
IEEE TRANSACTION ON GEOSCIENCE AND REMOTE SENSING 1

Random Ferns for Semantic Segmentation of
PolSAR Images

Pengchao Wei and Ronny Hänsch, Senior Member, IEEE

Abstract—Random Ferns - as a less known example of Ensem-
ble Learning - have been successfully applied in many Computer
Vision applications ranging from keypoint matching to object
detection. This paper extends the Random Fern framework to
the semantic segmentation of polarimetric synthetic aperture
radar images. By using internal projections that are defined
over the space of Hermitian matrices, the proposed classifier
can be directly applied to the polarimetric covariance matrices
without the need to explicitly compute predefined image features.
Furthermore, two distinct optimization strategies are proposed:
The first based on pre-selection and grouping of internal binary
features before the creation of the classifier; and the second based
on iteratively improving the properties of a given Random Fern.
Both strategies are able to boost the performance by filtering
features that are either redundant or have a low information
content and by grouping correlated features to best fulfill the
independence assumptions made by the Random Fern classifier.
Experiments show that results can be achieved that are similar
to a more complex Random Forest model and competitive to a
deep learning baseline.

Index Terms—Random ferns, ensemble classifier, semantic
segmentation, PolSAR image, fern optimization.

I. INTRODUCTION

REMOTE sensing and in particular the usage of satellite
imagery is one of the most efficient ways to acquire

large-scale or even global observations of the Earth’s surface.
Synthetic Aperture Radar (SAR), as one typical sensor for
Earth Observation, emits electromagnetic waves and measures
amplitude and phase of the signal scattered on the ground
(using different polarisations in the case of polarimetric SAR
(PolSAR)). As an active sensor, it is independent of daylight.
Due to the fact that the used microwaves are capable of
penetrating fog, clouds, etc, it is less influenced by complex
weather conditions and environmental changes. Its applications
include urban planning [1], forest protection [2], the monitor-
ing of agriculture [3], oceans [4, 5], and natural hazards [6],
as well as land use and land cover (LULC) classification
which aims to assign a label from a set of predefined semantic
categories to every pixel in the image [7].

Methods for semantically segmenting PolSAR images can
be roughly categorized into three groups: i) Approaches mod-
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elling the statistical characteristics of different backscattering
types dominating the different LULC classes, ii) approaches
that apply machine learning-based classifiers after extracting
hand-crafted features, and iii) approaches that aim to compute
such features automatically from the given data (e.g. deep
learning). One of the most well-known statistical modelling
approaches is the Wishart classifier [8], i.e. a maximum
likelihood classifier based on the assumption that the local
polarimetric covariance matrices in a homogeneous area fol-
low a complex Wishart distribution. While being based on a
clear mathematical framework, the model requires simplifying
assumptions to estimate its parameters (e.g. fully developed
speckle and locally homogeneous areas). In particular with
increasing resolution, these assumptions tend to fail and in-
troduce errors. More sophisticated approaches (see e.g. [9]
for a good overview and a discussion) are able to model
more complex distributions. This, however, comes at the cost
of increasing difficulty to accurately estimate the models
parameters.

The second type extracts various (polarimetric) features,
e.g. by applying target decomposition theorems [10, 11] or
by computing color and texture descriptors [12], which are
then fed into typical machine learning classifiers such as
Support Vector Machines [13, 14] or Random Forests [15].
This discriminative approach focuses on modelling the de-
cision boundary or posterior distribution of different classes
instead of estimating a generative model. Modern approaches
combine traditional features with sophisticated feature selec-
tion techniques (e.g. casting the selection as optimization
problem with sparsity regularization [16]), directly rely on
more data-driven methods for feature extraction (e.g. using
sparse dictionaries of local image content [17]), or combine
feature extraction with deep learning (e.g. using optimized
data representations and attention modules as in [18]). While
having been the virtual standard in the field for years, these
approaches suffer from a strong dependency on the usefulness
of the extracted image features. The successful selection of
features that are meaningful for a given combination of sensor,
data, and semantic categories requires strong expert knowledge
in several different scientific domains.

The third type of approach aims to mitigate this limitation
by working on the PolSAR data directly (or a low-level
representation such as polarimetric covariance matrices) and
automatically derives features that are optimal for a given task.
The most well known example of such approaches are deep
neural networks using either a real-valued vector representa-
tion of the polarimetric covariance matrix as input [19] or
directly the complex-valued data by employing a complex-
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valued network architecture [20]. Deep learning methods have
been adopted to various SAR data types and applications
and are used with growing success (see e.g. [21] for an
excellent overview). However, they commonly require large-
scale datasets for training to prevent overfitting and to reach
a satisfactory performance. In Remote Sensing in general and
for PolSAR data in particular, such large scale datasets are
scarce as manual annotation is tedious and usually has to be
performed by experts. One possibility to address the problem
of data scarcity is pre-training or self-supervised learning,
i.e. learning a significant part of the network parameters
on a proxy task. One the one hand, this proxy task needs
to be sufficiently similar to the target task rendering the
extracted features meaningful. On the other hand, it needs to
provide more available data. An example is SAR-to-optical
transcoding, i.e. producing an optical look-a-like from a given
PolSAR image and using the extracted features as input to a
classification network [22].

Another possibility is to use a special kind of shallow
learners such as Random Forests (RFs) (see e.g. [23] for
an extensive overview) that while still being able to perform
automatic feature learning do not have such strong require-
ments on the availability of large-scale training sets. Random
Forests are one of the most powerful shallow learners [24]
with a large body of theoretical work analyzing their properties
(e.g. [25]), practical considerations such as efficiency [26, 27]
and interpretability [28], as well as applications such as feature
ranking [29], image matching [30] and classification [31],
as well as semantic segmentation [32]. They were extended
in [33] to work directly on PolSAR images and similar to
Deep Learning automatically learn meaningful features.

Despite the success and widespread application of RFs, it
has been questioned whether their hierarchical arrangement of
binary features is responsible for their good performance [34].
As an alternative, Random Ferns (RFe) have been suggested.
Similar to RFs, they compute simple binary features but forgo
the feature hierarchy and instead follow a semi-naive Bayesian
approach to arrange features in groups. Such a feature group,
called fern, replaces the single trees of RFs and acts as weak
base-learner which estimates the full joint class posterior given
its features. In contrast to RFs, the individual estimates of the
weak learners are not combined by an (additive) average, but
via multiplication. This flat structure allows a much simpler
model in terms of memory requirements and computational
costs without degrading the discriminative power.

The term ”Random Ferns” (RFe) has been coined in [34, 35]
which proposed them as a computational more efficient al-
ternative to an earlier approach relying on Random Forests
to perform keypoint matching for photogrammetric computer
vision tasks such as pose estimation of planar surfaces and
panorama stitching [30]. The computational efficiency of RFe
was further shown in [36] for pose tracking on mobile phones.
The work shows that RFe can outperform more complex
approaches while being based on much simpler operations.
Other works include e.g. image-based localization [37], pose
estimation [38, 39], tracking [40, 41], and general object
detection [42] potentially combined with online learning [43].
In [31] RFe are used for image classification, i.e. assigning

a class label to the image as a whole, and compared against
Random Forests and a multi-way SVM. Experiments show
that all three approaches led to similar results with RFe being
computationally much more efficient than either, RF or SVM,
and - together with a novel pyramidal feature representation
- outperform the state of the art of the time by a large
margin. In [44] RFe are extended to a general-purpose machine
learning algorithm. Furthermore, several concepts originally
defined for RFs are adapted for RFe including an internal error
approximation as well as an attribute importance measure.
The first description of using RFe for semantic segmentation,
i.e. the pixel-wise semantic annotation of images, can be
found in [45] for natural images. A similar approach albeit
in the context of medical image processing is used for the
segmentation of kidney components in CT data [46] and cells
in microscopic images [47]. In contrast to Random Forests
(see e.g. [48] for an overview), Random Ferns have so far
been rarely used in remote sensing applications. To the best
of the authors’ knowledge, the proposed approach is the first
that applies RFe in the context of semantic segmentation of
remote sensing imagery in general and for PolSAR data in
particular.

Different from Random Forests, the original formulation of
Random Ferns does not include a built-in feature selection.
Instead, similar to Extremely Randomized Trees [49], the
computation of the internal binary features relies on param-
eters that are sampled completely randomly. One of the few
approaches to optimize RFe is proposed in [42] and relies on
boosting, i.e. the adaptive change of sample weights based on
initial estimates of the classifier. Originally limited to binary
problems, it was later extended in [50] to multi-class tasks
and applied for object detection in images [51, 52]. Another
line of work uses stacking [53], similar to stacked Random
Forests [54, 55], and groups multiple RFe classifiers in layers
where each layer obtains the original image data as well as the
estimate of the previous layer as input [56, 57]. The approach
has been evaluated for handwritten digit recognition and face
recognition and shows competitive performance to the state of
the art based on deep learning while having significantly less
parameters to optimize.

In this paper, we make three novel main contributions:
First, all of the previous RFe approaches are designed for
real-valued data, either feature vectors (Rn) or optical im-
ages (RNx×Ny×Ns , where Nx × Ny is the spatial image
dimension and Ns the number of spectral channels). PolSAR
images, however, are complex valued data containing either
the polarimetric scattering vector or the Hermitian polarimetric
covariance matrices. In this paper we extend the original RFe
framework by adapting the RF node projections of [33] as
the ferns’ binary features. This allows to apply the proposed
RFe directly to PolSAR images without the need of explicitly
computing hand-crafted features. Second, we address the lack
of optimization in the original RFe formulation and propose
two novel optimization strategies to further increase their
performance. They do not require an iterative update of sample
weights (as boosting does) making them less prone to label
noise, lead to a single optimized RFe classifier (in contrast
to stacking) minimizing the computational load, and maintain
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independence between different classifier parts (in contrast to
both, stacking and boosting) allowing for efficient parallel
computations. While they do require a longer training time,
the inference time remains unchanged which is more critical in
most applications. While the first contribution allows omitting
the extraction of hand-crafted features and applying the pro-
posed framework to the complex-valued PolSAR data directly,
the second contribution enables the RFe to automatically learn
features from the data in terms of an optimized combination
of optimized binary features.

Third, we apply the proposed framework to the semantic
segmentation of PolSAR imagery and evaluate its performance
on a modern dataset. The high efficiency of RFe enables their
use for semantic segmentation of large scale image data. The
experiments show that the proposed classifier achieves similar
accuracy to RFs despite being a much simpler model and is
on par with a much more sophisticated deep learning model.

In summary, we make the following contributions to the
state of the art:

• We extend RFe to be applied to PolSAR images di-
rectly, i.e. to complex-valued image data where each
pixel contains a Hermitian matrix. This mitigates the
requirement of other shallow learners to be trained on
predefined real-valued image features. Instead, it enables
automatic feature learning similar to corresponding RFs
approaches [33] or deep learning.

• We propose two novel approaches to boost the classi-
fication performance of RFe by optimizing the groups
of internal binary features. While this comes at a higher
computational cost during training, the resulting classifier
remains efficient during inference.

The remainder of this paper is organized as follows:
Section II gives a brief introduction of PolSAR data and
polarimetric distances since they are needed for computing
the binary features. Section III briefly explains the Random
Fern classifier and introduces the proposed binary features.
Section IV presents the experiments and discusses the obtained
results. Section V concludes the paper and gives an outlook
on future work.

II. POLARIMETRIC SYNTHETIC APERTURE RADAR

Polarimetric SAR systems emit polarized microwaves and
measure the amplitude and phase of the part that is scattered
on the ground back to the sensor. A PolSAR measurement can
be represented as a 2× 2 complex-valued scattering matrix S
that contains the polarimetric scattering characteristic of the
target object on the ground, i.e.

S =

(
SHH SHV

SV H SV V

)
, (1)

where STR ∈ C denotes the complex scattering information,
T,R ∈ {H,V } is the polarization of the transmitted and
received signal, respectively, and H and V denote horizon-
tal and vertical wave polarization states. Under monostatic
backscattering the cross-polarization terms have the same
scattering information, i.e. SHV = SV H , and the scattering

matrix S can be expressed as the lexicographic scattering
vector

kL =
(
SHH ,

√
2SHV , SV V

)T

. (2)

As distributed targets can only be fully described by second-
order moments, an often used data representation is the local
variance-covariance matrix C obtained by locally averaging
the outer product of the scattering vectors, i.e.

C =
〈
kLk

†
L

〉
, (3)

where ⟨·⟩ and ·† denote spatial averaging and complex-
conjugate transpose, respectively.

While there are many approaches to extract information
from a polarimetric covariance matrix C (e.g. polarimet-
ric decompositions [58], scalar features such as entropy, α,
anisotropy [59], or various distance measures [60]), we focus
on the span s, i.e. the total power of the reflected signal,

s = tr(C), (4)

where tr(·) is the trace operator, and the log-Euclidean dis-
tance [61] between two Hermitian matrices A,B defined as

dle(A,B) = ∥ log(A)− log(B)∥F (5)

where || · ||F is the Frobenius norm and log(·) denotes the
matrix logarithm. The matrix logarithm can be pre-computed
which makes it possible to calculate this distance very effi-
ciently. It has also shown excellent performance in various
tasks of analyzing PolSAR imagery [62, 60].

III. METHODOLOGY

A. Random Ferns Classifier

A Random Ferns (RFe) classifier as proposed in [34] is
an ensemble approach. Similar to Random Forests (RFs, see
e.g. [33]), a set of weak classifiers is trained by evaluating
binary features sampled from a large (i.e. potentially infinite)
feature pool. The final classification decision is determined
by aggregating the results of the individual weak learners.
The two largest differences to RFs are that 1) features are
not hierarchically ordered in a tree structure, i.e. every feature
is computed for every sample, and 2) the weak learners are
combined via multiplication rather than averaging.

In this section, we briefly repeat the definition of RFe to
introduce the used notation, then focus on the particularities
regarding analyzing PolSAR images in Section III-B, and close
with the introduction of two novel approaches to optimize RFe
in Section III-C.

Given a set D of training samples (p, c) ∈ D ⊂ P × C
of input data p and class label c ∈ C = {1, 2, ..., L}, let
F = {fi ∈ {0, 1}|i = 1, 2, ..., N} ⊂ F be a set of N (binary)
features taken from all possible features F computed over p.
Classifying a sample p aims to find the label c∗ such that

c∗ = argmax
c

[P (c|p) = P (c|F) ≈ P (c|F ) ∝ P (F |c)P (c)] .
(6)

Modelling the class likelihood P (F |c) as full joint prob-
ability over N binary features would require to estimate 2N

parameters per class. This is infeasible even for moderate N .
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Naive Bayes [63] would assume complete statistical indepen-
dence, leading to

P (F |c) = P (f1, f2, ..., fN |c) =
N∏
i=1

P (fi|c) (7)

and thus decreasing the number of parameters to 2N at the
cost of being unable to model any dependency relationships
among the features. RFe represent a trade-off between both
extremes by assuming statistical independence between groups
of features while modelling the joint probability within each
group, i.e.

P (F |c) = P (f1, f2, ..., fN |c) =
M∏
j=1

P (Fj |c) (8)

where Fj = {fj,k}k=1,...,Nj
⊂ F (e.g. Nj = N̄ = N/M ),⋃M

j=1 Fj = F , and ∀r, s ∈ [1,M ], r ̸= s : Fr ∩ Fs = ∅.
Ideally, features located within the same group share depen-

dencies, while the different groups are statistically indepen-
dent. In reality, this assumption will most likely be violated
in the same way as the statistical independence assumption
of Naive Bayes. However, it allows tractable training and
inference (i.e. it has

∑M
j=1 2

Nj ≈ M · 2N/M parameters).
On the other hand, it is still able to model certain feature
interactions since each feature group Fj models a full joint
probability over Nj binary features. Note, that a RFe reduces
to the Naive Bayes classifier (based on binary features) for
M = N , while for M = 1 the full joint probability is modelled
- thus, RFe scale between these two extremes.

In practice, the joint probability P (Fj |c) is represented by
an Nj-dimensional histogram per class. Since every dimen-
sion (being based on binary features) has only two possible
values, the bins can easily be enumerated and indexed by
lj =

∑Nj

k=1 2
k−1fj,k. This allows implementing RFe as highly

efficient look-up tables. During training, all features F are
computed for every sample p and the lj-th bin in each fern
is increased according to the class given by c, i.e. the label of
training sample p.

During prediction, the same N features within the M feature
groups are evaluated for a given query sample p providing
the leaf index lj for each fern Fj . Laplace smoothing is ap-
plied while normalizing the learned absolute class histograms
P̂ (Fj |c) to represent class conditional probabilities P (Fj |c),

P (Fj |c) =
P̂ (Fj |c) + u∑
lj
(P̂ (Fj |c) + u)

(9)

where u is a constant. The main reason for this correction
is that if a feature combination within a single fern never
occurred during training, the corresponding class likelihood
is estimated as P (Fj |c) = 0. If it is queried during prediction,
it will cause P (F |c) = 0 independent of the other ferns’
estimates since the individual predictions are aggregated by
multiplication (see Eq. 8).

B. Binary Features for PolSAR Data

RFe have originally been proposed for color images, (i.e.
arrays of real-valued 3D vectors) [34]. In this case, the binary

(a) One-point projection Two-point projection

Fig. 1: We use two types of projections: One-point projections
(left) compare a region randomly selected within the patch
with a reference pixel randomly chosen from the training
samples. Two-point projections compare two regions both
randomly selected within a patch. A region is defined by its
size s and position (x, y) which is computed with a random
offset vector from the patch’s p center (x̂, ŷ) sampled in polar
coordinates, i.e. having a distance r < rmax and orientation α.

features are comparisons of pixel values within a given patch
where pixel position and color channel are randomly selected.
Inspired by [33], we extend this concept to polarimetric SAR
images by using patch projections directly defined over the
space of arrays of Hermitian matrices.

We define a binary feature f as a distance d between Hermi-
tian matrices which is then compared to a scalar threshold δ,
i.e.

f =

{
1, if p̂ ≥ δ
0, otherwise, (10)

where p̂ = d (ψ(ϕ1(p)), ψ(ϕ2(p))). The projection that com-
putes a real-valued scalar p̂ from a patch p of Hermitian
matrices applies an operator ψ(·) to two patch regions that
are randomly selected by ϕ(·) around the center of the query
patch p. There are several choices for ψ, e.g. computing the
average value of the region, using the value at the region
center, or selecting the value with minimal or maximal span
within the region [33].

We consider two different types of such projections (illus-
trated in Figure 1) depending on whether the second region
ϕ2(p) is sampled within the patch or from the whole image.
The latter is a simple way to create a random value that follows
the data distribution of the given image and thus analyzes
absolute patch properties (e.g. intensity, backscatter type, etc.).
The former analyzes relative properties of pixels within the
patch such as local texture.

The corresponding projection function depends on several
parameters which are randomly selected from a uniform
distribution U with user-defined ranges: Whether a one- or
two-point projection is used, the region size s ∼ U (1, smax)
and orientation angle α ∼ U(0, 360) as well as distance
r ∼ U (0, rmax) to the patch center, and the threshold
δ ∼ U(minD(p̂),maxD(p̂)). While there are different poten-
tial choices for the region operator ψ as well as the polari-
metric distance function d, we settle for selecting the region
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pixel with maximal span and the log-Euclidean distance (see
Section II).

C. Fern Optimization

In the original RFe formulation [34], full randomization
is used during the selection of the binary features as well
as during their grouping. This is in contrast to RFs which
create random subsets of possible splits within each internal
node and select the best based on certain optimization criteria
(e.g. using the information gain in Eq. 11). We propose
two different optimization methods for RFe, which can be
applied independently or jointly. While the first approach
(Section III-C1) is a pre-processing step before the actual
creation of the RFe, the second method (Section III-C2) is an
iterative procedure based on an already existing RFe classifier.

1) Preselection and grouping of binary features: There
are two main issues with the standard approach of full
randomization during feature selection and feature grouping.
First, the overall set of potential features includes many
that are meaningless - either in general (e.g. the difference
between values at identical pixel positions) or for the specific
classification task. Selecting these features leads to uniform
distributions in the corresponding parts of the class posterior
and thus only adds computational load without an increase
in performance. On the other hand, the effective number of
informative features decreases. One could attempt to avoid the
creation of meaningless features by hard-coding constraints
during feature selection (e.g. ensuring not to select identical
pixel positions). However, these rules quickly become very
complicated and numerous to catch all possible exceptions,
add a computational burden, and are not effective to detect
features that are not meaningless in general, but not informa-
tive for the given task. A more suitable approach is to create
a large pool of feature candidates and select the ones with
a high potential to be descriptive. The second issue is that
the potential set of features contains many that are redundant
- again either in general (e.g. features with identical values)
or for the task at hand. While one could attempt to define
manual rules to avoid the selection of highly similar features,
this approach is futile for the same reasons as stated above.

Instead, we propose an automatic feature selection approach
similar to the node optimization in RFs and extend it with a
grouping approach.

A single binary feature divides the feature space into two
half-spaces. Each of them holds samples that are - with respect
to this feature - more similar to each other than to samples in
the other group. In the optimal case, samples of a given class
are only in one part but not in the other which would lead to
pure class posteriors. We use measures of impurity to judge
the quality of the corresponding binary feature, i.e. the more a
binary feature decreases the impurity, the more discriminative
is it.

Inspired by the node optimization in RFs, we use an
adapted version of the information gain IG which measures
the difference between the class impurity I before and after a
split, i.e.

IG(f) = I(D)− P0 · I(D0)− P1 · I(D1) (11)

where I is a measure of impurity, D is the given
dataset, Dk = {p ∈ D|f(p) = k} and Pk = |Dk|/|D| (with
k ∈ {0, 1}).

We use the entropy of the class posterior as an impurity
measure I . While D is the local subset of the training data at
an internal node in the case of RFs, it corresponds here to the
total set of training samples. Its impurity is therefore constant
for all binary features and can be ignored. Thus, instead of
selecting features that maximize Eq. 11, it is sufficient to select
features that minimize

ˆIG(f) = P0 · I(D0) + P1 · I(D1). (12)

It should be stressed that this is a greedy optimization
procedure which only takes single features into account. A
feature is rejected if it leads to a very impure split by itself.
Feature combinations are not considered at all and there is no
guarantee that selecting individually optimal features leads to
an optimal feature set. That being said, while there is a risk
to disregard features that are meaningful only in combination
with other features, truly meaningless and very weak features
are rejected as well while very strong features are selected.

However, redundant and strongly correlated features cannot
be detected by this approach. On the one hand, redundant
features should be rejected. On the other hand, RFe assume
mutual independence between the individual feature groups
which requires placing correlated features into the same group.

To this aim, we compute the correlation matrix between all
selected binary features as

corr(fr, fs) =
cov(fr, fs)

σfrσfs
(13)

where cov denotes the covariance between two features and
σf the standard deviation of feature f . This allows us to reject
highly correlated (and thus redundant) features and group
correlated features together to mitigate statistical dependencies
between the individual ferns.

2) Iterative fern optimization: The approach in Sec-
tion III-C1 selects strong binary features while rejecting re-
dundant features and groups correlated features within one
fern. However, it does not take the performance of feature
combinations into account and does not optimize the RFe as
a whole.

In this section we propose a second, complementary op-
timization scheme which is inspired by Monte-Carlo type
algorithms such as simulated annealing.

Starting with an initial RFe h0 (created randomly or via
the optimization approach presented in the previous section),
we define a set of operators on the current instance ht which
create a slightly changed instance ĥt:

• Add a new feature group.
• Add a new feature to a feature group.
• Delete a feature from a feature group.
• Switch two features in different feature groups.
• Sample a new threshold for a feature.

The feature group and the feature within a group that are
affected by such a change are randomly selected. Note, that
most of these changes come with only a small additional cost.
In particular, it is not necessary to retrain the complete RFe
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but in the worst case only small specific parts of it which can
be achieved quickly given the overall efficiency of RFe.

After such a random change transforms ht into ĥt, the latter
is evaluated on a validation set. If the performance increased,
the change is kept (i.e. ht+1 = ĥt), otherwise it is discarded
(i.e. ht+1 = ht). This procedure is repeated until convergence,
i.e. until all changes within a predefined number of iterations
have been rejected.

IV. EXPERIMENTS

A. Data & Performance Metrics

The following experiments are conducted on a fully po-
larimetric SAR dataset acquired by TerraSAR-X (DLR) over
Plattling, Germany (a pseudo-color image is shown in Fig-
ure 2a). The image contains 10312 × 11698 pixels and was
manually annotated with five predefined classes including
natural media (forest, water, field) and man-made objects
(urban, roads) resulting in more than 110M labelled samples.
Figure 2b shows the obtained semantic map and Figure 3 the
corresponding label distribution. Results are based on 5-fold
cross-validation, i.e. the image is divided into five disjoint
stripes of equal size where training and validation sets are
sampled from four stripes while the fifth stripe is used for
testing. Additionally, the experiments have been repeated four
times per fold to account for the randomness in the method (i.e.
due to sampling training data and fern creation/initialization).

(a) (b)

Fig. 2: (a) Pseudo-color image of TerraSAR-X data acquired
over Plattling, Germany. (b) Manually annotated reference data
(Red: urban area, yellow: field, green: forest, blue: water,
magenta: roads, white: unlabelled pixel).

20M

40M

60M

80M

Urban Field Forest Water Road

Fig. 3: Distribution of manually annotated samples.

We employ overall accuracy (OA, percentage of correctly
classified pixels), average accuracy (AA, accuracy averaged
over all classes), mean Intersection over Union (mIoU), the
F1 score, and the kappa coefficient averaged over the test data
in the individual five folds (and runs) to quantitatively evaluate
the classification performance. Additionally, we evaluate the
entropy of the estimated class posterior as a measure of
certainty of the classifier in its decision.

B. Results & Discussion

1) Baseline: In a first set of experiments, we aim to estab-
lish a baseline for a RFe classifier without any of the proposed
optimization techniques. These experiments shall also serve to
illustrate the influence of fern number M (i.e. the number of
feature groups) and fern size N̄ (i.e. the (average) number of
features within a group) on the classification performance. We
use a maximal region distance of rmax = 25 and a maximal
region size of smax = 9. The RFe is trained with 3, 000
samples per class.

The results of the conducted experiments are shown in
Figure 4 where M ∈ [3, 50] and N̄ ∈ [1, 8]. It should be
noted that for M = 1, a single full joint probability over all
features is modelled while for N̄ = 1 the RFe corresponds
to a Naive Bayes classifier. In general, an increase in either
of both parameters leads to a better performance. More ferns
(i.e. larger M ) mean that the ensemble consists of more weak
learners that contribute to the final estimate. Larger ferns (i.e.
larger N̄ ) mean using more binary features, thus increasing
the probability to extract descriptive properties and decreasing
the overlap of the feature distribution of different classes.
Interestingly, while the performance increase saturates for both
parameters it does not decrease, i.e. at least within the selected
parameter range, the RFe does not overfit with increasing
fern number or size. For the smallest RFe, average accuracy
is with 28% barely larger than random guessing. The best
average accuracy of 70% is achieved with the largest RFe.
The confusion matrix in Table I shows that the city and water
classes are recognized best (> 80% accuracy), followed by
the field and forest classes (> 70% accuracy). The largest
confusion in terms of both, false negatives and false positives,
is present for the street class which is only recognized to
38.5%. Figure 5 shows that in general the proposed RFe
classifier is able to obtain results that are highly consistent
with the reference data. It should be stressed that (similar to
the Random Forests in [33]) no preprocessing (e.g. speckle
reduction) or explicit feature extraction (apart from computing
the polarimetric covariance matrices) is performed but the
proposed RFe classifier works directly on the PolSAR data.

Increasing either fern number or fern size leads to an
increased computational load as more binary features have to
be evaluated. Figure 4b shows the amount of time required to
train RFe of a certain size. The results for prediction time
are similar (just scaled by a different number of samples)
and omitted here for brevity. The run time complexity of
training/applying a RFe is O(|D| ·N), where |D| denotes the
number of samples and N the number of binary features.
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Fig. 4: Estimated average accuracy (left) and training time
(right) for RFe with different fern number and size.

Fig. 5: Left: Semantic map obtained by RFe (M = 30, N̄ = 8)
without optimization. Right: Error map (correct estimated label
denoted in Green, wrong decisions in Red.).

2) RFe optimization: Applying the feature selection and
grouping step described in Section III-C1 increases the ac-
curacy for all classes by at least ∼ 3% as shown in Table IIa.
The largest improvement is achieved for the street class,
which is now correctly detected to 44%. Consequently, the
average accuracy is raised from 70% (using no optimization)
to 74%. The obtained semantic map (shown in Figure 6a) is
significantly smoother. We use the same parameter setting as
above (Sec. IV-B1) with M = 30, N̄ = 8. The lower bound
on the information gain (Eq. 11) is set to 0.01 and the upper
bound on the feature correlation (Eq. 13) to 0.9. Using stricter
bounds, in particular on the information gain, would lead to
potentially stronger features. However, it would also increase
the number of features to be tested and thus increase the
computational load. With the used setting, feature selection,
grouping, and fern training took 20−23sec, i.e. approximately
a factor three longer than training the baseline. As the number
and size of the ferns is fixed for this optimization scheme (and
was selected to be identical to the baseline), the prediction time
does not change.

To evaluate the second proposed optimization scheme, we
initialize a RFe with five ferns of size six. As described in
Section III-C2, random changes are applied to the current
model. Only if a change improves model performance it is
kept, otherwise it is rejected. The optimization is repeated for

OA = 73.6±1.0, AA = 69.7±0.6, κ = 52.3±1.4, F1 = 65.6±1.0, mIoU = 50.5±1.3
City Field Forest Water Street

City 80.1 (0.3) 0.6 ± 0 11.1 ± 0.4 0.2 ± 0.1 8.0 ± 0.2
Field 1.0 ± 0 73.1 ± 1.2 13.2 ± 0.8 0.6 ± 0.2 12.1 ± 0.3
Forest 3.8 ± 0.2 10.2 ± 0.5 72.4 ± 0.7 0.8 ± 0.1 12.8 ± 0.1
Water 8 ± 0.9 0.4 ± 0.1 2.4 ± 0 84.3 ± 0.3 4.8 ± 0.5
Street 6.3 ± 0.3 38.5 ± 0.6 16.1 ± 0.5 0.6 ± 0.2 38.5 ± 1.1

TABLE I: Confusion matrix of the RFe without any optimiza-
tion (M = 30, N̄ = 8).

OA = 77.8±0.2, AA = 73.6±0.0, κ = 58.5±0.1, F1 = 70.0±0.1, mIoU = 56.2±0.1
City Field Forest Water Street

City 83.9 ± 0.6 0.3 ± 0 8.5 ± 0.5 0.1 ± 0 7.3 ± 0.1
Field 0.9 ± 0 77.7 ± 0.4 9.1 ± 0 0.2 ± 0 12.1 ± 0.4
Forest 3.6 ± 0.2 7.6 ± 0.8 75.0 ± 0.6 0.7 ± 0 13.2 ± 0
Water 5.9 ± 0.5 0.2 ± 0 2.2 ± 0 87.4 ± 0.5 4.3 ± 0.1
Street 6.0 ± 0.2 36.4 ± 0.1 13.2 ± 0 0.2 ± 0 44.2 ± 0.1

(a) Confusion matrix applying feature selection and grouping (M =
30, N̄ = 8)

OA = 77.2±0.5, AA = 73.8±0.3, κ = 57.7±0.7, F1 = 69.6±0.5, mIoU = 55.4±0.6
City Field Forest Water Street

City 84.2 ± 0.3 0.3 ± 0 8.5 ± 0.4 0.1 ± 0 6.9 ± 0.1
Field 1.0 ± 0 76.5 ± 0.7 10.6 ± 0.5 0.3 ± 0.1 11.6 ± 0.1
Forest 3.7 ± 0 6.7 ± 0.1 76.2 ± 0.1 0.7 ± 0 12.8 ± 0
Water 5.6 ± 0.1 0.2 ± 0 2.1 ± 0.1 87.6 ± 0 4.6 ± 0
Street 6.1 ± 0.1 35.4 ± 0.1 13.6 ± 0.5 0.3 ± 0.1 44.7 ± 0.3

(b) Confusion matrix applying iterative fern optimization (on average,
M = 27.9± 3.2, N̄ = 6.3± 0.2)

OA = 77.6±0.3, AA = 73.5±0.3, κ = 58.3±0.3, F1 = 69.4±0.3, mIoU = 55.5±0.3
City Field Forest Water Street

City 84.2 ± 0.2 0.3 ± 0 8.4 ± 0 0.1 ± 0 6.9 ± 0.2
Field 1.0 ± 0 77.2 ± 0.5 10.3 ± 0.4 0.3 ± 0 11.2 ± 0.1
Forest 3.9 ± 0.2 6.9 ± 0.3 75.9 ± 0.8 0.7 ± 0 12.6 ± 0.3
Water 5.8 ± 0.1 0.2 ± 0 2.1 ± 0.1 87.5 ± 0.5 4.4 ± 0.3
Street 6.3 ± 0 36.9 ± 1.1 13.7 ± 0.5 0.2 ± 0 42.8 ± 1.6

(c) Confusion matrix applying two fern optimizations

TABLE II: Confusion matrices obtained by RFe with different
optimization strategies.

at least ITmin iterations and terminated if no improvement
is achieved after ∆ consecutive iterations. In the following
experiments, we used ITmin = 30 and ∆ = 15. The other
parameters remain as in Section IV-B1.

Figure 7 illustrates the changes over the iterations for
the different RFe for four repetitions over five folds (i.e.
20 runs in total) as well as the overall average. Note, that
the optimization in different runs terminates after different
numbers of iterations. The average for a given iteration is
only computed over runs with at least that many iterations. The
initial RFe has five ferns with six features each and reaches an
accuracy of AA = 57.5%± 9%. As can be seen in Figure 7a,
training as well as test accuracy increases and saturates before
optimization is automatically terminated. On average, the final
RFe classifiers have M = 27.9±3.2 ferns with N̄ = 6.3±0.2
features and reach an accuracy of AA = 77.5%±1.4%. While
all possible changes (see Section III-C2) have equal chance
to be applied at any given iteration, Figure 7b shows that
adding features - either a single feature within a group or
a whole new group, i.e. six new features at once - have a
much higher acceptance probability at the beginning of the
optimization process. Consequently, the number of features as
well as the number of feature groups grows. The increase in
the number of features is dominated by adding more feature
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(a) Pre-selection and grouping
(M = 30, N̄ = 8).

(b) Iterative optimization
(M = 31, N̄ = 6.3 with

Nj ∈ [4, 10]).

Fig. 6: Semantic maps obtained by RFe with different opti-
mization strategies.

groups instead of increasing the number of features within
the existing groups (see Figures 7c and 7d). Deleting an
existing feature, switching two features among feature groups,
or changing the split threshold have a roughly equal success
rate over the whole optimization process.

The iteratively optimized RFe achieves (on average) quan-
titative results (see Table IIb) as well as qualitative results
(see Figure 6b) that are very similar to the preselection and
grouping approach. The observed differences in the computed
performance metrics are neither consistent nor significant.
However, it appears that the variance of the results is slightly
larger. It should be noted, however, that preselection and
grouping requires defining two parameters that are difficult
to set, while the iterative procedure only depends on the
termination criteria which only marginally influences the final
performance.

The training time increased to 30 − 110sec, i.e. up to five
times more than for the preselection and grouping approach.
Since the obtained number of features (and feature groups)
is similar to the manually set parameters of the baseline, the
application time does not change significantly.

Preselection and grouping evaluates features only either in-
dividually (for the preselection) or in pairs (for the grouping).
Thus, it might be reasonable to use this approach to generate
an initial fern that is then further optimized by the iterative
training strategy. The results in Table IIc show that this does
not change the performance significantly. This indicates that,
at least for the given dataset, higher order relations between
features are well modelled in the feature groups generated
by the preselection and grouping approach despite its greedy
nature.

RFe do not only provide an estimate of the class label
but instead estimate the full class posterior probability. This
allows judging the certainty of the classifier in its decision,
e.g. based on the entropy H of the class posterior: A low
uncertainty corresponds to H = 0 which is achieved if
one class obtained 100% of the probability mass. A high
uncertainty corresponds to H = 1 which means that all
classes were assigned equal probability. Figure 8a shows the
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Fig. 7: Detailed changes of fern properties over optimization
iterations in different folds and runs.

histogram of entropy values for the RFe baseline as well as the
two optimization techniques. The similarity in performance of
both optimization strategies can also be observed here: Both
achieve significantly more estimates with low uncertainty than
the baseline. The iterative scheme is slightly superior to the
preselection and grouping approach. Note that the small peak
at H = 0.43 visible in all three graphs corresponds to the
situation where two classes are assigned 50% probability (i.e.
H = −2 · 0.5 log5(0.5)). The strong decrease at H = 0.68
corresponds to the situation where three classes are assigned
equal probability (i.e. H = −3 · 0.33 log5(0.33)), which
happens significantly less often.

A high certainty in the estimate does not necessarily warrant
its correctness. Figure 8b shows that the RFe exhibits rather
typical calibration curves [64]. It is underconfident for large
posterior values (e.g. in all cases where the posterior of
the dominant class was estimated as 70%, the decision was
actually correct) and overconfident for small posterior values.

3) Comparative Evaluation: In this last section we evaluate
the performance of the proposed RFe (with its different
optimization strategies) with two other classifiers: A Random
Forest and a deep neural network. Both are trained and
evaluated in the same way as the RFe classifier, i.e. with 5-fold
cross validation based on vertical image stripes of the Plattling
dataset. For better comparisons, all experiments in this section
are conducted by training with all available training samples.

The Random Forest (RF) employs the same node projec-
tions (i.e. works directly on the PolSAR data as well). We
choose two different parameter settings: First, a RF with 30
trees with a maximum height of eight (denoted as RF-30-
8). Given the large number of samples, the maximum height
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Fig. 8: Classifier uncertainty and calibration for the baseline
RFe (blue), pre-selection and grouping (green), and iterative
optimization (red).

Fig. 9: Semantic maps obtained by a RF (i.e. RF-30-8) on the
left and a deep network (i.e. SegNet) on the right.

is usually reached, i.e. each of the 30 base-learners (trees)
evaluate roughly eight features per sample. This setting is
most comparable with the RFe settings where 30 base-learners
(ferns) evaluate (exactly) eight features. The difference is
that while the RFe evaluates the same features for different
samples, the RF applies potentially different binary tests to
different samples. The second parameter setting creates a RF
with ten trees with a maximal height of 30, i.e. less but higher
trees (denoted as RF-10-30).

As neural network architecture we chose SegNet that was
adapted in [65] to remote sensing data. It consists of an
encoder and decoder, both of them having five blocks of
convolutional and pooling layers. A standard SGD optimizer
is used with a learning rate of 0.01, weight decay of 0.005,
and momentum of 0.9. The network is trained for ten epochs
on all available training data. During training we apply flips
of the image patches as data augmentation.

The results in terms of per-class, average, and overall
accuracy are shown in Figure 11. Despite being a significantly
simpler model, the RFe offers a competitive performance to
the other approaches in particular in terms of average accu-
racy. As already discussed in the previous section, both RFe
optimization schemes consistently outperform the baseline,
while the difference between both optimization strategies is
not significant.

The large but shallow RF RF-30-8 is on par with the RFe

baseline (see also the left side of Figure 9). Training and
prediction times are 8× and 1.6× longer, respectively. The
reason is the computational overhead produced by determining
the path of a sample through the decision trees and applying
different operations to different samples. This does not only
require additional computations, but also prevents coalesced
memory access. RFe extract the same binary features from all
samples and thus does not perform the additional computations
induced by the hierarchical structure of decision trees. Note,
however, that for neither method any kind of parallelization
is used. The small but high RF-10-30 is mostly on par with
the optimized RFe, with being slightly inferior for the field
class but superior for the street class. It is more sensitive
to minority classes that correspond to finer image structures.
As a consequence, the overall accuracy of the RF is slightly
worse than for the proposed RFe. Training and prediction
times took more than 2× longer than for RF-30-8. The results
show that the proposed RFe is a valid alternative to RFs
offering similar accuracy while being significantly easier to
implement, to train, and to interpret. Furthermore, it provides
- even in a vanilla implementation - a considerable advantage
with respect to computation time during training as well as
during prediction.

The SegNet approach outperforms both, RFe and RF, for
dominant classes partially by a large margin, e.g. 97.2% in
contrast to 71 − 78% for the Field class. It is slightly better
for the City class and slightly worse for the Water class (see
the right side of Figure 9 for qualitative results). The Road
class is completely missed and mostly confused as Field (to
76%). Thus, while the overall accuracy is significantly larger
than for RF and RFe, the average accuracy is lower. Training
the SegNet needed 2.5h on a GeForce GTX 1060 GPU which
is roughly half the time needed for the RFe approach. Test
time is with 15min significantly faster than RF and RFe that
needed roughly 100min. Note, however, that parallelization is
neither used for RF nor for RFe but strongly exploited for
SegNet.

Figure 10 shows a detailed view of the obtained semantic
maps around the city of Plattling, Germany. The baseline
solution shows a lot of small, noise-like misclassifications
while the optimized RFe leads to a smoother map. One of
the larger issues in both maps is that dominant line features
such as the river border are classified as urban area. A possible
reason is that such strong image gradients occur often around
buildings. Parts of borders between agricultural fields are often
misclassified as roads. Many of the roads in this dataset are
between agricultural fields. Thus, the classifier has seen many
examples where thin line structures between two fields do
represent actual roads. Water, forest, and urban areas are very
well detected and show outlines consistent with the reference
data. The RF has mostly the same main issues as the RFe
since both are based on the same class of binary features
and only differ in their arrangement and optimization. SegNet
produces a smooth map but misses on fine structures such
as roads. All methods struggle strongest with detecting roads.
Due to the resolution of the data, most roads appear as very
thin lines in the image. Thus, within a patch centered on a
road, the neighborhood dominates the signal in the sense that
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other classes are more dominant. This states a very difficult
problem which requires very specific spectral-spatial features.
The amount of optimization within RFe is barely sufficient
to discover these specialized features. Increasing the amount
of optimization helps (i.e. accuracy of the street class raises
from 38.5% to more than 44% if optimization techniques are
applied). The SegNet with its receptive fields suffers from the
same issues but even worse. The RF shows the same trend:
The shallow trees of RF-30-8 do not allow for sufficiently
specialised features while the higher trees of RF-10-30 can
differentiate street patches the best.

Fig. 10: Detail of the semantic segmentation results. First row:
Pseudo-color image of the TSX data (left) and the reference
map (right). Center row: Results obtained without (left) and
with (right) optimization. The image shows the results of the
iterative optimization approach. Results of the preselection and
grouping method are similar and omitted for brevity. Bottom
row: Results obtained by a RF with ten trees (left) and a Segnet
(right).

It should be noted that the selected Deep Learning approach
should only be seen as an example baseline to put the results
obtained by the shallow RFe learner into perspective. There are
certainly other architectures that would have led to different
results, e.g. being focused on more fine-grained details. The
more important part of these experiments is the comparison
with the RF. It is based on the same node projections and
is applied to the same data representation with the two main

differences that the individual weak learners employ a feature
hierarchy (i.e. being trees) and are combined by additive
averaging, while the weak learners of the RFe (i.e. the feature
groups) are ”flat” and are combined by multiplication. This
results in a model that is simpler in terms of implementation
and interpretation as well as more efficient, but is able to
provide results that are on par with the performance of a RF.
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Fig. 11: Per-class, overall, and average accuracy of proposed
RFe method, as well as a Random Forest, and SegNet.

V. CONCLUSION & FUTURE WORK

In this paper we transferred the node projection of a Random
Forest framework tailored towards analyzing polarimetric SAR
data to the concept of Random Ferns. This allows to apply
the proposed classifier directly to PolSAR data without the
need to manually design and select features (as typically done
in many other approaches for PolSAR classification). Further-
more, two novel optimization techniques for RFe are proposed
that successfully exclude uninformative and redundant features
while grouping dependent features within a single fern. Results
show that both optimization approaches lead to similar results
while being on par to the performance of a RF. However,
being a simpler model, train and test times of the RFe
are significantly shorter than for RFs. The comparison to a
baseline deep learning model, i.e. a SegNet, shows that the
obtained performance is on par with even more complicated
models.

The obvious next step is to exploit the flat structure of
RFe for parallelization to speed up training and application.
Training and evaluation of each fern are independent of all
other ferns and can thus run in parallel similar to paralleliza-
tion approaches of RFs. In both cases, the base-learners are
independent of each other and can thus be trained and applied
in parallel. In theory, that leads to a decrease in computation
time that is linear in the number of used threads. However, the
random access to memory caused by the hierarchical nature
of the decision trees in a RF leads to a significant amount of
cache misses while RFe facilitate coalesced memory access.
That is why the expected speed-up is smaller for RF than for
RFe. However, the largest potential of RFe for speed-up is
by using GPUs. RFs are not very well suited for GPUs as
they are basically a large collection of if-then-else rules and
do not follow the SIMD principle (i.e. different parts of the
code are evaluated for different parts of the data). In contrast
to RFs, features within RFe are evaluated independently, i.e.
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every feature is computed for every sample. This means that
the same code instructions are applied to every single sample
which makes RFe a prime example for GPU processing. Such
a GPU implementation will lead to a significant decrease in
training time which would allow for stronger optimization
strategies as well as larger RFe in terms of both, feature groups
and number of features per group.
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