
remote sensing  

Review

TomoSAR Mapping of 3D Forest Structure: Contributions of
L-Band Configurations

Matteo Pardini *, Victor Cazcarra-Bes and Konstantinos P. Papathanassiou

����������
�������

Citation: Pardini, M.; Cazcarra-Bes,

V.; Papathanassiou, K.P. TomoSAR

Mapping of 3D Forest Structure:

Contributions of L-Band

Configurations. Remote Sens. 2021, 13,

2255. https://doi.org/10.3390/

rs13122255

Academic Editor: Lin Cao

Received: 13 March 2021

Accepted: 31 May 2021

Published: 9 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

German Aerospace Center (DLR), Microwaves and Radar Institute (HR), 82234 Wessling, Germany;
victor.cazcarrabes@dlr.de (V.C.-B.); kostas.papathanassiou@dlr.de (K.P.P.)
* Correspondence: matteo.pardini@dlr.de; Tel.: +49-8153-28-1168

Abstract: Synthetic Aperture Radar (SAR) measurements are unique for mapping forest 3D structure
and its changes in time. Tomographic SAR (TomoSAR) configurations exploit this potential by
reconstructing the 3D radar reflectivity. The frequency of the SAR measurements is one of the
main parameters determining the information content of the reconstructed reflectivity in terms of
penetration and sensitivity to the individual vegetation elements. This paper attempts to review
and characterize the structural information content of L-band TomoSAR reflectivity reconstructions,
and their potential to forest structure mapping. First, the challenges in the accurate TomoSAR
reflectivity reconstruction of volume scatterers (which are expected to dominate at L-band) and to
extract physical structure information from the reconstructed reflectivity is addressed. Then, the
L-band penetration capability is directly evaluated by means of the estimation performance of the
sub-canopy ground topography. The information content of the reconstructed reflectivity is then
evaluated in terms of complementary structure indices. Finally, the dependency of the TomoSAR
reconstruction and of its structural information to both the TomoSAR acquisition geometry and the
temporal change of the reflectivity that may occur in the time between the TomoSAR measurements
in repeat-pass or bistatic configurations is evaluated. The analysis is supported by experimental
results obtained by processing airborne acquisitions performed over temperate forest sites close to
the city of Traunstein in the south of Germany.

Keywords: forest structure; synthetic aperture radar; tomography; L-band

1. Introduction

Forest (canopy) structure is commonly defined as “the organization in space and
time, including the position, extent, quantity, type and connectivity, of the aboveground
components of vegetation” [1–5]. Mapping forest structure is critical for understanding
the history, function and future of forest ecosystems. Indeed, forest structure expresses
forest state, functionality, biodiversity and evolution, and is an indicator of the successional
stage and development as well as sustainability and habitability [6–8]. Due to this, it is
an important parameter for assessing forest productivity, biomass and biodiversity [9–12].
Finally, the knowledge of structure evolution in time (due to anthropogenic or natural
disturbance, regeneration, growth, etc.) supports the modelling of the function and devel-
opment of forest ecosystems and the development of accurate and robust forest biomass
estimators [13].

Remote sensing techniques have the potential to map the 3D distribution of vegetation
compartments and of their changes at large scales with spatial and temporal continuity.
Today, only lidar and Synthetic Aperture Radar (SAR) can provide 3D information with
metric resolution and repeatedly in time and contribute to the observation and quantita-
tive characterization of forest structure at large scales [14,15]. While lidar configurations
allow a more or less dense sampling of accurate (vertical) structure measurements, SAR
configurations realize imaging with wide swath widths enabling continuous global scale
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coverage with high spatial (e.g., on the order of 10 m) and temporal (e.g., on the order of
weekly) resolutions [15].

The relative importance of the different tree and stand components (e.g., leaves,
branches, trunks) in SAR measurements depends on the wavelength and polarization
employed, and on the geometric (e.g., size) and dielectric properties of these components
defined by the amount and distribution of water [14,15]. With increasing wavelength,
SAR pulses penetrate more and more into and through the forest canopy and interact
with forest elements located at different heights within the forest volume as well as with
the underlying ground. However, a single SAR image does not allow a reconstruction
of the 3D distribution of scatterers within the illuminated volume. For this a set of SAR
images acquired under (slightly) different incidence angles is required in the context
of interferometric (InSAR) and/or tomographic SAR (TomoSAR) measurements [14,15].
The reconstruction of 3D reflectivity is today understood and established and has been
demonstrated in several (airborne and spaceborne) experiments [15–22]. However, the
interpretation of the reconstructed 3D reflectivity in terms of physical 3D structure is still
in a rather early stage.

Across the electromagnetic spectrum, L-band (with a wavelength of about 24 cm)
is more versatile for forest structure applications than other frequencies as it provides
a reasonable compromise between sensitivity to structurally relevant canopy scattering
components and the capability to penetrate through the canopy until the ground ensuring
the “visibility” of the whole forest volume in a wide range of forest types and conditions.
At the same time, the higher temporal stability of the scatterers at L-band (when compared
to scatterers at higher frequencies) leads to lower temporal decorrelations in repeat-pass
configurations. Finally, also with respect of the actual bandwidth allocations imposed by
the International Telecommunication Union (ITU) regulations that rule the bandwidth
available for Earth Observation (EO) space borne realizations at the different frequencies,
L-band appears as the optimal compromise between possible spatial (range) resolution
and interferometric/tomographic performance.

The general inversion problem behind any TomoSAR estimation is defined in Section 2,
discussing the challenges in the TomoSAR estimation of 3D reflectivity at L-band. Section 3
addresses methodological aspects in the extraction of structure information from the
TomoSAR reflectivity, with particular focus on the role of reflectivity maxima (e.g., peaks).
A critical point is the distinction of reflectivity peaks associated to scattering contributions
from ones induced by focusing ambiguities and artifacts. The contribution of L-band
TomoSAR reflectivity reconstructions for the (quantitative) characterization of 3D forest
structure is reviewed and further assessed. For this, the structure framework recently
proposed in [23,24] in which the distribution of reflectivity peaks is used to derive indices
describing the (physical) structural complexity in the horizontal and vertical directions is
presented. After describing the considered test sites and data sets in Sections 4–7 report
and discuss experimental results with respect to:

1. Penetration and information content (Section 5)–First, the ability of L-band to pene-
trate into and through the canopy down to the ground is assessed directly in terms
of both the ground-to-volume power ratio and the estimation performance for the
location of the underlying ground. Second, the capability in deriving physical forest
structure indices from L-band TomoSAR reflectivity is discussed within the chosen
structure framework. In this, the understanding of the role of the availability of
multiple polarization channels is of particular importance.

2. TomoSAR imaging geometry (Section 6)–Conditioned to the (TomoSAR) reconstruc-
tion algorithm, different TomoSAR geometries in terms of the distribution of tracks/
orbits in the direction orthogonal to the line of sight, and the number of images lead
to different vertical resolutions and quality (e.g., in terms of ambiguities) for the
reconstructed reflectivity. The imaging geometry depends primarily on flight/orbital
constraints, but also changes across a scene with the incidence angle variation from
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near- to far-range. The impact of such changes on the spatial gradients the retrieved
structure descriptors is evaluated.

3. Technical implementation (Section 7)—At present, there is no configuration that
allow a simultaneous acquisition of all TomoSAR images. As a consequence, any
configuration is affected by changes of the 3D reflectivity in time. While these changes
can be neglected in typical L-band airborne acquisitions where short repeat-pass times
are possible, they become relevant in space borne ones. For this, conventional repeat-
pass and bistatic TomoSAR implementations are compared in terms of their ability to
retrieve physical structure information in presence of temporal reflectivity changes.

Finally, the conclusions are drawn in Section 8. The analysis is supported by experi-
mental results achieved in the framework of recent airborne SAR (DLR’s F-SAR platform)
campaigns over two forest sites close to the city of Traunstein in south Germany.

2. SAR Tomography for the Estimation of the Vertical Reflectivity Profiles
2.1. The TomoSAR Inversion Problem

In monostatic TomoSAR acquisitions K single-look complex (SLC) images are col-
lected with slightly different incidence angles in NP polarimetric channels along displaced
tracks/orbits. For a fixed polarization ω and range-azimuth coordinate, after coregistration,
compensation of the range dependent phase component (e.g., flat-Earth compensation),
phase calibration and spectral shift filtering [25], the complex amplitudes of the different im-
ages are collected in the K—dimensional vector y(ω). The associated TomoSAR covariance
matrix is R(ω) := E

{
y(ω)yH(ω)

}
, where E{·} and (·)H indicate the statistical expectation

and the Hermitian operators, respectively. The generic (m, n)th element of R(ω) can be
written in terms of the underlying vertical reflectivity profile F(z, ω) as [14,16]:

[R(ω)]m,n =
∫

F(z, ω)ej(κZ,m−κZ,n)zdz. (1)

where κZ,k is the vertical wavenumber [25,26] associated to the kth image.
The TomoSAR inversion problem concerns the estimation of F(z, ω) by means of the

inversion of the Fourier relationship in Equation (1) applied to an estimate of R(ω) in a
multilook cell consisting of N independent samples (e.g., looks). The maximum available
wavenumber determines the Rayleigh vertical resolution of the reconstruction [14,16,26]:

δZ =
2π

max
({

κZ,k
}K

k=1

) . (2)

2.2. Challenges of TomoSAR Imaging of Forest Volumes at L-Band

Due to penetration, L-band (back-)scattering occurs at multiple heights within the
volume, and it is reasonable to assume continuous and extended vertical reflectivity
profiles. For this reason, the TomoSAR inversion problem is typically underdetermined
as the number of the available images K is lower than the number of profile amplitudes
required to be estimated for an appropriate characterization of F(z, ω).

As a rule of thumb, for Rayleigh vertical resolutions in the order of 10 m and not too
irregularly distributed wavenumbers, non-parametric spectral estimators are a reasonable
choice in terms of final reconstruction performance [26]. The Capon spectral estimator
improves the vertical resolution and the sidelobe attenuation of a direct Fourier spectral
estimator [26–29], and provides a data-adaptive estimate FC(z, ω):

FC(z, ω) = hH(z, ω)R(ω)h(z, ω) with h(z, ω) =
R(ω)−1 a(z)

aH(z)R(ω)−1 a(z)
(3)

h(z, ω) is a filter that minimizes for each z the interference of the contributions coming
from other heights by adaptively placing proper nulls. The Kdimensional steering vector
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a(z) contains the height (z)–dependent phase differences of all images with respect to
the reference one. Its kth element is [a(z)]k = ejκZ,kz. Even though widely employed, the
tomographic formulation of (3) does not match to forest volumes by design [26,28,29].
The expected resolution and sidelobe attenuation improvements refer to a (deterministic)
Dirac-δ approximation of the scattering contribution at each height. However, in a forest
volume every single scattering contribution cannot be considered isolated from the others.
As a consequence, in order to deal with the underdetermination of the inversion, the
Capon optimization provides the maximum reflectivity value among the possible ones,
introducing biases in the radiometric reconstruction of the (forest) volume scattering contri-
butions [30]. This is independent of the track distribution, meaning that an improvement
in the Rayleigh vertical resolution is in general not sufficient to improve the radiometric
accuracy. Additional non-idealities like an inaccurate knowledge of R(ω) (in terms of a
biased estimation) and/or a(z) (due to residual track positioning errors or atmospheric
propagation) results into additional radiometric inaccuracies, that can finally end up even
in underestimating stronger contributions (self-cancellation) [27,28]. However, they can
be mitigated by diagonally loading R(ω) in h(z, ω), thus reducing the adaptivity and
tending in the limit to a Fourier estimate [24].

There are alternative approaches to better account for the presence of volumes. The
first one relies on a parametric description (e.g., modeling) of the reflectivity function.
Such an approach is used for instance for the generalized Capon formulations in [31]
and [32], which are also related to more general covariance matching approaches [29].
The second approach does not model the reflectivity profile but constrains the solution
(sub-)space of the TomoSAR inversion. This is the case of the Polarization Coherence
Tomography [33] and Compressive Sensing [34–36] approaches. The physical significance
of the model parameters and of the constrained solution space directly affect the physical
significance and the accuracy of the final reflectivity estimates. To date there are no
established full electromagnetic models nor appropriate (sub-)spaces fully supporting an
accurate TomoSAR profile inversion especially at L-band.

3. Physical Information Extraction from the Reflectivity Profiles: Distribution of Peaks

The potentials and limitations of TomoSAR reconstructions are today understood and
well assessed experimentally [26]. However, the interpretation of reflectivity profiles in
terms of 3D physical structure attributes is not as established at any of the frequencies and
in particular not at L-band. Two aspects make this interpretation challenging:

• At a fixed wavelength, the relative scattering contribution of the different vegetation
elements with respect to each other depends on the viewing geometry (e.g., the
incidence angle), the polarization, but also on their dielectric properties, which are
relevant at L-band [37]. There are not appropriate electromagnetic models able to
describe these dependencies accurately enough to provide a transfer function between
the 3D distribution of vegetation elements and 3D reflectivity. Additionally, the limited
resolution of conventional SAR systems does not allow to distinguish single trees,
preventing a direct correspondence between TomoSAR reflectivity and conventional
(single-tree based) structural descriptors established in forestry and ecology.

• The TomoSAR acquisition configuration and profile reconstruction algorithm(s) con-
cur to determine both (i) the resolution at which the profile peaks corresponding to
scattering contributions (i.e., the scatterer mainlobes) can be distinguished from each
other in height, and (ii) the level of the sidelobes of each of them. Weaker scattering
contributions are particularly penalized as their mainlobe can be confused with, or
even masked by, the sidelobes of stronger contributions. The regularity (e.g., distribu-
tion) of the wavenumbers plays a critical role, but also the temporal distribution of
the acquisitions compared to the changes of reflectivity [26] is significant.

Recently, there have been several attempts to use TomoSAR profiles for structure
characterization [23,24,38] and biomass estimation [39–41]. Alternatively to the approaches
using the full reflectivity information, the distribution of profiles peaks has been explored
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as well after detecting the meaningful ones. For instance, within a height interval of
interest, the meaningful peaks at the lowest and highest heights can be used to extract
ground topography [22,42] and top height [43], respectively. Moreover, it has been shown
by models and experiments that the 3D distribution of the identified meaningful peaks
reflects the variability of the vegetation elements within a stand [18,44–46], supporting the
assumption of their physical significance. In this framework, the ability to identify the
meaningful peaks corresponding to “true” scattering contributions is critical and depends
on the TomoSAR reconstruction algorithm as well as on the acquisition configuration.

3.1. Coherence Matrix Model

Without losing generality, the estimation of a normalized F(z,ω) from the intefero-
metric complex coherence matrix Γ(ω) associated to R(ω) is considered.

Γ(ω) = W−1/2R(ω)W−1/2, (4)

where W is a diagonal matrix with [W]k,k = [R(ω)]k,k. As coherence values are normal-
ized by the SLC intensity, the methodologies and analyses reported in the following are
independent of radiometric correction factors applied e.g., to reduce modulations of the
backscattered power induced by slopes.

For Γ(ω) a number of model assumptions are considered. First of all, the received
signal is modelled as the sum of the backscattered signal with power PS(ω) and receiver
white noise with power PN(ω). As a consequence:

R(ω) = PS(ω)ΓS(ω) + PN(ω)I ⇒ Γ(ω) =
SNR(ω)

SNR(ω) + 1
ΓS(ω) +

1
SNR(ω) + 1

I, (5)

where SNR(ω) = PS(ω)/PN(ω), and I denotes the identity matrix. In the absence of
temporal decorrelation (i.e., no reflectivity changes during the TomoSAR acquisition time),
the signal coherence matrix ΓS(ω) can in turn be written as the sum of a ground and a
volume contribution as for example addressed by the so called Random-Volume-over-
Ground (RVoG) model [47,48]:

ΓS(ω) =
µ(ω)

µ(ω) + 1
ΓG +

1
µ(ω) + 1

ΓV , (6)

where µ(ω) is the ground-to-volume amplitude ratio, and ΓG = a(zG)aH(zG) with zG the
ground height. The RVoG model assumes that the volume-only reflectivity is but for a
scaling factor the same across all polarimetric channels, and that the ground reflectivity
is described by a Dirac-δ function [47,48]. Equations (5) and (6) can be put together in a
compact form as:

Γ(ω) = α
[

βa(zG)aH(zG) + (1− β)ΓV

]
+ (1− α) I (7)

with α = SNR(ω)/[1 + SNR(ω)] and β = µ(ω)/[1 + µ(ω)].
Equation (7) is formally valid also in the presence of residual phase calibration er-

rors. Let ϕ be a Kdimensional vector containing the phase errors at the different images.
Usually, ϕ is assumed to be a zero-mean Gaussian distributed vector with covariance
matrix σ2

ϕ I [49,50]. In presence of phase errors, R(ω) becomes [49,50].

R(ω) = PS(ω)EΓS(ω)EH + PN(ω)I (8)

in which E is a diagonal matrix with [E]k,k = ej[ϕ]k . For a small enough σ2
ϕ, the approxima-

tion [E]k,k ≈ 1 + j[ϕ]k holds, and it results [49]:

R(ω) ≈ PS(ω)ΓS(ω) + PS(ω)σ2
ϕI + PN(ω) I. (9)
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Thus, it is straightforward to see that Equation (7) can be obtained from Equation (9)
for α = SNR(ω)/

[
1 + SNR(ω)

(
1 + σ2

ϕ

)]
.

3.2. Ground Topography

The hypothesis of a Dirac-δ ground reflectivity implies that the ground scattering
contribution induces at zG a peak in the reflectivity profile. As a consequence, zG can be
estimated from a TomoSAR profile as the position of the meaningful peak at the lowest
height. Meaningful peaks are supposed to exceed an amplitude threshold T. The choice of
an appropriate value of T for distinguishing the ground peak from the nearby sidelobes is
addressed in the following.

If no diagonal loading is applied, the Capon profile estimate can be written in a
compact form as:

F−1
C (z, ω) = F−1

C,VN(z)−
αβ
∣∣aH(z)Γ(ω)a(zG)

∣∣2
1 + αβF−1

C,VN(zG)
(10)

where FC,VN(z) is the Capon profile associated to the volume-only under the RVoG hypoth-
esis and noise components:

ΓVN = α(1− β)ΓV + (1− α)I. (11)

Considering only the z range around and below the ground height zG and neglecting
the volume contributions means approximating ΓVN ≈ (1− α)I, leading to:

F−1
C (z) ≈ K

1− α
− αβ

1− α

K2PSF(z− zG)

(1− α) + αK
(12)

where PSF(z− zG) =
∣∣aH(z)a(zG)

∣∣2/K2 indicates the TomoSAR point spread function
centered around zG, and corresponds to the Fourier profile of a point-like scatterer located
at zG. Therefore, the TomoSAR PSF determines the position and the amplitudes of the
sidelobes of FC(z, ω) in the selected height interval. For detecting the ground, it is sufficient
to set the following threshold:

T =
(1− α)[(1− α) + αK]

K(1− α) + αK2 − αβK2PSL
, (13)

corresponding to the highest sidelobe amplitude expressed by the PSL (peak-sidelobe
level). The use of the PSL in Equation (13) is appropriate as long as the highest sidelobe
is next to the mainlobe in the PSF, as in the reported experiment. Should this not be the
case, the amplitude of the PSF sidelobe closest to the mainlobe should be used instead.
Complications arise if the volume-only reflectivity is not negligible around the ground
height zG. This may introduce a systematic bias in the position of the ground peak if
the first derivative of volume-only profiles does not equal zero at zG. At the same time,
an optimization of the threshold value can be carried out only by making assumptions
on ΓV and/or on the level of the corresponding sidelobes. Finally, there is a minimum
ground-to-volume ratio µmin required for the detection of the ground. Assuming now both
the noise ( α→ 1) and the ground estimation bias to be negligible, it results:

µmin =
T − FC,V(zG)

1− T
(14)

where T is now a generic threshold.
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3.3. Horizontal and Vertical Structure Indices

Indices based on the 3D distribution of the identified meaningful peaks between
ground and canopy top within a given area on ground (referred as structure window in the
following) can be used to interpret TomoSAR profiles in terms of structural heterogeneity in
the horizontal and vertical dimensions. Let P = {p1, p2, . . . , pP} be the ensemble of the P
peaks in the structure window (excluding the ground peaks), and Z = {z1, z2, . . . , zM} the
ensemble of the corresponding M unique peak heights. A horizontal structure index HS
can be defined as [16,17]:

HS := 1− HS0/HS0, max (15)

where:

HS0 :=
n(Ptop)

A
(16)

where n(Ptop) is the number of elements of a subset Ptop of P constituted by all the peaks
with height in the top (vegetation) layer, A is the area of the structure window and HS0, max
is a (reference) maximum value. The top layer corresponds to the range of heights above
ε·max(Z), where ε < 1 is a usually empirically defined factor. HS0 expresses then the
density of peaks in the top layer: the larger the number of peaks, the denser (homogeneous)
the stands and HS tends to 0. HS tends to 1 in the opposite case, indicating a sparser
(heterogenous) stand. At the same time, a vertical structure index VS can be defined
as [23,24]:

VS := VS0/VS0, max , VS0 = M var{Z}, (17)

where var{Z} is the variance of the peak heights in Z and VS0, max is a reference nor-
malization value. Similarly to HS, VS increasing to 1 corresponds to increasing vertical
heterogeneity. In [22,24], it has been shown that the indices in Equations (15)–(17) agree
in different forest types with equivalent indices estimated from lidar data. Even more,
they correlate with equivalent indices used in forestry and ecology derived from field
measurements linking space occupation with tree size. In particular, HS correlates with
the stand density index (closely related to the basal area) and VS with the standard de-
viation of the diameter at breast height [24]. The calculation of the structure indices in
Equations (15)–(17) presupposes the accurate identification meaningful peaks, also here
usually implemented through an amplitude threshold. Different than in the case of ground
topography estimation, no reliable a priori assumptions can be made for the volume and a
reasonable threshold value can be only empirically set. However, an intrinsic robustness
against missed detection and false alarms can actually be expected, as Equations (15)–(17)
rely on statistics of Ptop and Z , and can be further increased by increasing the window
area A for a fixed TomoSAR profile resolution. P and M will increase accordingly, and
the possible sidelobes included in the selection are expected to play only a secondary role.
However, this could limit structure windows to larger values, reducing its significance for
heterogenous stands [24].

4. Test Sites and Data Sets

The experimental analyses in the next Sections have been carried out by processing
TomoSAR airborne L-band data sets acquired by the DLR’s F-SAR platform over two
temperate forest sites located in the proximity of Traunstein in the south of Germany. The
location of the two sites is depicted in Figure 1a.

The first site is in a locality called Froschham. The topography is essentially flat
around 590 m above sea level, and canopy heights reach 40 m. Management activities aim
at transforming even aged monospecific stands into uneven aged mixed species stands.
This transition has been captured by the TomoSAR acquisition. Homogenous forest stands
dominate the eastern part (appearing in near range and lower azimuth distances in the
Pauli RGB composite image in Figure 1b), while the western part (higher azimuth distances
and/or far range) is characterized by multi-layered mixed stands and complex stand
structure. This clear differentiation extending for several hectares makes this site ideal
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for investigating the structural information content of L-band TomoSAR profiles, and its
sensitivity to the acquisition geometry reported in Sections 5 and 6. In 2015, an extensive
ground measurement campaign took place in a 25 ha plot that has been included in the
ForestGEO network [51]. In addition to the extensive ground measurements, in 2016
fine-beam airborne Lidar data were collected over this site and are used in this paper
for comparison. The TomoSAR acquisition took place in June 2017. In this experiment,
K = 15 images have been acquired along uniformly distributed tracks with a horizontal
displacement between 5 and 70 m at a reference flight height of about 3000 m above mean
terrain height. The data set has been processed by a standard repeat-pass interferometric
processor, including co-registration, flat-Earth and terrain phase compensation and residual
phase calibration [52]. The processed range and azimuth SLC resolutions are 1.3 m and
0.6 m, respectively. The final Rayleigh vertical resolution varies between 3 m in near and
9 m in far range. The acquisition parameters are summarized in Table 1.
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The second site is the Traunstein Bürgerwald forest, indicated by the southern poly-
gon in Figure 1a. Through the years, the Traunstein forest is being reconverted from a
homogeneous one-age forest to a structurally rich, heterogeneous forest. Most forest stands
are complex in terms of tree species richness and heterogeneous stand structures. The
topography ranges from 630 to 720 m above sea level and is general flat with localized
steep slopes. Forest top heights reach 40 m. The “close-to-nature” silviculture is reflected
in five growth stages distributed across the site according to field inventories [53]. Young
stands are constituted predominantly by young trees with low density. Density increases
in the growing forest stands, which include scattered taller trees above the young shorter
ones. Stands in a transition stage are characterized by regrowth of shorter trees below
an older and taller vegetation layer. Mature stands are homogenous with a dense top
canopy layer. Finally, the so-called “Plenterwald”stands are very heterogeneous in terms
of species and ages. The German term “Plenterwald” (selection cutting) indicates forest
stands undergoing management procedures aiming at boosting structure heterogeneity in
a constant mixture of trees of different species and ages. In 2014, The DLR’s F-SAR system
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flew four times in more than two months on May 20, June 10, June 16 and July 28 [26]. A
Pauli RGB composite image is shown in Figure 1c. Each time the same slightly irregular
TomoSAR configuration consisting of 5 tracks displaced in the horizontal direction by
up to 25 m was acquired (see Table 1 for additional acquisition parameters). However,
deviations from the nominal tracks resulted into more or less significant distortions of the
PSF. The largest one occurred on June 10, and the related PSF can locally exhibit sidelobes
up to just −4 dB with respect to the main lobe [26]. In order to minimize the TomoSAR
performance across the four sets, the corresponding data vectors have been interpolated
to a common uniform wavenumber distribution using the interpolator in [54]. The in-
terpolation process was implemented exactly as discussed in [55] and was constrained
by the individual volume heights fixed here according to a fine-beam lidar acquisition
carried out in 2012. Each data set was collected in less than 1 h and given the calm wind
conditions temporal decorrelation between the individual tracks is assumed negligible. As
the four data sets span a time interval of two months, they are suitable to evaluate different
TomoSAR implementations in terms of the provided robustness of structure indices to
changes of the vertical reflectivity profiles induced by seasonality in Section 7. The weather
stations in Nilling and Schönharting located within a 20 km radius from the Bürgerwald
reported very similar weather conditions for all four campaign days [26].

Table 1. Relevant acquisition parameters of the processed data sets.

Test Site Date κZ (rad/m) 1 Resolution (m)
Vertical 1 Range Azimuth

Froschham 11 May 2017 0 2, 0.02, 0.09, 0.13, 0.18, 0.24, 0.33, 0.36,
0.42, 0.5, 0.58, 0.65, 0.69, 0.77, 0.83

7.5 1.3 0.6

Traunstein

20 May 2014

0, 0.06, 0.12, 0.18, 0.24 26.1 1.3 0.6
10 June 2014
16 June 2014
28 July 2014

Traunstein
Repeat-pass

20 May 2014 0.24

26.1 1.3 0.6
10 June 2014 0.18
16 June 2014 0.12
28 July 2014 0, 0.06

Traunstein
Bistatic

20 May 2014 0.24

26.1 1.3 0.6
10 June 2014 0.18

16 June 2014 0.12
28 July 2014 0.06

1 Values at mid-range after averaging along azimuth; 2 κZ = 0 indicates the reference track.

5. Structural Information Content of L-Band TomoSAR Profiles
5.1. Reference Lidar Structure Indices

The lidar data, e.g., the ground topography (digital terrain model, DTM) and canopy
height (canopy height model, CHM), have been projected in the slant range geometry
of the TomoSAR acquisition. The lidar top forest height, estimated as the maximum
height within a 5 × 5 m range-azimuth cell, is shown in Figure 2a for the Froschham site.
Canopy height profiles have been generated as the histograms of heights of all the lidar
returns in 5 × 5 m. These profiles have then been used to calculate the structure indices
according to Equations (15)–(17) within a (moving) 50 m × 50 m structure window. Past
analyses have shown that this window size allows to map physically relevant structure
variations on this site and at the same time to aggregate a statistically significant number
of independent profiles (in this case about 100) to allow a meaningful calculation of the
structure indices [24]. The obtained HS and VS are shown in Figure 2b,c, respectively.
According to the previous analyses in [23,24], ε = 0.6 was chosen. The normalization
factors HS0, max and VS0, max correspond to the maximum HS0 and VS0 obtained in the
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area covered by the lidar acquisition. HS assumes larger values where the height varies
faster in space, as occurring in the stands with isolated trees located at the center of the site.
The taller mixed stands at either larger azimuth distances or far range show the highest
horizontal homogeneity. Being composed by multilayered vegetation, these stands exhibit
also the higher VS values. At the same time, the monospecific stands in near range and
lower azimuth distances appear homogeneous, consistent with the management practices
in this site. Notice that in this area, a high correspondence between the lidar-derived
indices and the ones based on field measurements has been found and analyzed in [24].
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and (c) VS.

5.2. Profiles and Penetration

Figure 3a,b show the Capon profiles in the HH and HV channels over the transect
along azimuth depicted in Figure 1b, respectively, obtained by processing the coherence
matrix of the full stack of images (K = 15) using a 20 × 20 m multilook cell (corresponding
to around 500 nominal independent looks). For the visualization, the lidar DTM has
been compensated, and the height axis is thus referred to the ground height. The ground
scattering is, as expected, more visible in HH than in HV. Increasing the azimuth distance
this transect crosses monospecific stands (until 1 km) with constant top height of around
20 m, then a bare area and finally multilayered stands reaching up to 30 m. The volume
scattering extends in height and has typically one or two peaks at each azimuth coordinate.
Nevertheless, a (slightly) increasing profile complexity can be noticed moving from the
homogeneous to the heterogeneous stands.

Using the two-layer RVoG model, the NP polarimetric channels can be combined
coherently and used to separate ground and volume scattering contributions. For this,
model (6) can be extended in the polarimetric case by means of a sum of Kronecker
products [56]:

RP = CG ⊗ ΓG + CV ⊗ ΓV (18)

where RP is the covariance matrix associated to the KNPdimensional data vector yP (stack
of the single-polarization data vectors y(ω)), “⊗” denotes the Kronecker matrix product
and CG and CV are the polarimetric covariance matrices of the ground and the volume,
respectively. Model (18) is ambiguous by its own nature: an ensemble of ΓG, ΓV , CG and
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CV can be combined to provide the same RP. A least squares optimization can only provide
candidate estimates of ΓG and ΓV [56]:

Γ̃G = aR1 + (1− a)R2, · · · Γ̃V = bR1 + (1− b)R2 (19)

where R1 and R2 are two (K× K)dimensional matrices obtained from the singular value
decomposition of a permutated version of RP [56]. Analogous expressions can be found
for CG and CV . The scalars a and b vary in intervals that make the four matrices positive
semi-definite and define the ambiguity of the reconstruction. Therefore, the elements of
Γ̃G and Γ̃V in the same positions vary on two segments belonging to the same line in
the complex plane, consistently with the usual polarimetric interferometric (Pol-InSAR)
geometric interpretation of the RVoG model [56]. For each segment, ground and volume
solutions closer to the Pol-InSAR coherence region (Γ̃G,CR and Γ̃V, CR) and closer to the
unitary circle (Γ̃G,UC and Γ̃V, UC) can be found in the complex plane. The coherence region
contains all the possible interferometric coherences resulting from a linear combination of
the polarimetric channels for a fixed interferometric baseline.
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Figure 3c,d show the Capon profiles corresponding to Γ̃G,CR and Γ̃V, CR for the selected
azimuth line. It is apparent that the ground contribution is stronger in Γ̃G,CR than in HH,
and weaker in Γ̃V, CR than in HV. However, a residual volume component remains in
Γ̃G,CR and a residual ground in Γ̃V, CR. Consistent with the underlying RVoG assumption
in the optimized solution (19) there are no differences in the appearance of the volume
components in the different profiles. On the other hand, given the high Rayleigh vertical
resolution and the number of images available, the attenuation or amplification of the
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ground scattering component does not change significantly the null-placing mechanism of
the Capon estimator.

Moving on the segments from Γ̃G,CR towards Γ̃G,UC amplifies further the ground
scattering contribution but does not cancel the volume (Figure 3e). In contrast, moving
from Γ̃V, CR to Γ̃V, UC cancels almost totally the ground scatterer, together with all the
vegetation contributions close to the ground (Figure 3f). Only the contributions close to the
top remain. It is worth noting that being the solutions closest to the unitary circle solutions,
Γ̃G,UC and Γ̃V, UC are also the ones tending more to ill-conditioning. For this reason, the
corresponding Capon profiles tend to be noisier.

The profiles in Figure 3 show clearly the change and sensitivity of the L-band To-
moSAR profiles as a function of polarization. Remembering (6), in the frame of the RVoG
the polarimetric dependency can be characterized quantitatively by estimating the varia-
tion of µ(ω) across ω. Under the Dirac-δ assumption for the ground reflectivity, a sufficient
condition to estimate a unique ΓV by regularizing the Sum-of-Kronecker-Product decom-
position (19) is to use the ground height. A detailed description and discussion of this
is reported in [57]. Here, the lidar DTM has been used. The regularization procedure
proposed in [57] provides estimates of ΓV close to Γ̃V, CR in the majority of cases. Notice
that this solution is particularly meaningful also from a physical point of view: the cor-
responding points within the unitary circle are the most robust ones with respect to the
number of images used in the optimization. In contrast, Γ̃G,UC and Γ̃V, UC come closer to
the coherence region at the change of the number of images and/or image geometry [58].
The estimation of CG and CV follows the estimation of ΓV by applying a least-squares
optimization. The diagonal elements of CG and CV are the separated ground and volume
powers in the different polarimetric channels and additionally allow the calculation of the
ground-to-volume ratios (µHH , µVV and µHV) in the HH, HV and VV channels. Finally,
the classical polarimetric contrast optimization can be applied to find the polarimetric
channel with the maximum and minimum ground-to-volume ratios µmax and µmin [48,59].
The maps of µHH , µHV and µmax are shown in Figure 4, and they are consistent with the
differences seen in the profiles of Figure 2. By comparing these maps with the lidar height
and structure maps in Figure 2, a relationship between µHH and µmax with height becomes
apparent: the taller the stands, the more attenuated the ground scattering. This agreement
is not visible in µHV as the ground scattering is weaker. On the other hand, no relevant
correlation between ground-to-volume ratios and (geometric) structure stands out. A larger
role is certainly attributed to the dielectric properties of the different stands [14,37]. The
distributions of µHH , µHV , µmin and µmax are shown in Figure 5. It is apparent that the
change of polarization can change the ground-to-volume ratio up to 20 dB. µHH and µHV
are separated by around 5 dB, and the optimization of polarization increases µHH up to
3 dB.

As a final remark, it is worth to be noted that there is basically no difference between
the Capon profiles obtained in the polarimetric channels corresponding to µmax and µmin
and the ones corresponding to Γ̃G,CR and Γ̃V, CR, respectively, across the whole site. This
suggests a possible physical interpretation for these two candidate solutions. From a more
practical point of view, it makes also possible to obtain coherence matrices (and profiles)
in the extreme µ cases without resorting to a more or less arbitrary regularization similar
as proposed in [60]. However, this conclusion may not be valid at different frequencies
and/or different forest types.
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5.3. Estimation of the Ground Height

The possibility to obtain accurate ground height estimates from the L-band Capon
profiles is addressed. As described in Section 3.2, the ground height is estimated as the
minimum location of the profile peaks above an amplitude threshold. A mean SNR equal
to 25 dB and a residual phase calibration error with 10◦ standard deviation has been
considered. The application of the adaptive threshold (13) requires the accurate knowledge
of the ground-to-volume ratio for which the ground height is needed (see Section 5.2).
For this a constant threshold value β = 0.3 (corresponding to µ = −3 dB) has been used,
thus accepting a minimum detectable µ(ω) as in (14). The possibility to maximize the
ground-to-volume ratio by combining different polarizations becomes critical for increasing
the robustness and the range of µ(ω) and allowing the correct detection of the ground
even if using with a suboptimum threshold (like in this case), or an unfavorable array
configuration in terms of PSL, or for a small volume reflectivity at the ground level. In this
case, the strongly polarized ground response at L-band (as seen in Section 5.2) is favorable.
Finally, it is worth noting that the discussion on the determination of amplitude threshold
in Section 3.2 assumed a very large, theoretically infinite, number of looks. When the
number of looks becomes finite, the threshold values need to be increased to protect from
random fluctuations of the profile amplitudes by, e.g., (a fraction of) the standard deviation
of the profile amplitudes (see [27] for the Capon estimator). To account for this, a 20%
increased threshold margin is considered.
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The obtained ground height error maps estimated against the lidar DTM obtained
by processing the full stack of images (K = 15) with a 20 × 20 m multilook cell and for
HH, HV and Γ̃G,CR are shown in Figure 6a–c. The corresponding histograms are plotted
in Figure 7a, together with the ones corresponding to the VV and Γ̃G,UC estimates. In HV
there are several areas with an estimation error larger than 5 m. A certain trend from near
to far range can be observed as a consequence of the worsening of the Rayleigh vertical
resolution. Overall an estimation bias of around 1.3 m and a standard deviation around
4.5 m are obtained. The errors reduce significantly in HH as the number of cases in which
an “underground” sidelobe is misinterpreted as the ground mainlobe decreases. The
bias is almost zero and the standard deviation reduces to 2.7 m. A maximization of the
ground-to-volume ratio to Γ̃G,CR improves the estimates in a few cells. The bias does not
improve when Γ̃G,UC is considered, however the standard deviation increases to 3.5 m as
a result of the profile noise introduced by the poorly conditioned coherence matrix. The
consistency of these results indicates the validity not only of the threshold formulated in
Equation (12), but also of the assumptions behind it, at least in a statistically sense for the
whole site.
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Finally, Figure 8a shows the distribution of the (mean) ground estimation error in
absolute value obtained by using the ground-optimized Γ̃G,CR in the plane defined by
the corresponding µmax and the volume-only Capon amplitude FC,V(zG) estimated at the
lidar ground. For this diagram, only the estimates corresponding to the “true” ground
peak (i.e., the closest to the reference lidar ground) have been considered. The black curve



Remote Sens. 2021, 13, 2255 15 of 29

indicates the limit of (14) and represents the minimum ground-to-volume ratio at which a
peak corresponding to the ground scattering can be detected in the Capon profiles for a
given fixed threshold. All points considered are above the detection limit, and the height
error increases in correspondence to a low µmax and/or FC,V(zG). If FC,V(zG) = 0, the
minimum detected ground is for µmax = −13 dB and the height error is about 4 m. Errors
lower than or equal 2 m are obtained already for µmax = −10 dB independently of FC,V(zG).
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5.4. Estimation of Horizontal and Vertical Structure

The horizontal and vertical structure concept and formulations described in Section 3.3
have been applied to the L-band Capon profiles obtained with the full TomoSAR stack
(K = 15). The identification of the meaningful peaks in the following experiments follows
the approach proposed in [61] where it was shown that considering all peaks with an
amplitude until 6 dB smaller than the maximum profile peak is sufficient to distinguish
among the different structure types in Froschham.

In order to get some insights on the capability of the Capon profiles at different
polarizations to describe structure differences, the transects in Figure 9a–d show the
number of profile peaks retrieved in a 50 m × 50 m structure window for each azimuth-
height bin in the same azimuth line as considered in Figure 3. Each bin measures 5 m in
azimuth and 1 m in height. The underlying profiles have been calculated using 10 × 10 m
multilook cells. This provides 25 independent profiles for each structure window, which
is good enough for the qualitative comparisons of peak distributions. Additionally, the
chosen multilook cell provides a reasonable margin for well-conditioned estimates of the
polarimetric covariance matrices RP. In HH (Figure 9a), the detected peaks are more
concentrated around the ground and the few detected volume peaks are mainly close to the
canopy top. Yet, they show an increasing height variance from left to right reflecting the
increasing vertical structure complexity when moving from the homogeneous monospecies
stands to the heterogeneous multilayered stands. This gradient is clearer in HV (Figure 9b).
Peaks are still concentrated around the ground, however the increased sensitivity to the
volume scattering turns into an increased concentration of peaks close to the canopy top
in the homogeneous and to a wider height dispersion in the heterogenous stands with
respect to HH. Polarimetric optimization appears to have little advantage in terms of
structure differentiation. Considering Γ̃V,CR (Figure 9c) the number of peaks close to the
canopy top increases, but with no significant change with respect to their density in the
top layer or their vertical distribution with respect to HV. Finally, using Γ̃V,UC (Figure 9d)
minimizes the density of peaks at the ground level, but increases the vertical dispersion
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of the volume peaks (already noticed in Figure 3). This is expected to reduce the vertical
structure gradient, similarly to HH.
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Figure 9. Froschham test site. Distributions of the selected peaks of the Capon profiles (multilook 10 × 10 m) using a
50 × 50 m structure window in the full K = 15 case in the reduced K = 6 case. (a,e): HH; (b,f): HV polarizations; (c,g): using
Γ̃V,CR; (d,h): using Γ̃V,UC. The height axis is referred to the ground topography. The location of the transect is shown in
Figure 1b.

The horizontal and vertical structure indices defined in Section 3.3 have been calcu-
lated as well using only the peaks 5 m above the ground. Only the HH and HV channels are
considered, as the previous qualitative analysis of the distributions of the peak heights has
shown that an optimization of the polarization channel does not provide any significant
advantage. As the profile estimation deals with smaller coherence matrices, a smaller
multilook window can be employed and the number of independent profiles within the
structure cell increases. A of 5 m × 5 m multilook, the smallest possible for obtaining
still well-conditioned coherence matrices was chosen. The obtained TomoSAR horizontal
structures are shown in Figure 10a,b. Both the HH and HV maps show a very similar
behavior of HS across the scene, with the highest values showing off for the isolated
sparse stands in the center. In near range, the lowest values of HS are obtained for the tall
multilayered stands, and some larger values in the lower half. This is in strong agreement
with the lidar map in Figure 3b. The time difference between the lidar and TomoSAR
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acquisition is not expected to bias the comparison as the forest growth would in the order
of 1 m. At the same time there are of course also areas with a lower level of agreement as a
result of the differences in wavelength, resolution, and looking geometry of lidar and SAR
imaging. The differences between the maps amplify when moving from near to far range
with increasing incidence angle. The TomoSAR HS becomes larger (by around 20%) than
the lidar one, although still denoting homogeneity. This might be due to the reduction of
vertical resolution with increasing incidence angle: both, the number and the location of
the peaks may change accordingly (as will be discussed in Section 6). The best agreement
between the lidar and TomoSAR HS has been found in HV with a correlation coefficient of
around 0.84, as shown in the 2-D histogram in Figure 11b. The slight overestimation as a
function of range reflects in the positive bias for a lidar HS below 0.2. In HH (Figure 11a),
a (small) positive bias is distributed across the whole range of HS values, due to the lowest
concentration of peaks close to the canopy top with respect to HV (see Figure 9a,b).
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Figure 11. Froschham test site. 2-D histogram comparing the L-band TomoSAR and the lidar HS (50× 50 m) with (a) K = 15
in HH, (b) K = 15 in HV and (c) K = 6 in HV. The histogram values are in logarithmic scale for better visualization. The
black dashed lines indicate the mean values of the TomoSAR HS as a function of the lidar HS.

The vertical structure index VS has been evaluated as well. The obtained range-
azimuth TomoSAR maps with K = 15 in HH and HV are shown in Figure 12a,b and
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their comparison with the lidar derived VS of Figure 1c in Figure 13a,b. Overall, a good
agreement between the TomoSAR and lidar derived structure indices. In both cases the
monospecific homogenous stands can be distinguished very well from the multilayered
ones. The decrease of vertical resolution with range induces here a decrease of VS, that
can be observed as a (slight) negative bias in the 2-D histogram for intermediate lidar VS
values. Structure estimates in HH have a slightly larger dispersion than in HV, with a
tendency to underestimation in accordance with the transects of Figure 9.
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6. Effect of the Acquisition Geometry at L-Band

The experimental results in Section 5 show that using an ideal L-band acquisition con-
figuration, i.e., (nominally) uniformly distributed tracks/orbits and high vertical Rayleigh
resolution, accurate estimates of structure parameters can be achieved allowing the dis-
crimination of stands with different structure characteristics. However, under less ideal
conditions this might not be anymore the case. In this Section, the robustness of the
characterization of structure from Capon profiles is evaluated in a reduced scenario in
which only K = 6 images acquired along uniformly distributed tracks are available, but
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with a maximum displacement amounting to 1/3 of the full-stack case. As a consequence,
the Rayleigh vertical resolution becomes 21 m at mid-range, i.e., three times worse than
in the full-stack case. The largest volume occupies now around two height resolution
units. The underlying L-band penetration and sensitivity to structure components does
not change, but the ability to characterize them does. Figure 14 shows the Capon profiles
obtained along the same azimuth line of Figure 3 with the reduced stack. The reduced
vertical resolution is apparent, and not always peaks at different heights are separated
from each other, additionally reducing the capability to distinguish the homogenous from
the multilayered stands at the two sides of the transect.
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Figure 14. Traunstein test site. Capon profiles of coherence matrices (multilook 20 × 20 m) in the reduced K = 6 case in the
(a) HH and (b) HV polarizations. The height axis is referred to the ground topography. The location of the transect is shown
in Figure 1b.

The effect of the estimation of the ground height using the methodology discussed in
Section 3 and implemented as discussed in Section 5 is evaluated first. Figure 6d shows the
round height estimation error obtained using Γ̃G,CR, i.e., the maximized ground-to-volume
ratio. A residual estimation error increasing from near to far range (e.g., in the direction
of decreasing vertical resolution) is now apparent when compared to full-stack case. As
the volume height compared to the Rayleigh resolution becomes lower, the overall bias
increases to 3 m and the standard deviation to 6 m. The height error histograms in Figure 7b
show that the poorer the vertical Rayleigh resolution, the stronger the ground contribution
needs to be in order to achieve a certain ground height estimation performance. This makes
the polarimetric optimization of the ground-to-volume ratio more important. Indeed,
the optimization of the ground-to-volume ratio reduces the volume bias on the ground
estimates reaching a minimum of around 2.3 m if the candidate solution closer to the
unit circle is chosen. The increase of the standard deviation with respect to the better
conditioned Γ̃G,CR is negligible. Further, the error distribution in Figure 7b shows that a
ground estimation error lower than 5 m can in this case be achieved with µmax > −10 dB
provided that the volume-only Capon profiles have some contribution at the ground level.
The bias associated to the loss of resolution increases the volume-only power measured
by the Capon estimator at the ground with respect to the full-stack case. Recalling (14),
this helps the detection of a ground peak with µmax < −10 dB, but with a significant loss
of performance.

The estimation of the structure indices HS and VS now relies on the 3D distributions of
peaks extracted from profiles with lower vertical resolution than in the full-stack case. The
examples in Figure 9e–h show the changes across the polarization channels similar to the
ones in the full-stack case. However, in the taller stands the reduction of resolution causes a
larger concentration of peaks closer to the canopy top, since peaks at lower height are more
difficult to be separated from the ground one. In turn, all the intermediate values of HS
become lower as shown in Figure 10c. On the other hand, volume peaks in shorter stands
might be missed simply because they are not resolved from the ground. As a consequence,
HS can now reach higher values in these stands. Overall, the TomoSAR HS is slightly
positive biased and more dispersed with respect to the lidar HS, but the two are still in
agreement (Figure 11c). As expected, a distribution of volume peaks in a narrower height
interval leads to lower VS values when compared to the full-stack case (Figure 12c), thus
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reducing the range of structure types that can be distinguished from each other. Similarly
to HS, despite the slight negative bias and an increased standard deviation, the TomoSAR
derived VS still agrees with the lidar derived VS (Figure 13c). Finally, consistently with
the full-stack case, it appears that any polarization optimization does not really improve
the ability to distinguish the different structure types from each other.

7. Effect of the TomoSAR Acquisition Implementation

Up to now the discussion has been based on TomoSAR acquisitions performed within
few hours, guaranteeing the stationarity of the reflectivity. In these cases, even if the
scatterers move due to wind, introducing temporal decorrelation, the underlying vertical
reflectivity profile does not change. However, with longer observation times, the vertical
reflectivity profile can change as a result of changing geometric and dielectric properties of
the scattering distribution induced by, e.g., rainfalls, droughts, seasonality, disturbance,
etc. Data sets of (realistic) space borne TomoSAR implementations will build up of images
acquired within weeks or even months. In this case, reflectivity changes can occur from
acquisition to acquisition, and the stationarity of the underlying reflectivity within the
tomographic set is not anymore given [37]. Depending on the amount and nature of change,
the resulting temporal decorrelation (in the sense of non-stationarity) of the underlying
reflectivity can cause the defocusing of the estimated vertical profile independently of
the used reconstruction algorithm with a consequential resolution and sidelobe level
degradation [62].

The effect of such TomoSAR defocusing on the extraction of structure information
from the estimated reflectivity profiles is addressed in this Section with respect to two
different temporal decorrelation scenarios associated to two different TomoSAR acquisi-
tion implementations. In a conventional repeat-pass implementation each SLC image is
acquired at a different time. In a bistatic implementation [20,26,63,64] each acquisition con-
sists of (practically) simultaneously acquired pairs of images where each pair is acquired at
a different time and with a different vertical wavenumber. Differently from the repeat-pass
case, in the bistatic case temporal decorrelation (including the change of the underlying
reflectivity) may occur between image pairs, but not within the same pair.

Figure 15 shows the interferometric coherences between the same reference tracks
at different days together with the corresponding (residual) vertical wavenumber κZ
resulting from deviations from the nominal track. In addition, here the coherences have
been calculated over 20 × 20 m range-azimuth multilook windows, corresponding to
500 (nominally) independent looks. The closer to zero κZ is, the more the interferometric
coherences express only temporal decorrelation. The highest coherences are obtained
for the smallest time differences, i.e., between June 10 and June 16. Over baser areas the
coherence is around 0.7 in average. In forested areas, the coherence decreases to 0.4 in those
tall stands with large(r) κZ. Since volumetric and temporal effects cannot be separated, this
value may actually contain a significant volume decorrelation contribution. This conclusion
is supported by the work in [65]. The lowest coherences are obtained for the larger time
difference, i.e., between May 20 and July 28. In this case, bare areas exhibit low coherence
(around 0.35), while in the forest stands the coherence does not drop below 0.35. However,
a larger time interval does not necessarily imply a lower coherence. For instance, the
coherence for the pair (J May 20, July 28,) reaches similar decorrelation levels to the ones for
the pair (May 20, Jun 10) despite the 1 month longer separation. However, the decorrelation
in the (May 20, June 10) pair might include also residual volumetric effects as indicated by
the higher κZ. The largest mean coherence in forested areas has been found for the pair
(June 20, July 28) about 0.45.
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Figure 15. Traunstein test site. L-band interferometric coherences (multilook 20 × 20 m) an corre-
sponding vertical wavenumbers among the same reference track flown at the different considered
days in 2014. Top left corner: lidar top height (fine-beam lidar acquisition in November 2012). The
range direction is on the horizontal axis of each panel.

Capon profiles have been generated using the coherences matrices after interpolation
in multilook cells of 5 × 5 m (corresponding to 30 nominal independent looks). Following
the same procedure as in Sections 3 and 5, the structure indices are estimated. Figure 16a–d
shows the number of peaks in the HV channel in every 5 × 1 m azimuth-height bin along
an azimuth transect for the four acquisition dates. The transect crosses mature (until an
azimuth distance of 3 km) and “Plenterwald” stands. On May 20, a higher concentration
of peaks appears at ground level heights, while vegetation peaks tend to be sparsely
distributed. It is expected that the two forest types are more distinct in terms of vertical
structure rather than of horizontal structure. As spring progresses towards summer (from
May 20 to July 28), the profile peaks concentrate more and more towards the canopy top,
especially in the mature stands. These stands become now more distinguishable also in
terms of horizontal heterogeneity. This agrees with what observed and reported in [37]
and could be an indication for the seasonal redistribution of water in the tree tissues:
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while in spring the water is more present in the tree trunks, in summer transpiration
phenomena concentrate water towards the canopy top. There is a stronger reflectivity
change between May 20 and June 10 than between the June and July, that agrees with the
temporal decorrelation maps of Figure 17.
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A repeat-pass TomoSAR data set is synthesized by combining after interpolation SLC’s
from different days with wavenumbers decreasing with time (see Table 1). The transect
obtained is shown in Figure 15e. Supported also by the analysis in [26], the defocusing
caused by the presence of temporal decorrelation over such a large time span degrades
the estimated volume scattering components making a distinction between them difficult
if not impossible. As a result, the structural characteristics of the two stands cannot be
retrieved anymore. The bistatic implementation has been emulated by considering a set of
coherences with the same decrease of wavenumber in time similar as in the repeat-pass
case. Following the procedure detailed in [20,26,63,64], a coherence matrix can be built
up with a coherence set with uniformly distributed wavenumbers following a Toeplitz
form. The Capon estimator can be applied to the reconstructed coherence matrix, and the
structure indices calculated. The corresponding transect is shown in Figure 16f indicating
that complex coherences measured in a bistatic implementation can make L-band structure
characterization robust to the underlying temporal reflectivity changes. The change of the
vertical distribution of peaks along azimuth now reflects the structural difference between
the two stands.
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Figure 17. Traunstein test site. L-band TomoSAR horizontal structure HS (50 × 50 m) in HV from Capon profiles in
the (a) reference “single-pass” implementation (July 28), (b) repeat-pass implementation and (c) simulated repeated
bistatic implementation.

The comparison between the three TomoSAR configurations (single-pass, repeat-pass
and bistatic) is extended to the whole site in Figures 17 and 18 for the horizontal and
vertical structure indices. The data set of July 28 has been reported as a reference “single-
pass” one with no reflectivity changes between acquisitions. The spatial trends of both
HS and VS correlate with the growth stage patterns in Figure 19a [23,53]. To help the
interpretation, in Figure 19b the mean values of VS and HS for each stage are plotted one
as a function of the other for the four acquisition dates. Mature and growing stands are
comparable in terms of VS, but the decreasing density of the growing stands is reflected in
a higher HS. HS increases further in the young stands due to the lower density where VS
increases as well. These three stages are then well distinguishable from the transition and
“Plenterwald” stands thanks to the large difference in VS. For the two latter stages, HS
remains on intermediate values—larger than in mature stands, but lower than young ones.
However, they are structurally equivalent. These characteristics are unaltered across the
acquisition dates, but the single mean values of HS and VS can present some variability
with acquisition time along the seasonal change. Recalling what already commented for
the transects in Figure 18, the two furthest points along the VS axis on July 28 represented
by the mature and the “Plenterwald” stands become closer on May 20 and June 10 than
on July 28. However, on July 28 mature and growing stands they become the closest in
terms of HS, while they are the most separated ones in terms of HS in the May 20 and in
the June 20 acquisitions. The spatial structural gradients (Figures 17b and 18b) and their
relationships across the different growth stages (Figure 19c) are lost in the repeat-pass case
as the defocusing drives many profile peaks below the amplitude threshold making almost
all stands to appear heterogeneous horizontally and homogeneous vertically. In contrast,
the robustness of the bistatic implementation to the underlying L-band reflectivity changes
allows to retrieve meaningful structural relationships (Figures 17c, 18c and 19c) very well
within the variability of the four data sets representing the single-pass case.
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8. Discussion and Conclusions

In this paper, the potential of tomographically reconstructed L-band reflectivity for the
(qualitative and quantitative) characterization of 3D forest structure has been reviewed and
discussed not only with respect to the information content of the reconstructed reflectivity,
but also regarding the tomographic acquisition configuration and implementation. The
analysis has been carried out by processing airborne L-band TomoSAR data acquired over
the temperate forest of Traunstein (south of Germany). The reconstruction was performed
by applying the conventional Capon spectral estimator to the different data sets. The
experiments in this paper confirm that L-band is able to penetrate until the ground even
through the dense and tall forest stands, while remains sensitive enough to the distribution
of the smaller canopy elements that determine the 3D structure. The horizontal and
vertical forest structure is described by a pair of complementary indices derived from the
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distribution of the peaks of the reconstructed reflectivity within a given structure window
(on the order of a quarter of hectare). The ability to fully characterize both dimensions has
been confirmed by comparing the obtained index values with the ones derived by lidar and
is supported by other experiments reported in the literature where also the correspondence
to equivalent structure indices derived from ground inventory measurements has been
established [24]. L-band structure measurements by means of TomoSAR are of course not
limited to temperate forests and have already been demonstrated in tropical as well as in
boreal forest sites [22]. A high(er) vertical resolution becomes critical in order to identify
both the weak(er) ground and those relevant, vegetation scattering contributions in the
lowest stand compartments [14,22]. Together with a large(r) number of images, it also
facilitates the reconstruction of more complex reflectivity profiles [22,66]. The effect of
non-optimal TomoSAR configurations in terms of lower vertical resolution and higher
level of sidelobes on the reconstructed reflectivity can be counteracted by employing super-
resolution estimators like, e.g., compressive sensing. The characterization of structure also
benefits from high(er) range-azimuth resolutions. On the one hand, the vertical reflectivity
reconstruction is more accurate due to the larger number of independent looks available for
a certain multilook cell size. On the other hand, the calculation of structure indices is more
robust as each structure window includes a larger number of (independent) reflectivity
samples (e.g., profiles) within an area that is still meaningful for heterogeneous stands.

Within the RVoG hypothesis, the change of the polarimetric channel implies a change
of the ground-to-volume ratio. The “visibility” of the polarized ground at L-band makes
this change significant. For a fixed vertical point-spread function defined by the TomoSAR
configuration, the ability to increase the ground-to-volume ratio by changing the polar-
ization channel becomes relevant because it (1) increases the detectability of the ground
peak in the TomoSAR profiles regardless of the contribution of close to ground vegetation
components to reflectivity and (2) improves the performance of estimating its position
by reducing the vegetation-induced bias. In Froschham, the ground-to-volume ratio in-
creases by 5 dB in average from HV to HH. For an ideal regular track configuration with
vertical resolution better than 10 m, this increase allows a complete compensation of the
vegetation-induced ground height bias and of the reduction of the standard deviation by
around 40% (to lower than 3 m). Polarimetric interferometric [48,59] optimization tech-
niques can increase the ground-to-volume ratio by 3 dB in average. This is in many cases
enough to ensure a robust and accurate ground detection. For example, the estimation
error reduces from 4 m in HH to 2 m. Polarization diversity becomes even more critical for
those TomoSAR configurations with a rather low vertical resolution. The experiments in
Froschham showed that for a reduced-stack configuration allowing a vertical resolution
of about 20 m, the vegetation bias is reduced by almost 50% when changing from HV to
HH. The polarimetric maximization of the ground-to-volume ratio reduces the bias by
additional 30%, while the (very) limited resolution prevents any further improvement. The
standard deviation reaches 6 m in this case.

Still under the RVoG hypothesis, even for an infinite TomoSAR vertical resolution, the
choice of the polarization channel would have no effect on the estimation of the horizontal
and vertical structure indices as the estimated vegetation reflectivity components would not
change. This is indeed confirmed at a large extent by simply comparing the experimental
results obtained in HH and HV using the full-stack configuration in the Traunstein forest.
The small residual difference is caused by the performance of the TomoSAR imaging in
focusing weak(er) scatterers (here volume components weaker in HH than in HV), but also
by a sub-optimum amplitude threshold used for the selection of the meaningful peaks. As
a consequence, the detected “meaningful” peaks in HH tend to be concentrated closer to
the ground than in HV, resulting into a slight (10%) bias in the horizontal structure and a
slightly higher dispersion in the vertical structure. A further polarimetric interferometric
optimization to minimize the ground scattering contribution does not lead to any significant
improvement compared to HV, as it is reasonable to expect. Two factors affect the structure
indices values at a larger extent. First, a reduction of the Rayleigh vertical resolution
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reduces the range of values of the structure indices and/or their distribution, especially
in the vertical direction. Employing a spatially larger structure window may increase
robustness, as long as it is still appropriate to represent structure variations. If this is the
case, then the Capon (or in some cases) even the Fourier-based reconstructions might be
used. However, if a smaller structure window is needed, better performing estimators (like,
e.g., compressive sensing) need to be employed for reconstructing the reflectivity. Second,
it has been seen that the L-band sensitivity to seasonal changes, as for example caused by
the re-distribution of the water content within the tree tissues occurring within in a time
span of 2 months between spring and summer may change the peak distribution and lead
to (slightly) different structure index values. However, this change does not significantly
impact the capability to discriminate among different forest stands. This robustness is
definitely enhanced by using reflectivity peak positions rather than reflectivity values
itself [24,37].

The robustness to the temporal decorrelation effects induced by possible changes
of the reflectivity in time also drives the choice of the implementation of the TomoSAR
acquisitions in space borne scenarios. The experimental results have shown that the
long-term seasonal variations at L-band violate the stationarity assumption, and a simple
decay with time may not be sufficient to describe them. In contrast to a conventional
repeat-pass implementation, a bistatic-like TomoSAR implementation in which a temporal
decorrelation-free complex coherence measurement is obtained at each revisit appears to
be robust against the seasonal change of vertical reflectivity in a 2-month time span, and
able to restore the capability to discriminate the different structure types. It is worth noting
that in the case of space borne implementations the ability to perform all the required
acquisitions in the minimum possible time becomes relevant for minimizing the effects of
seasonal reflectivity changes. For instance, a revisit time in the order of 1 week or less could
allow the estimation of structure parameters at L-band even in a repeat-pass mode [65,66].

It is anticipated that the experiments described in this paper trigger a more general
characterization of the potential of L-band SAR tomography for forest structure map-
ping. The presented structure framework is just a first step towards the interpretation
of TomoSAR measurements in terms of physical 3D structure. The development of such
a framework is essential not only in light of a number of planned or proposed L-band
missions aiming at forest monitoring (e.g., NASA’s NISAR [67], ESA’s ROSE-L [68] and
DLR’s Tandem-L [69]), but also to better shape acquisition requirements and finally initiate
novel information products able even to accommodate synergies and complementarities
with measurements at different SAR and lidar wavelengths.
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