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ABSTRACT
Extracting precise location information from microblogs is a crucial 
task in many applications, particularly in disaster response, reveal
ing where damages are, where people need assistance, and 
where help can be found. A crucial prerequisite to location extrac
tion is place name extraction. In this paper, we present GazPNE: 
a hybrid approach to place name extraction which fuses rules, 
gazetteers, and deep learning techniques without requiring any 
manually annotated data. The core of the approach is to learn the 
intrinsic characteristics of multi-word place names with deep learn
ing from gazetteers. Specifically, GazPNE consists of a rule-based 
system to select n-grams from the microblogs that potentially 
contain place names, and a C-LSTM model that decides if the 
selected n-gram is a place name or not. The C-LSTM is trained on 
388.1 million examples containing 6.8 million positive examples 
with US and Indian place names extracted from OpenStreetMap 
and 381.3 million negative examples synthesized by rules. We 
evaluate GazPNE against the SoTA on a manually annotated 4,500 
tweet dataset which contains 9,026 place names from three foods: 
2016 in Louisiana (US), 2016 in Houston (US), and 2015 in Chennai 
(India). GazPNE achieves SotA performance on the test data with an 
F1 of 0.84.
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1. Introduction

Online social media platforms, especially microblog platforms such as Twitter and Weibo, 
are responsive to real-world events and are useful for gathering situational information in 
real-time (Tapia et al. 2013, Reuter and Kaufhold 2018). For example, Twitter is widely used 
by both the public and the government in disaster response, such as earthquakes, floods, 
fire, terrorist attacks, and civil unrest (Alexander 2014, Ozdikis et al. 2017, Yuan and Liu 
2018). When an emergency event occurs, extracting location information from tweets is 
crucial for keeping people and authorities informed about exact affected areas, where 
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people can receive fresh water and food, and the locations where people need rescue and 
medical assistance (Kar et al. 2018, Maneriker et al. 2019). However, this task is a challenge 
since geo-tagged tweets are sparse. According to Cheng et al. (2010), Morstatter et al. 
(2013), and Kumar et al. (2017), only 0.42%, 3.17%, and 7.90% of the total number of 
tweets contain geo-tags, respectively, and these rarely reflect the mentions’ exact geolo
cations (Middleton et al. 2018). Thus, it is necessary to extract the location information 
from tweet texts (i.e. making it an extractive problem rather than a retrieval problem). 
This task is called location extraction and consists of two steps: (1) identifying references 
to the locations in a text, known as toponym recognition or place name extraction, and 
(2) assigning geographic coordinates to the identified place name, known as toponym 
resolution or geocoding. This study proposes a new state-of-the-art method for place 
name extraction.

Currently, the approaches for place name extraction from microblogs can be categor
ized into four groups: hand-crafted rules, gazetteers, statistical learning, and hybrid 
approaches. The approaches based on handcrafted rules use pattern and regex- 
matching, which in turn rely on cue words or orthographic features (Gelernter and 
Balaji 2013, Giridhar et al. 2015). Handcrafted rules are fragile and cannot yield 
a general place name extractor considering the dramatic variation of the writing styles 
and numerous grammar errors in microblog texts (Ritter et al. 2011). The approaches 
based on gazetteers (Sultanik and Fink 2012, Middleton et al. 2018) extract place names 
by matching a sequence of tokens with the place names in a gazetteer. However, since 
gazetteers like OpenStreetMap (OSM) are incomplete and since place names are often 
mentioned in many colloquial forms (Beall 2010), approaches based on gazetteer match
ing frequently miss results, especially in microblogs (Al-Olimat et al. 2018). The 
approaches based on statistical learning (Finkel et al. 2005, Kumar and Singh 2019) extract 
place names mainly according to their contextual features. Examples are Stanza (Qi et al. 
2020) and NeuroTPR (Wang et al. 2020). However, statistical learning requires many 
annotated sentences, which makes those approaches ineffective in most practical situa
tions (Guerini et al. 2018). The hybrid approaches (Li and Sun 2014, Weissenbacher et al. 
2015, Al-Olimat et al. 2018, Dutt et al. 2018) fuse gazetteers with rules or statistical learning 
to compensate for each other’s weaknesses. However, previous hybrid approaches did 
not solve the incompleteness of gazetteers, place name variation or faced the challenge 
of sparsely annotated data.

This study proposes a novel hybrid approach that combines gazetteers, rules, and deep 
learning to yield a robust place name extractor, named GazPNE (Gazetteer-enhanced 
Place Name Extractor). The core of the approach is to learn the intrinsic characteristics of 
multi-word place names such that it can mitigate the incompleteness of gazetteers and 
place name variation issues. GazPNE shares some features with recent zero-shot learning 
work (Xie et al. 2016) since it does not require any annotated sentences in training 
procedures. Specifically, we obtain positive examples from OpenStreetMap. We then 
apply several rules to synthesize negative examples from the positive examples and the 
vocabulary in Google’s pre-trained Word2Vec model (Mikolov et al. 2013b) and Glove- 
embeddings (Pennington et al. 2014). After this, a classification model is trained based on 
C-LSTM (Zhou et al. 2015), which fuses Convolutional Neural Networks (CNN) and Long 
Short-Term Memory (LSTM). Then, a simple part-of-speech (POS) rule is utilized to select 
valid n-grams in a microblog text. This is mainly to deal with hard examples for the model, 

2 X. HU ET AL.



such as ‘me’ and ‘us’, which could refer to persons or the abbreviation of Maine state and 
the United States, respectively, depending on POS tags. Specifically, we use CMU ARK 
Twitter tagger (Gimpel et al. 2010) to determine the POS tag of each token of the micro- 
blog text. Finally, we apply the classifier on the valid n-grams and select the top non- 
overlapping candidates as the final set of detected place names. The main contribution of 
the study is that we propose a robust place name extraction approach, fusing deep 
learning and rules (expert knowledge), which can extract place names from micro-blogs 
at both coarse (e.g. country and city) and fine-grained levels (e.g. street, creek, and public 
buildings). It leverages only the data extracted from OpenStreetMap without the need for 
any manually annotated data. The approach has the potential of being generalized to 
regions worldwide since OpenStreetMap is available worldwide.

The remainder of this paper is structured as follows: In Section 2, we conduct a review 
of related works. We present the workflow of the proposed approach and give the details 
of each component in Section 3. We evaluate the proposed approach in Section 4. We 
then discuss some key issues and limitations of the study in Section 5, and Section 6 
concludes the paper.

2. Related works

The approaches for place name extraction can be coarsely divided into four groups. (1) 
Rule-based approaches, (2) Gazetteer-matching-based approaches, (3) Statistical Named 
Entity Recognition-based approaches, (4) Hybrid approaches.

Rule-based approaches: Place names in texts have certain characteristics, which could 
be represented by rules. For instance, Gelernter and Balaji (2013) proposed a street and 
building parser for Spanish and English texts by using POS rules, such as adjective plus 
noun and street and building indicator words, such as ‘calle’, ‘cl’, ‘carreterra’, ‘cr’, ‘cra’. In 
each rule, the string must satisfy the POS rule, and also the last word must be building or 
street indicator words. Giridhar et al. (2015) used road-traffic-related tweets to detect and 
locate point events, such as car accidents. As for event localization, raw tweets are first 
tokenized and then tagged using a POS tagger. A set of grammar rules were defined 
according to the composition of nouns, determiners, adjectives, cardinal numbers, con
junctions, and possessive endings. Moreover, to decrease false positives, an additional 
grammar-based rule was implemented based on true location-identifiers, which were 
commonly preceded by prepositions, such as in, around, between, and after. Generally, the 
rule-based approach is simple and high efficient in computation. In some cases, it can 
achieve a promising tagging result. However, it is challenging to define complete rules 
that can cover all the cases of place names in tweet texts, which is also troublesome. Thus, 
it is likely that the defined rules work well on one test data but fail on the other test data.

Gazetteer search and matching: Compared with rule-based approaches, gazetteer- 
based approaches implemented as entity matching requires less manual effort. 
Especially when free and rich geospatial gazetteers are available, a high tagging 
accuracy can be usually achieved. A gazetteer is the dictionary of geospatial places 
with names and geo-coordinates. Popular geospatial gazetteers include 
OpenStreetMap, GeoNames, and the geo-tagged Wikipedia database. A few heuristics 
and stop words are normally used to limit the set of candidate place names. The valid 
ones can then be extracted by matching the token sequence of the tweet text with the 
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items in the gazetteer. That can find not only the valid place names but also specify 
their geo-coordinates. Many previous studies (Sultanik and Fink 2012, Middleton et al. 
2013, 2018) have used gazetteers to extract place names. For instance, Sultanik and Fink 
(2012) proposed RapidGeo, which can efficiently perform a ‘fuzzy’ matching between 
strings, mapping toponyms to likely locations in gazetteers. In this way, it can mitigate 
misspellings in the input data. Specifically, it hashes the gazetteer’s toponyms based on 
a phonetic encoding algorithm that roughly encodes the way a word would be pro
nounced by an Anglophone. The data structure maps each distinct phonetic encoding 
of the toponyms in the gazetteer to a K-D Tree data structure, which contains the 
associated toponyms in the gazetteer indexed by their location values. Based on the 
K-D Tree, the nearest neighbor search can be efficiently performed. Middleton et al. 
(2018) proposed a multilingual place name extractor based on OpenStreetMap. A set of 
heuristics are applied to each OpenStreetMap location name to perform location name 
expansion and create a set of n-gram location phrases. Then, unigram location names 
that are non-nouns usually result in false positives are filtered using a multilingual 
WordNet corpus lookup. Gazetteer-based approaches can achieve high tagging accu
racy on the test data where most of the place names are included in gazetteers. 
However, it is also common that many place names found in tweets are missing from 
gazetteers due to place name variation and incompleteness of gazetteers.

Statistical learning: Recently, many studies adopted statistical learning to extract 
place names (Gelernter and Mushegian 2011, Lingad et al. 2013, Unankard et al. 2015, 
Limsopatham and Collier 2016, Das and Purves 2019, Kumar and Singh 2019, Wang et al. 
2020, Qi et al. 2020). Given abundant annotated data, statistical learning-based 
approaches can recognize place names according to context cues and intrinsic features 
of place names. Place name recognition is a subtask of name entity recognition (NER), 
which has been extensively investigated. Therefore, many studies (Gelernter and 
Mushegian 2011, Lingad et al. 2013, Unankard et al. 2015) leverage existing statistical- 
based NER models to extract place names from social media streams. For instance, Lingad 
et al. (2013) retrained Stanford NER (Finkel et al. 2005), which implements a linear chain 
Conditional Random Field (CRF) model to label sequences of words in a text into entity 
types (e.g. Person, Organization, and Location). The classical NER systems are implemen
ted through traditional machine learning approaches, which require manual definition 
and selection of features according to expert knowledge.

Recently, some studies used deep learning to extract location names while avoiding 
feature engineering. Limsopatham and Collier (2016) proposed an approach for recogniz
ing name entities from tweet texts by enabling bidirectional long short-term memory (Bi- 
LSTM) to automatically learn orthographic features without requiring feature engineering 
using both character embeddings and word embeddings. Kumar and Singh (2019) 
utilized a Convolutional Neural Network (CNN) based model for place name extraction. 
NeuroTPR (Wang et al. 2020) extended a general Bi-LSTM architecture with several 
features to account for linguistic irregularities in Twitter texts, such as the use of character 
embeddings to capture the morphological features of words, and POS tags and contex
tual embeddings to capture the semantics of tokens in tweets. The approach mitigates 
the effort for annotating a large training dataset by generating annotated data from 
Wikipedia articles for the task of location name extraction. Similar on-average perfor
mance was achieved by Stanza’s contextualized string representation-based sequence 
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tagger (Qi et al. 2020). They trained a forward and a backward character-level LSTM then 
concatenate the output from them at tagging time with word embeddings fed into a one- 
layer Bi-LSTM with CRF-based decoder at prediction time.

Although deep learning shows promising NER performance (particularly in place name 
extraction), annotated data is very limiting, especially for novel and evolving events. To 
mitigate the challenge, Guerini et al. (2018) proposed a domain portable zero-shot 
learning approach for entity recognition, which does not assume any annotated sen
tences at training time. More specifically, they trained a 3-layer Bi-LSTM model based only 
on available dictionaries and synthesized examples. It was then applied to recognize new 
entities in user utterances. Through multiple experiments in two languages (i.e. English 
and Italian) and three different domains (i.e. furniture, food, clothing), the proposed 
approach outperformed several competitive baselines, with minimal requirements of 
linguistic features. This work inspired the idea of our study.

Hybrid approaches: Every single technique has its drawbacks. Thus, researchers 
have proposed fusing different techniques to achieve the best of all (Bontcheva et al. 
2013, Li and Sun 2014, Weissenbacher et al. 2015, Al-Olimat et al. 2018, Dutt et al. 2018). 
For instance, Weissenbacher et al. (2015) proposed using a hybrid approach combining 
dictionary-based and rule-based heuristics for the detection and disambiguation of 
locations in articles. It first uses a built-in dictionary (GeoNames) to detect mentions 
of place names in articles. A black list and a set of rules were created to remove noisy 
entries found in GeoNames. It then disambiguates the place names using a distance 
heuristic, a population heuristic, and a novel heuristic utilizing knowledge from 
GenBank metadata. Similarly, Dutt et al. (2018) proposed inferring place names men
tioned in tweets by fusing rules and gazetteers. They used a POS tagger to find the 
proper nouns based on heuristics and then used regular expression matching to 
mitigate the ambiguation of proper nouns with the prefix and suffix words that appear 
in the beginning or end of place names. Last, the list of extracted phrases is then 
verified using a gazetteer.

Apart from the fusion of rules and gazetteers, combining statistical learning and 
gazetteers was also investigated. For instance, Li and Sun (2014) proposed a novel 
solution named Petar, extracting fine-grained locations mentioned in tweets. They first 
construct a point of interest (POI) inventory or gazetteer from check-in data in Foursquare, 
which contains not only formal names of POI but also informal abbreviations. To deal with 
ambiguous and incomplete POI names in the inventory, a time-aware POI tagger based 
on Conditional Random Field (CRF) is further proposed. The tagger takes POI inventory as 
a knowledge base and utilizes four types of features (i.e. lexical, grammatical, geographi
cal, and BILOU schema features) to label POI names and their temporal awareness. In this 
sense, the POI inventory can be considered as a noisy version of a gazetteer to the CRF 
classifier. Al-Olimat et al. (2018) proposed a Location Name Extraction tool (LNEx), which 
used n-gram statistics and location-related dictionaries to handle the abbreviations and 
automatically filter and augments the location names in gazetteers (handling name 
contractions and auxiliary contents). It can detect the boundaries of multi-word location 
names and thereby delimit them in texts.

In a nutshell, pure rule-based approaches are not generalizable and sometimes fragile. 
Gazetteer-based approaches cannot deal with incompleteness of gazetteers and variation 
of place names. Traditional statistical learning-based approaches face the challenge of 
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data sparsity. Existing hybrid approaches normally combine gazetteers with statistical 
learning or rules, but still cannot solve the incompleteness of gazetteers and variation of 
place names issues or face the challenge of sparsely annotated sentences.

3. GazPNE: place name extraction processing chain

Two aspects mainly inspire the idea of this study. (1) The challenge of detecting 
unknown multi-word place names facing gazetteer-based approaches. To recog
nize the short names (such as ‘Emsley High School’) of a full name (such as ‘Emsley 
A Laney High School’) in gazetteers, the gazetteer-based approach (Al-Olimat et al. 
2018) needs to augment the gazetteer by extracting the short name of a full name and 
add it to the gazetteer. However, this can also generate incorrect place names, such as 
'The Apartments' from ‘The x Apartments’, causing false positives. Moreover, many place 
names (e.g. ‘Mississippi Coast church’ and ‘emergency operation center’) are missing in 
gazetteers (such as OpenStreetMap) but appear in tweet texts, rendering them unex
tractable. In a nutshell, one of the biggest challenges of gazetteer-based approaches 
lies in the recognition of multi-word place names, which normally own certain lexical 
and orthographic characteristics. This inspired us to use a deep learning model to 
learn the inherent characteristics of multi-word place names. By doing so, the learned 
model can recognize variants of multi-word place names as well as missing ones.

(2) Combination of statistical learning with rules (or expert knowledge). This study 
attempts to use only gazetteers to train a classification model without requiring manually 
annotated data, which is costly to collect on scale. Specifically, we obtain millions of 
positive examples (place names) from gazetteers and then manually define a couple of 
rules to synthesize as accurate negative examples as possible based on the positive ones 
(e.g. ‘The University of Mississippi’) and general words, such as to insert general words in 
the beginning and end of a place name (e.g. ‘is The University of Mississippi at’) or to 
reorder the tokens of a place name (e.g. ‘The of Mississippi University’). These heuristics 
might be imperfect and can lead to noisy examples. However, according to Rolnick et al. 
(2017), deep learning algorithms can tolerate modest amounts of noise in training data 
given abundant correct training examples. That provided us a new way of combining 
deep learning with rules (expert knowledge) by generating enough training examples 
through rules and meanwhile mitigating the interference of noisy examples by using 
deep learning (Rolnick et al. 2017).

The workflow of GazPNE is shown in Figure 1. The number in the box denotes the 
section numbering of each component. It consists of three main stages. The first is to 
generate training examples. Specifically, the gazetteer is first filtered and then augmen
ted, such as by replacing a token (e.g. ‘road’) with its abbreviation (e.g. ‘rd’). Furthermore, 
we apply a set of rules to synthesize negative examples based on the positive examples. 
The second is to train a neural classifier based on the generated training examples. 
Specifically, we adopt an existing deep-learning architecture named C-LSTM (Zhou et al. 
2015). The last stage is to apply the trained classifier to unseen microblog texts. 
Specifically, a microblog text is first preprocessed by tokenizing the text, tagging the 
POS of tokens, and selecting valid subsets by a simple POS rule. Then, the trained neural 
classifier is applied to select valid subset candidates and the top non-overlapping subsets 
with the highest positive probability are selected as detected place names. The novelty of 
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the proposed approach lies in the fusion of deep learning, gazetteers, and rules, which 
does not require any manually annotated data.

3.1. Training example generation

This step’s key task is to produce as abundant and accurate training examples as possible 
from gazetteers and general words. The general words are obtained from well-known pre- 
trained word embeddings, including Glove (Pennington et al. 2014) and Word2Vec 
(Mikolov et al. 2013b) embeddings. From the Word2Vec embedding, the frequency of 
each word can also be obtained. Thus, a general word list can be produced by giving more 
frequent words more attention, such as copying a word multiple times according to its 
frequency. The general words include words, numbers, English alphabet letters (e.g. ‘a’), 
and number-prefix-suffix words (e.g. ‘ft’,‘inch‘, and ‘pm’) that do not appear in gazetteers. 
The number-prefix-suffix words are extracted from the Glove and Word2Vec embedding 
vocabularies, which consist of numbers and words or alphabets (e.g. ‘10-ft’). To generalize 
the representation of numbers, the numbers 0 to 9 are replaced by ‘0’. That is, ‘8’,‘12‘,‘238‘, 
and ‘1235’ are converted to ‘0’, ‘00’, ‘000’, and ‘0000’, respectively. The token in positive 
examples, which consists of numbers, is broken into numbers and words, such as to break 
‘hwy00’ into ‘hwy’ and ‘00’. Apart from general words, location category names (e.g. 
‘school’, ‘road’, ‘town’) are also used to synthesize negative examples. They are extracted 
by counting the last word of the place names in gazetteers, and the one whose count is 
over a certain threshold is regarded as a location category name. Besides, all the char
acters are converted to lower case, and all non-English and non-number characters are 
removed.

3.1.1. Obtaining positive examples
(1) Filtering: To obtain high-quality positive examples, we define two rules to filter 

place names in OpenStreetMap. First, OpenStreetMap suffers from data quality 
issues. For instance, many tiny, unimportant, and unpopulated items are mapped 
or named on OpenStreetMap by volunteers themselves while the mainstream 
maps (i.e. Google Maps and Bing maps) normally do not represent or name 
them. Thus, we first remove the items whose attributes are ‘highway = footway’, 
‘highway = service’, ‘highway = cycleway’, ‘highway = track’, ‘highway = path’, or 
‘place = locality’. For instance, Figure 2 shows two OpenStreetMap items incorrectly 

Figure 1. Workflow of our proposed place name extraction approach (GazPNE).
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named by volunteers. They are a service way and a footway, respectively, which are 
incorrectly named by their purposes. That is, the service way is used for emergency 
and the footway is used to connect a beach. This is why they are not mapped or 
named in Google Map and Bing Map. The second is that the items named as a well- 
known single word (such as ‘good’ and ‘long’), numbers, and English alphabet 
letters are removed. The well-known words are defined as the ones whose fre
quency is ranked among the top tf in Word2Vec embedding vocabularies. Filtering 
is a common way used in gazetteer-based approaches to reduce false positives by 
using some heuristics, such as general words, stop words, and common person 
names (Middleton et al. 2018, Al-Olimat et al. 2018). This can lead to false negatives. 
However, we believe this is a reasonable trade-off made between false negatives 
and false positives. In the future, we will ease the constraints by introducing 
context features provided by a transformer model (e.g. BERT (Devlin et al. 2018)) 
in an unsupervised manner.

(2) Augmentation: For the place in the type of county, town, suburb, city, and state, 
the corresponding category words are removed to produce new positive samples if 
category words exist and the simplified name is not well known single words. For 
instance, for place name ‘Jim Wells County’, a new and valid place name is ‘Jim 
Wells’. The corresponding category name is added to the end of a place name if it is 
in the five types and has no category names. For instance, for place name ‘Houston’ 
in the type of city, a new and valid place name is ‘Houston city’. Moreover, the items 
in the five types are given more attention by copying them C times since they are 
high-frequency and important places (e.g. ‘Houston’) and would be frequently used 
in microblogs. Furthermore, the roads at the highest level (e.g. country-level) 
marked as ‘highway = motorway’ and ‘highway = trunk’1 are also emphasized in 
the same way since they are the most significant roads in a country, which would 
be used and mentioned frequently.

(3) Abbreviations: In tweets, the usage of the abbreviation is quite common. For 
instance, ‘Little Creek Road’ could be written as ‘Little Creek rd’. To deal with this 
issue, an English OpenStreetMap abbreviation dictionary2 is used to extend the 
gazetteer by replacing the original word (e.g. city, county, highway, and bridge) 
with its abbreviation (e.g. cty, co, hwy, and bdge). The dictionary lists around 
400 place-related common words and their abbreviations. Furthermore, we use 

Figure 2. OpenStreetMap items with invalid names created by volunteers.
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the abbreviation of places at the country and state level to extend the gazet
teer, which is also provided on OpenStreetMap. For examples, the abbreviation 
of New York state is referred to NY and that of United States is referred to US.

(4) Out-of-vocabulary: In tweets, there can be expected some out-of-vocabulary 
words regarding the word embedding and gazetteers. We define that the combi
nation of out-of-vocabulary words and category names can produce new place 
names. We randomly synthesize a word such as ‘hiagnnamalnsw’ to represent the 
out-of-vocabulary words. It is then combined with the category name to generate 
a new place name, such as ‘hiagnnamalnsw street’. This is to improve the detection 
rate of the place names containing out-of-vocabulary words.

3.1.2. Synthesizing negative examples
To train a place name classifier, we need not only positive examples (i.e. place names) but 
also negative ones. To generate negative examples, several rules are manually defined 
according to our prior knowledge about place names. Although these manually defined 
rules might be imperfect and can cause noisy negative examples, they would not affect 
the performance of the trained model. This is because deep learning algorithm can 
tolerate the modest amounts of noise in the training examples (Rolnick et al. 2017).

(1) Sub set of place names: The subset of a place name is regarded as a negative 
example if it is not included in the positive examples. For example, for the place 
name ‘City of York’, the subset ‘City of’ and ‘of York’ are treated as negative 
examples.

(2) Reordering of place names: Reorder the tokens of a place name to generate 
a negative example if it satisfies the following three conditions. 1) It is not included 
in the positive examples; 2) the position of at least three tokens changes; 3) the first 
and last words have changed, and the last word is not the location category name. 
For instance, for the place name ‘National Park of New York’, two negative examples 
are ‘Park National New of York’ and ‘Park New York of National’.

(3) Insert words before or after place names: Insert a couple of general words at the 
beginning and end of a place name to generate new negative samples. For 
instance, for the place name ‘National park of New York’, the new negative exam
ples could be ‘it is National park of New York’, ‘National park of New York is good’, 
and ‘c National park of New York 0000’.

(4) Combination of general words: Randomly select several general words and 
combine them as negative examples if they are not included in the positive 
examples and the last word is not the location category name. For instance, ‘i ft 
first’ and ‘000 you are not b’ are negative examples.

(5) Insert words before or after number-prefix-suffix words: Numbers are first 
inserted before or after the number-prefix-suffix words to generate initial nega
tive samples, named pre-suffix samples, such as ‘0000 ft’ and ‘am 0’. Then, the 
general words and/or location category names are inserted at the beginning or 
end of the pre-suffix samples to produce new negative samples, such as ‘at 
0000 ft’ and ‘Yes am 0 road’. The pre-suffix samples and new negative samples 
are added to the training data if they were not included in the positive 
examples.
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(6) Combination of well-known words and location category names: Choose 
a location category name and insert several well-known words at the beginning 
or end of the category name to generate a negative sample if it is not included in 
the positive examples. For instance, ‘the city’, ‘by the way’, ‘university of a’, and ‘street 
is’ will be treated as negative examples.

(7) Combination of English characters and numbers: Randomly choose several 
English Alphabets and numbers and combine them as a negative sample if it is 
not included in the positive examples. For instance, ‘t 000 p 0’ and ‘0000 p 0’ will be 
treated as negative examples.

(8) General words: Each word in the general word list is treated as a negative example 
if it is not included in the positive examples, such as ‘toilet’ and ‘flood’.

(9) Insert general words between place names: A couple of general words are 
inserted between two place names to generate new negative examples if they 
are not included in the positive examples, such as ‘west little creek and florence’ from 
two place names ‘west little creek’ and ‘florence’ and one general word ‘and’.

3.2. Neural classifier

3.2.1. Classifier features
We use two kinds of features in the classifier. They are a general word embedding and six 
handcrafted features. The input layer concatenates all the features in a single vector. The 
generic word embedding is the pre-trained GloVe 50-Dimensional Word Vectors. We use 
six handcrafted features to represent the structure of an example explicitly, following 
(Guerini et al. 2018). They are (1) the actual position of the token within an example; (2) the 
length of the example; (3) the frequency of the token in the gazetteer ranging from 0 to 1; 
(4) the average length of the example containing a certain token; (5) the average position 
of the token in the example it appears in; and (6) the bigram probability regarding the 
previous token in the example.

The word length of a positive or negative example is forced to 20, and the one over 20 
keeps only the last 20 words or below 20 is padded with 0 (word ID) at the beginning of 
the example. Therefore, the word vector dimension equals 56, while the dimension of the 
example matrix is 20� 56.

3.2.2. Classifier module
The place names in the gazetteer can be divided into two types: (1) sequential place names 
(e.g. ‘emergency operation center’ and ‘formosan presbyterian church of greater houston’) that 
consist of more than one word, follow structural characteristics, and contain category words 
(e.g. city, road, and center) and (2) non-sequential place names (e.g. ‘Florence’, ‘New York’, and 
‘Mississippi’) that are short and do not have structural characteristics. For sequential place 
names, recurrent neural networks(RNN) are the better option since they specialize in sequen
tial modeling (Zhou et al. 2015). CNN-based models are better for non-sequential place names 
since they focus on local response features (Zhou et al. 2015). In this study, we apply the 
C-LSTM (Zhou et al. 2015) model for classifying place names, which combines a CNN and an 
LSTM to achieve the best of both. In C-LSTM, a CNN is first applied to extract higher-level 
representation. Then, a LSTM is applied to capture long-term dependencies over window 
feature sequences, respectively. The topology of the network is depicted in Figure 3. The input 
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of the model is a sequence of words, such as ‘University of South Carolina’ and ‘I am’. In the 
feature concatenation layer, two types of feature vectors for a word are concatenated to one 
vector. The dimension of the concatenated word vector is denoted by d. The length of the 
input sequence is forced to L, which is set to 20 in this paper. Therefore, the dimension of the 
input matrix is d � L. Then, convolution is performed on the input matrix by using multiple 
filters. Thus, multiple feature maps are generated in the feature maps layer. The block of the 
same color represents the feature representation generated at the same window position of 
the input vector. Next, in the window feature sequence layer, the feature maps are rearranged 
by concatenating the feature representation for the same window. The generated new 
successive higher-order window representations are then fed into LSTM. Next, we apply 

Figure 3. The architecture of the C-LSTM model for place classification. In the layer of feature 
concatenation, two types of features are concatenated, forming the next layer’s input vector. L 
denotes the number of words in the input entity, while d denotes the dimension of the word vector. 
Blocks of the same color in the feature map layer and window feature sequence layer corresponds to 
features for the same window. The dashed lines connect the feature of a window with the source 
feature map. Dropout is then applied to the output of the last hidden unit of LSTM before the output 
layer (a sigmoid layer).
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dropout to the output of the last cell of LSTM before the output layer (a sigmoid layer). The 
goal of the model is to classify the whole sequence as positive or negative. The output of the 
model is the confidence of the input sequence being a place name (positive probability).

3.3. Place name extraction from tweets

3.3.1. Tweet preprocessing
Given a tweet text, it is first tokenized. Then, the retweet handles, URLs, non-ASCII characters, 
and all user mentions in the tweet are removed since they do not contain place names. The 
numbers 0 to 9 are replaced with 0 and the token consisting of numbers are broken into 
numbers and words, such as to break ‘hwy00’ to ‘hwy’ and ‘00’. Misspelled tokens are then 
corrected by using the Symmetric Delete Spelling Correction algorithm (SymSpell).3 The out- 
of-vocabulary words are replaced with the pre-defined word (such as ‘hiagnnamalnsw’). Then, 
a statistical word segmentation algorithm (Matsuda et al. 2015) is used to break hashtags for 
location spotting as the number of locations in hashtags is significant. For instance, 
#FlorenceFlood is separated into two tokens ‘Florence’ and ‘Flood’. Next, stop words including 
½ � ; % (Þ ! ; : < > : are used to segment the tweet text into subsequences. For instance, 
‘Driving in from Sugar Land in the State of Texas! Any roads to avoid? ’ are split into two 
subsequences ‘Driving in from Sugar Land in the State of Texas’ and ‘Any roads to avoid’.

Each token in the subsequence is then assigned a POS tag by the CMU ARK Twitter 
tagger (Gimpel et al. 2010). The tagging scheme encompasses 25 tags, and each tag is 
denoted with a single ASCII character. Then, we rule that the POS tags of a valid place 
name consist of proper noun ( ^ ), adjective (A), common noun (N), numeral ($), preposi
tion (P), and other abbreviations and foreign words (G) but without the preposition (P) in 
the first and last position. When the set consists of only one word, its POS tag should not 
be pronoun (O) and adjective (A). We try to make this rule as general as possible, such that 
it covers all the place names and at the same time rules out as many invalid candidates as 
possible. Next, the valid subset of each subsequence, which follows the above POS rule, is 
selected. For example, the two sub-sequences are tagged as [Driving (V) in (P) from (P) 
Sugar ( ^ ) Land ( ^ ) in (P) the (D) State (N) of (P) Texas ( ^ )] and [Any (D) roads (N) to (P) 
avoid (V)]. V denotes verbs and D denotes determiners. According to our rule, ‘Sugar’, 
‘Land’, ‘Sugar Land’, ‘State’, ‘Texas’, ‘State of Texas’, and ‘roads’ are selected as valid subsets. 
Finally, the token of the valid subsets are converted to lower case.

3.3.2. Place name tagging
We used the trained classifier to calculate the confidence score of the valid subset of a sub- 
sequence (Line 9 in Algorithm 12). Then, we select as candidates the ones whose score is 
over a certain threshold denoted by st (Line 10 to 11 in Algorithm 1), which are then ranked 
in descending order according to the confidence score (Line 12 in Algorithm 1). Next, the 
ranking list is adjusted by moving the subset to the head of the one it includes if the score of 
the former is lower than that of the latter (From line 14 to 19 in Algorithm 1). That is, if 
candidate a (e.g. ‘west florence’) includes candidate b (e.g. ‘florence’), a is moved to the head 
of b if the score of a is lower than that of b. By doing this, the full place name can be 
extracted. Then, we select the top non-overlapping candidates as the recognized place 
entity (From line 20 to 22 in Algorithm 1). For example, given a subsequence ‘Flood is serious 
at Little Creek West Florence’ and its valid subsets selected by the POS rule, little creek (0.9) j
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little creek west (0.88) j florence (0.97)j west florence (0.95) will be selected as candidates if ts is 
set to 0.8. The number following the candidate is the corresponding confidence score 
calculated by the classifier. The ranking result is thus florence (0.97) j west florence (0.95) j
little creek (0.9) j little creek west (0.88). Then, the ranking is updated according to the 
inclusion relationship. The adjusted ranking is west florence(0.95) j florence (0.97) j little 
creek west (0.88) j little creek (0.9). Next, west florence is first selected, and florence and little 
creek west are then discarded because they overlap with the already selected one (west 
florence). Last, little creek is selected. Note that if the last token of the extracted place entity is 
in the word list ([area, region]), the last token is removed (From line 23 to 25 in Algorithm 1). 
They are indicators of a place name, but are unnecessary for a place name. 

Algorithm 1: Place Name Tagging

Input:
M // trained classifier
S // token list of a sentence
st // score threshold
AREA // list of words that should be removed if in the end of an entity

Output:
Pla // extracted place names from S;

1: procedure TAGGER

2: Pla null;
3: Ssub  null; // all the valid sub sets of S
4: Scan  null; // candidates whose confidence score is over st

5: Pcan  null; // the confidence score of the candidates in Scan

6: T  null; // the sorted result of candidates in Scan

7: generate all the valid sub sets of S and saved into Ssub

8: for s 2 Ssub do
9: p M:calProbabilityðsÞ // calculate positive probability

10: if p > st then
11: Scan  Scan [ s; Pcan  Pcan [ p
12: sort Scan according to Pcan in descend order and saved to T
13: l  lenðTÞ; index  0
14: while index < l do
15: s T ½index�
16: search T ½0 : index � 1� to get first index (k) of child of s
17: if k > ¼ 0 then
18: update T by moving T½index� in front of T ½k�
19: index  index þ 1
20: for s 2 T do
21: if s not overlap any element of Pla then
22: Pla Pla [ s
23: for l 2 Pla do
24: if l½� 1� 2 AREA then
25: delete l½� 1� and update Pla
26: return Pla
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4. Experiments

In this section, we first detail the procedure of generating training data, the parameters 
used in the three main stages of the proposed approach, summarize test data, and 
introduce hardware configuration for running the proposed approach. Then, we compare 
and analyze the results achieved by our proposed approach and by existing approaches. 
Besides, the sensitivity analysis of several parameters such as the score threshold and filter 
size on the tagging accuracy is also performed. Finally, we compare the C-LSTM with the 
multi-channel CNN (Kim 2014) and Bi-LSTM (Guerini et al. 2018) based NER systems.

4.1. Training data preparation

We extract place names in the entire US and India from OSMNames.4 OSMNames lists the 
place names derived from OpenStreetMap database, including both coarse and fine- 
grained places, such as country, state, city, town, village, suburb, neighborhood, moun
tain, street, creek, and bridge. Besides, the place names of public spaces and buildings, 
including libraries, airports, universities, hospitals, schools, churches, parks, and theaters 
across the US and India are also extracted by using the OpenStreetMap python tool5 since 
they are important places but not sufficiently provided by OSMNames. This is intended to 
enable the detection of fine-grained places. In specific applications, the interested place 
level or type can be configured since the detected places can be linked to an item in 
gazetteers with geocoding, which has clear type or level information. For example, for 
traffic accident monitoring, the places at fine-grained levels specifically in the type of 
streets and roads can be configured. Furthermore, the abbreviation of the place at the 
country and state level is also provided on OpenStreetMap. We use the OpenStreetMap 
python tools to extract the abbreviations across the US and India, such as ‘us’ for ‘United 
Sates’ and ‘tx’ for ‘Texas’. In total, 6.8 million initial positive examples are obtained from 
gazetteers, which are then augmented and extended to 37.6 million. Based on the 
augmented positive examples, negative examples are then synthesized. In total, 
381.3 million negative examples are generated.

We set several parameters for the proposed approach (shown in Table 1), with which 
the best performance can be achieved. Moreover, we conduct experiments to analyze 
the impact of some parameters (i.e. filter size and score threshold) on the performance 
of the proposed approach. During the procedure of generating training examples, the 
count threshold for the location category name (tl) is set to 400, the frequency thresh
old for the well-known words (tf ) is set to 26000, and the increased copies for 
significant places (C) is set to 150. As for C-LSTM model, a single convolution layer is 
used with the number of filters (f n), the filter length in CNN (f l), the memory dimension 
in LSTM (dl), and the dropout rate (dr) are set to 120, 1, 120, and 0.5, respectively. 
During the model test procedure, the score threshold (ts) for choosing the valid 
candidate is set to 0.78.

Note that to deal with the imbalanced data issue, a weighted loss computation 
strategy is utilized. Specifically, a heavier penalty would be placed on the misclassification 
of the minority class (positive samples), by assigning the minority class a larger weight. 
The weight equals the ratio of the number of negative and positive samples.
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4.2. Test data

To demonstrate the effectiveness of the proposed place name extractor, we used three 
publicly available tweet datasets with annotated place names from Al-Olimat et al. (2018) 
corresponding to the 2016 Louisiana flood, the 2016 Houston flood, and the 2015 Chennai 
flood, respectively.6 The summary of the test data is shown in Table 2. We found a few missing 
location mentions in the annotated data due to human errors. Although the proposed model 
can detect most of these missing locations, such as ‘Tchefuncte River’, ‘I-10 East’, and ‘LDS 
Church’, we still consider the detected location mentions as false positives.

In the dataset, location mentions were divided into three types: inLOC, outLOC, and 
ambLOC, representing the locations inside the area of interest (e.g. ‘Baton Rouge’), outside 
the area (e.g. ‘New York’) in the context of Louisiana flood, and ambiguous locations (e.g. ‘my 
house’). Similar to the evaluation approach in Al-Olimat et al. (2018), we only evaluated the 
systems on the inLOC and outLOC location mentions. We adopted the standard comparison 
metrics: Precision, Recall, and F1-Score. In the case of overlapping or partial matches, we 
penalize the approaches by adding 1/2 FP (False Positive) and 1/2 FN (False Negative) (e.g. if 
the tool marks ‘The Houston’ instead of ‘Houston’).

Table 2. Summary of test datasets.
Louisiana Houston Chennai Total

Number of tweets 1500 1500 1500 4500
Number of place names 2918 4177 4589 11684
Proportion of inLoc 66% 66% 75% 70%
Proportion of outLoc 13% 7% 4% 7%
Proportion of ambLoc 22% 27% 21% 23%

Table 1. Parameters of the proposed approach.
Procedure Param Value

Training data

Count threshold for location 400

generation

category name (tl)

26000Frequency threshold for
well known words (tf )

Increased copies for 150
significant places (C)

Model training

Number of filters (f n) 120

Filter length in CNN (f l) 1

Memory dimension 
in LSTM (dl)

120

Dropout rate (dr) 0.5

Update function SGD

Learning rate 0.001

Number of epochs 12

Batch size 1024

Model test Score threshold for 0.78
choosing valid candidate (ts)
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Apart from the three annotated datasets, we also apply the proposed approach to one 
un-annotated dataset, which corresponds to the 2018 Florence Hurricane. It contains over 
100,000 tweets. According to our observation, our proposed approach still works well on 
the dataset. The tagging result has been published together with the code.

4.3. Hardware

In our institute, there are one CPU cluster and one GPU cluster. The CPU cluster includes 
116 nodes, and each node contains 2 Intel Xeon platinum 8260 with 48 cores. The GPU 
cluster includes 4 nodes, and each node contains 8 NVIDIA Tesla V100 GPUs. Our 
approach consists of three main steps. We use one CPU core to execute the training 
data generation step, which takes 4.4 hours. The maximum memory consumption is 10 
GB. We use PyTorch as a training framework and use one GPU core to train the model 
based on the positive and negative examples, which takes 3.5 hours for one epoch. The 
maximum memory consumption is 80 GB. We use one CPU core to load the model and 
identify the place names from tweet texts, which takes around 8 minutes in total for the 
three data sets.

4.4. Tagging result

We compare our approach with competitive place name extraction systems, including Google 
NLP, Stanza,7 CLIFF,8 NeuoTPR (Wang et al. 2020), CNN-based approach (Kumar and Singh 
2019), and LNEx (Al-Olimat et al. 2018) on the same testing dataset. Google NLP and Stanza are 
general NLP tools while CLIFF is a NER tool. The other tools are developed specifically for geo- 
tagging or place name extraction. Note that LNEx was compared with many location 
extractors, such as DBpedia Spotlight (Mendes et al. 2011), Yahoo PlaceFinder,9 Geo-locator 
3.0 (Gelernter and Balaji 2013), and Geoparsepy (Middleton et al. 2013) on the same datasets. 
The results showed that LNEx achieved the best. Thus, in this paper, we avoid adding the 
comparison that the LNEx paper already provided. Instead, we just compare with LNEx and 
another set on the same dataset. We considered the entities of type Location, Organization, 
and Address as location mentions from Google NLP. We used the NER tool in Stanza and kept 
the entities of type Location, Organization, Facility, and Geopolitical Entity. As for CLIFF, we 
kept organization and place mentions and ignored the focus and people categories (since we 
are interested in location mentions only and are not interested in the tweet’s focus). The 
above three tools are publicly available. Thus, we directly utilized their provided API to extract 
place names. For NeuroTPR we simply used their trained model and implementation to tag 
the dataset.10 The CNN-based approach was re-implemented and evaluated in two ways. We 
used the parameters suggested by Kumar and Singh (2019) and also changed them to obtain 
the best F1 score. The first evaluation method follows Kumar and Singh (2019), specifically 10- 
fold cross-validation based on the three datasets, named 10-fold CNN. Each dataset was 
divided into ten groups. In each test, one group is used as test data and the remaining nine 
groups are used as training data. The average result of the ten tests is used as the evaluation 
result. The second evaluation method is to use two datasets (e.g. Houston and Louisiana) as 
the training data and the third one (e.g. Chennai) as the test data, named transfer CNN. This is 
to evaluate the transferability of the trained model.
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Table 3 contains the full results of different approaches. On all of the three datasets, our 
proposed approach achieves the best F1-score of 0.82, 0.84, and 0.86, respectively. 
The second-best performing approach was LNEx, achieving the F1 scores of 0.82, 0.76, 
and 0.85, respectively. Note that, for the test data in a certain region (e.g. Houston), LNEx 
only used the OpenStreetMap data in this narrow region, which can dramatically reduce 
the interference of ambiguous place names. Conversely, our model is trained on 
OpenStreetMap data in the entire US and India, which includes much more ambiguous 
place names, such as Donald and Hillary. This dramatically increases the false positives. 
When we narrow the region by using the OpenStreetMap data in the south part of the US 
and India, which is still much larger than that of LNEx, our model can achieve an average 
F1 score of 0.87. However, to fairly compare our model with the other approaches, we use 
the OpenStreetMap data from the entire US and India. Google’s and Stanza’s general- 
purpose NER systems underperformed the other systems even though we did not 
penalize them for missing the hashtags’ location mentions. NeuroTPR-1 came right after 
them, achieving, on average, an F1 of 0.50 (NeuroTPR-2 achieved an F1 of 0.51 when not 
counting location mentions in hashtags as false negatives). The approach still suffers from 
the sparsity of labels, although the model was trained on a large set of labeled locations 
from Wikipedia. The 10-fold CNN achieves an acceptable tagging result. However, it 
requires that test data sets should be similar to training data sets, such as the shared 
place names appearing in both test and training data sets. It is impractical in a real 
application since it relies too much on chosen training datasets and has poor transfer- 
ability. This can be proved by the low tagging performance achieved by the transfer CNN. 
Chennai dataset is different from the Louisiana and Houston datasets. Therefore, when we 
use Houston and Louisiana datasets to train a model, nearly no place names can be 
recognized from Chennai dataset by the model. The results suggest that the above two 
statistical learning-based approaches are struggling with generalizing across different 
datasets and that they need much more data to train a stable model.

Compared to LNEx, our method achieved higher precision and recall across the board 
(except for the recall on Louisiana dataset and precision on the Chennai dataset). That 
suggests that the LNEx method of skip-gram-based gazetteer augmentation was not good 
enough to improve recall and was not that accurate (generating noise), ultimately harming 
precision. Conversely, our proposed approach is more powerful and robust because of two 
reasons. The first is that it understands the characteristics of multi-word place names such that 
many multi-word place names not included in the gazetteer can be recognized, such as 

Table 3. Tagging result of multiple place name extractors.
Louisiana Houston Chennai Avg

P R F P R F P R F F

General Google NLP 0.36 0.72 0.48 0.38 0.61 0.47 0.43 0.60 0.50 0.48
Stanza 0.43 0.63 0.51 0.59 0.35 0.44 0.54 0.36 0.43 0.46

Tools CLIFF 0.82 0.79 0.80 0.80 0.49 0.61 0.74 0.37 0.49 0.63

Location NeuroTPR-1 0.83 0.48 0.61 0.77 0.28 0.42 0.81 0.32 0.46 0.50
Extractors NeuroTPR-2 0.55 0.60 0.57 0.65 0.36 0.47 0.70 0.39 0.50 0.51

10-fold CNN 0.93 0.53 0.68 0.87 0.64 0.74 0.86 0.59 0.70 0.71
Transfer CNN 0.78 0.33 0.47 0.87 0.40 0.55 0.66 0.08 0.14 0.39
LNEx 0.83 0.81 0.82 0.87 0.67 0.76 0.91 0.80 0.85 0.81
GazPNE 0.88 0.77 0.82 0.87 0.81 0.84 0.87 0.85 0.86 0.84
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‘Chennai Airport’, ‘Keith Weiss Park’, ‘Katy Hockley cutoff’, ‘Hidden Valley Church of Christ’, ‘Lake 
610’, and ‘Paint Creek Bridge’. The second is that the simple POS rule can deal with some hard 
examples for the model and thus further improve the robustness of the proposed approach. 
For example, ‘me’ is the abbreviation of Maine state and included in the positive examples. 
Our model would always classify it as positive. However, ‘me’ could also refer to persons when 
it is pronoun (O). In this case, the defined POS rule can judge if it refers to persons or places. 
Another example is ‘us’, which can refer to persons or places based on its POS tag (pronoun or 
proper noun). The two aspects mainly contributed to the higher F1-score of the proposed 
approach compared to LNEx and the other systems.

75% of the place names in the dataset are unigrams, the remaining 14%, 6%, 3%, and 2% 
are bigrams, 3-grams, 4-grams, and more than four, respectively. The detection rate of the 
annotated place names with different lengths is illustrated in Figure 4. The detection rate of 
the one-word place name is the highest on all three datasets. The other types of place 
names’ detection rates are all over 0.5, suggesting an acceptable performance of detecting 
multi-word place names.

Furthermore, we exhaustively analyzed incorrect detection by GazPNE. A selection of 17 
representative tweets along with tagging results is shown in Table 4. Generally, incorrect 
detection has the following six types. (1) Many person names are detected as place names, 
such as ‘Katy’ and ‘Nelson’ in the 5th tweet. Our model does not utilize further context 
information. Thus, all the ambiguous names (e.g. ‘Clinton’, ‘Donald’, and ‘Washington’) will 
be judged as a place since they appear in gazetteers. This issue can be mitigated by 
removing full person names from a text with a person name dictionary as Middleton et al. 
(2018) did. (2) Some one-word place names which are not included in the gazetteer cannot 
be recognized, such as ‘Binz’ in the 2nd tweet, ‘khou11’ in the 6th tweet, and ‘hou’ in the 7th 
tweet. We found 291 such place names, which are unseen abbreviations or jargons 
(e.g.‘hou’, ‘nws’, and ‘kou11’) in the Houston dataset, while there are 201 ‘hou’ which is 
the abbreviation of ‘houston’. They are not presented in gazetteers. The correct detection of 
them can increase the F1-score of the Houston dataset to 0.90. (3) The long place name that 
does not own lexical and structural characteristics cannot be detected if they are not 

Figure 4. Detection rate of the place names with variant length on three datasets.
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Table 4. Example of tweets and tagging results of the proposed approach. Bond texts refer 
to true place names in tweets. Underline texts refer to incorrectly detected place names.

Tweet Extracted place name

RT @AaronKPRC: #TRAFFIC ALERT: (I-10), (Taylor St), (houston)
I-10 closed in both directions at Taylor St.

High water across the interstate. #houstonflood @KPRC2

RT @joysewing: Highway 288 at (Highway 288), (houston)
Binz still under water. #houstonflood

https://t.co/7AcMebF3yX

HT @NWSNewOrleans: Parts of (Amite City), (I-55),(la)
I-55 CLOSED near Amite City,

LA due to #flooding. #lawx https://t.co/QQI8XI8OdX

Mississippi medical center receives record obesity grant: (Mississippi medical center),
The University of Mississippi Medical . . . (University of Mississippi),

https://t.co/lBsoJ8iHVc #mississipp (mississipp)

RT @drkatynelson: Advice from Dr. Katy J. (Louisiana), (Katy), (Nelson)
Nelson on how to help the people and animals

affected by South Louisiana’s flooding . . . .

Per emergency operations center: city working (emergency operations center)
on joint effort to relocate affected greenspoint (greenspoint), (houston)

residents #khou11 #houstonflood

RT @wxJonDJ: Flooded Cypress Creek near (Cypress Creek),
Stuebner Airline Road in Spring, TX #houston (Stuebner Airline Road),(TX),

flood #houwx https://t.co/b69EbnaWmN (houston)

FWD cancels Flood Warning for (North Bosque River),
North Bosque River at Valley Mills [TX] (Valley Mills), (TX), (tx)
https://t.co/aB4DwLzh5X #txwx #ntxwx

Anyone have any pictures of what the (addicks reservoir),
addicks reservoir at highway 6 and also eldridge looks (highway 6), (eldridge),

like right now? #houstonflood #houstonweather (houston), (houston)

#CircleNews We will be working with (Village Life Center),
The Village Life Center in #Louisiana to help bring (Louisiana)

awareness to the . . . https://t.co/uKqjt1tFfM

#BuffaloBayou is overflowing and flooded Memorial (Buffalo Bayou),
Drive. If you zoom in, there’s a car. #houstonflood (Memorial Drive),

#flood2016 https://t.co/V0mDTCobz8 (houston)

Radar Storm Total vs. Harris County Flood Control (Harris County),
District Rain Gauges @hcfcd. Radar overall (Flood Control District)

underestimated. #houwx https://t.co/4TNk0hSsEa

RT @AkshayK88: need immediate rescue New no 32 (Raman street), (Chennai),
(old no) 27 Raman street, t.nagar, Chennai 17. Behind (Holy Angels convent), (t.nagar)

Holy Angels convent, pondy bazaar -two

#ChennaiRescue-my cousins also stuck at (Chennai), (egret park),
egret park, anand nagar extn, thoraipakkamm. Ground (anand nagar extn)

floor under watr.Dey r now at 1st floor.6 people.

RT @PIB_India: #ChennaiFloods: Railway (Chennai), (Chennai beach station),
Shuttle service from Chennai beach station to (Arakkunnam station)

Arakkunnam station in every 45 minute.

RT @Hannahsmiles1D: #houstonflood Scary experience (houston)
seeing someone trapped near 290. Such a shame of

all this damage. I almost got trapped b.

METRO has deployed buses to bring people in need (MO Campbell Center)
of shelter to MO Campbell Center. #SD6 #houwx
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included in the gazetteer, such as ‘pondy bazaar’ in the 13th tweet. (4) The erroneous break 
of hashtags by the statistical word segmentation algorithm (Matsuda et al. 2015). The used 
algorithm breaks ‘#lawx’ into ‘law’ and ‘x’ (in 3-th tweet) since this combination is more 
probable, but the correct break should be ‘la’ and ‘wx’. The proposed algorithm can detect 
‘la’, but the incorrect break causes the missing detection. 67 ‘#lawx’ have been found in the 
Louisiana dataset and the correction of this error can increase the F1-score for the Louisiana 
dataset from 0.82 to 0.84. (5) Some one-word place names (such as ‘Spring’, ‘269’) have been 
filtered from the gazetteer because they are well-known general words. This has led to the 
missing detection of ‘Spring’ in the 7th tweet and ‘290’ in the 16th tweet. (6). Some multi- 
word place names are detected as multiple sub-place names, such as ‘Harris County Flood 
Control District’ in the 12th tweet, which was detected as ‘Harris County’ and ‘Flood Control 
District’. The first, second, and fifth issues contribute to the most detection errors, which are 
also the main drawback of our proposed approach due to the lack of context information.

Furthermore, we analyzed the contribution of several tricky strategies adopted in our 
approach, which can improve the performance to some degree.

Out-of-Vocabularies: This strategy is applied in the positive example augmentation 
procedure by generating positive examples and in the tweet prepossessing procedure. 
The result shows this has led to 0.1% and 0.2% increase of the F1-score for the Houston 
and Chennai datasets, respectively, by detecting the place names containing out-of- 
vocabulary words, such as ‘Sriramachandra Medical College’, where ‘Sriramachandra’ is 
an Out-of-Vocabulary word and ‘Chembarakam Lake’, where ‘Chembarakam’ is an Out-of- 
Vocabulary word.

Removing prefix or suffix: This is applied in the online tagging stage by removing the 
meaningless words at the end of place names for toponym resolution. The result shows 
this has led to 0.3%, 0.9%, and 0.1% increase of the F1 score for the Louisiana, Houston, 
and Chennai datasets, respectively. For example, ‘area’ is removed from ‘Meyerland area’, 
which is a detected place name by the proposed approach. ‘Meyerland area’ and 
‘Meyerland’ are different from the perspective of information retrieval. However, they 
refer to the same place in location extraction, i.e. a neighborhood in Houston, which 
will be geocoded as a boundary box corresponding to ‘Meyerland’ in toponym resolution.

4.5. Sensitivity analysis

4.5.1. Impact of score threshold on tagging accuracy
The score threshold (ts) is a key parameter at the place name tagging stage. Thus, the impact 
of ts on the tagging accuracy is analyzed. In the experiment, the three datasets adopt the 
same ts value, which varies from 0.5 to 0.95 at an interval of 0.02. Figure 5 shows the result 
achieved by the proposed approach as the change of ts. Typically, a lower ts value would 
lead to higher false positives, while a higher ts value would lead to lower true positives. We 
can see when ts is set in the range of [0.7,0.88], the highest F1-score is achieved. The lowest 
F1-score is achieved when ts is set to 0.95. The results reveal that ts would affect the tagging 
result, but on the whole, the performance remains stable for a broad range of ts values.

4.5.2. Impact of filter length on performance of C-LSTM
The impact of filter length (f l) on the tagging accuracy is investigated. The filter length of 1, 2, 
3, and 4 are adopted with only one convolutional layer and the same filter length. The training 
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epoch is set to 12. During the training procedure, 16 million examples are used as the test set. 
The test accuracy of different filter length configurations is shown in Table 5. We can see the 
filter length of 1 is the best configuration for the test accuracy (at 0.9972), which is higher than 
that of the other configurations. However, due to the existence of noise data in the training 
examples caused by inaccurate rules, the test accuracy cannot fully reflect the trained model’s 
performance, especially when the test accuracy of these configurations is close. Therefore, 
they are further evaluated and compared by applying trained models in extracting place 
names from the three test datasets. In the experiment, ts varies from 0.5 to 0.95 at an interval 
of 0.02. The highest F1 score achieved by the four configurations is shown in the third column 
of Table 5 with the best ts value in the fourth column. Still, filter length of 1 performs the best. 
This is because most of the place names in gazetteers are short, as shown in Figure 6. We can 
see the length of most of the place names lies in the range of [1,4]. Therefore, a small filter 
length can achieve better performance.

4.5.3. Comparison of C-LSTM, CNN, and Bi-LSTM
In this study, we adopt the C-LSTM model, which combines CNN and LSTM. An extra 
experiment is conducted by training a classifier using the classic multi-channel CNN (Kim 
2014) and one layer bidirectional-LSTM models (Guerini et al. 2018) for place entity recogni
tion with the same training and test data. The key parameters for the CNN-based model 
include the number of channels, the filter length in each channel, the number of filters, and 
the dropout rate, which are set to 3, [1,2,3], 120, and 0.5, respectively. The key parameters for 

Figure 5. Impact of ts on the F1-score for three datasets.

Table 5. Impact of filter length on model performance.
filter length Test accuracy Average F1 score Best ts

f l ¼ 1 0.9972 0.84 0.78
f l ¼ 2 0.9968 0.83 0.72
f l ¼ 3 0.9964 0.83 0.74
f l ¼ 4 0.9961 0.83 0.78
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Bi-LSTM include the memory dimension and the dropout rate, which are set to 120 and 0.5, 
respectively. The training epoch is set to 12. 16 million examples are used as the test set. The 
achieved test accuracy of the three models is shown in Table 6. We can see C-LSTM and CNN 
outperform Bi-LSTM in test accuracy. This is mainly because most of the place names are short, 
such that lexical characteristics dominate the structural characteristics of place names. 
Moreover, six structural features are manually defined, which can represent the structural 
characteristics of place names to a certain degree. This is why CNN performs better than Bi- 
LSTM. Furthermore, the trained models are used to extract place names from the three tweet 
datasets with varied ts from 0.5 to 0.95 at an interval of 0.02. The best F1-score achieved by the 
three models is shown in the third column of Table 6 with the best ts in the fourth column. 
Still, C-LSTM performs the best, while Bi-LSTM performs the worst.

5. Discussions

In this section, we further discuss some concerns, issues, and challenges of our study, 
including the impact of word-embedding configurations on model performance, inaccu
rate rules, and the challenge of geocoding.

Word-embedding: Some studies proposed specific word embeddings for geospatial data 
hierarchical structures representation and semantic similarity calculation (Gao and Yan 2018, 
Dassereto et al. 2019). They were proved to be more powerful than general word-embedding 
such as Glove in spatial similarity measurement. However, our task is different, which does not 

Figure 6. Distribution of length of place names in gazetteers.

Table 6. Comparison of different models.
model test accuracy average F1 score best ts

C-LSTM 0.9972 0.84 0.78
CNN 0.9965 0.82 0.78
Bi-LSTM 0.9572 0.80 0.86
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need the semantic similarities of place names but focuses on distinguishing place names from 
non-place names. Thus, we just use general word-embeddings (i.e. Glove). However, these 
studies inspired us to analyze the impact of different word-embedding configurations on 
model performance. Thus, an extra experiment is conducted. In the experiment, we combine 
one general embedding (i.e. Glove, Google, or BERT) with optional domain-specific embed
ding (Guerini et al. 2018) learned from gazetteers (OpenStreetMap) by using (Mikolov et al. 
2013a), named OSMEmb. Six configurations are compared, and they are Glove+OSMEmb, 
Google+OSMEmb, BERT+OSMEmb, Glove, Google, and BERT. The results show these different 
configurations achieve the same performance. The reason is that the purpose of word 
embeddings is to make sure that similar words (such as road and street) have similar 
representations such that even if some words or segments are not included in training 
data, the model can still generalize to the test data which includes the unseen words or 
segments. That is, word embedding is useful when only limited training data is available. 
However, in our case, we have abundant training examples (nearly 7 million positive examples 
and 380 million negative examples). The training data contain most of the place-related 
words. Thus, with one general word representation, the model can already distinguish place 
names from non-place names.

Inaccurate rules and noisy data: In this study, negative training examples are generated 
by a couple of heuristics or explicit rules, which are noisy. For example, according to our rule, 
negative example ‘christian college of kansas’ is generated by inserting ‘christian’ before 
‘college of kansas’. No spatial item in the real world is named ‘christian college of kansas’. 
However, it is still a valid place name since it follows the norms of place names. Deep learning 
algorithms can learn the characteristics of place names based on the majority of correct 
training examples. Thus, many unseen place names can be classified as positive by the model, 
such as ‘Hidden Valley Church of Christ’. However, it is still unclear if the noisy data has harmed 
the performance of the model, whether the deep learning model is tolerant of imperfect rules, 
or whether the trained deep learning model can improve the rules or not. These issues are 
significant since noisy data, sparse training data, and weak interpretability are the biggest 
challenge faced in deep learning algorithms. The fusion of rules and deep learning in this 
study has inspired us to investigate these issues in the future.

Location extraction: Location extraction consists of two steps: toponym recognition 
and toponym resolution. This study focuses on toponym recognition, leaving the second 
step for the future, which is more challenging (Gritta et al. 2018). In toponym resolution, 
gazetteers or map API (such as Google Map API) will be searched to find the place name’s 
coordinates. However, this issue is not solved well due to the existence of Geo- 
ambiguities and place name variants. Geo-ambiguities refer to the situation that a place 
name might have multiple matches of geographic locations, such as Manchester, NH USA 
versus Manchester, UK. To overcome this challenge, the cues about the correct match of 
the place can be utilized such as the administration level (e.g. country, state, city, suburb, 
town, and county) and population size of the place since they reflect the importance or 
popularity of the place. Important places are frequently used in social media sites and 
should be given a higher confidence score. The places in the same tweet text or in the 
tweet text of the same semantic cluster are also strong features of the correct match 
(Karimzadeh et al. 2019). Place names have variants such that detected place names may 
not have exact matches in gazetteers. To solve this issue, we plan to calculate the 
semantic distance between a detected place name and the geo-items in gazetteers and 
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infer its geolocation based on the semantic nearest neighbors. The idea is inspired by (Di 
Rocco et al. 2021), which geolocates a posted message at sub-city levels. It extracts the 
semantic of toponyms in the post from a geographic gazetteer and then embeds them 
into a metric space, which captures the semantic distance among them. The semantically 
closest toponyms to a message are then identified and clustered with respect to their 
spatial locations. Moreover, less attention has been paid to the comparison of toponym 
resolution mainly because benchmark data is lacking. Fortunately, Wallgrün et al. (2018) 
has collected and published a corpus of geo-annotated tweets, which enables the 
evaluation of toponym resolution approaches.

6. Conclusion

Current approaches for extracting place names from microblogs face crucial problems: rule- 
based methods do not generalize, gazetteer-based methods cannot detect unseen multi- 
word place names, and machine learning methods lack sufficient data, which is costly to 
annotate on scale. To overcome these issues, we propose a robust approach, which 
combines gazetteers, rules, and deep learning to achieve the best of all. It can learn the 
intrinsic features of multi-word place names from gazetteers without the need for any 
manually annotated data. The approach was evaluated on three public tweet datasets with 
9,026 place names in total. An average F1-score of 0.84 is achieved. The approach has the 
potential of being generalized to regions worldwide because OpenStreetMap is world- 
widely available. The study introduces a new way of combining rules with deep learning, 
which produces abundant training examples by rules. This can be applied to other domains. 
One drawback of the proposed approach is that it cannot deal with ambiguity issues since 
we do not use any context features. For instance, ‘Washington’ could be a place or person 
name, depending on its contexts in texts. In the future, we plan to solve this issue by fusing 
the intrinsic features of an entity provided by our model and the context features of the 
entity in a text provided by a transformer model (e.g. BERT) in an unsupervised manner.

7. Data and codes availability statement

The data and codes that support the findings of this study are available in github with the 
identifier at the link https://github.com/uhuohuy/GazPNE

Notes

1. highway https://wiki.openstreetmap.org/wiki/Key:highway
2. OpenStreetMap placewiki.openstreetmap.org/wiki/Name_finder:Abbreviations
3. SymSpell https://github.com/wolfgarbe/symspell
4. OSMNames https://osmnames.org/
5. OpenStreetMap_python_tools https://github.com/mocnik-science/osm-python-tools
6. The data can be obtained from https://rebrand.ly/LocationsDataset
7. https://stanfordnlp.github.io/stanza/
8. https://cliff.mediacloud.org/
9. www.programmableweb.com/api/yahoo-placefinder

24 X. HU ET AL.

https://github.com/uhuohuy/GazPNE
https://wiki.openstreetmap.org/wiki/Key:highway
https://github.com/wolfgarbe/symspell
https://osmnames.org/
https://github.com/mocnik-science/osm-python-tools
https://rebrand.ly/LocationsDataset
https://stanfordnlp.github.io/stanza/
https://cliff.mediacloud.org/
http://www.programmableweb.com/api/yahoo-placefinder


10. We did not retrain the model, we simply used the model provided by the authors at https:// 
github.com/geoai-lab/NeuroTPR
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