin Management System (CMS) is one of the most closely tied
to the PSC, and its interface with it is complex. The cabin management system is one of the
most complex and sophisticated systems onboard modern CS-25 passenger aircraft [97]. The
cockpit and cabin crew use this system and integrated technologies to check the cabin’s condi-
tion and interact with the passengers. Even though the highest design assurance level (DAL)!

is C, the CMS must be reliable since it affects aircraft dispatchability as well as passenger

IDAL is evaluated during the safety assessment and hazard analysis processes by assessing the impacts of a
system failure condition. The failure modes are classified according to the impact they have on the aircraft,
crew, and passengers. Catastrophic (A), Hazardous (B), Major (C), Minor (D), and No Safety Effect are
the classifications (E) [98].
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comfort and satisfaction [99]. As a result, most CMS systems and designs include fault-
tolerance features such as segregation, redundancy, and reconfiguration. Another source of
complexity that challenges the design of this system is real-time requirement. Meaning, some
realized features, such as audio-intercommunication, require real-time capabilities. CMSs are
distinguished from other avionic systems by their need for flexibility. Before entering into
service, the aircraft is customized for a certain airline, or a variation for a specific aircraft
family is created. Besides, cabin layout modifications (e.g., short vs. mid-range arrangement)

or increased capabilities during a retrofit impact the CMS after it enters into service.

The Airbus Cabin Intercommunication Data System (CIDS) is a typical CMS for the CS-25.
The CIDS, which serves as a central control and display unit in Airbus aircraft, manages all
cabin functions. It was first designed for the Airbus A320 in the 1980s. It only had simple, but
essential functions, like passenger announcements and lighting control. System integration has
expanded to include more than 30 functions, making it one of the most integrated systems on
board [93][100]. Some functions such as emergency lighting are necessary for CS-25 aircraft,
whilst others are based on passenger comfort and may differ from CIDS to CIDS, depending
on the system context. In certain use cases, the CIDS is utilized as a user interface (UI) for
control and monitoring activities (e.g. temperature control). The CIDS also has a Smoke
Detection Function (SDF) for the cabin and cargo area. Because of its high safety relevance
and needed reliability (particularly in the inaccessible cargo area), a separate power supply,
hardware, and software are specified to manage this function in the CIDS to keep it separated
from the other functions. CIDS has been implemented in the entire civil airbus fleet, with
varying capabilities. Several data buses interconnect an array of redundant simplex processor

modules and hundreds of peripherals [100].

Figure 4.3 illustrates an example of a A380 CIDS architecture. The Director is the most
essential part of the CIDS. This central computer is a Line Replaceable Unit (LRU) that
controls all system functions and is placed in the avionics section underneath the aircraft
cockpit. The Director communicates with, monitors and controls all devices and components
in the CIDS network. The Director is also capable of communicating and exchanging data
with other aircraft systems. The Flight Attendant Panel (FAP) serves as a human-machine
interface for configuring the system and its operations and displaying the system’s and other
cabin systems’ status. It communicates with the Director via the panel network. The interface
of various system components is necessary to realize the CIDS functionality. The Director
can interact with the passenger and attendant-related components using the Decoder/Encoder
Unit (DEU). The DEU-A serves as the interface for all components with passenger functions.
PISA is linked to this component in order to share data with PSU components. The Top-Line
connects the DEU-A to the Director. The DEU-B serves as the interface for all components
that perform cabin crew functions. Handsets or display panels are examples of this. The
DEU-B communicates with the Director via the Middle-Line. The Top- and Middle-Lines are
bidirectional data buses with particular protocols that run along the aircraft cabin, supplying
data to the Director and DEUs [93].

Another system, whose interface especially with the PSU is really important and interesting
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Figure 4.3: A380 CIDS Architecture (modified from [93])

for the analysis and optimization, is the electrical power system. It is also one of the aircraft’s
most complex systems and includes electrical power generation, electrical power distribution,
electrical loads, as well as monitoring and protection activities. Technical and commercial
loads are also distinguished [101][102]. In terms of flight and landing safety, the importance of
technical loads can vary but stays relevant for safety in contrast to the commercial loads and
functions. Alternating current is often produced by the aircraft power generating system. For
some applications, a part of this power is converted to direct current. Conventional airplanes
use 115V AC with a fixed frequency of 400 Hz and 28V DC to power the cabin and cargo

loads.

Traditional airplanes (e.g. A320) use a centralized network design, which is the most prevalent.
One of several power sources is used to deliver electricity to the aircraft’s primary Electrical
Power Distribution Center (PEPDC), which is positioned in the aircraft nose. Power is based
on different types of sources, including primary engine generators, Auxiliary Power Units
(APUs), and Ground Power Units (GPUs). Circuit Breaker Panels (CBPs) are used to connect
systems to the PEPDC directly for load protection. This centralized architecture makes it
simple to operate while still keeping each system in the electrical network distinct. A failure of
the PEPDC or CBP, however, will cause the entire network to fail. A cable failure may have
an effect on one system. This form of connection has the disadvantage of requiring longer

cable lengths, potentially with greater weight, when compared to a decentralized topology
[102].

Last year’s passenger airliners have an electrical system with a more decentralized power
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system. This decentralized method was used for a variety of reasons, including decreased
system weight and easier installation in the final assembly process. New components, such as
the Secondary Power Distribution Boxes (SPDB), have been incorporated into the electrical
power distribution network in recent aircraft development (see fig. 4.4). 115/200V AC and
28V DC electrical loads are supplied by the SPDBs in the cabin and cargo compartments.

@ = Generators
= Primary Electrical Power

Distribution Center

Cabin and Cargo
distribution system

Figure 4.4: Decentralised architecture with SPDBs in modern aircraft architecture modified
from([101][93])

Besides of the distributional function, the SPDB also protects cables of the system and per-
forms modern maintenance activities and power management. Dispersion of power supply
and smaller cable length requirement are the major benefits of the SPDB integration. There-
fore, for non-essential loads, the SPDB use Solid State Power Controller (SSPC) technology
rather than circuit breakers. This technology beholds the following features: digital protec-
tion, status monitoring, fusible ink backup and voltage transient protection [93]. A detailed
description of investigation results of the optimization of the electrical system and also the
weight evaluation of cabin power architecture is given in [101] and [102]. These analyses and

investigations served as a model for the use cases in this work.

The Cabin Core System (CCS) also considers the combination of electrical power and data
management. CCS is the primary management platform for the cabin’s power supply, opera-
tion, control and monitoring, as well as system testing [103]. Hintze et al. have developed a
new generation of platform (see fig 4.5) to satisfy top performance objectives (TPOs), such as
maximum flexibility and performance with an improved installation concept, rapid processing

in the final assembly line (FAL), and weight reduction.

The cabin backbone could be a single network that provides all of the data and power to all
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Figure 4.5: New CCS platform with parallel data and power network [103]

of the cabin devices. Each system is linked to the CCS via network nodes (NNs), which would
connect the power supply and cabin systems as well as offer bi-directional data communication
within the CCS backbone and with the attached systems. This platform architecture with
integrated power and data services aims to reduce the overall complexity of CCS. This is
due, in part, to the system’s higher level of integration and usage of modern data network

technologies.

In this work, a use case for PSC’s architecture optimization for the electrical design is consid-
ered (cf. 7). The goal is to assess the PSC’s intended architecture modeling and integration
in the cabin design process. The next section presents the physical fundamentals needed in

this use case.

4.3 Physical Fundamental for Electrical Design

As stated in section 4.2, the SPDB provides electrical power to cabin loads. The SPDBs are
installed in specific locations throughout the cabin. The SPDB location is considered fixed
in the intended use case, which is consistent with realistic aircraft development because the
SPDB location is not part of the configuration parameters. Each PSC is linked to one of the
SPDBs to receive power. Power cables with specific physical properties are used to connect

the two components. The electrical model in figure 4.6 illustrates the interface between a
PSC and a SPDB.

The SPDB power is required in this model to supply the connected loads. Thermal effects
cause a portion of the provided power to be lost during power transmission via cables. The
load then consumes the remainder of the power. The PSC’s control unit is the component that
receives energy and supplies it to the PSC’s internal components. For each PSC configuration,
the power rating, which is the maximum power input allowed to flow through the component,

is used as a parameter.

Kirchhoff’s circuit law, which addresses the potential difference (the voltage), is used to define
the model mathematically. It asserts that the directed sum of potential differences (voltages)

around any closed loop is equal to zero. The voltage from the source, in this case the SPDB,
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Figure 4.6: Electrical model for the PSC’s power supply

is equal to the sum of the partial voltages in a mesh [104]. These are the voltages of the cable

and the control unit. Thus, the voltage equality in this model is expressed as follows:
USPDB - Ucable + Ucu- (4~1)

The SPDB, as indicated in section 4.2, can supply direct current to the loads (usually 28VDC).
So, the following relationship between the power, voltage and current intensity can be con-
sidered [104]:

P=U"-1I (4.2)

By means of the equations 4.1 and 4.2, the following power relationships for the model in
figure 4.6 can be formulated as follows:

PSPDB = Pcable + Pcu- (43)

Given that the SPDB does not only deliver power to one PSC but multiple, the power rela-
tionship in 4.3 becomes:
n
Psppp =Y Peabic i + Peu i (4.4)
i=1
If all of the PSCs in the cabin are similar, the rating power of their respective control unit is

the same. As a result, the sum of their rating power can be defined as follows:

n
> Pewi=n-Pe. (4.5)
=1
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Because the cable only experiences thermal power loss, this can be regarded as ohmic resis-
tance. According to Ohm’s law, the electric current flowing through an object is proportional

to it’s electric voltage [104]. Using the relationship in 4.2, the cable power loss is defined as

n n
chablei:2'ZRi'12- (46)
i=1 =1

Because the cable voltage must consider both directions of power supply (to PSC and back to

follows:

SPDB), it is multiplied by two in equation 4.6. Furthermore, the electrical resistivity is used
to relate the cable’s resistance to its physical parameters (length, cross section, and material).
This is a fundamental feature of a material that indicates how well it resists current flow [104].
It is defined mathematically as follows:

p=R-—, (4.7)

A
l
with p representing the material’s specific resistivity, [ representing the cable length, and A
representing the cable cross section’s area. By substituting the resistivity relationship in 4.7 in
the equation 4.6, together with relationship in 4.5, the power that an SPDB supplies defined
in 4.4 can now be expressed as follows:

PSPDBZH-PCU+2-2;pi-IéL-Iz. (4.8)

1=

Assuming that all control units are connected with the same type of cable, the resistivity and
cross section area of all cables remain constant. As a result, the expression in 4.8 can be
written as follows:

1 n
PSPDB:n'PCu_‘_Q'p'Z'IQ'Zli- (49)
=1

The physical relationships explained above describe the electrical design model connecting the
PSC to the SPDB. They serve as an input for the optimization use case that will be presented

in section 7.

An overview of the system-of-interest and the main interacting systems is thus provided. The
methodology described in chapter 3 demonstrated how the modeling language and tool are
used to achieve the main goals of this work, whilst taking into account necessary principles
and concepts, such as agility and knowledge management. It specified which information is
extended through the system architecture development process and how its integration into
the cabin design and visualization process enables new analyses and identifies new system
synergies. However, the description of the methodology is abstract and based on theoretical
methods (such as OOSEM and Abulawi’s approach). To test and validate the methodology,
it is now used to analyze and design the selected Sol. The following chapter explains how the

methodology is applied to model the system architecture.
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Architecture

5.1 Model Organization and Structure

As stated in the methodology chapter, organizational tasks must be completed before pro-
ceeding with the actual system architecture modeling. Even though the main methodological
scope and steps are already defined, each modeling use case and each considered system have
their own unique properties, that can only be discovered during the modeling activities. For
this reason, the model organization necessitates iterative and continuous adjustment through-

out the modeling process.

The sections that follow describe these tasks, which include, on the one hand, the definition of
a model structure - a specific schema to organize the model elements and must be uniformly
respected throughout the model - on the other hand, the definition of a system ontology that

extends the SysML language and is specific to this work’s use case and Sol.

5.1.1 Definition of Model Structure

The model organization begins with a broad overview of its hierarchical structure. The model
structure in this work is oriented to the aircraft systems categorization, based on the ATA
chapters. Figure 5.1 shows the top-level package diagram including the system model as well
as the imported and associated packages. First, the top-level package for the PSC is a model
package (denoted by a triangle) that contains all of the model elements. It imports specific
packages in order to use the required external elements. Modeling elements for the application
of the FAS method, for example, are imported from the corresponding FAS package. Also files
(e.g. CPACS files) that include data used in the system model are imported. Additionally,
external model packages (e.g. aircraft model) including system elements that interact with
the PSC internal elements are associated to the model package. Furthermore, model elements
that are not used implicitly for system representation (e.g. external files or glossary) as well
as global elements (global objects, constraints, etc.) are stored in the library and can be used

multiple times in the model.

The system model package is organized in a specific way. It is made up of numerous packages
for each aspect of system analysis or representation, such as requirements, structure, behavior,

traceability and analysis. The structure package is the central package because it contains
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Figure 5.1: Top-level package diagram for PSC Model

the system block and its parts. These have their own package with identical structure as well.
This package organization is recursively repeated for each system, subsystem, or component
in the model. Hyperlinks connect the packages to the package diagrams. The packages can
also be linked directly to other diagrams if one of the aspects represented by this diagram
is the most important. This allows for user-friendly model navigation, in which a user can
navigate through the system and its related elements with a double click (similar to HTML
web navigation). The type of the hyperlinked model element is displayed on the package’s
bottom left side. As stated in section 2.3.2, all model elements, including packages and their

described structure, can be found in the model repository.

In a subsequent step, the modeling standards and guidelines are defined. Therefore, the UML
content diagram is used to define the main rules that must be followed while modeling (see
fig. A.2. As previously stated, these conventions are based on the OOSEM methodology
(cf. chapter 3) and also the standards used in the integrated external models (Matlab and
CPACS). They state precisely the above-mentioned notation and syntax for modeling and are
critical for proper data exchange and communication. No automated model validation has
been implemented in this work because the effort required is beyond this work’s scope. As a
result, the validation is carried out manually. In addition, an aircraft-system-specific glossary

has been created to define the model’s acronyms (see fig. A.3).

In addition to the modeling notation described above, a system oriented notation is required

to provide a modeling language extension, that considers the Sol, which is the PSC in the
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context of aircraft systems. This is accomplished through an ontology specification, which is

described in the following section.

5.1.2 Definition of System Ontology

The first modeling step is the definition of the system ontology. This is due to the fact that
syntax rules and constraints are defined at this stage and must be followed throughout the
modeling process. However, this definition is a continuous and recursive activity that must

be adjusted all across the analysis and modeling stages.

Since the CPACS representation has not (yet) defined any internal structure for aircraft
systems, this work ontology considers it only for integration into the CPACS schema. This
is the "genericSystems" node under "vehicles" > "aircraft" > "models" > "Systems." This
is also the starting point for the modeled ontology depicted in Figure 5.2. Therefore, a UML

profile diagram is used to extend SysML notations with stereotypes.

Profile Diagram Cabin Ontology [ ‘ Ontology ])
«stereotype» E
System «stereotype»
[Class] «stereotype» +impacts +impacts AircraftCabin
CabinSystem [Class]
[Class]
+isIntegratedin |1
«stereotype» ®
genericSystem 0.*
[Class] «stereotype»
T CabinModule —/
[Class]
«stereotype» +interactWith attribut
A/C_System 0.* +Accronym: Term
[Class] «stereotype»
= AIC_Subsystem
+ATA_chapter : String o = ;Iasz «stereotyper B
+DAL " String B [Cass] Subsystem
" —
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[Class] «stereotype» AIC_Part
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assembles +isEncapsulated : Boolean [0..1] [Bement]
[Association] ? +Accronym: Term

Figure 5.2: Aircraft system ontology

The SysML metaclass and some of its elements are used to model the attributes of new
stereotypes (semantic) and their relationships with one another (syntax). The ontology’s cen-
ter element is the stereotype "A/C System", which is directly specialized from the CPACS
"genericSystem" stereotype. The SysML generalization relationship is used to implement this
specification (arrow showing in the direction of the general element). The ATA chapter and the
DAL are two properties of the AC System stereotype. As a consequence, all model elements
that are stereotyped by this (or inherited from an element stereotyped by it) have these at-
tributes by default. According to the ATA specification (see section 4.2), the system hierarchy

is represented by an aggregation relationship (white diamond on the including element) and
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the corresponding multiplicity, with the star marking the undefined upper boundary. "AC -
system", "AC_Subsystem", "AC _Component", and "AC_Part" (light blue element in fig.
5.2) are all part of this hierarchy.

To distinguish system parts regarding their physical type (electrical, mechanical, and data
parts), a generalization relationship is used. This improves the clarity and understanding of
modeled cyber-physical systems, where all three of these aspects are present. The "AC -
System" is one of the elements stereotyped as "Aircraft" because it constitutes itself a node
belonging under the aircraft node in CPACS (e.g. engines, wings, landingGear, etc.). The
composition connector (black diamond) defines this relationship, which differs from the aggre-
gation relationship in that the general element consists of at least one or more of the associated
parts. The SysML stereotype "Aircraft" is an extension (black arrow) of the SysML Metaclass
"class" and a specialization of the SysML stereotype "Block." All SysML original stereotypes

are yellow, while metaclass elements are orange.

This work focuses on specific aircraft cabin systems. For this reason, the general AC -
System is specialized in "CabinSystem" stereotypes. Not only systems, but also modules (e.g.
the PSC) that group different parts from different cabin systems, are relevant. These cabin
modules are parts of the aircraft cabin, as determined by the composition relationship between
the stereotypes "AircaftCabin" and "CabinModule." All cabin related stereotypes are colored
in green. Cabin modules "interact" with aircraft systems and are "integrated" into the cabin
using specialized association relationships. The latter are also used to demonstrate how the
cabin and cabin systems impact one another. Furthermore, the stereotype "assembles" has
been specialized from association relationship to specify how the various parts are assembled

inside the cabin modules.

The ontology depicted in figure 5.2 is more descriptive of the system’s structural aspects. It
is then expanded in stages to include analytical, functional, and requirements-related system
aspects (see fig. A.6, A.5, A.4 and A.7). The analysis is based on the modeling’s abstraction
level. Therefore, the stereotypes "Black-Box", "Grey-Box", and "White-Box" are defined to
specify the state of the analysis. Thus, the modeler can show which detail level in the modeling
is targeted in each view. Moreover, a precise analytical categorization is possible through the
usage of specific stereotypes. As a result, new stereotypes for the stakeholders such as "OEM",
"Maintainer", "Supplier", "Operator", "Integrator”, "Regulator", "Supplier", "Passenger",
and "Crew" are defined in the context of aircraft. A three-classification is used to separate
different types of system use cases. The "AC SystemUseCase" stereotype is specified from the
SysML use case element at the first level, and new attributes such as "status", "id", "story",
"operational value" or "technical feasibility" are created. It is distinguished between system
use misuse cases. The use cases are classified based on their deployment type, such as safety,
security, performance, maintainability, and functionality. The latter is of major importance
in this work since the aim is to depict and analyze the system’s functional aspects. For this
reason , the PSU-specific use cases are specified from this use case category. Similarly, the
requirements are divided into stakeholder needs, which represent the requirements from the

perspective of each stakeholder, and system requirements, which support the specification of
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the system and are defined at various stages of analysis. Attributes for system requirements
are created and can be filled in for each requirement in the model, such as level, creation
date, status, author, priority, verification method, or assumption. The system requirements
are divided into functional and non-functional requirements, with non-functional requirements

being mostly left out in this work.

As a result, an ontological framework for PSC modeling, that is oriented toward the context
of this work, is established. This ontology is then applied to all modeling activities. These
begin with a system analysis, which breaks down the context of the system at the outset. The

following section addresses the analytical approach used and the modeling results obtained.

5.2 System Analysis and Functional Architecture

The system analysis is the main contribution of this work to the already existing design
process. To create a consistent and traceable architecture, the elements of the emerging
system architecture must be derived from different analytical abstraction levels, where root
causes leading to each element are identified and analyzed. Furthermore, modeling a block-
oriented functional architecture allows for the separation of abstract analysis aspects and first

functional results.

The sections that follow describe how the analytical processes for generating the functional

architecture are applied to the passenger service channel using the proposed methodology.

5.2.1 Stakeholders and System Context Analysis

It is critical to begin with a stakeholder analysis since it enables system design that is closely
aligned with the needs of the concerned stakeholders. On the one hand, it demonstrates that
subsequent analysis and design are motivated by their interests and requirements in such a
way that the resulting architecture conforms to what the stakeholders truly expect. On the
other hand, it is part of the validation process that assists designers and engineers in ensuring
that the system is specified with the correct requirements by always tracing system elements

to the top-level stakeholder needs.

Figure 5.3 shows the results of the stakeholder analysis of the PSC. A bdd is used to analyze
and model these aspects. Initially, the stakeholders are identified by establishing a number
of actors based on preset stakeholder stereotypes. This allows the modeler to ask the proper
questions, such as who is the PSC’s operator, regulator, developer and so on. These questions

can then be explicitly addressed by naming the various actors.

The actors’ needs are specified using the stereotype "StakeholderNeed". This allows to define
in text form which aspects of the system are important from the standpoint of the stakeholders.
Their needs are traced back to the actors. If different actors have the same point of interest,

the same need may be traced back to them. For example, as an airline that offers a comfort
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bdd [Package] Stakeholder Analysis [ Stakeholder ] J

«StakeholderNeed»
Usability
Text = "An ergonomic,
intuitive and user friendly

interface for the usage of
all its functions "

«StakeholderNeed»

Text = "A great flight
experience by enhancing
passenger comfort and

entertainment "

/
~ «trace»

EngineeringFreedom
Text = "Low engineering
constraints and high degree
of freedom to enable
integration of technologies
and creative ideas "

\
«StakeholderNeed»
Assembly

Text = "Consideration of
assembly aspects during
the development to

Comfort

and weight"
\ «trace»

«StakeholderNeed»
Integration
Text = "Clear defined and arranged
interfaces with other context systems,
components or modules to facilitate
the integration and test process"

«StakeholderNeed»
OperatingCosts

Text = "Module low price

\%/
“

_
- / «
~ v _ _ — - «Operator < _
e - -~ Airline = — _ drace» S
«StakeholderNeed» «Passenger ~ T - «StakeholderNeed»
Safety Passenger A = Operability
Text = "To fulfill safety and N — - Text = "Reliable and
security requirements that R operational with long MTTF"
are necessary for . race» - \ —_
certification"” == — -
- . = - \ -
«Regulator» \ «trace»
SafetyAuthority(EASAIFAA \ e

«StakeholderNeed» N ~ | «CabinModule» «Crew» «StakeholderNeed»
Development&ProductionCosts «trace» ~ 4 “"‘:’Q‘I‘:‘ng” /‘Crew(cockpi(&cahin)€ ~«race» N Conﬁoll?'bili_ty and
Text = "Low cost for design, N N race» e ONtorig
development, manufacturing, N [N Text = "Condition
assembly, production etc.” L N I Sl _ — |easy to be monitored

T~ «race» N «race» — and controlled"
= Z i
T > dntegrator» Sl ;%e -7
OBV ~ «Maintainer»
«Developer» =~ ~ Maintenance Team
AC_Manyfacturer,_ - - N A
«ntegrator» ~ «Supplier» N atrace»
«Developer» ~ «Developer» N
«OEM» ~ «OEM» N
N .
EngineeringTeam < racer Supplier, «StakeholderNeed»
«Integrator» < \ Maintainability
t I
arace» , Production&AssemblyTeam N \ «trace» Text = "Easy to maintain, i.e.
/ A \ good accessibility, low
/ \«trace» ~ N maintenance time etc."
«StakeholderNeed» \ >

facilitate a rapid and cost
efficient manufacturing"

Figure 5.3: Stakeholders’ identification and definition of needs

service and adapts the price of flight tickets accordingly, the aspect of comfort is crucial.
The definition of

needs also assists in determining the interdependence of the various stakeholders. This is

Of course, this also applies to the passengers who are the PSC-users.

represented using a dependency relationship to link requirements not just to the primary but
also to related stakeholders during the traceability process. After identifying and associating
stakeholder needs, PSC-stakeholder requirements can be used to refine each of these needs.
However, since it is critical to involve stakeholders throughout the entire analysis and design

process, these requirements must be defined and adjusted on a continuous basis.

Some of the identified stakeholders with an interface (of any type) with the PSC are selected
for the context analysis that follows. The bdd in figure 5.4 depicts the modeled PSC context.
Passengers, cabin and cockpit crew, as well as maintenance, production, and assembly teams,
have been opted for as stakeholders. Furthermore, environmental elements that may have
an impact on the PSC are identified and linked. Qualification standards documents (such as
RTCA DO-168 for hardware qualification cf. [105]) are good references for analyzing which
environmental elements are included and whose influence must be tested in a later qualification
stage of the system life cycle. These elements are modeled using the SysML actor type

"EnvironmentalEffect".

The following analysis stage focuses on physical interfaces. The SysML stereotypes "Boudary
system" and "External system" are used to represent these. These elements are refined with

the help of blocks that have been stereotyped by the developed ontology. Aircraft systems
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bdd [Package] Context Analysis [ Context Analysis ])

«CabinSystem»
«Mechanical»

«BlackBox» _ wefine» @
Acs -T2
ATA _ch; '"ATA21-00-00' i
5 o :
AIC_System «CabinSystem» PSC_Environment
«Mechanical» -A
«BlackBox» arefine» 9@
OxygenSystem Oxygensystem r 1
ATA _chapter = "ATA35-00-00" l I

«Blectricaly Temperature Humidity
«BlackBox»
«AIC_Systerm»
PowerSystem

ATA _chapter = "ATA24-00-00"

| wetnes (]
= = >

«AIC_System»
«Data» PowerSystem

«BlackBox»
CommunicationSystem

ATA _chapter = "ATA23-00-00"

«BlackBox»

«Blectrical»
«A/C_System» crefine»
LightSystem i 9@

ATA _chapter = "ATA33-00-00" Li

«CabinSystem» Sand&Dust BlectricalVoltage
«BlackBox»
«Data»
«AIC_Subsystem» L «efiner >@ «CabinModule»
IFE_System \FE \ «WhiteBox»

= " «block»
ATA_ Section = "ATA23-33-00 -

«Passenger»
«CabinSystem»
«Data» Passenger
«AIC_Subsystem» arefinen @
«BlackBox» | T T T T~ ~ >
CcMsS Cms
ATA_ Section = "ATA23-73-00" «Crew »
Crew(Cockpit&Cabin)

«CabinModule» | «refine» _ > O@HSC /% «Maintainer»
«Mechanical» |— «Integrator» Maintenance Team
«BlackBox» «OEM»

OHSC Production&AssemblyTeam

Figure 5.4: Context Analysis of the PSC

iFE_System

(e.g. oxygen or power) or subsystems (IFE, CMS) that have a mechanical, electrical, or data
interface with the PSC are specified. At this stage, the ATA chapter attribute is crucial
for analyzing the PSC’s interaction with the various systems. The use of this attribute is
especially important for an analysis of a cabin module like the PSC, where components and
parts of different systems with separate ATA chapters are integrated together in the same
module. The OHSC cabin module, into which the PSC is integrated, is also depicted as a
boundary cabin module. The analysis stereotypes for each block are defined and continuously

adapted to keep the model-user up to date on the representation details stage.

The analysis modeled in the bdd in figure 5.4 only describes the PSC context elements and
their attributes. The interfaces with them have yet to be specified. Thus, an ibd is used to
represent the PSC turnover and to depict its exchange of diverse types of flows (e.g. material,
data or energy) with its context (see fig. 5.5). However, it is important to note that at this
stage of the analysis, the PSC is still considered a black-box, which means that the internal

aspects of the module have not been depicted yet.

The created actors and blocks for interacting contextual elements are imported into the ibd
to accomplish this. The CSM tool generates part properties for each of these blocks automat-
ically. Both the PSC’s and external elements’ interfaces are specified with SysML’s "proxy
ports" and typed by SysML’s "interface blocks". A proxy port is a port that defines the char-
acteristics of owning blocks or internal parts that are accessible to external blocks through
external connectors to the ports. It does not define distinct components of owning blocks or
internal parts. An interface block is the only way to type it [106]. The same interface block
can be used to type various ports. The gas output interface, for example, is used by both

the oxygen and the air conditioning systems. The flow direction is also determined by the
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interface block through the specification of a flow property. Because SysML does not allow
actors (in this case, "passenger" and "PSC Environment") to have ports, interface blocks can
only be applied to blocks. For this reason, these elements are directly linked to unspecified

ports.

ibd [Block] PSC_Turnover [ PSC_Turnover ])

PSC_BlackBox : PSC

acs : ACS [ Psc : GasOutput IF > acs : Gasinput_IF MechanicalForce MechanicalForce ohsc : OHSC
) <5

ox : OxygenSystem

ohsc : Mechanical_IF

ox : Gaslnput_IF

#‘E psc : GasOutput_IF

cms :CMS

>
Oxygen

psc : Mechanical_IF

Audio,
Light,
Oxygen,

cms : BlectronicData_IF]
>

Air «Passenger» -2
g :Passenger

- psc : BlectrgnicData_IF
<

>
DataSignal DataSignal

ife : IFE_System ggsc : ElectropicData_IF
= <

DataSignal

ife : Eec‘omcDa(a_lF

DataSignal ot i
< 3]

<
Sand&Dust env: PSC_Environment

pw : Supplylinput_IF &

<
Water

pw :PowerSystem Ligpsc : SupplyOuptut_IF

BlectricalPow er

>
>
Light

Figure 5.5: PSC’s turnover and interface specification

The flow items (such as electrical power, data signal, or oxygen) are modeled using SysML’s
"flow specification" to specify the flow between the PSC and external elements. They are
applied to the connectors in the corresponding flow directions. The CSM tool checks whether

the flow type and direction match the previously defined interface blocks.

Similar to the stakeholder analysis, context requirements are specified based on the described
analysis. Hence, each interaction with the external elements necessitates the use of a specific
interface, which is picked out in the corresponding requirements. This describes how the PSC
should be designed so that it interacts perfectly within its context. All gathered requirements

serve as a starting point for the deviation of the system use cases intended in the next step.

5.2.2 Derivation of Use Cases from Top-Level Requirements

As previously stated in chapter 3, this work’s methodology employs a top-down analysis
approach, which means that the system’s top-level requirements are defined first. The use
cases are defined and refined based on the required functions to accomplish the system’s goals.
This results in the system’s functional specification. However, in the case study presented in
this work, the Sol, i.e. the PSC, is a module that groups components and parts from various
aircraft systems. As a result, there are several systems whose use cases partly include the
PSC. To determine which use cases are relevant for the PSC, top-level cabin requirements
are considered, since all PSC functions are cabin functions. These requirements are made
based on simple assumptions and are not derived from a real aircraft specification. They are

shown in the requirements diagram in figure 5.6. Each of these requirements refer to the main
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functions of each involved system and only those use cases that pertain to the PSC being

further analyzed and modeled.

req [Package] Requirements [ Cabin Systems ] J

«requirement>
Top-Level Cabin Requirement

«FunctionalRequirement «FunctionalRequirement» «FunctionalRequirement» «FunctionalRequirement» «FunctionalRequirement»
Individual Air Supply Oxygen Supply Cabin Management System Genral Cabin lllumination Cabin Power Distribution
Author = YassineG Author = YassineG Author = YassineG Author = YassineG Author = YassineG
Id ="TLCR.1" Creation Date = "4/16/21 12:24 AM +01:00" Creation Date = "4/16/21 1:18 AM +01:00" Creation Date = "4/16/21 1:23 AM +01:00" Creation Date = "4/16/21 1:39 AM
Level = Top Level Id="TLCR.2" Id ="TLCR.3" Id ="TLCR.4" +01:00"
Priority = low Level = Top Level Level = Top Level Level = Top Level Id="TLCR.5"
Rational = "Popularity in hot Priority = High Priority = High Priority = High Level = Top Level
climates” Rational = "Passenger safety in emergency | |Rational = "A/C Manufacturer experience” | | Rational = "A/C Manufacturer Experience" Priority = High
risk = Low case” risk = High risk = High Rational = "Required energy for
Source = ¥ AC_Manufacturer | |risk = High Source = ¢ AC_Manufacturer Source = ¥ AC_Manufacturer components functionality”
Status = validated Source = ¥ SafetyAuthority(EASA/FAA) Status = validated Status = validated risk = High
Text = "Individual air outlets Status = validated Text=" Text = "The following functions shall at least be Source = £ AC_Manufacturer
shall be offered as an option” Text = "Oxygen shall be supplied for the The Cabin Management System shall considered for the design of the lights system: Status = validated
Version = 1 passengers within the cabin in case of: provide functions and services related to R IRiination with full colour cepable Text = "The following functions shall be
+ Cabin decompression passenger address, cabin crew lighting units and spot lights, lavatory lighting with at least considered for the design of the
 Post decompression treatment (first aid) intercommunication, pre-recorded full colour capable lighting units, passenger reading | | cabin power distribution:
« Therapeutic treatment " announcement and integrated Boarding lights and attendant work lights, scenario « Electrical power distribution to cabin
:'/enfyMeﬁh;)d ST music, passenger lighted signs, development, fine tuning, lighting units addressing ?Lstems snd equ\pm'en:i.E
O passenger Call, reading Light, cabin and lighted signs and indications including lavatory e i
decompression signaling, evacuation occupied signs, No Smoking signs, Fasten Seat gpbOpS' oy ?qu'pme"( and furher
signaling and cabin smoke signalling Belt signs, Retur to Seat signs, PED signs, e e
5 3 3 3 « Wiring protection: Over current, Arc
verifyMethod = Test Lavatory Call Light, Area Call Panel, Smart Fault Detection, Ground Fault Detection
Version = 1 Information Signs. « Power efficiency by power
verifyMethod = Test management and shedding”
Version = 1 verifyMethod = Test
Version = 1

Figure 5.6: Top-level cabin requirements as a starting point for use case analysis

The previously defined stakeholder and context requirements are important for determining
which functions and thus use cases are relevant. Relating functions are identified and further
developed in the external system’s use cases. Included are both functions that contribute to
the stakeholders’ needs satisfaction and those that are satisfied via interaction with contextual
systems. After analyzing these PSC’s functions, it’s clear that the majority is related to the
cabin management system. Because Fisher thoroughly analyzed this system and elaborated
on its use cases in his research (cf. [107]), several of them are incorporated into this work.

Thus, the use cases that intersect with the PSC’s functions are identified.

Use case diagrams with corresponding elements and relationships are used. For instance,
figure 5.7 illustrates how cabin management system use cases (derived from Fischer’s work)
are analyzed in order to generate PSC use cases. The system use case "provide cabin services"
is broken down into multiple use cases that must be combined to obtain the use case. This is
depicted through "include" relationships. Use cases, that are not required for the parent use
case’s realization but add functionality to it (for example, the use case "provide comfort"), are
modeled using the "extend" relationship and corresponding extension points. The actors who
interact with the system in order to realize specific use cases are assigned to the corresponding

use case using the "association" relationship.

Each use case is then refined in its own use case diagram, as illustrated in figure 5.7 for the
use case "provide communication and connectivity". Furthermore, this one is divided into
use cases until a PSC-related use case is identified. PSC use cases are highlighted in green to
distinguish them from the rest, as demonstrated in this example for the use cases "provide

recorded announcements" and "provide boarding music". Another way to differentiate be-
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uc [Package] CMS_UseCases [ Cabin Management System Top Level ]J
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Figure 5.7: CMS Use Case analysis and derivation of PSC Use Cases

tween use cases is through the use of applied stereotypes defined in the use case ontology. As
a result, these particular use cases are denoted by the stereotype "PSC UseCase". Moreover,
using the generalization relationship, the PSC use cases are connected to the superordinated
system use cases. As illustrated, the PSC use cases are included within the frame of both
the PSC and the CMS. This is because they describe the functions of both of them, which
demonstrates the functional interconnection between the cabin module and the external sys-
tem. This approach is applied to all external systems and all PSC use cases are identified.

Finally, these are organized in a separate diagram (see Appendix fig. A.8).

The use cases illustrate the various functional scenarios for the PSC’s use. They encompass
all functions that a PSC module should perform in conjunction with external systems and
actors. Therefore, these use cases are conducive to refinement in accordance with functional
requirements. It is essential to determine these requirements as part of the PSC’s func-
tional specification. The resulting functional architecture should then be traced back to these

requirements in the following stages. The requirements are modeled using the stereotype
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"FunctionalRequirement" in a requirements diagram (see Appendix fig. A.9). Moreover, the
FAS method takes as input the modeled use cases and their associations with the various
actors. The following section describes how these use cases are refined and how a functional

architecture can be generated.

5.2.3 Application of FAS-Method and Definition of Functional
Architecture

This work employs the FAS method to generate a functional architecture, that is independent
of any technical solution or implementation. This makes PSC or similar systems difficult to
implement, because a standard variant has been established over time. Therefore, it is even
more intriguing to apply the method to such Sol in order to investigate the core functions of

the system and enable new function-oriented visions for these systems.

First, an activity with the same name is created for each of the identified PSC use cases. All
created activities are brought together in a bdd with the goal of decomposing PSC function-
alities into required subordinated activities. At this stage, only the hierarchical definition of
these activities is required, not how and in what sequence these activities interact with one
another to realize the functions. Because there is a large number of resulting activities, these
have been subdivided into numerous bdds to maintain model clarity. For example, the bdd
in figure 5.8 displays the results of a functional analysis of audio use cases. The use cases
"provide recorded announcements" and "provide recorded boarding music" (see fig. 5.7) are
now subdivided into the same actvities "receive audio signal," "process audio signal," and

"provide acoustic signal."

bdd [Package] Analysis [ Analysis (Audio) ] J

«activity»

Provide Service F

! !

«activity» «activity»
Provide Audible Indications for Emergency Signaling provide crew announcements to PAX

«activity»
process audio signal

«activity» «activity»
Provide Cabin Crew Announcements to PAX Provide Cockpit Crew Announcements to PAX
«activity»
receive audio signal

«activity» «activity»
receive audio signal receive audio signal
«activity» «activity»
process audio signal

process audio signal
«activity»

provide acoustic signal

«activity»
provide acoustic signal

«activity»
provide acoustic signal

«activity»
provide recorded audio

! !

«activity» «activity»
Provide recorded Announcements Provide Recorded Boarding Music

«activity»
receive audio signal

«activity»
receive audio signal

«activity» «activity»

process audio signal

«activity»
provide acoustic signal

process audio signal

«activity»
provide acoustic signal

Figure 5.8: Decomposition

of PSC functionalities into separate activities (Audio)
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In this work, the FAS plug-in for CSM is used to automate the application of the FAS method.
In the first step, the plug-in assists in modeling the activities that have already been created
in activity diagrams for each use case. It also creates swimlanes with FAS "1/0" partitions
(cf. section 2.4) for each of the external actors or systems that interact with the PSC or
are involved in the realization of each specific use case. This is identified by the automation
plug-in through the use of created association relationships in the use case diagrams. The
created activities are then allocated in different partitions. The I/O partitions are reserved
for activities that serve as a means of interacting with the outside world. All remaining
activities that describe system functions are assigned to the empty partition. Following that,
the activities are linked using "object flows" and "activities pins" to describe the inputs and
outputs of each function as well as their sequential interaction. The I/O partition activities
have an empty input or output pin that describes the flow exchange with the corresponding
external element. For example, the activity diagram created for the activity "provide recorded

announcements" is shown in figure 5.9.

(act [Activity] Provide recorded announcements [ Provide recorded announcements ]/| D
«l/O» «l/O»
CMs Passenger
incoming audio signal
:receive audio
signal
audio data signal
audiidata signal
: process
audio signal
T
audio data signal Vv audio data signal
: provide
acoustic signal
acoustic noise
- J

Figure 5.9: Functional behavior for the activity "provide recorded announcements"

After applying this to all functional activities, the FAS plug-in can be used to automatically
initiate functional groups. It generates a "functional group" element for each of the I/0
partitions and links it to the activities that are allocated in those partitions using the "trace"
relationship. Thus, I/O functional groups for the PSC are "I/O AirConditioningSystem",
"I/O CabinManagementSystem", "I/O Oxygen System", "I/O Power System", and "I/O
Passenger". In addition to this, a "system" functional group is also created and traced to the

superordinate activities.

However, no functional group has been assigned to the activities allocated in the empty par-
titions yet. As a result, these activities are examined in terms of their functional correlation.

Based on this analysis and some of the heuristics (described in section 2.4), the new func-
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tional groups "Data acquisition", "Mechanical actuation”, "Air control", "Oxygen control",
"Power distribution/transformation", and "Signal processing" are defined and linked to the
corresponding activities. The plug-in also automatically creates a dependency matrix to dis-
play and manage the relationships between functional groups and activities. The results of

the PSC’s functional matrix is shown in figure 5.10.
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Figure 5.10: Dependency matrix between PSC’s functional groups and corresponding activi-
ties

Following that, "functional blocks" are formed from each functional group, and "flow spec-
ifications" are assigned. To do this, the FAS plug-in finds all unconnected activity pins in
the I/O partitions and assigns each one a flow property. Since the activities are linked to
functional blocks (through the tracing mentioned above), the corresponding flow properties

are automatically defined for the functional blocks’ ports (as a flow specification).

The reason for this specification is because PSC’s functional architecture is designed to be
expressed in block form. To allow this depiction, a "functional system context" is also initi-
ated. It encompasses both the "system" functional block (derived from the "system" function
group) and the external actors, with both constituting its parts. Finally, by starting the
creation of internal block diagrams, the functional architecture can be built. The plug-in gen-
erates part properties for the "system" functional block, each one corresponds to a function
block. It also creates ports (depending on the selected SysML version: flow ports for v1.2
and proxy ports for v1.3) for each block that is specified by previously generated flow require-
ments. Figure 5.11 summarizes the repository representation of the FAS elements generated

during the application of this method to provide a good understanding of the FAS elements.

The only manual task is connecting the ports to one another and to the external actors using
SysML connectors. Figure 5.12 depicts the outcome for the PSC’s block-oriented functional

architecture.
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Figure 5.11: Repository representation of the FAS elements
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Figure 5.12: PSC’s block-oriented functional architecture
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The functional representation of the PSC does not consider any technical solution for im-
plementing the functions. At this point, there is a complete separation of function and
implementation. Making this the first "functional" solution to the requirements derived from
the system analysis, as it already considers many architecting actions and decisions that have
been made to create this solution. The next step involves pursuing system architecting ac-
tions in order to create a "logical" solution. The following section describes how the resulting
logical architecture is specified and linked to the functional architecture that has already been

obtained.

5.3 Logical Decomposition and Allocation

To meet many requirements identified during the system analysis, the functional architecture
proposes an interaction of different functional blocks with corresponding activities. This is the
first architectural task that has been completed in this work. To complement it, the system
must now be logically decomposed into components capable of realizing these functions via
logical interaction and specific behavior. The following sections present the main modeling
activities that are carried out in order to create a logical architecture and enable the allocation

of the functional system abstraction into the logical one.

5.3.1 Definition of Base Architecture

The structural context of the PSC is prepared before starting the modeling of the PSC’s logical
architecture. A bdd is used to depict the hierarchy of the PSC’s context at an aircraft level and
is shown in figure 5.13. An aircraft block is created and decomposed into an airframe, a power
plant, systems, and a cabin. The external systems of interest are represented as stereotyped
blocks with relevant properties using the generalization relationship. The remaining aircraft
parts will not be modeled further because this work only expands on the systems that interact
with the PSC. The depicted external systems are the same model elements that were used in
the context analysis (see fig. 5.4), but in a different view (following the segregation between
view and model repository, cf. section 2.3.2). The interacting systems are organized in
separate hierarchical levels. For example, light or power systems are situated on A/C system
level whereas CMS and IFE on A/C subsystem level. The specialization of some systems
from the "CabinSystem" block creates a further distinction between cabin systems and other
external systems. The property "Interact With'" can be used to detect cabin systems that have
an interface with the PSC (e.g. Water/Waste has no interface to the PSC). In addition, the
cabin is made up of various cabin modules such as the PSC itself (in green) but also galleys,
lavatories, seats, and an OHSCs. This representation allows for cabin’s reconfigurability
by allowing the addition or removal of modules to create new cabin layouts. Furthermore,
the (*) multiplicity used has no effect on the number of these modules and doesn’t set any
constraints. Thus enabling modeling flexibility. Hence, a good platform is created as an

important foundation for future logical architecture modeling activities.
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Figure 5.13: Aircraft hierarchical structure as a context of PSC’s logical architecture

A base architecture is used as a starting point for the logical analysis, as previously described

in the methodology section. The previously presented PSC and external cabin system archi-

tectures (see section 4) are used for this purpose. A hierarchical representation of the PSC

structure is generated using a bdd to model it as shown in figure 5.14.
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Figure 5.14: PSC’s hierarchical logical structure

The PSC’s pecularity as a cabin module is that it combines components from various aircraft

systems. Each of these systems is represented by a different set of blocks, colored depending on

the ATA subsection they correspond to. The relationship "assemble" created in the ontology

specification is used to depict this special decomposition of the PSC. Components that occur in

the majority of PSC configurations and variants (cf. section 4.1) are obviously represented and

the significance of each component is defined by the multiplicity. On the one hand, components

that are safety relevant and thus required to be existent in any PSC’s configuration, such
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xn

as the oxygen module and the lighted signs, are specified with a "1 to multiplicity. A
digital control unit is also required for data communication with external systems such as the
cabin management system or IFE. It is also required to provide electrical power to electronic
components. The "PISA" component presented in section 4.2 is a specific airbus configuration
of a control unit. On the other hand, components that can be configured based on the cabin
layout, the position of the PSC (which cabin class) or the wishes of an airline are specified
with a "0 to *" multiplicity. These are the individual air outlet, passenger call unit and

reading lights.

The specification of each component’s ATA-attribute (via the applied stereotype) enables
a good understanding of the cabin module’s complexity. Since the precise data regarding
the affiliation of each component is unavailable, a "XX" has been used to specify the ATA-
attribute. Thus, the specification demonstrates that the PSC not only has several interfaces
to external systems, as stated in the context analyses, but also integrates many components

from these systems as part of it.

Furthermore, determining the DAL level demonstrates the PSC module’s heterogeneity. Nor-
mally, the DAL is determined via an elaborate fault analysis. However, because this analysis
information is not available in this work, the specified values for the PSC component are es-
timated based on their criticality and are not taken from specification documents. The DAL
has been defined for each component using the DAL attribute defined in the ontology. As
shown in figure 5.14, the DAL of PSC components decreases in criticality from the greatest
(Catastrophic DAL A) to the lowest (No safety effect DAL E). This is because the safety crit-
icality of the many functions integrated into each component varies. For instance, the oxygen
module on the one hand, has a direct impact on the passenger’s chances of life in the event of
a failure. On the other hand, components that provide passenger comfort, such as individual
air outlets or the call passenger unit, have no bearing on passenger or aircraft safety in the
event of a malfunction. The integration of both types of components into a single module
demonstrates the PSC’s complexity, and its heterogeneity must be considered throughout the

technical design and integration stages.

The bdd representation does not show how these components interact with one another. An
ibd is created to model the PSC inter-components flow to complement the logical architecture
(see fig. 5.15). The ports that have already been created in the context analysis (PSC
turnover in fig. 5.5) are shown as bordery ports in the diagram. The oxygen and air interfaces
communicate with the oxygen module and individual air outlets. The control unit is connected
to remaining electronic components. It distributes energy and transmits data signals to the
other components (signs, loudspeakers, PAX call, and reading lights). The corresponding
flow specifications are then assigned to the connectors that connect the components to each

other.

Thus, the model-based logical base architecture references described in the theoretical chap-

ter is set. The different logical components must be now traced back to the results of the
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Figure 5.15: PSC’s logical base architecture

functional analysis. This means the functional architecture components must be allocated in

the logical architecture.

5.3.2 Logical to Functional Allocation

The digital thread and traceability throughout the modeling of system abstraction levels is one
of the major theoretical advantages of MBSE. At the same time, the developed methodology
places a high value on the agility principle and, as a result, fully separates functional and
logical system analysis and modeling. Thus, allocating functional architecture to the logical
one is required to achieve both the goals of traceability and agility simultaneously. It enables
defining the relationships between the two abstraction levels and ensuring that the functional

and logical results fit and cohere.

Figure 5.16 depicts an allocation matrix that is used to create the allocation relationships.
Each of the I/O functional blocks, as shown in the matrix, is assigned to the corresponding
logical component that is linked to this external system. The functional block "I/O AirCon-
ditiongSystem", is, for example, assigned to the individual air outlet, "I/O OxygenSystem"
to the oxygen module, and so on. The passenger is the only actor who has a functional inter-
face with the PSC. He or she interacts with the majority of the logical components because
they are mostly interface components (input of passenger command or output of component
reaction). Only internal components, which in this case are represented by the control unit,

do not interface with the passenger.
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Other (non-I/0) functional blocks can also be intuitively classified based on the thematic
correspondence between function and component. So, the "air control" is assigned to the
individual air outlet, the "oxygen control" and "mechanical actuation” to the oxygen module,
and the electrical and electronic functions, such as "signal processing", "data acquisition", and
"power distribution/transformation"”, are assigned to the control unit. Hence, all functional

blocks are assigned to logical components to carry out these functions.
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Figure 5.16: Allocation of functional block into logical components

Following that, once the allocation is determined, the functional and logical architectures can
be compared in terms of this relationship. In an ideal case, the functional flow in the ibd
connecting the functional blocks (see fig. 5.12) is the same as the functional flow between
the logical components attributed to them (see fig. 5.15). This means that the logical imple-
mentation corresponds to the functional model. This case applies to the PSC’s architectures
developed in this work. If this is not the case, the logical components can be changed or
modified to achieve a optimal fit. Furthermore, the activities associated with each functional
block are now used as a starting point for the behavioral refinement of the assigned logical
components. This is accomplished by developing new state machines, activity diagrams, and
sequence diagrams to specify the detailed logical behavior of each component. This step

exceeds the scope of this work and has therefore not been considered.

Finally, to get a sense of the main outcomes of the system architectures generated and pre-
sented in this chapter, the following section describes how these results are related to one
another. All at the same, it illustrates which elements and tools are used to enable model-

based traceability across system architecture.
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5.4 Towards System Traceability

Traceability begins during the modeling process. Many of the described modeling activities,
such as creating "trace" relationships between functional groups and FAS-activities or allo-
cating functional components into logical components, are the basis for system traceability.
However, some additional modeling tasks are required to supplement these and connect all of
the system elements in the model so that a model user can automatically interpret how the

analysis results evolved.

This process starts with a stakeholder analysis, in which the defined "stakeholder require-
ments" are traced back to the relevant actors. Likewise, context requirements are traced
back to context elements such as external, environmental, and boundary actors and systems.
After that, a "derive relationship" should be established between these and the functional
requirements defined based on the same foundation. The "refine" relationship is then used
to link the use cases that model the behaviors of these functional requirements to them. The
appendix shows the generated dependency matrices that were used to support the creation of
the relationships (see fig. A.10, A.11 and A.12).

At this point, there is a clear connection between use cases, requirements, and stakeholders.
The CSM supports the automated creation of generic tables to visualize these relationships. It
will automatically detect and display all linked elements. Figure 5.17 depicts this for the PSC
use cases. In this case, all model use cases are selected as an analysis target and filtered based
on the stereotypes they employ. Then, only those with the "PCS UseCase" stereotype are
displayed. Furthermore, the attributes "Id," "Associated Actor," "Top-level Requirement,"
and "General use Case" (which refers to the external system use case from which the PSC’s
was derived) are chosen to be showcased. The types of relationships are specified so that the
tool can automatically find all of these related elements. If there is no direct link between the
use case and the model elements, another alternative is to specify these as attributes of the
PSC use case when creating it (see fig. A.6). Thus, the model user can trace these resulting

use cases and gain a thorough understanding of the key factors that led to them.

Moreover, traceability activities have already been implemented as a result of the FAS plug-in
automated modeling. Thus, functional blocks are traced to function groups, which in turn
are traced to the activities that comprise the various use cases. A "thread" in the model
is now set up through the already established allocation relationships, allowing a tracing
from the logical architecture elements, through the functional architecture, and up to the
context analysis and requirements. This is an important goal of this work, which is realized
through the SysML tool’s automation support, which enables overall system traceability.
CSM provides additional tools for visualizing and navigating the model using a relation map
diagram. Essentially, the modeler can choose the context that defines the starting model

" "refine," "trace,"

element and the relation criterion that should be detected, such as "derive,
"assemble," or "allocate." The modeler also specifies the type of model elements (for example,
blocks, part properties, activities, use cases, etc.) that will be displayed in the relation map.

The tool generates a map automatically that can be customized based on the request.
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Figure 5.17: Use case traceability using a generic table

Figure 5.18 shows the outcome of the PSC cabin module’s generated relation map. Because
of the numerous linked elements, only a part of these are depicted in the figure. The logical
component "individual air outlet," which is a property of the PSC block, is traced up to the
top level requirements as an example. The map uses different colors to distinguish between the
various types of relationships. By clicking (+), all related elements that meet the predefined
criteria are displayed. The criteria also specify the direction of the relationship. Only the
existence of a relationship is considered relevant, when both directions are selected, such as

the present case.

This completes the system architecture’s creation and traceability. It was possible to model the
various abstraction levels in a very compact and linked manner. The architecture must then
be refined and extended in the following step. Model interfaces are processed and prepared
for this purpose in order to integrate the architecture in the digitization process described in
section 2.1. The following chapter describes how this is implemented and what benefits and

refinements can be obtained through integration.
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6 Integration of PSC’s Architecture in Cabin

Design Process

The integration of the system architecture into the cabin design process is intended to achieve
several goals on different levels. Obviously, the main goal is to connect this process to the
resulting architecture described in Chapter 5. The architecture was methodologically derived
from system analysis. Its elements are linked to each other and traced back to the require-
ments. The systems that are designed and installed in the aircraft must now be imported
from the system architecture model. However, there are several other reasons for the inte-
gration. First, the use of CPACS design data as a knowledge exchange platform is critical
for a consistent overall aircraft and system design. This interface should also allow for the
reconfigurability of the evaluation of new cabin layouts. Furthermore, not only can data from
the system architecture be used as an input in the design algorithm, but reversing it’s flow

also allows new analysis, design assessment, and optimization.

Therefore, the following sections will focus on the main integration aspects of the system

architecture. The approach used to implement the interfaces and data exchange is described.

6.1 Design Data Import from CPACS

In CPACS, there is a large amount of design data available. Since only cabin data is required
for the PSC system architecture, the relevant data is formatted to a simplified JavaScript

Object Notation (JSON)! file. Figure 6.1 shows an extract of some cabin data.

This data contains two major parts. The first one on the left side depicts the cabin layout.
It contains information about the various cabin classes (first, business, and economy) for a
specific design configuration considered in this CPACS file. These information are directly
related to the PSC architecture and provide new input that was not available through the
system analysis. Thus, the aisle number, the number of seats in each class, and the passenger
distribution ([1,1] in first, [2,2] in business, and [3,3] in economy) are identified. Because the
PSC performs functions for each passenger, this data can be linked to the PSC distribution
inside the cabin. Furthermore, the instantiation of the internal structure of each PSC can be

based on row specifications that differ from one class to another.

1JSON is an open standard file format and data interchange format that stores and transmits data objects
made up of attribute value pairs and arrays using human-readable text (or other serializable values). It
is a common data format with a wide range of data interchange functionality, including communication
between web applications and servers [108].
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Figure 6.1: Extract of cabin data from formatted JSON file

On the right side of the figure, there is information about the floor elements, which are the
modules that are installed on the cabin floor. According to this data, there are two galleys,
one lavatory, and a class divider in this CPACS cabin configuration. The main information
pertains to the positioning and size of each of these elements. However, the "number" value
indicates the element’s type. For example, different galley types exist according to different
standards (ATLAS?, KSSU3, ARINC?, etc.) that specify the galley and its inserts (GAINSs)
such as trolleys or ovens. The "number" thus points the types out, which are defined in a
different part of the same CPACS file. Initially, this information is not directly related to the
PSC architecture. However, it can be used for an MDAO. That would consider both modules
for a superordinate optimization use case. Section 7 contains more information on how this
data is used and how the MDAO is applied.

In a further step, importing this data from the JSON file to the system model is required. The
CSM tool provides numerous methods for importing external files in various formats. The
chosen method allows the use of executable behavior and run-time objects in activities during
the model execution. This enables an automated import, that can be easily restarted for new
data files. To accomplish the latter, the execution specification must begin at the aircraft
level. Therefore, an activity diagram "initializeData" is assigned to the "A/C" state machine
in the "A/C" block (see fig. 6.2). It consists of three activities that allow for the import

2 Acronym for Air France (AF), Air Portugal TAP (TP), Lufthansa (LH), Alitalia (AZ), Sabena (SN)

8 Acronym for KLM (KL), SAS (SK), Swissair (SR), Union Transport Arienne (UT)

4ARINC Standards describe avionics, cabin systems, protocols, and interfaces used by more than 10,000 air
transport and business aircraft worldwide [109].
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of cabin layout information as well as the use of the imported data to initiate architecture
objects. Only the import of layout data from a JSON file is covered in this section. Other

steps are detailed in the following section.

Figure 6.2 shows that the first activity "importCabinLayout" includes an activity diagram
with the same name. The goal of this activity is to access specific data values and specify them
in the system model as new run-time object values. External CPACS access is accomplished
through the use of a so-called opaque behavior known as "import CPACS". These are model
elements that are implementation-specific and can be included in CSM activity diagrams.
They use SysML to specify executable behaviors and support languages such as BeanShell,
Groovy, JRuby, JavaScript, Jython, and StructuredExpression. All opaque behaviors are
saved in the library under the package "Code" and can be used at various stages of the model
(see fig. 6.2). The javascript language is used in this work for the opaque behaviors because
its simple syntax is suitable for evaluating user interactions and for modifying, reloading, or
generating content. This opaque behavior’s programming code can be found in the list of
code (see code A.1).

act [Activity] intialzeData  intiaizeData ] J R
aHac
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- CabinClass(d
BT CabinClass
‘‘‘‘‘ tag : String
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n_rows lﬂ‘egef
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psc_LH_num : Integer
psc_RH_num : Integer

psc_id : String

''''' [® cabinModule : CabinModule [*]

''''' pax_LH : Integer
''''' O cabinlntitialized()

Figure 6.2: Specified activities and objects for the automated CPACS data import

© outout2: Integer
<& outoutl
i © outout3

- &8, import_CPACS( firstdass, businessdass, economydass ) ]

«readSelf»

& out firstdass

© outbusinessdass
& out economydass
vy initalizeArchitecture

The opaque behavior begins by specifying the JSON file name and location, followed by the
creation of a new content and completing it with the JSON file data. Afterwards, some
Java libraries are imported in order for a JSON parser® to be used during the behavior.
This behavior starts by generating three run-time objects of the type "CabinClass," which
is a model block (see fig. 6.2). This block represents each of the cabin classes (First Class

5A JSON Parser is used to format the JSON data into a properly readable JSON format, that can easily
view and identify its key and value [110].
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(FC),Business Class (BC!), Economy Class (EC)) and includes value properties that specify
these classes’ properties. "Tag" represents the class type, "n_pax" represents the number
of passengers per class, "seat pitch" represents the distance between two rows, "n_rows"
represents the number of rows, and "pax RH" as well as "pax_ LH" represent the passenger
distribution on each aisle side. At this point, it is important to emphasize that the run-time
objects can only be created, modified, or deleted when the simulation is still running. This
means, for each new execution, completely new objects are initialized with corresponding data
from the latest file versions. Therefore, the JSON parser extracts this information from the
specified location in the file. These values are then assigned to the three newly created run-
time objects as value properties. To accomplish this, CSM provides the "Action Language
Helper (ALH)" API, which includes numerous commands for manipulating block properties,
such as getting and specifying a structural feature value. No Magic provides an overview as

well as applications for these ALH commands [111].

The three run-time objects are the output of the "importCPACS" opaque behavior. These
are used to specify new properties of the A/C block. To implement this, the "addStruc-
turalFeatureValue" action is used. It accesses the local block "A/C", creates new "cc" part
properties and specifies them with the run times objects. Thus, the aircraft cabin classes
are now initialized and specified with the layout configuration data from CPACS. The PSCs
in each of these cabin classes must then be created as the next step. Their corresponding
internal architecture must be initialized and passed to Matlab, based on the imported CPACS
data. The next section explains how the interface between the system and design models is

realized in order to attain these goals.

6.2 Data Exchange with the Cabin Design Algorithm

The interface between the system and the design models is implemented in three steps. First,
the PSCs are distributed in each cabin class created in the previous step, creating the internal
architecture of each PSC. Second, the internal architecture is transferred to the design model
in Matlab. Third, Matlab is executed, and the design results are displayed. Each of these
steps require an interaction between Matlab and CSM. The following sections explain how

these steps are carried out.

6.2.1 Initializing the PSC’s Distribution in the Cabin Classes

Following the initiation and specification of the cabin classes with CPACS data within the
activity "importCabinLayout," each of these classes is now inducted with a distribution of
the PSC’s service functions. This occurs within the activity "initializeArchitecture," which
consists solely of an opaque behavior of the same name. Its coding content is shown in
the code list (see code A.2). The primary goal of this behavior is to analyze the cabin class
specifications and create PSC objects in each class as a result. To do so, a parametric diagram

must first be evaluated (see fig. 6.3). The constraint specified there allows adherence to the
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requirement that each seat row has one a set of PSC’s service functions on each aisle side. So,
the value properties "psc_ LH num" and "psc_. RH_ num" of the cabin classes are set to the
number of rows. Furthermore, this parametric diagram begins the identification of the PSC
based on the cabin class tag (PSC-FC if it is the first class). CPACS is responsible for both

the rows and tag properties in each cabin class object.

par [Block] CabinClass [ CabinClass ])

«requirement»
PSC Distribution

Id ="FR.16"

Text = "The PSC's service
functions shall be provided
in each row of the cabin
classes (FC,BC and EC)
7 and at each aisle side”

. «satisfy» -
«constraint»
psc_LH_num ) -
psc_LH_num :Integer ’— B (GO ET ~ -
{psc_LH_num=n_rows; L
psc_RH num=n_rows;
if (tag == "first")
{psc_id="PSC-FC";
}
psc_RH_num else if (tag == "business")
psc_RH_num :Integer {psc_id="PSC-BC";
}
else if (tag == "economy") '7'39 tag : String
{psc_id="PSC-YC";
}
. n_rows
psc_id : String psc_id [— J l r_— e nteger

Figure 6.3: Parametric diagram to constraint the PSCs based on a distribution requirement

Based on this, the opaque behavior knows how many PSC service function objects to create
and how to identify them. It also accesses the number of passengers seated in each row using
ALH commands, depending on the cabin class. The algorithm in the opaque behavior defines
the internal architecture of the PSC based on this information. As a result, the number of
reading lights, individual air outlets, and oxygen masks is linked to the number of passengers.
Other logical components, such as the control unit, signs, and loudspeakers, which are specified
by their unalterable multiplicity, are created automatically as part of the architecture. Finally,

the resulting PSC object is added as a part property called "cabinModule" to each class.

The PSC distribution must then be initialized in the design model. The reason for imple-
menting this step at this stage, is that information about the distribution of PSCs is available
at the cabin class level (in the "CabinClass" block) rather than at the PSC level. First, the
so-called classifier behavior of each of the CabinClass objects (specified as part of the A/C
block’s properties) must be triggered. A classifier behavior is a block property that specifies
which behavior (state machine, activity, sequence diagram, or opaque behavior) is the defining
one and will thus be executed first once this block exists. The CabinClass object’s classifier
behavior is the state machine "CabinClass" (see fig. 6.4). It first remains in the "idle" state
until all PSC objects of each class have been created at the A/C level (in the opaque behavior
"initializeArchitecture"). The final activity in the A/C block is "triggerClasses" (see fig. 6.2).
The content of this activity is depicted in the activity diagram on the left side of figure 6.4.
There, it reads each of the existing clabin classes and triggers them using the Call Opera-

tion Action called "cabinInitialized." This is a SysML element that causes the state machine
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to transition from "idle" to "initializeMatlab." The use of such Call Operation Actions is a

simple way to enable communication between different blocks during execution.

act [Activity] triggerClasses [ triggerClasses ]) stm_[State Machine] CabinClass [ CabinClass ])

«readSelf»

result
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result
[ - — - = S

args
|
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initialize Matlab

([entry 7 CabinGass
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Figure 6.4: Behavior of "CabinClass" to initialize the PSC objects creation in Matlab

The activity "CabinClass" shown in figure 6.4 is specified as an entry-behavior and is auto-
matically triggered when the state "initialize Matlab" is active. Its goal is to read the cabin
class’s properties ("psc. LH num", "psc_ RH num", and "tag") and generate PSC objects
in Matlab. The CSM tool provides an integration interface to Matlab, allowing the modeler to
use Matlab to evaluate expressions written in Matlab syntax in Cameo Simulation Toolkit. No

Magic’s manual contains detailed documentation on the Matlab integration in CSM [112].

Once the integration is established, the Matlab engine must be shared by the two tools.
Therefore, the command "matlab.engine.shareEngine" is used. Thus, CSM has access to and
can edit all variables in the Matlab workspace. In the figure 6.4, the three "opaque actions"
(with a Matlab logo) are used for this purpose. In this element, the specification language
"Matlab" can be chosen, and the Matlab syntax can be used. Based on the information
imported as described above, these actions generate three arrays of a specified number of
objects in the Matlab workspace (depending on the configuration of each class). These arrays
are referred to as "psc_first," "psc_business," and "psc_economy." The opaque action also
specifies the type "PSC" of the objects created, which is defined in a Matlab object script
(see code A.3).

Hence, the design model incorporates the architecture of the classes in terms of their PSC
composition. It is important to note at this point that this work only considers the PSC (since
it is the selected Sol). This integration, however, can be applied to all other cabin modules
in the same way (seats, galleys, lavatories etc.) to depict a realistic cabin architecture. The

integration then proceeds to the PSC level, where the internal structure of each PSC is
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transferred to the Design Model in Matlab. This is explained in more detail in the next

section.

6.2.2 Transferring the PSC’s internal Architecture to the Design Model

The final integration level, the PSC level, is essential for the transfer of each PSC’s internal
architecture to the design model. Figure 6.5 depicts the state machine that represents the PSC
classifier behavior. This behavior is executed for each PSC and can access the information
stored in it. The transition to the state "init" is triggered by the Call Operation Action
"cabinlnitialized" (in the activity in fig. 6.4). Thus, the activity "initPSC" can be triggered
to initiate the internal structure in Matlab. Each PSC was specified with specific data when it
was created (see section 6.2.1). This data is first read using the "readSelf" action and contains
information about the identification and logical components of each PSC. Using the opaque
behavior "detect PSC," (see code A.4) the class, aisle side, and PSC number are detected
from the ID (e.g. PSC-EC-13). This information is used in an opaque action (in Matlab
syntax) to specify the internal structure of each specific PSC in Matlab.

stm [State Machine] PSC[ PSC ]) act [Activity) init_PSC[ init_PSC ] J

" 2
idle «readSelf»
initPSC() result
> bj
init o

[ ;')xm_num =ALH.getValue(self,"oxm").le ngth;-

entry / init_PSC f :detect_PSC rl_num = ALH.getValue(self,"read").length;

au_num = ALH.getValue(self,"au").length;

out1 out3 out2

oxm_num rl_num au_num
ac_class side sc_nb Xm_num |_num u_num
(if (ac_class == 1) ‘\
psc_first(side,psc_nb).ID = round(rand()*10000*10000);

psc_first(side,psc_nb).rLight(1,rl_num) = readLight; jlaLie
psc_first(side,psc_nb).oxygenMask(1,0xm_num) = oxygenMask;
psc_first(side,psc_nb).airOutlet(1,au_num) = indivAir;

elseif (ac_class ==2)
psc_business(side,psc_nb).ID=round(rand()*10000*10000);
psc_business(side,psc_nb).rLight(1,rl_num) = readLight;
psc_business(side,psc_nb).oxygenMask(1,0xm_num) = oxygenMask;
psc_business(side,psc_nb).airOutlet(1,au_num) = indivAir;

elseif (ac_class ==3)
psc_economy(side,psc_nb).ID = round(rand()*10000*10000);
psc_economy(side,psc_nb).rLight(1,rl_num) = readLight;
psc_economy(side,psc_nb).oxygenMask(1,0xm_num) = oxygenMask;
psc_economy(side,psc_nb).airOutlet(1,au_num) = indivAir;

6

Figure 6.5: Initialization of the PSC’s internal Architecture in Matlab

end

After executing the system model in CSM and transferring data to the matlab model, the
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latter contains all relevant architecture information. These represent the input for the design
algorithm. The design execution provides results for the entire cabin. Only the PSC architec-
ture is imported from the system model in this case, whereas other systems and modules are
specified as algorithm inputs. Their properties (e.g. Size of galleys and OHSCs) are entered

manually in Matlab.

The data exchange between the two models is summarized in figure 6.6. It displays the
SysML model’s instantiated PSC objects in the CSM’s output window (1). The objects can
be geometrically placed in the cabin using Matlab’s predefined rules and algorithms. The
additional property parameters can be stored as attributes in the object-oriented model (2).
The graphical geometric representation of the corresponding objects in the cabin is used to
visualize the placement result in Matlab (3).
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: 5 DS
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psc_id : String PSCFC €] rLight ix1readLight
& oxygenMask Ix1 oxygenMask
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P . 2 €] airOutlet Ix1 indivAir
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Figure 6.6: Summary of the data exchange between the system and design model and graphical
representation of the results

Once the PSC’s system architecture has been fully integrated into the cabin design process,
the CPACS and Matlab interfaces are implemented, allowing for the necessary data exchange
with the system model in CSM. However, in order to evaluate this integration, the interaction
must be extended. The goal is to demonstrate how data exchange can provide relevant and
measurable benefits for system analysis and development. Furthermore, it should be possible
to implement and execute an MDO at this stage. The following chapter explains how these

goals are accomplished.
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Assessment and Optimization for Electrical

Design

Although the primary goals for modeling and integrating the system architecture have been
met, they must still be completed in order to concretize the integration’s significance. The true
benefits of modeling and integration can only be quantified with an assessment use case, that
demonstrates how model-based integration can provide a significant analytical contribution,

that would not be possible with single models.

Upon examining the models in terms of their disciplinary affiliation in the context of aircraft
design, three main domains come into sight. The first one being the aircraft preliminary design
domain. The cabin layout parameters extracted from CPACS, which is used as a knowledge
exchange platform in this work, result from this design domain. The optimization model (in
Matlab), when combined with the 3D-Models in Blender and the visualization models in VR,
represent the geometrical cabin design and visualization as a part of traditional mechanical
design, defining the second domain. Finally, the system architecture model created in SysML

represents the domain of system design and analysis.

So, the following step is to find a use case, which combines data from all three domains into
an integrative analysis. This assessment can be supplemented with an optimization case, in
which parameters from each discipline model are varied to optimize overriding design goals.
The following section presents the suggested assessment and optimization use case as well as

the physical fundamentals required for analysis and optimization.

7.1 Definition of Optimization Use Case

When it comes to trade-off analyses, the integration and installation of cabin modules in the
aircraft cabin is a very important design aspect. The integration affects not only the compo-
nent itself, but also its external systems and their physical properties as well as the aircraft
structure. Therefore, affecting the entire aircraft. These integration effects are significant
because they can have a direct impact on various types of mass and costs. Thus, many in-
tegration parameters must be considered and assessed in order to obtain the best solution at

the aircraft level.
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A use case involving the PCS’s interface with the power system is developed to elucidate
and exemplify these ideas. The consideration of this interface enables the investigation of
the PSC’s multiphysicality as well as the interaction between the three domains with the
corresponding models as explained above. So, in this use case, the goal is to identify the

parameters from different domain models that impact one another.

The cable material and cross section are considered configuration parameters and are used to
instantiate the logical architecture. The cable length is a property that is specified based on
the PSC’s design results in Matlab. Thus, the geometrical design outcome is used as an input

for the electrical power calculation in expression 4.8 (cf. 4.3).

This equation expresses the main idea and goal of the given use case. The electrical aspect,
represented by the power to be supplied from the SPDB, is brought into relationship with
the geometrical design aspect, represented by the cable length, which varies depending on the
PSC’s location in the cabin. Given that the PSC’s architecture imported from the system
model was generated in accordance with the CPACS layout data, the relationship in 4.8
provides a clear indication of the interaction between the three domains (represented by each
of the models).

On the one hand, the power required from each SPDB is directly related to the fuel con-
sumption and thus to the aircraft operating costs. So the goal is to minimize the power
consumption on the loads side. On the other hand, longer cable means more cable mass.
Meaning, the integration of additional cables into the aircraft, consume more space, assembly

effort, and maintenance. This leads to high production and operation costs.

The influence of the interfaces between the SPDBs and the PSCs on decreasing both the
power required and the cable length, is examined in this use case. The purpose is to define
an input variable that describes this interface and evaluates its influence on the mentioned
parameters. This use case represents a trade-off analysis, in which two objectives, cable length
and power distribution, are affected by a single input parameter. Therefore, multi-objective

optimization® is used to solve this issue.

The power distribution between the different SPDBs in the aircraft must be uniform in order
to minimize power. This means that no SPDB must supply more power than the other, so
that the power supply’s design point can be reduced. The standard deviation is used as a

function to represent this objective mathematically, and it is defined as follows:

k
1 _
N o N2
N=a T E 1(PSPDB i — Psppp i)?, (7.1)
1=

with k representing the number of SPDBs installed in the aircraft.

! Multi-objective optimization is a branch of multiple criterion decision making. It deals with mathematical
optimization issues, involving more than one objective function that must be optimized at the same time
[113].
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Psppp represents the arithmetic mean value of the SPDB power and is calculated as follows:

k
— . P i
Psppp = Liza Pseon kSPDB : (7.2)

This first objective function considers the power supply of each SPDB and the mean value
for all SPDBs. Since only the power supply is used as a parameter and all SPDBs are treated
equally, the function does not include any weighting or prioritization. The standard deviation
was chosen as an objective function for the power distribution because its a measure for the
variation and dispersion of the power values between the installed SPDB. If the required
power values for all SPDBs are close to one another, the standard deviation’s value is small.
Meaning, the objective function minima are sought in order to obtain the optimal power

distribution.

The cable length parameter is defined by the second objective function that considers all cables
connecting the PSCs to the SPDBs. The following equation is the corresponding objective

function:

k
Y2 = Z lcable i+ (73)
=1

This objective function considers only the cable length as a parameter. As with the first
objective function, ther is no weighting or prioritization included because all cables connecting
the PSCs to their corresponding SPDBs are treated equally. The sum of cable lengths was
chosen as an objective function because of the direct relationship between the cable length
and weight as well as integration complexity. This simplifies the objective function definition

by considering exclusively the cable length parameter.

The investigation of the influence of the SPDB-PSC interfaces is mathematically expressed
as an input variable for the optimization case. Therefore, the model depicted in figure 7.1

is considered. The cabin is separated into many sections. Due to the symmetric SPDB

cabin start X1 Xy x§—1 cabin end
| | | | |
I 8 | —-|.I ._|
| | et ERRERL B od

SPDB

Figure 7.1: Definition of input variable X of optimization case (Cabin layout modified from
[114])

distribution, the number of these zones corresponds to half of the total number of SPDBs

installed in the aircraft. The concept behind this division is that each PSC in this area is
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linked to the SPDB in that same area. The coordinates of the start of each new area are
specified as x1,x2,...,7x_;. These are the variables that allow the adjustment of the width of
each section. When thezarea changes, the SPDB interfaces to the PSCs change since the PSCs
are now in a different area. Analysis of all conceivable variants of these locations enables the
consideration of all interface possibilities. As a result, the SPDB-PSC interface is represented

by the input variable, which is stated as follows:

X = (.’L’l,xg,...,l‘g_l), (74)

k : number of SPDBs

x1 > cabin start
with . (7.5)
Tit1 > X4

xr_, < cabin end
2

The variation of X yields to a different cable output for connecting the two components, as
well as a varied cable length. Thus, it has a direct impact on the results of the two objective

functions in 7.1 and 7.3.

The optimization problem has now been outlined and is summarized as follows. In equation
7.4, the input variable X specifies the interfaces between the SPDBs and PSCs in the cabin.
The two optimization objectives y; and ys in 7.1 and 7.3 have a distinct outcome for each
variant of X. The power distribution between the various SPDBs and the total cable length
for all PSCs are specified there.

An algorithm is used to generate the optimization result. It facilitates the selection of X input
values that produce optimal results for y; and yo. The following section describes how this

implementation was accomplished.

7.2 Assessment and Optimization Algorithm

Matlab is used to implement the assessment and optimization algorithm. To begin, the
electrical components are prepared. These are the SPDB and cables that are created as new
objects initially. As previously indicated, the SPDB position remains constant throughout the
assessment and optimization process. Therefore, the design model’s parameters are imported,
and SPDB objects are initialized and placed using the SPDB configuration. The configuration
is defined in the system model in CSM, and parameters are associated with the Matlab model.
On the one hand, the cabin length is evenly divided and the SPDBs are distributed according
to the configuration’s specified number of SPDBs. On the other hand, the cable objects’
parameters specify the identification numbers of the SPDB and PSC that are to be connected.
The cable object coordinates are not mentioned since they are variable and are attached to

different components in each scenario (for a specific X value).
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After that, the algorithm generates the input variable X. It specifies a matrix containing all
potential values for the cabin division. To do so, it first imports the parameters for the cabin’s
start and finish locations from the design model. These are always the matrix row’s first and
last values. Then, using the binomial coefficient, it generates all possible combinations of

r1,22,...,2k_;. This one is defined mathematically in equation 7.6.
2

Ck =m0y, = (Z) = k:'(nnik)' (7.6)

The variable n denotes the number of items, here the cabin length, which must be divided.
For the binomial coefficient, a step of one meter is utilized to reduce the number of possible
values. Thus, if the cabin length is ten meters and a configuration of six SPDBs is examined

(i.e. three sections), the matrix contains 10 = 1000 possible combinations.

Following that, each row is filled with a single combination. However, the constraints asso-
ciated with these variables mentioned in 7.4 are not considered. Therefore, the algorithm
specifies and checks these constraints for each row of the matrix. When the criterion is not
met, the matrix’s associated row is deleted. Finally, the matrix has only valid combinations

and the input parameter is ready.

The algorithm then provides an iterative function with the SPDB and cable objects, as well
as the PSC’s from the cabin design, as inputs. Each iteration considers a single row of the
input matrix X (i.e. one cabin division variant). The function must then return the power

distribution and total cable length as an output.

To accomplish this, the algorithm evaluates each PSC’s position within the cabin and de-
termines, which cabin part it is located in. It sets the parameters of a related cable that
connects this PSC to the SPDB in that cabin portion based on this information. To simplify
the algorithm’s representation of cable length, only the x-coordinates of the PSC and SPDBs
are used to define cable length; 3D cable routing within the cabin is not considered. Finally,
all PSCs are connected via a cable object to one of the SPDBs. Each of these cables has
a specific length, which is employed to calculate the power output of the SPDBs using the
equation in 4.9. Following that, the power distribution and total cable length outputs can be

calculated according to equations 7.2 and 7.3 and assigned to the input row of X.

After completing this assessment for each iteration, each variant of the cabin division has
its own set of two objective values. The results for the objective functions are normalized
in order to provide simpler dimensionless results and to increase comparability. These are
then plotted along the x and y axes of the two goal variables, with each point representing
one cabin division input. The optimization process seeks to reduce both of these objectives.
Therefore, a pareto front? is produced to determine which X inputs result in the two objective

functions’ minima.

2The Pareto front is the collection of all Pareto-efficient solutions in multi-objective optimization. It enables
the optimizer to focus on a subset of efficient solutions and make trade-offs within that subset rather than
examining the entire range of all parameters [113].

84



7 Trade-off Study: PSC’s Architecture Assessment and Optimization for Electrical Design

The list of codes includes an implementation of the algorithm as Matlab code (see code A.5).
The algorithm was developed leveraging the integration results from the PSC described in
6.2.2 and various SPDB configurations. The next section summarizes the outcomes of each

configuration.

7.3 Assessment and Optimization Results

The use case provided in the preceding sections is separated into three scenarios. Prior
to discussing the outcomes of each scenario, the input parameters stated in each related
configuration are described. The configuration is generated by instantiating SPDB blocks into
the SysML model. Each instance of the electrical system is executed for each configuration.
These configuration specifies the number of SPDBs, the cable parameters such as cross section
and resistivity, as well as the PSC’s rating power. A parametric diagram is used to convey

the configuration parameters to Matlab (see fig. A.13).

The cable parameters and the rating power of the PSC’s control unit are constant for all
configurations. The aircraft is equipped with six SPDBs in the first configuration. The second
configuration evaluates the effect of a higher number of SPDBs (eight) on power distribution
and cable length. The bdd in figure 7.2 shows the parameters used in this configuration. The
third scenario is more realistic, as it incorporates other SPDB-supplied components (Galleys).
To accomplish this, the system model makes use of the configuration data stored in CPACS
(see fig. 6.1). Thus, each module is connected to the SPDB in accordance with its indicated
position in the cabin in the CPACS data. By specifying the type and size of the modules
installed (cf. section 6.1), the quantity of power that must be supplied can be determined.
Hence, the SPDBs attached to each of these modules have an initial power rating that is
evaluated in a parametric diagram (see fig. A.14) and added to the PSC’s computed power

rating in the assessment algorithm.

bdd [Package] 06_Analysis [ SPDB_Config ])

«block» [ ] «block» E «block» [ | «block» E
currentintensity = 10.0 A currentintensity = 10.0 A currentintensity = 10.0 A currentintensity = 10.0 A

ID=1 ID=2 ID=3 ID=4

ratingPower_PSU = 140.0 W
resistivity = 1.789E-7 O m
cableCrossSection = 1.5 mm2

ratingPower_PSU = 140.0 W
resistivity = 1.789E-7 O m
cableCrossSection = 1.5 mm2

ratingPower_PSU = 140.0 W
resistivity = 1.789E-7 O m
cableCrossSection = 1.5 mm2

ratingPower_PSU = 140.0 W
resistivity = 1.789E-7 O m
cableCrossSection = 1.5 mm2

«block» E «block» E «block» BE «block» 3]
currentintensity = 10.0 A currentintensity = 10.0 A currentintensity = 10.0 A currentintensity = 10.0 A

ID=5

ratingPower_PSU = 140.0 W

resistivity = 1.789E-7 O m
cableCrossSection = 1.5 mm2

ID=6

ratingPower_PSU = 140.0 W

resistivity = 1.789E-7 O m
cableCrossSection = 1.5 mm2

ID=7

ratingPower_PSU = 140.0 W

resistivity = 1.789E-7 O m
cableCrossSection = 1.5 mm?2

ID=8

ratingPower_PSU = 140.0 W

resistivity = 1.789E-7 O m
cableCrossSection = 1.5 mm2

Figure 7.2: Electrical assessment configuration of SPDBs
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Table 7.1 summarizes the main assessment and optimization results of the three considered
configurations. For each of these configuration, two outcomes are noteworthy: the correspond-
ing cabin division that results in the lowest possible cable length value (solution 1) and the
lowest power distribution value (solution 2). The corresponding normalized values for both
cable length and power distribution are shown for each solution. The value in bold represents

the lowest normalized value, being the optimal one.

Table 7.1: Summary of assessment and optimization results

Configuration| Cabin division (X) in mm Cable index | Power dis-
tribution

6 SPDBs S1:(4,000]20,000/31,000{36,000) -1.276 -1.196
S2:(4,000|17,000|27,000(36,000) 1.0242 -1.878

p— S1:(4,000|16,000(24,000[31,000[36,000) | -1.423 1412
S2:(4,000(15,000/24,000/29,000|36,000) | -1.283 -1.996

8 SPDBS and | S1:(4,000/16,000|24,000/31,000/36,000) | -1.423 -0.290

2 Galleys S2:(4,000| 7,000]23,000]33,000/36,000) | 0.385 -1.303

Figure 7.3 depicts the result of the optimization plot for the first configuration. The x axis
represents the cable length (here referred to as the cable index), while the y axis represents the
power distribution. Both values are normalized as stated in section 7.2. This is implemented
by dividing each value by the norm of a vector that includes all the configuration values. This
enables a comparison between different configurations. Each point (blue circle) represents a

distinct cabin division, denoted by an X value.

Configuration with 6 SPDBs: results for multi-objectives (power distribution,cable length) optimization
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Figure 7.3: Cable index and power distribution results for the various cabin divisions (config-
uration with 6 SPDBs)
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To help visualize the difference between the two results, figure 7.4 depicts the cabin division
graphically. The cabin arrangement depicted in the illustration, which is being used as an
example here, does not represent the one imported from CPACS. It merely facilitates a more
accurate visualization of the cabin divisions. As can be seen, the optimal cable length (solution
1) is defined by the SPDB being nearly in the center of each section. This is because the
algorithm makes an effort to minimize the distance between each PSC and the SPDB. On the
other hand, the best power distribution (solution 2) is shifted leftwards. This is because the
emphasis is mostly on connecting the same number of PSCs to every SPDB, which results in
an optimal power distribution. In both situations, the rear section is the shortest, owing to
the high level of PSC condensation in that region. The front part is the widest, due to the

fact that first and business class have a lower amount of fitted PSCs.

4000 20000 31000 36000 (mm)
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. - TS
Solution 1 =1 i !§ —
R & : 5 g
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Figure 7.4: Cabin division of optimal solutions for power distribution and cable index (con-
figuration with 6 SPDBs)

Figure 7.5 illustrates the optimization result for the second configuration. Due to the addi-
tion of two SPDBs to the previous configuration, the number of possible cabin divisions has

increased.

As can be seen, both values of cabin length and power distribution are reduced. The nor-
malized cable index was -1.276 in configuration 1 and decreased to -1.423 in configuration
2, whereas the normalized power distribution was -1.878 in configuration 1 and decreased to
-1.996 in configuration 2. This means that by adding two SPDBs, the power distribution is
improved and the cable length is reduced. Despite this expansion of the optimization objec-
tives, the costs associated with extra SPDBs are not evaluated, and the benefits of saving two

components may be greater than the improvement gained in this investigation.

The cabin division outcomes are depicted in figure 7.6. The comparative remarks for solutions

1 and 2 remain identical to those of the first configuration.
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Configuration with 8 SPDBs: results for multi-objectives (power distribution,cable length) optimization
i T [ i i

51— |
4 5 =)
T 3 -
g 3 o o
o o -
5} o o
E °ce8
2 Solution 1: min cable index o0 888 g
‘; 2= X=(4000,16000,24000,32000,36000) - = |
0 e} 5
2 . T
= 8 8 4~ a8 2 @0
2 g €fegass
q =l > 8
s Solution 2: min power distribution @8 o : Begggt®
fagy X=(4000,15000,23000,29000,36000) 2 s 4 5 B B o |
: = se8gBeo
] <] 2 . & 5
a =808, ggfse
“a - 00 g o0
“ & gogogs®
g sgEgl®
0— ° c : 8 =
B Ei g g °
8
A+ -
2 |
| 1 | | | 1
1 ] 2 3 4

1
f1 :cable index (normalized)

Figure 7.5: Cable index and power distribution results for the various cabin divisions (config-
uration with 8 SPDBs)
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Figure 7.6: Cabin division of optimal solutions for power distribution and cable index (con-
figuration with 8 SPDBs)

The final configuration incorporates the installation of two galleys within the cabin. These
are connected to the aircraft’s front and rear SPDBs. The front galley is rated at 25 kW, while
the rear one is rated at 50 kW. These values are based on the power consumption of the galley
in an A320 [115]. As illustrated in Figure 7.7, the cable index remains unchanged. This is a
natural consequence, as the location of both SPDBs and PSCs are identical to the previous
configuration. As a result, the algorithm’s produced cable object remains constant. However,
a deterioration in the power distribution can be observed with a normalized value of -1.303.

This is because galleys require far more energy than PSCs. Thus, the SPBDs supplying the
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two galleys have a higher rating power than other SPDBs, resulting in an asymmetrical power

distribution between them.

Configuration with 8 SPDBs and 2 Galleys: results for multi-objectives (power distribution,cable length) optimization
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Figure 7.7: Cable index and power distribution results for the various cabin divisions (config-
uration with 8 SPDBs and 2 Galleys)

An interesting aspect of the data can be seen in figure 7.8, where the cabin division is depicted.
For a minimal power distribution (solution 2), the cabin’s front and back sections are narrower
than the cabin’s middle section. Examining the placements of the PSCs in the cabin, one can
notice that neither of those two sections contains a component (the frontest PSC located at
7,353 mm and the rearest at 33,503 mm). This means that the power demands for the front
and back galleys are greater than those for the PSCs. Thus, the algorithm determines that
the optimal power distribution occurs when no PSC is linked to the SPDBs connected to the
galleys. Additionally, the two middle parts illustrate how the PSCs are distributed across the
four SPDBs in the center. Due to the fact that the first and business classes have less PSCs,
the corresponding section is larger than the one that supplies the majority of the economy
class’s PSCs.

When all three configurations are considered, it is obvious that the total rating power sup-
ply of all PSCs connected to the same SPDB correlates with the loss of power induced by
the connecting cables. Thus, the effect of the loss of power on the power distribution is

discernible.

The analysis results for the examined use case suggest additional pathways for meaningful

consideration. Addition of a new cable index objective that considers not only the cable
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Figure 7.8: Cabin division of optimal solutions for power distribution and cable index (con-
figuration with 8 SPDBs and 2 Galleys)

weight generated by the cable length, but also the integration and assembly in the cabin.
The aircraft’s front and rear sections incorporate more components (e.g. avionic) than the
aircraft’s center sections. Furthermore, the fuselage cross section is smaller, resulting in less
area for the installed components to be integrated. An extension of this use case’s trade-off
analysis is considering these integration features and evaluating the architecture configurations

regarding them.

Moreover, in this use case, the cable parameters remained unchanged. Given the inability to
discern the effect of the power loss on the power distribution, varying specific characteristics

(such as cable material and cross section) can focus attention on the cable power loss.

Chapters 5, 6, and 7 demonstrated how the PSC’s analysis, architecture and integration are
approached using the model-based methodology presented in this work. The following chapter
will discuss relevant outcomes from the PSC’s architecture definition and its integration into
the cabin design process. Additionally, it contrasts the methods utilized in this work with the

ones used in the other studies mentioned in Chapter 2’s literature review.
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This chapter is divided into three sections, that discuss the main outcomes of this work. First,
the methodology for system analysis and architecture modeling is examined. The knowledge
gained from the PSC modeling is then presented. The second section discusses the integration
methodology used to connect the resulting system architecture to the cabin design process.
It is contrasted with the integration approaches described in the chapter on literature review.
The model execution and simulation results are discussed. The final section focuses on the
evaluation and optimization results obtained throughout the selected use case. Characteristics
of the optimization are presented, as well as previously unconsidered aspects of cabin design
and system integration. Additionally, an overview of additional optimization possibilities is

given.

8.1 System Analysis and Architecture Modeling

It is difficult to evaluate or validate the approach of this work by comparing it to that of
others. Numerous aspects influence the methodological decisions. These are related to the
modeling objectives, the tool employed, the technical scope of the application use case, or the
desired level of modeling abstraction and detail. However, the PSC’s modeling results can be

examined in light of observations and assertions made during the modeling process.

The methodology developed leverages the strengths of each method. The extent, to which
OOSEM’s analytical and development approaches (such as enterprise model or test) are de-
tailed, is not necessary in this work. Due to the work’s emphasis on system analysis, archi-
tecture, and traceability, all of which match to the V-Model’s link tight, only OOSEM’s parts
pertaining to these elements were considered. This allowed for a reduction in methodological

complexity without compromising critical steps.

Obviously, referring to OOSEM and Abulawi’s method, results in a top-down approach being
considered in this work’s methodology. Its application to the modeling of PSC demonstrated
both the benefits and drawbacks of this approach. Beginning the analysis at the highest
level of abstraction allowed for a separation of the Sol context, its functional analysis, and the
logical synthesis from its components. Since each of these abstraction layers is independent, it
is simple to generate new architectures. For instance, if a better solution (i.e. an alternative
logical component) to implement some of the identified PSC’s functions exists, the logical
architecture can be easily exchanged, and the required allocation (of logical component to

functional block) can then, thanks to the realized traceability, be directly adapted. Or, if
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stakeholders’ needs evolve over time, necessitating the addition of new system functions,
the architecture on a functional layer can be changed and linked to the new requirements,
allowing necessary changes on the logical layer to simultaneously be identified and adapted.
Moreover, requirement specifications can be easily adapted to new system architectures due
to the traceability effort applied throughout the modeling process, which results in a causal

connection between all architecture aspects.

Another advantage of the top-down approach is a more complete awareness of the systems
value among its context. By beginning with an abstraction of the Sol as a black box, it
is easy to focus on all external elements that influence or are influenced by it. Thus, no
interaction between the system and its environment is overlooked, and all critical elements
and contextual requirements can be discovered and considered during the modeling of lower
abstraction levels. Moreover, once the system’s structure and behavior are specified as a
white box, the association of stakeholder needs with the resulting system design elucidates
the rationale for each architecture element. Since a base architecture is regarded as a starting
point for further refinement, many of its components may be unnecessary and incompatible
with the stakeholders’ and contextual requirements. This way, system architects can ensure

that their designs are responsive to actual needs and expectations.

However, during the modeling process, some shortcomings of the top-down approach were
uncovered. This is primarily due to the Sol type considered in this work, the PSC. Its
uniqueness as a cabin module renders it impossible to be characterized as a system in the
conventional sense, as it combines components from many aircraft systems. As a result, it
cannot be decomposed and examined hierarchically within its scope as a single system. This
created immense difficulties, particularly during the functional analysis. Many of the functions
integrated into these modules were specified as part of subordinate system functions during
the use case specification. To determine the role of the PSC or its integrated components
in relation to other external system components, an examination of each of these systems
required to begin at the top level. The top-down method then led to lower abstraction levels
at which the functionality of PSCs could be discovered. This was achievable solely in this work
for two reasons. Firstly, the functions of certain external systems, such as the oxygen or air
conditioning systems, were considered rather simplistically, implying that their required full
analysis was not performed. Secondly, Fischer’s work has been used to import the simplified
results for the cabin management system’s use case study. However, in a true architectural
design project, requiring thorough and precise analysis, this could represent an obstacle. Due
to a lack of information on the involved systems, obtaining the necessary information requires
considerable time and effort. Even if information were available, the module architect lacks
the expertise of all the various complex systems necessary to identify and comprehend the
module’s involvement and role within them. In this instance, a bottom-up approach may
be appropriate, as it enables the module architect to initiate functional analysis and provide

functional requirements for the module’s interface with external systems.

Both the benefits and drawbacks discussed previously highlight an essential fact about the

reproducibility of modeling other Sols. Because this work’s Sol is an integrative module com-
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posed of elements from various aircraft systems, the architecture is heterogeneous. Internal
components interact with one another infrequently, as they are primarily involved in interac-
tions with their corresponding systems. This has an effect on the modeling methodology, as
the emphasis is shifted toward the analysis and comprehension of the module’s heterogeneity.
The model ontology defined in this work has been adapted to identify specific component
attributes, such as ATA or DAL, and to comprehend the role and impact of each external
system within the PSC. This approach, however, is not as useful when it comes to analyze
a single system or subsystem (e.g. CIDS or CIDS director). In this case, a more sophisti-
cated behavioral understanding of the components’ internal interactions is critical. Additional
modeling activities, such as defining the system’s states, modeling functional scenarios with
an emphasis on each component’s role, as well as detailed exchange and communication via

activities and sequence diagrams, are then required to accomplish this.

Moreover, this work demonstrates that methodological reproducibility is highly dependent
on the MBSE tool used. In numerous steps taken to model the PSC’s architecture, the tool
played a critical role in achieving modeling benefits. For instance, the automated application
of the FAS method and the block-oriented synthesis of the functional architecture of the PSC
are primarily due to the CSM tool’s support. The effort required to implement the FAS
methods’ various steps and failure detection manually cannot be quantified in this work. This
effort might well be greater than the resulting benefits if a different tool were to be used.
Additionally, the model’s traceability is largely due to the tool support. The ability to use
SysML relationships and visualize them in a variety of formats is not supported by all SysML
tools. Manual creation of traceability diagrams and views can be counterproductive if the

modeling effort required and the affiliated error probability are too excessive.

Besides, the modeling performed in this work sheds light on new possibilities for system design.
The integration of disparate system components corresponding to diverse ATA chapters within
a single module provides an opportunity to identify synergies and intersections between these
distinct systems. The module is then the point of intersection from which this heterogeneous
interaction can be exploited. To gain a better understanding of these effects, consider the
PSC’s logical architecture. Due to the fact that the oxygen system, air conditioning system,
and cabin communication system are all integrated into the PSC, the latter can be used to
enable new decentralized interactions (e.g. for data communication or material flow) between
these components. For instance, if the CIDS director requires information about passenger
oxygen, the PSC can facilitate this exchange because it integrates both the control unit and
the oxygen module. These considerations can be extended to all cabin modules, assisting in
the optimization of both the cabin and system designs, as well as the reduction of installation

space and material demands.

8.2 Integration in Cabin Design Process

The methodology used in this work to integrate the Sol’s architecture into the cabin design

process enabled to accomplish the integration objectives. When communicating with both
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the aircraft design exchange platform (CPACS) and the Matlab-based cabin design and op-
timization model, the SysML system model serves as the connecting link between systems
analysis and design data. The automated use of CPACS data in the system model enabled
the emergence of a configurable system design with aircraft and cabin design parameters.
Thus, the intended objective of configuring and instantiating the system architecture using
aircraft design data, via a knowledge exchange platform has been accomplished. However,
the architecture results could not be transferred back to the CPACS platform due to the
CPACS schema’s lack of aircraft systems consideration. For example, quantifiable functional
system specifications and system properties, such as PSC rating power or cable properties,
are important information that should be shared via CPACS with involved aircraft designers
and engineers. This is unquestionably a meaningful extension of this work’s methodology,

once the CPACS schema has also been appropriately extended.

Furthermore, by transferring the architecture results to the Matlab design model, it is possible
to trace the cabin objects back to a detailed analysis. Both the cabin objects’ composition and
internal structure were imported from the system model. The realized integration extended
the causal relationship between the analytical derivation of the system architecture and the
cabin geometrical design that was missing in the initial process. Additionally, by transferring
cabin design data back to the system model, synergies between geometrical and system-
analytical parameters could be identified and exploited. This enabled the implementation of
a multi-domain optimization, using both models and a trade-off analysis, that considers the

objectives of different disciplines.

Converting relevant data to JSON-format simplified the interface’s implementation and data
exchange. The support for external languages in opaque behaviors, as well as the ability to
import required objects, such as the Json-parser, facilitated the rapid processing and import
of cabin data from CPACS. However, it is important to state at this stage that a direct
interaction with XML-based CPACS-files without intermediary is feasible. While processing
JSON-files in Javascript code specifications is unquestionably simpler, direct access is also
possible using the same approach with opaque behaviors. It simply requires more detailed
coding and effort to identify all pertinent cabin data. Furthermore, the Matlab interface was
implemented in stages throughout the model by sharing the Matlab workspace. Due to the
ease with which Matlab could be integrated into CSM, specifying and reading cabin objects
and their properties could be done directly from the system model. In parametric diagrams,
where the constraints are specified in the Matlab language, simple binding of values between

the two models was possible.

The Matlab interface could not be fully automated in the same way that CPACS is. This
is because certain elements of the system model require the cabin objects to be initialized
before the architecture emergence process can begin. Moreover, the Matlab script part, which
is responsible for optimizing the placement of cabin objects, requires input from CSM prior
to running. However, this communication automation between the two models is possible by
implementing synchronization signals that trigger the execution of the external model. This

is an extension possibility to automate models integration in future work.
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In contrast, a synchronized evaluation based on parametric diagrams and Matlab values is not
possible. This is because the SysML model’s associated parametrics for each block are only
executed at the start of the block’s execution. The issue arises when a new evaluation must
be performed following a parameter change caused by an action in the external model, in this
case in Matlab. The system model is unable to check for new values in this case because
its parametrics have already been executed via the parametric constraint. Throughout the
execution, only continuous value binding is possible. When continuous synchronization under
the usage of constraints is required, it is necessary to improve the parametric evaluation. For
this purpose, the integration of Simulink blocks into the SysML model is useful. CSM enables
easy integration of Simulink models, allowing for the implementation of this synchronization,

with the help of its various synchronization options/tools.

Just like the system analysis and architecture modeling, the tool used has a huge impact on
the approach taken for model integration. The interfaces to CPACS and Matlab implemented
in opaque behaviors or parametric constraints were possible for two reasons. First, the CSM
tool facilitates this by supporting external programming languages. This approach would
make it tremendously more challenging to access data from external models otherwise. The
second reason is the model execution capability, which is necessary for specifying run-time
objects, that are processed across multiple models. This approach is not possible if the tool
being used does not support model simulation. Thus, the integration capabilities of the tool

are the primary factor in determining the integration approach.

As stated in the literature review (cf. section 2.3.4), Vanderperren et al. state that SysML
and Matlab can be combined via either co-simulation or the use of an executable language.
In this work, both the tool and the application use case resulted in the latter approach. In
comparison to Chabibi et al., who take a similar approach but develop a separate DSL to
facilitate communication, this work requires significantly less effort. It was therefore possible
to avoid the specification of a DSL due to the integrated scripts in the opaque behaviors.
Thus, data could be exchanged without errors only by using the same concrete syntax between
Matlab and SysML, which is guided by the ontology and modeling guidelines developed here.
Additionally, this work did not necessitate detailed synchronization between the two models.
However, if this were the case, due to the identified inability to use parametric diagrams, a
co-simulation would be meaningful and is comparable to the use case presented by Johnson
et al. (cf. section 2.3.4).

Furthermore, the abstraction level of the system modeling has also an effect on the integration
approach. The SysML and Matlab models in this work can be classified as belonging to an
intermediate abstraction level. On the one hand, more detailed system development typically
involves the use of higher-fidelity models for specific domains. On the other hand, other
models, platforms, and tools are used to consider the system’s complete life cycle at a higher
abstraction level. In this case, the OSLC exchange format presented in the section 2.3.4

or semantic web technologies (SWT)! are more appropriate means of facilitating information

!Semantic Web technologies are intended to describe and link data in a manner comparable to how traditional
web technologies define and connect web pages [116].
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exchange across different system life cycle models. This is an important extension of the
integration use case discussed here, which is essential for the development of model- and

knowledge-based system life cycle analysis and design.

Finally, it is critical to discuss the execution time of the models as an integrating factor. The
models were able to emerge and communicate with one another in a very short period of time
(less than one minute). This is advantageous, as it enables system architects and engineers
to rapidly configure, design, and evaluate systems based on different models. However, it
is crucial to emphasize at this point that the use cases considered in this work, as well as
the selected Sol, are significantly less complex than those for large aircraft systems. The
time required to complete the system model and integration can be significantly longer. This
effect will need to be evaluated in future work. Additionally, the model scope used in the
execution includes all data generated during the system analysis and specification. This can
be minimized because not all of this data is required for external communication. This has
a sizable effect on the simulation time as well. Therefore, a method for reducing this data is

critical to consider in future research.

8.3 Architecture’s Assessment, Optimization and Trade-off

Analysis

The objective of the architectural assessment study presented in chapter 7 was to demonstrate
the benefits of emerging system architecture and its integration into the cabin design process.
To accomplish this, several facets of the practical usefulness of the system architecture and
its interaction with the design process models were depicted using the chosen use case. The
latter aimed to evaluate interdisciplinary interactions by utilizing the information obtained
from architecture integration into the design process. Therefore, the cable length objective
function was chosen because it incorporates information about the geometric placement of the
PSCs and SPDBs. It also enables the architectural interfaces between two distinct systems,
namely PSC equipment and the power system, to be evaluated. The objective function of
power distribution was chosen to determine the effect of equipment location on the required
power supply. It also considers the power loss which is directly related to the interface linking
the SPDBs to the PSCs.

One usefulness aspect is the realization of a multidisciplinary design optimization, that treats
each model as a representation of a distinct domain. The fact that the various models inte-
grated into the cabin design process are affiliated to distinct disciplines, enables to combine the
system analysis according to systems engineering activities with other disciplinary domains.
The disciplines considered in this work include the system analysis and design (using SysML
and CSM), the geometrical cabin design (using Matlab), and the preliminary aircraft design
(extracted from CPACS). The optimization was carried out using the relationships between
the parameters in each domain. The PSC’s system architecture was instantiated using several

of the cabin design parameters imported from CPACS, such as seat distribution and cabin
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class configuration. Other parameters, such as galley type and location, were associated with
power system instantiation, as this had an effect on the SPDB power supply needed for the
galleys in the third configuration. System architecture data, such as the PSC distribution
within each cabin class, has an effect on the geometrical cabin design result in Matlab. Addi-
tionally, the location of each PSC created by this cabin design is related to the cable length,
which affects the cable’s power loss. This demonstrates that the three models’ parameters
are closely linked and have an effect on one another. This impact is evidently included in the
optimization process, as these parameters are either considered directly (e.g. cable length,
galley type and location) or indirectly (e.g. PSC distribution and position in the cabin) when
calculating the optimization objective functions. Given that the system architecture was de-
veloped using the MBSE approach, the interaction of the multidisciplinary parameters can
be viewed as a bridge between MBSE and MDO.

It is critical to emphasize that the optimization study that was conducted is extremely sim-
plified. Numerous aspects and methods for defining and solving optimization problems that
occur during an MDO are not considered in this work. The algorithm employed is not a
mathematical optimization algorithm; rather, it was developed and programmed specifically
for this optimization case. It defined the problem by specifying the range, step, and con-
straints of the input variable X, and then solved it by computing the two objective functions
for all possible input values. Due to the fact that all results are considered, it was possible
to avoid local minima and validate the optimization directly. After that, a pareto front was
generated as a starting point for trade-off analysis. The two input values of X that result in
the minima of each objective function were highlighted, allowing for direct comparison. As
a result, the intended identification of interfaces between the PSCs and SPDBs that result
in the optimal power distribution and cable index was accomplished in a simple manner.
However, considering a larger number of input values and optimization objectives expands
the design space and necessitates an appropriate optimization definition and solution. In this
case, the consideration of the optimization problem formulation and strategic organization
is very important and also referred to as MDO architecture. Martins elaborates on these
considerations in his survey of MDO architectures [117]. Additionally, there is a diverse range
of optimization algorithms that are suitable for specific MDO architectures, making it critical
to select the most appropriate one. Martins et al. discuss and explain various optimization
methods and algorithms in their book [118|. Numerous types of numerical solver are available
and required to solve the optimization problem using the selected algorithm. An overview of

the numerical solver for MDO is provided in [119].

Another benefit of the implemented optimization is the opportunity revealed by the resulting
trade-off analyses. By implementing a multi-objective optimization that incorporate input
parameters from various systems and modules (e.g. power system and equipment), designers
and engineers can make decisions based on direct relationships between these parameters. By
normalizing the objectives’ results, it was possible to compare different design configurations
and to identify the effects of input parameters with the assistance of the optimization algo-

rithm. The three configurations were chosen to emphasize the relationships and interactions
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between these design parameters. The first configuration considered is a power system archi-
tecture that includes six SPDBs and connects them to the PSC architecture developed in this
work. The second configuration was designed to examine the effect of changing the power
system architecture on power distribution and cable length. Additional weight, procurement
costs, installation space, and maintenance are associated with the addition of two SPDB
components. However, when compared to the first configuration, the optimization results for
both power distribution and cable length objectives were improved. The architecture change
altered the position of the SPDBs, allowing for a more accurate cable index. Simultaneously,
the difference between SPDBs’ power supply is smaller, allowing it to reduce its electrical
performance requirements and thus associated costs. This also shows the correlation between
the cable length and power distribution. The shorter the cable length is, the less loss power
resulted in the electrical design. This reduces the power supply to each of the PSCs. Thus,
the differences in power supply required from the various SPDBs is also reduced, resulting in
a more efficient power distribution. Both configurations have their advantages and disadvan-
tages, as demonstrated by the results. To facilitate decision-making, the scope of this work’s
investigation must be expanded. A trade-off analysis must be conducted to compare the total
costs of each configuration, considering all of the factors mentioned above. Furthermore, the
third configuration sought to determine the impact of electrical equipment on the optimiza-
tion objectives. Consideration of the galley as an electrical consumer significantly changed
the SPDB-PSC interfaces, which result in optimal power distribution. Besides this, equip-
ment considerations deteriorated the power distribution objective value. This means that
an electrical power design that considers only PSCs and galleys as electrical equipment is
not beneficial. This information is critical when designing and installing additional electrical
equipment, such as seats. This consideration will assist in compensating for the differences in
power distribution between the SPDBs that supply the galleys and those that supply other

equipment.

Moreover, analyzing these interactive effects, between various aircraft parameters early in the
design process, is extremely beneficial. It enables to determine the design modification’s effect
of a single aircraft system on external systems and thus to account for the aircraft’s global
effect. This reduces the number of unnecessary and cost-ineffective changes in the aircraft
design. In the aircraft industry, a practical example is the use of carbon fiber reinforced
polymer in the aircraft structure. Motivated by its superior mechanical properties and low
density, aircraft designers and engineers overlooked the impact of the material’s insufficient
electrical conductivity for certain applications (e.g. lightning protection). The architectural
modifications required additional implementing of electrical functions |[120]. This demon-
strated design flaws. Aircraft designers are therefore re-investigating the possibility of reusing
aluminum, as a structural material in future designs. By implementing trade-off analyses in
the demonstrated manner and analyzing the interdisciplinary effects, a detailed assessment of

design modification at all aircraft levels can be accomplished, avoiding extra costs.

The optimization implemented in this research serves as a proof-of-concept (PoC). It demon-

strated the feasibility of a multidisciplinary design optimization and trade-off analysis, that
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consider systems from various domains and make use of data from various models. However,
as with any PoC, this work’s use case is incomplete and predicated on numerous assumptions.
For example, treating consumed power as the rating power for all PSCs in the cabin during
all flight phases, ignoring 3D cable routing in the cabin, and disregarding numerous electrical

loads such as seats or IFE components.

Additionally, the optimization results obtained, demonstrated that considering more opti-
mization’s boundary conditions and requirements enables the analysis of more design effects.
As can be seen in this study, the addition of the galleys to the PSCs resulted in completely
different interfaces between the power supply components (SPDBs) and the power consumer
(PSCs). As a result, it is necessary to expand this study in future work and consider more
systems and modules in the cabin configuration. Moreover, incorporating additional opti-
mization objectives and variable input parameters into a trade-off analysis, provides a holistic

view of the effects of various system and module parameters on multiple design objectives.

This study identified potential for future expansion of the selected use case. As demon-
strated, the integration and installation of components in the aircraft enables it to combine
geometrical design and analytical system properties. The optimization process was carried
out using very simple parameters, such as cable length, but it could easily be extended to
include cost-related factors, such as assembly, operability, maintainability, safety, reliability,
and availability. Consideration of each of these in combination with system architecture using
MBSE broadens the scope of assessment and optimization and enables a better understanding

of design relationships and synergies.

This work demonstrated several benefits in terms of system traceability, reconfigurability
of knowledge-based architectures, and multidisciplinary design optimization. However, as
INCOSE states in its Vision 2025, in order to overcome challenges not only in the development
of aeronautical systems but also in the development of other complex systems in a variety of
industries, a need to extend the vision of systems modeling is necessary [56]. A transition
from understanding it as a way to overcome the limitations of document-based approaches
to viewing it as a standard practice, fully integrated with other engineering modeling, and
utilizing internet-based knowledge representation to share human underlying knowledge, is
crucial. The next chapter summarizes this work’s findings and describes important expansion

that would contribute to achieving these objectives.
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The aviation sector relies on the integration of new and innovative technologies and concepts
to meet environmental and socio-economic challenges. Model-based Systems Engineering
represents an appropriate design methodology in the field of aircraft design and supports the
development of new innovative concepts and configurations. The German Aerospace Center
is involved in achieving aviation goals and advancing the industry’s digitalization. Its efforts
have resulted in the development of a process, that generates cabin system designs automat-
ically from conceptual aircraft design parameters. Cabin design outcomes can be evaluated
and validated in the virtual environment by utilizing a virtual reality platform in order to
enhance the immersion in design. This work’s primary objective was to extend this process
through the use of a model-based function-oriented system architecture. To accomplish this,
a methodology for system analysis, architecture development, and integration, had to be de-
veloped. Due to its complexity and multidisciplinary nature, the passenger service channel

was chosen to apply and evaluate the methodology.

The architecture of the PSC was modeled using the Systems Modeling Language and the
Cameo Systems Modeler software. To begin, the model was structured and a model ontology,
which has been related to both the CPACS structure and the ATA definition, was developed.
The system analysis followed a top-down approach, beginning with the identification of stake-
holder needs and context modeling. This initially permitted a black-box representation of
the PSC. Following that, PSC’s use cases were deduced from high-level functional require-
ments. The use cases were used as inputs for the FAS-method that was applied to generate
a block-oriented functional architecture. This enabled the creation of a functional represen-
tation of the PSC that was not dependent on any technical solution. Additionally, a logical
base architecture was defined and allocated to the functional architecture, which includes the
PSC’s internal composition as well as the interaction between its components. All relation-
ships between different model elements leading up to the architecture results were depicted
and highlighted using maps, matrices, and tables. The agile top-down approach and linking
of model elements enabled requirement-based system analysis and the causal derivation of
system architecture. The modeling activities reduced the system’s complexity and resulted in
a high degree of traceability, which facilitates the validation of stakeholders’ needs and system

requirements.

Subsequently, the system model was integrated into the cabin design process to refine the
logical architecture. To begin, an interface to the conceptual design parameters in CPACS was
implemented. A Json-file containing relevant cabin parameters extracted from CPACS was

used as an intermediary for cabin data exchange. In CSM, the system model accessed cabin
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data via opaque behavior and run-time objects that specified system block properties during
model execution. The parameters were used internally to instantiate the PSC distribution in
the cabin, as well as the configuration of its internal components. The resulting architectural
instance was then transferred to Matlab’s cabin design model. The CSM tool enabled the
sharing of Matlab’s workspace as well as the integration of Matlab scripts within opaque
behaviors. This provided direct access to the cabin objects and parameters in Matlab’s design
model for the purpose of creating, modifying, and reading cabin design data. The PSC objects
and system architecture properties were used as inputs to the Matlab design algorithm. Along
with the imported architecture data, a set of geometric parameters for cabin objects, as well
as design and certification requirements were defined in Matlab. The design algorithm was
then executed and resulted in an optimized geometrical distribution of the PSC and other
cabin systems and modules. The knowledge-based and automated configuration of the system
architecture using preliminary design parameters from CPACS enabled the consideration of
new cabin layouts in the system architecture instantiation. Furthermore, the interface to
Matlab and the corresponding architectural data exchange bridged functional analysis with

traceable geometrical cabin design.

To demonstrate some of the benefits of developing and integrating the PSC’s architecture
into the design process, a trade-off study was conducted using data from multiple models.
Therefore, an optimization use case has been defined and considered the objectives of various
design disciplines and optimizes the PSC architecture accordingly. It investigated the PSC’s
interface with the power supply elements (SPDBs). It treated power distribution between the
various SPDBs as an objective for the electrical design domain, and the length of the cable
connecting the two components as an index, affecting cable weight and integration in the
aircraft. Three configurations were evaluated to determine the effect of the electrical power
system architecture by varying the SPDBs number and the effect of including additional cabin
equipment parameters such as galley power consumption. The results were comparable and
demonstrated, that the two optimal objectives were achieved through the use of distinct PSC-
SPDB interfaces, allowing for a trade-off between the two design domains. The advantages
and disadvantages of each configuration were discussed in terms of optimization objectives as
well as design parameters such as weight, maintenance, and installation. Furthermore, when
additional power consumers, such as galleys, were considered, notable differences in the power
distribution were observed, motivating future research to consider as many cabin parameters

as possible to enable a broader and thorough design assessment.

Outlook

To expand the scope and benefits of this work, more aircraft design parameters in combination
with model-based system architectures are needed. When data from different life cycle phases
are integrated, the system can be viewed holistically and its design’s effects and interactions
can be evaluated throughout its lifecycle, not just during the system’s development stage.
OSLC or semantic web technologies can be used to achieve this at high abstraction levels.

Even so, specific data from high-fidelity analysis models must be incorporated into the digital
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representation of the system. The communication between system models and engineering
domain models can be implemented by using the Modelcenter platform. Furthermore, the
integration of more multidisciplinary data will necessitate the use of appropriate optimization
algorithms and solvers, which will enable MDO studies to provide highly reliable results, that

can be considered at the early stages of aircraft development.

Additionally, the existing VR platform should be directly connected to the system model dur-
ing the design process, to enable visualization of system behavior in the virtual environment.
Through the use of a real-time interface, the model will be able to modify system parameters

and validate requirements simultaneously while a VR-user interacts with the cabin design.

Finally, due to the considerable relevance of the electrical design use case investigated in this
work, an expansion thereof is important. Communication data and power-related properties
of each cabin payload are crucial in a more electric aircraft because they affect critical aircraft
design parameters such as mass, fuel consumption, and aircraft data-bases. Therefore, it is
necessary to consider in subsequent work new or enhanced electrical system architectures,

that are applicable to futuristic aircraft programs.
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A Appendix

All of the figures in this appendix have been referenced to in the upper parts of this work.
These are presented here to provide more model details to help improve the understanding of

this work. A brief introduction to the figures is given as follows.

The Structure of the PSC package diagram showing the hierarchical structure:

pkg [Model] PSC_Model [ PSC_Model ] J
=
AC_Model A 05_Traceability
——————— | rc 00_Requirements Composition
:'. 01_Stakeholder Needs Traceability
| . 02_Context Traceability
| "=, 03_Functional Requirement Derivation and Refinement
00 R " o A|04_Allocation of Functional into Logical Architecture
e remen I 5% 05_From Logical to TopLevel
& PSU_Requirements |
[’ PSU_Requirements |
|
| 06_Analysis
) | . y
01_Context Definition |
th
% Context Analysis I l
Stakeholder Analysis
[ Turnover Analysis ascoModel
8 01_Context Definition
Interf:
02_Functional Architecture geraces
th 2] Audio_IF
i _ £ controlData_IF
[ Functional Analysis ] ElectronicData_IF
L] Use Cases ) £ Gaslnput_IF
8 02_Functional Architecture ] GasOutput_IF
% Mechanical_IF
Supplylnput_IF
SupplyOuptut_IF
03_Logical Architecture
[ Structure
Flowltems
% Air
| Audio
; " 2| DataSignal
04_Physical Architecture [ ElectricalPower
2l Heat
2 Light
E2] MechanicalForce
B Noise
3 " " xygen
£ oxyg
Views & Viewpoints 2 Sand&Dust
£l water

Figure A.1: Internal structure of PSC Model
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The modeling guidelines defined and used in the model:

Content Diagram MasterThesisYG[ Modeling Conventions and Standards ])

Guidelines for modeling standards and conventions:

® CamelCase notation is used except for exceptions expressed below

® Upper case is used for the first letter of each word for all definition/types

® Lower case is used for all letters in names of parts, properties, item
properties, actions, and states

® The first word in an instance shall start with lowercase e.g. motorController

® Acronyms shall be written in upper case and separated with an underscore
e.g. DEU_A

® Whitespace is only allowed for names of diagrams, packages, labels or use
cases e.g. Provide Intruder Emergency Response

o Names of Port Types are appended with IF for interface e.g. VideolF

® Tool-Specific Notation shall be distinguished from standard SysML standard
notation with a corresponding note

Figure A.2: Convention and standards for model notation

The model glossary that includes the abbreviations used in the model:

| Term A Description

O 00 N oot A W N = H

= | =
N = O

13
14
15
16

ACS
A/C
CIDS
CcMS
DEU_A
DEU_B
FSB
FAP
IFE
MTBF

Air Conditioning System

Aircraft

Cabin Intercommunication Data System
Cabin Management System

Decoder Encoder Unit Type A

Decoder Encoder Unit Type B

Fasten Seat Belt

Forward / Flight Attendant Panel
In-Flight Entertainment

Mean Time Between Failure

MTTF Mean Time To Failure
NS Non Smoking
OHSC Overhead Storage Compartment

PAX
RTCA
RTS

Figure A.3: Specific glossary of aircraft systems

Passenger
Radio Technical Commission for Aeronautics
Return To Seat
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The following pictures illustrate the model ontology defined in this work. They specify it for

stakeholder consultations, analysis, use cases, and requirement modeling:

Profile Diagram Stakeholder [ [E) Stakeholder ])

«Metaclass»
Actor

;

«stereotype»
Stakeholder

[Actor]
AN

«stereotype» «stereotype» «stereotype» «stereotype»
OEM Operator Passenger Crew
[Actor] [Actor] [Actor] [Actor]

«stereotype» «stereotype» «stereotype»
Supplier Maintainer Developer
[Actor] [Actor] [Actor]

Figure A.4: Definition of stakeholder ontology

Profile Diagram Analysis [ Analysis ])

«Metaclass»
Element

T

«stereotype»
Analysis State
[Element]

«stereotype»
Black Box White Box
[Element] [Element]

Figure A.5: Definition of analysis ontology
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Profile Diagram Use Cases [ Use Cases ])

«Metaclass»
UseCase
«stereotype»
A/C_SystemUseCase
[UseCase]
«stereotype» «stereotype»
SystemUseCase SystemMisuseCase
[UseCase] [UseCase]
«stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
SafetyUseCase SecurityUseCase FunctionalUseCase PerformanceUseCase MaintainabililyUseCase
[UseCase] [UseCase] [UseCase] [UseCase] [UseCase]
«stereotype»
PSC_UseCase
[UseCase]
attributes
+Status : String
+ld : String [1){id}
+Feature : String
+Text : String [1]{nonunique}
+Prio : String
+Story Title : String
+Arch. Impact : String
+Operational Value : String
+Technical feasibility : String
Figure A.6: Definition of use case ontology
Profile Diagram Requirements Requirements ])
«enumeration» «enumeration» «enumeration» «enumeration»
Requirement Maturity Requirement Author Requirement Level Priority
in process YassineG Top Level critical
established MaraF System necessary
in revision JornB Subsystem recommended
deleted Component low R
validated Part StakeholderNeed
Hardw are [Class]
Softw are
«stereotype»
SystemRequirement
[Class] «stereotype» [R]
attributes SN Requirement
+Level : Requirement Level [1] [Class]
+Creation Date : date [1]
+Version : Integer [1]
+Status : Requirement Maturity [1]
+Author : Requirement Author [1]
+Priority : Priority [0..1]
+§:¥rce I: g‘;{ﬂf [;(]) . «enumeration»
+Rational : String [0.. .
+Risk Evaluation : String [0..1] ESqiementilyps
+Verification Method : String [0..1] enumeration literals
+Assumption : String [0..*] InterfaceRequirement
PhysicalRequirement
PerformanceRequirement
DesignConstraint
Quality Requirement
OtherRequirement
«stereotype» «stereotype» SafetyRequirement
FunctionalRequirement NonFunctionalRequirement Security Requirement
[Class] [Class]
attributes
+Type Specification : Requirement Type [1]

Figure A.7: Definition of requirements ontology
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The use cases identified during this work are bundled into a use case diagram that depicts

their relationships to the external actors:

uc [Package] Use Cases [ PSC_Use Cases ] J

0 o

OxygenSystem Passenger ACS Fowerstnem

Passenger Service Channel PSC

«SafetyUseCase»
«FunctionalUseCase»
«PSC_UseCase»
Get Power Supply
for electronic PSU
components

¢ Oxygen Outflow fa
Passengers

«FunctionalUseCase»
«PSC_UseCase»
Provide Call Flight Attendant
\

functionality
{Ild ="PSC-UC-CO-01")

«SafetyUseCase» ”
«PSC_UseCase»
Provide Audible
Indications for
Emergency Signaling
{Id = "PSC-UC-EM-01)

«SafetyUseCase»
«PSC_UseCase»
Provide No Smoking
Allowed Signs

{ld = "PSC-UC-IL-02")

«SafetyUseCasen
«PSC_UseCase»
Provide Fasten
Seatbelt Signs
{Id = "PSC-UC-IL-01"}
th

«FunctionalUseCase»
«SafetyUseCase»
«PSC_UseCase»

Provide Cockpit Crew
Announcements to Passenger

Provide Passgnger Service Ful

«FunctionalUseCase»
«SafetyUseCase»
«PSC_UseCasen

Provide Cabin Crew
Announcements to Passenger
{ld = "PSC-UC-PA-02"}
th
ylinctionalUseCase»
«PSC_UseCasen

Provide Recorded
Boarding Music

{Id = "PSC-UC-RE-02"}
‘ th

«PSC_UseCase»
Provide recorded
Announcements
{Id = "PSC-UC-RE-01"}

{Id = "PSC-UC-PA-01"}

Figure A.8: Use case diagram with identified and derived PSC use cases

The functional requirements resulting from the PSC’s use cases are depicted in the requirement

diagram below. The following traceability matrix shows how the relationships between these

requirements and the use cases:
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[R] TLCR Top-Level Cabin Requiremen [0

E TLCR.1 Individual Air Supply
E TLCR.2 Oxygen Supply

O Provide Cabin Crew Announcements to Passenger-
O Provide Call Flight Attendant functionality =

O Provide Audible Indications for Emergency Signalin-

g TLCR.3 Cabin Management System -

E TLCR.4 Genral Cabin Illuminatiot

O Provide Cockpit Crew Announcements to Passenger--

O Provide Fasten Seatbelt Signs

O Provide Oxygen Outflow for Passengers .
O Provide Passenger Individual Air Conditior-

O Provide Reading Light for Passenger

O Provide recorded Announcements

O Provide Recorded Boarding Music

O Provide Return to Seat Signs

rea Functonal [ Fanctonal Requrements 1)
wequirementy
Functional Requirements
1d = "FR"
Text = "This is the root
requirement for PSC
functional requirements”
wequirements S — wequirements
«FunctionalRequirement» Functoeqaroments «requirementy «requirementy Acyi
Power Distribution PAX Call NS Signs Reading Light
Id = "FR.A" a4 Id="FR.7" Id="FR.11" ‘1"’ : —HST::‘ PSC shall
Text = "The PSC shall Text = "The PSC shall Text = "The PSC shall Sl ehel
ide and distributs Text = "The PSC shall provide retur to seat signs"
provide and distribute provide callfight attendant provide no smoking allowed provide reading light for
power to electronic functionality " signs' passenger”
components'
«requirementy oA ;‘"‘;q“"e"‘""‘ " «requirementy «requirementy «requirementy
Audible Indications St NG MO Oxygen Outflow Recorded Announcements Systems Condition
1d="FR2" G aha 1d="FR8" 1d="FR.12" 1d = "FR.15"
Text = "The PSC shall ity Text = "The PSC shall Text = "The PSC shall Text = "The PSC shall
provide audible indications A CeiCoCkp Grew provide oxygen outflow for provide recorded provide systems condition
announcements to
for emergency signaling” - passengers" announcements” communication "
passenger’
wequirements arequirements wequirements wequirements
Cabin Announcements FSB Signs Individual Air Boarding Music
1d="FR3" 1d="FR6" 1d="FR9" 1d="FR13"
Text = "The PSC shall Text = "The PSC shall Text = "The PSC shall Text = "The PSC shall
provide cabin crew provide fasten seatbelt signs” provide passenger provide recorded boarding
announcements to individual air condition” music"
passenger "
Figure A.9: PSC functional requirements derived from PSC’s use cases
Legend =[] Use Cases
/" Derive
/" Refine

O Provide System Condition Communicatior-

El [’ FR

SRR

Functional Requirements
FR.1 Power Distribution

FR.2 Audible Indications

FR.3 Cabin Announcements
FR.4 PAX Call

FR.5 Cockpit Announcements
FR.6 FSB Signs

FR.7 NS Signs

FR.8 Oxygen Outflow

FR.S Individual Air

FR.11 Reading Light

FR.12 Recorded Announcements
FR.13 Boarding Music

FR.14 RTS Signs

FR.15 Systems Condition
FR.16 PSC Distribution

N |E] TLCR.5 Cabin Power Distributior
N O Get Power Supply for electronic PSU component:

L e e e e N o S S

NN N NN
NN\

NN N NN

Figure A.10: Derivation of functional requirements and refinement through use cases
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The two traceability matrix below depicts the relationships between stakeholders and context

elements, as well as the established context requirement and stakeholders’ needs:

Legend EIIEI CQ antextRequir_ements--;
/" Refine Lo : :
/" Trace

(Rl CO.6 Structural Fixation:-
[R’l CO.8 Assembly/Maintenance---

[Rl CO.7 User

E CO.2 Electrical Supply
[R] CO.5 Air Flow

B} L] Environmental

- [#) ElectricalVoltage
- ¥ Humidity

- (%) MagneticEffect

- [#]) Pressure

- [#]) PSU_Environment
- % Sand&Dust

- [#]) Temperature

[} (] External Systems [Context Analysis] oG
-] ACS ~

- [ cMS

- () IFE
- [ LightSystem V4
- o] OHSC Va
- [7J OxygenSystem 7

- [ PowerSystem Vs
£} [ Interfaces 1
- 9] ControlData_IF

- B9 ElectronicData_IF
- 9] GasInput_IF Y.

- 9] Mechanical_IF Va
- 2 SupplyInput_IF Vs

= [ Stakeholder

- % Crew(Cockpit&Cabin)

- ¥ MaintenanceTeam

- % Passenger

- % Production&AssemblyTeam

NN N N NN\ N\ NIR] €O Environmental Conditions-

NN N

N\ N

A
NN

Figure A.11: Traceability and refinement of context requirements
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Legend T S S M S
= i i ii i i >
/" Trace .08) A
H H e H - H H
fez 8:5 8%
b g3L L&
81 58% 8 38
O g I X € £ L c £
T S i 8¢ 8 0 0 5 |
o < H O Q c DB g g
S8 ud2ggys s
g ZI £ = £ E 8 2B 2
5 g 228 B8 o% S
O <« < OwWw =2 aa un n
[] o o ok o o o o< o ok
El [ Stakeholder Analysis 3 3 21 2 2 1 2 2
- =] Assembly 1 Ve
- ] Comfort 2 Va Ve
- 2] Controllability and Monitoring 2 Ve Ve
-. 5] Development&ProductionCosts |1
- =] EngineeringFreedom 1 /
- =] Integration 2 /!
- =] Maintainability 1 /)
- ] Operability 3 VA V4
- ] OperatingCosts 1 /
- [ Safety 3 / v
- ] Usability 1 Ve
Figure A.12: Traceability of needs to the corresponding stakeholders

The first parametric diagram demonstrates how the electrical parameters in the system model

are bound with the values in matlab. The second diagram enables for the evaluation of elec-

trical initial parameters for a two-galley configuration. It adjusts power values and transmits

them to the Matlab mod

el.

par [Block] SPDB[ Electrical parameters binding (Matlab) ])

«constraint»
:spdbMatching

{spdb(1,id).initPow er = inPw ;
spdb(1,id).pow ernenn = nennPw ;
spdb(1,id).resistivity= resis;
spdb(1,id).current=cur;
spdb(1,id).area=ar;
pow erOutput = spdb(1,id).pow er;}

;

«constraint»

’ midpoint_x : cartesian coordinates[millimetre] X :|
: spdb_coordinates
’ midpoint_y : cartesian coordinates[millimetre] rfyj {x = spdb(1,id).Midpoint_x;

y = spdb(1,id).Midpoint_y;

’ midpoint_z : cartesian coordinates[millimetre] z :] z = spdb(1,id).Midpoint_z;}
id :l

id ID: Integer

n
initialPower : Real |

nennPw

E“ nominalPower_PSU : power[watt] |
pow erOutput

I: powerOutput : power[watt] I
resis

\_ | resistivity : resistivityfohm metre] |

ar

| wireCrossSection : area[millisquare metre] |

cur

L

| currentintensity : electric currentfampere] |

Figure A.13: Configuration parameters binding with Matlab
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par [Block] SPDB [ Galley_Config ])

«constraint»
: CPACS_Galley

i {var filenames = 'D:\\00_Master_Thesis\\Input_Data\\Gitilab_FoCaRe_Y assine\\exact_cabin_parameters_DS json’;
initialPower : Real initialPow er :! var content = new java.lang.String(java.nio.file.Files.readAlBytes( java.nio.file.Paths.get(filenames)));

var CollectionsAndFiles = new Javalmporter(
com.nomagic.magicdraw .automaton,
com.nomagic.magicdraw .core,
com.nomagic.magicdraw .openapi.uml,
com.nomagic.uml2.ext.magicdraw .classes.mdkernel);

A id if (JSON.parse(content).floor_elements[1].number == 4){
ID:Integer :] initialPow er = 25000}

else if (JSON.parse(content).floor_elements[1].number == 9){
initialPow er = 50000;}

}
else if (id==8) {
if (JSON.parse(content).floor_elements[2].number == 4){
initialPow er = 25000;}
else if (JSON.parse(content).floor_elements[2].number == 9){
initialPow er = 50000;}
} g
}

Figure A.14: Configuration evaluation parametric diagram for Galleys
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Code A.1: Javascript source code for the opaque behavior "importCPACS"

var filenames = ’'D:\\00_Master_Thesis\\Input_Data\\Gitlab_FoCaRe_Yassine
\\exact_cabin_parameters_DS. json’;
var content = new java.lang.String(java.nio.file.Files.readAllBytes( java

.nio.file.Paths.get (filenames)));

var CollectionsAndFiles = new Javalmporter (
com.nomagic.magicdraw.automaton,
com.nomagic.magicdraw.core,
com.nomagic.magicdraw.openapi.uml,

com.nomagic.uml2.ext.magicdraw.classes.mdkernel) ;

firstclass = ALH.createObject ("CabinClass")

ALH.setValue (firstclass, "tag",JSON.parse (content) .classes[0] .tag)

ALH.setValue (firstclass, "n_pax",JSON.parse (content) .classes[0] .n_pax)

ALH.setValue (firstclass, "seat_pitch", JSON.parse (content) .classes[0].
seat_pitch)

ALH.setValue (firstclass, "n_rows",JSON.parse (content) .classes[0] .n_rows)

ALH.setValue (firstclass, "pax_RH",JSON.parse (content) .classes[0].
pax_distribution[0])

ALH.setValue (firstclass, "pax_LH",JSON.parse (content) .classes[0].
pax_distribution[1])

businessclass = ALH.createObject ("CabinClass")

ALH.setValue (businessclass, "tag", JSON.parse (content) .classes[1].taqg)

ALH.setValue (businessclass, "n_pax",JSON.parse (content) .classes[1l].n_pax)

ALH.setValue (businessclass, "seat_pitch",JSON.parse (content) .classes([1].
seat_pitch)

ALH.setValue (businessclass, "n_rows", JSON.parse (content) .classes[1l] .n_rows
)

ALH.setValue (businessclass, "pax_RH", JSON.parse (content) .classes[1].
pax_distribution[0])

ALH.setValue (businessclass, "pax_LH", JSON.parse (content) .classes[1].

pax_distribution[1])

economyclass = ALH.createObject ("CabinClass")

ALH.setValue (economyclass, "tag", JSON.parse (content) .classes[2] .tag)

ALH.setValue (economyclass, "n_pax",JSON.parse (content) .classes[2] .n_pax)

ALH.setValue (economyclass, "seat_pitch",JSON.parse (content) .classes[2].
seat_pitch)

ALH.setValue (economyclass, "n_rows",JSON.parse (content) .classes[2] .n_rows)

ALH.setValue (economyclass, "pax_RH", JSON.parse (content) .classes[2].
pax_distribution[0])

ALH.setValue (economyclass, "pax_LH", JSON.parse (content) .classes[2].

pax_distribution[1])
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Code A.2: Javascript source code for the opaque behavior "initialize Architecture"

temp = 0;

for (var j= 0; J<3; Jj++)

{

obj =cc.get (J);

temp= temp + ALH.getValue (obj, "psc_LH_num") + ALH.getValue (obj,"
psc_RH_num") ;

id= ALH.getValue (obj, "psc_1id");

limit_ LH= ALH.getValue (obj, "psc_LH_num");

limit_RH= ALH.getValue (obj, "psc_RH_num");

pax_LH= ALH.getValue (obj, "pax_LH");

pax_RH= ALH.getValue (obj, "pax_RH");

for (var i=1; i<=limit_LH;i++)

{

psc_object = ALH.createObject ("PSC");

var id_psc= id + ’'-LH-' + i;

ALH.setValue (psc_object, "psc_ID",id_psc);
for (var k=1l;k <= pax_LH ;k++)
{psc_rl=ALH.createObject ("ReadingLight") ;
psc_oxm=ALH.createObject ("OxygenModule") ;
psc_au=ALH.createObject ("IndividualAirOutlet");
ALH.addValue (psc_object, "read",psc_rl);
ALH.addValue (psc_object, "oxm", psc_oxm) ;
ALH.addValue (psc_object, "au",psc_au) ;

}
ALH.addValue (obj, "cabinModule",psc_object)

}

for (var i=1; i<=limit_RH;i++)

{

psc_object = ALH.createObject ("PSC");

var id_psc= id + '-RH-" + 1i;

ALH.setValue (psc_object, "psc_ID",id_psc);
for (var k=1l;k <= pax_LH ;k++)
{psc_rl=ALH.createObject ("ReadingLight") ;
psc_oxm=ALH.createObject ("OxygenModule") ;
psc_au=ALH.createObject ("IndividualAirOutlet");
ALH.addValue (psc_object, "read",psc_rl);
ALH.addValue (psc_object, "oxm", psc_oxm) ;
ALH.addValue (psc_object, "au",psc_au) ;

}
ALH.addValue (obj, "cabinModule",psc_object) ;

}

}
ALH.setValue (self, "PSC_NUM_Cabin", temp) ;
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Code A.3: Matlab source code for "PSC" object

classdef Psu < Component & geometryObject
$PSU will be defined

[=2 R

~J

10
11

properties

rLight readLight;
oxygenMask oxygenMask;

airOutlet indivAir;

end

methods

function obj = initPsu(obj, Length,Width,Height,Midpointx,

Midpointy,Midpointz, Number, Spec)
obj.Height = Height;
obj.Width = Width;
obj.Length = Length;
obj.Color = [0, 0O, 0];
obj.Tag = ’'electricalSystem’;
obj.Spec = Spec;
obj.Number = Number;
obj.Midpoint_x = Midpointx;
obj.Midpoint_y = Midpointy;
obj.Midpoint_z = Midpointz;
obj.Ata = '25-25-00';
obj.Material = "PVC’;
obj.Connections = {’Psc’,1};

obj.Name = strcat ('Psu’,num2str (Number), Spec) ;

end

end

end
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Code A .4: Javascript source code for the opaque behavior "detectPSC"

temp_id= ALH.getValue (obj, "psc_ID");

ac_class= temp_id.slice(4,6);
out2 = temp_id.slice (10);

side = temp_id.slice(7,9);

if (ac_class == "FC")
{outl=1;}

else if (ac_class == "BC")
{outl=2;}

else if (ac_class == "YC")
{out1=3;}

if (side =="RH")
{out3 = 1;}

else if (side =="LH")
{out3=2;}
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Code A.5: Matlab source code for assessment and optimization algorithm

%% Configure SPDB
spdb = initSPDB (8, ceilings);

%% Power Calculation and Optimization
[input]= generatelnput (params.cabin.length); %Coordinates for spdb areas
result=zeros (length (input),5);
power=zeros (length (input), 8) ;
for i=l:length (input)
X = [0,input (i,1),input (i, 2),input (i, 3);input (i,1),input (i, 2), input (i
,3) ,params.cabin.length];
X= X + params.cabin.xStart;
[wire, wireIndex, powerDistribution, spdbpower] =

startPowerCalculation (psc,X, spdb);

power (i, :)= spdbpower;

result (i,1)= wireIndex;

result (i,2)= powerDistribution;
result (i,3)= X(1,2);
result (i, 4)= X (1,3);

result (i,5)= X(1,4);

end

%% Nomalize inputs

fl= normalize (result(:,1));

f2= normalize (result (:,2));

%% Plot pareto front

figure

plot (f1,£f2,’ko’);

xlabel (" f_l:cable index (normalized)’)

ylabel (" f_2: power distribution (normalized)’)

title(’Configuration with 8 SPDBs and 2 Galleys: results for multi-

objectives (power distribution,cable length) optimization’)

Solutionl_cablelength= result (find(result(:,1)== min(result(:,1))),:);
Solution2_powerDistribution= result (find(result(:,2)== min(result(:,2)))

r2) i

%% Function initSPDB

function [spdb] = initSPDB (spdbNumber, ceilings)

global params

k=1;

for i = 1:2:spdbNumber-1

spdb(1l,1i)= SPDB;
spdb(1l,1i) .Midpoint_x = params.cabin.xStart + (kx (params.cabin.length
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))/ (0.5 * spdbNumber) ;
spdb (1,i+1) .Midpoint_x = spdb(l,i) .Midpoint_x;

82
83
84
85
86

function

spdb(1,1i) .Midpoint_y =

spdb(1l,i+1) .Midpoint_y = -1% spdb(l,1i) .Midpoint_y;

spdb(1,1i) .Midpoint_z =
spdb (1,i+1) .Midpoint_z

spdb(l,1i) .ID = i;
spdb(1,i+1) .ID

i+1;

spdb(1l,1i) .Name = strcat (' SPDB’ ,num2str (i), ’RH’);
spdb(1,i+1) .Name = strcat (' SPDB’,num2str (i+1), " LH");
k = k+1;

%% Function generatelnput

n= ceil (cabinLength / 1000);

meter

input = 1000 » nchoosek([l:n 1:n 1:n],3);
combinations in mm

input= unique (input(:,1:3),’rows’);

while i <= length (input)
if input(i,2)<= input (i, 1)

input (i, 1)
input (i, :)=I[1];

else

i= i+1;

end

Function startPowerCalculation
function [wire, wireIndex,

startPowerCalculation (psu, X, spdb)

[spdb.power]=deal (0) ;
[spdb.length]=deal (0) ;
[spdb.numPSU]=deal (0) ;

params.cabin.radius / 2;

ceilings (1,1) .Midpoint_z;
spdb(1l,1i) .Midpoint_z;

[input] = generatelnput (cabinLength)

$round the x coordinate in

%generate matrix with all

$delete identical rows

input (i, 3) <=

input (i, 2) input (i, 3) <=

powerDistribution, spdbpower]
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for j = 1:2:1length (spdb)
for i=1:2:1length (psu)

if (psu(l,i) .Midpoint_x < X (2, ((j+1)/2))) && (psu(l,i).
Midpoint_x >= X (1, ((j+1)/2)))

wire(l,1i)= PowerWire;

wire(1l,i+1l) = PowerWire;

wire(l,i) .spdb = spdb(l, Jj).ID;
wire(l,i+1l) .spdb = spdb(l, j+1) .ID;

wire(l,i).linkedPsu = psu(l,1i).ID;
wire(l,i+1) .linkedPsu = psu(l,i+1).ID;

wire(l,i) .wireLength = abs(psu(l,i) .Midpoint_x - spdb (1, J).
Midpoint_x);

wire(l,i+l) .wireLength = wire(l,i) .wirelLength;

end
end

end

%$%Calculate wire length as an index for cable integration
for 1 = 1l:length (spdb)
for j = 1l:length(wire)
if (spdb(l,1i) .ID == wire (1, j) .spdb)
spdb(1l,1i).length = spdb(l,1i).length + wire(l, j) .wireLength;
spdb(1,i) .numPSU = spdb(l,i) .numPSU +1;
end
end

end

wireIndex = 0;
for i= l:length (spdb)
wireIndex = wirelIndex + spdb(l,i).length ;

end

%$%Calculate mean power of total SPDBs considering required PSU power

mean_power = 0;

for i=1:length (spdb)

spdb(1l,1i) .power = spdb(l,1i).initPower + 2% (spdb(l,i).length » 1000 % spdb
(1,1) .resistivity * spdb(l,1i).current * spdb(l,1i).current / spdb(l,1i).
area) + (spdb(l,1i).numPSU x spdb(l,i).powernenn) ;

mean_power = mean_power + spdb(l,i) .power;

end

mean_power = mean_power / length (spdb);
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powerDistribution =0;

%$%Calculate standard deviation as an index for power distribution in

cabin
for i= l:length (spdb)
spdbpower (1,1i)= spdb(l,1i) .power;
powerDistribution = powerDistribution + (spdb(l,1) .power -
mean_power) x (spdb(l,i).power - mean_power);
end

powerDistribution = sqgrt ((1/ (length (spdb)-1))* powerDistribution);
end
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