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Abstract—This article presents the scientific outcomes of the
2020 Data Fusion Contest (DFC2020) organized by the Image
Analysis and Data Fusion Technical Committee of the IEEE Geo-
science and Remote Sensing Society. The 2020 Contest addressed
the problem of automatic global land-cover mapping with weak
supervision, i.e., estimating high-resolution semantic maps while
only low-resolution reference data are available during training.
Two separate competitions were organized to assess two different
scenarios: 1) high-resolution labels are not available at all; and 2)
a small amount of high-resolution labels are available additionally
to low-resolution reference data. In this article, we describe the
DFC2020 dataset that remains available for further evaluation
of corresponding approaches and report the results of the best-
performing methods during the contest.
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I. INTRODUCTION

H IGH-RESOLUTION global land-cover maps and their
automatic updating allow us to understand the state and

changes of the Earth’s surface, yielding fundamental informa-
tion for tackling global challenges such as climate change,
natural disasters, and environmental conservation. Open satellite
data, such as the ones provided by the Sentinel and Landsat
missions, as well as small satellite constellations, have made it
possible to obtain large-scale multimodal Earth observation data
at high spatial and temporal resolutions covering the entire globe.
Although machine and deep learning methods are effective for
large-scale automated mapping, the high cost of labeled training
data collection is a barrier to high-resolution high-accuracy
global mapping.

Weakly supervised learning gained great attention both in
theory and practice to reduce label data collection costs. In the
field of remote sensing, low-resolution global maps are regu-
larly updated and openly available though their accuracy have
limitations. The task of achieving high-resolution and accurate
land-cover classification from such low-resolution and noisy
labels is a fundamental challenge, which can potentially lead
to a paradigm shift in global mapping and facilitate the use of
Earth observation data for the sustainable development goals [1].

A tremendous increase in the availability of remotely sensed
data captured by different sensors, combined with their con-
siderable heterogeneity (e.g., data types and resolutions), leads
to a dramatic challenge for effective and efficient processing
of such data [2]. On the other hand, the aforementioned in-
crease in the volume of multimodal and multisensor data along
with their ancillary products opens the possibility of utilizing
multimodal datasets in a joint manner to further improve the
performance of the processing approaches with respect to the
applications at hand [3]. In this context, optical and synthetic
aperture radar (SAR) data provide complementary information
about the ground surface, and their synergistic use is an effective
approach in terms of improving the frequency of observations
as well as allowing for more accurate land-cover classification.
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The Image Analysis and Data Fusion Technical Committee
(IADF TC) of the IEEE Geoscience and Remote Sensing Society
(GRSS) is an international network of scientists working on
Earth observation, geospatial data fusion, and algorithms for
image analysis. It aims at connecting people and resources,
educating students and professionals, and promoting theoret-
ical advances and best practices in image analysis and data
fusion. Since 2006, the IADF TC has been organizing an annual
challenge named the Data Fusion Contest (DFC) for fostering
ideas and progress in remote sensing, distributing novel data,
and benchmarking analysis methods [4]–[17]. The 2020 DFC
(DFC2020) aimed at promoting research in automatic large-
scale land-cover mapping from globally available multimodal
satellite data with weak supervision. The contest serves as a
benchmark to evaluate the best approaches for a fundamental
task involving weakly supervised learning toward an increased
generalization ability over the entire globe, which is a major
open challenge in a wide range of fields, from Earth observation
to computer vision and machine learning.

For 2020 Contest, the SEN12MS dataset [18] was em-
ployed for training land-cover classification models, which in-
cludes triplets of corresponding Sentinel-1 SAR data, Sentinel-
2 multispectral imagery, and Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived low-resolution land-cover
maps [19] sampled across the entire globe. While all data are
provided at a ground sampling distance (GSD) of 10 m, the
Sentinel images have a native resolution of about 10–20 m
per pixel, whereas the MODIS-derived land cover has a native
resolution of 500 m per pixel. For the contest, we use a simpli-
fied version of the International Geosphere-Biosphere Program
(IGBP) classification scheme [20], which is a well-established
land-cover scheme that has been used internationally for more
than 20 years. Although it consists of generic globally applicable
classes, we aggregated some of the classes characterized by just
subtle distinctions (e.g., different types of forests) to create a
simplified version of the IGBP scheme for slightly improved
class balance and better accessibility for nongeography experts.
For the validation and test phases of the contest, semimanually
derived high-resolution land-cover maps of scenes that are not
included in the SEN12MS dataset were produced and provided
to the contest participants. In order to prevent contestants from
hand-labeling these validation and test data, they were provided
without geolocation information.

The DFC2020 consisted of two challenge tracks organized
sequentially to promote innovation in two practical scenarios.
In Track 1, semimanually derived high-resolution land-cover
maps for the validation set were kept undisclosed. The objec-
tive was to predict land-cover labels at 10-m GSD using only
MODIS-derived low-resolution and noisy labels for training. In
Track 2, we disclosed high-resolution labels for the validation
set, and the goal was to train models for land-cover mapping
using both low-resolution noisy labels and a limited number
of high-resolution clean labels. For both tracks, performance
was assessed using the average accuracy of all classes. Aver-
age accuracy is the mean value of class accuracies (i.e., pro-
ducer’s accuracy) for all the classes. Participants submitted their

prediction maps to the Codalab competition website,1 where
they could get instant evaluation and rank in the competition.

In this article, we describe the datasets used in DFC2020 in
Section II and discuss the overall results of the competition in
Section III. Then, we will focus in more detail on the approaches
proposed by the first-ranked teams in both tracks: land-cover
classification with low-resolution labels in Section IV and land-
cover classification with low- and high-resolution labels in Sec-
tion V. Finally, Section VI concludes this article.

II. DATA AND BASELINE OF THE DFC2020

The data backbone of the DFC2020 is the SEN12MS
dataset [18], which was provided for the training of weakly
supervised machine learning models in both contest tracks.
SEN12MS is one of the largest currently available remote sens-
ing datasets and consists of 180 662 globally sampled patch
triplets, where each patch is a multidimensional image tensor
with a spatial extent of 256 × 256 pixels and a variable number
of channel dimensions, depending on the three data modalities
represented by each triplet.

1) The first patch of each triplet represents SAR data acquired
by Sentinel-1 and contains two channels corresponding to
the two available polarizations.

2) The second patch of each triplet represents a multispec-
tral image tensor acquired by Sentinel-2. It contains 13
spectral bands.

3) The third patch of each triplet represents a tensor contain-
ing four different land-cover representations.

More details about the data and the preprocessing are de-
scribed in Section II-A, while more information about the dis-
tribution of the classes in the dataset can be found in [21].

For the contest, we created an additional dataset consisting of
6114 patches collected from seven globally distributed cities (see
Fig. 1). This DFC2020 dataset is basically sharing its attributes
with the SEN12MS dataset, but additionally contains semiau-
tomatically created land-cover annotations with a resolution of
10 m per pixel for use as reference during validation (Track 2)
and testing (both Tracks 1 and 2). More information about the
DFC2020 reference data is provided in Section II-D.

A. Sentinel-1 and Sentinel-2 Satellite Data

The Sentinel-1 mission [22] currently consists of two similar
satellites, both equipped with C-band SAR sensors. Depending
on which SAR imaging mode is used, resolutions down to
5 m with a wide coverage of up to 400 km can be achieved.
Furthermore, Sentinel-1 provides dual polarization capabilities
and very short revisit times of about six days at the equator.

For the SEN12MS dataset, Sentinel-1 images acquired in the
most frequently available interferometric wide swath mode were
used. They were downloaded in the form of ground-range-
detected products and converted to σ0 backscatter in decibel
scale. While the resolution of such data originally is about 5 m
in azimuth and 20 m in range, the images in the dataset were

1[Online]. Available: https://competitions.codalab.org/competitions/22289

https://competitions.codalab.org/competitions/22289


ROBINSON et al.: GLOBAL LAND-COVER MAPPING WITH WEAK SUPERVISION 3187

Fig. 1. Seven regions of interest from which the DFC2020 data are sampled.

resampled to a square pixel spacing of 10 × 10 m. In order to
exploit the full potential of Sentinel-1 data, SEN12MS contains
both VV and VH polarized images.

B. Sentinel-2

The Sentinel-2 mission [23] currently also comprises two sim-
ilar satellites in the same orbit, phased at 180◦ to each other. One
of the mission’s goals is to ensure continuity for multispectral
imagery of the SPOT and LANDSAT kind, which have provided
information about the land surfaces of our Earth for many
decades. The SEN12MS dataset contains the full multispectral
image tensors representing 13 spectral bands: ten surface-related
bands (bands 2–4 and 8 at a resolution of 10 m; bands 5–7, 8A,
11, and 12 at a resolution of 20 m) and three atmosphere-related
bands (bands 1, 9, and 10 at a resolution of 60 m). The images are
extracted from the original precisely georeferenced Sentinel-2
granules after visually checking for the complete absence of
cloud cover in the scene.

C. MODIS-Derived Land Cover Labels

The MODIS is the main instrument on board of the Terra and
Aqua satellites. Based on calibrated MODIS reflectance data,
annually updated global land-cover maps for the years 2001–
2016 are provided as the MCD12Q1 V6 dataset at a GSD of
500 m [24].

SEN12MS contains four MODIS land-cover products for
every patch. The data were created from 2016 data and up-
sampled to a pixel spacing of 10 m. The first of the provided
products represents land cover following the IGBP classifica-
tion scheme [20], while the remaining products contain the
LCCS land-cover layer, the LCCS land-use layer, and the LCCS
surface hydrology layer [25]. According to [24], the overall
accuracies of the layers are about 67% (IGBP), 74% (LCCS
land cover), 81% (LCCS land use), and 87% (LCCS surface

hydrology), respectively. Together with the comparably low
resolution of 500 m, this makes for a perfect example of weak
supervision, given satellite data with a resolution in the 10-m
domain.

D. High-Resolution Land-Cover Reference Labels

As described in [26], for the DFC2020, the IGBP classifica-
tion scheme was aggregated to ten less fine-grained classes. This
simplified IGBP scheme is similar to the classification scheme
adopted by the authors of the FROM-GLC10 dataset [27]. Its
classes are compared to the standard IGBP classes in Table I,
while the distribution of classes is shown in Table II. The
semiautomatic process for the generation of the high-resolution
land-cover annotations as well as their validation is shortly
described in the following.

1) Generation of the High-Resolution Land-Cover Anno-
tations: For the generation of the high-resolution land-cover
annotations, a semiautomatic shallow learning-based iterative
approach was combined with a data fusion strategy. The proce-
dure was carried out using the Google Earth Engine (GEE) [28]
environment. For every scene, this procedure was implemented
as follows.

1) Using the Google Earth aerial imagery basemap for visual
comparison, several dozen samples for every class were
selected manually.

2) Using those samples, a Random Forest (RF) classifier was
trained. The input to the classifier was comprised of the
following data sources:
1) the VV and VH polarization channels of Sentinel-1;
2) the ten surface-related bands of Sentinel-2. It was en-

sured by visual inspection that the data do not contain
any clouds;

3) the spectral indices NDVI, MNDWI, and BSI calcu-
lated from the relevant Sentinel-2 bands;
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TABLE I
SIMPLIFIED IGBP LAND COVER CLASSIFICATION SCHEME

TABLE II
REGIONS OF INTEREST AND CLASS DISTRIBUTION OF THE DFC2020 HIGH-RESOLUTION LAND-COVER REFERENCE DATA

The color indicates the respective class. For color scheme, see Table I or Fig. 2. The last column (ρ) indicates the correlation between the respective scene and the full
DFC2020 dataset. Note that the seasons are stated according to the respective hemisphere.

4) the MODIS-derived low-resolution simplified IGBP
land-cover map;

5) the FROM-GLC10 high-resolution land-cover map;
and

6) the spatial coordinates (X,Y ) of each pixel.
The idea behind this feature selection was to provide as
much information as possible to train a classifier, which
adapts as good as possible to the current region of interest.
MODIS-derived labels and FROM-GLC10 labels were
supposed to provide guidance as a form of weak prior
knowledge. On the one hand, the spatial coordinates reg-
ularize the RF so that it can distinguish between spatially

disjunctive representations of the same class. On the other
hand, they provide a spatial prior to enforce exploiting
spatial correlations within the data.

3) The classifier was then applied to the current ROI to
produce a high-resolution land-cover map.

4) The resulting land-cover map was then visually inspected
and compared against all relevant data sources, in partic-
ular against the Google Earth aerial imagery basemap as
a form of external information.

5) Steps 1–4 were repeated until convergence, i.e., until the
RF-predicted land-cover map did not improve anymore
despite additionally selected training samples.



ROBINSON et al.: GLOBAL LAND-COVER MAPPING WITH WEAK SUPERVISION 3189

Fig. 2. Seven ROIs of the DFC2020 dataset: (A) Khabarovsk, Russia, (B) Mumbai, India, (C) Kippa Ring, Australia, (D) Mexico City, Mexico, (E) Bandar
Anzali, Iran, (F) Black Forest, Germany, and (G) Cape Town, South Africa. Note that these images have been cropped to squares for visualization purposes; see
Table II for the dimensions of each scene.

After this procedure was finished for an ROI, which usu-
ally took several dozen iterations and the selection of several
hundreds of training samples, the Sentinel-1/-2 imagery, the
MODIS-derived low-resolution land-cover maps, and the high-
resolution land-cover annotations were exported from GEE and
further processed similar to SEN12MS. This includes, in partic-
ular, the reprojection from the global WGS84 into regional UTM
coordinate systems to obtain metric pixels as well as splitting
the full scene images (cf. Fig. 2) into nonoverlapping patches of
256 × 256 pixels.

2) Statistics and Validation: The class distributions of the
DFC2020 high-resolution land-cover reference data are com-
piled in Table II. It can be seen that there is a satisfying
agreement between the SEN12MS dataset and the DFC2020
dataset, although there is a significantly larger share of Forest,
Wetlands, and Water samples in DFC2020. On the other hand,
the DFC2020 set does not contain any pixels of the Savanna
class. This issue was already discussed in [21].

In order to provide an intuition about the reliability of the high-
resolution reference data, an independent validation in Google
Earth was carried out: More than 500 samples were randomly
distributed over the seven ROIs and then visually inspected
and compared to high-resolution aerial imagery. The agreement
between the class in the reference data and the class choice of
the visual inspector was recorded. The corresponding accuracies
are summarized in Table III, and the confusion matrix is shown
in Fig. 3. Over all ROIs, the average precision was 76.3%, the
average recall 75.8%, and the overall accuracy 82.4%.

While it has to be noted that also the visual validation in
Google Earth is error-prone (i.e., there is no validation against
actual ground truth), the statistics reveal that the DFC2020 land-
cover annotations can be considered as a satisfying reference.
In particular, important classes such as Water, Forest, Urban,

TABLE III
OVERALL ACCURACY (BASED ON VISUAL INSPECTION) OF THE

HIGH-RESOLUTION LAND-COVER LABELS OF THE DFC2020 DATASET

Shrubland, and Grassland are very accurate, with classwise
accuracy (precision) � 70%. More difficult (and less frequent)
classes such as Wetlands, Barren, and Cropland are less accurate,
which is mainly caused by confusions between Shrubland with
Cropland, Wetlands, or Grassland; Grassland with Cropland or
Wetlands; and Barren with Urban or Cropland.

To provide another baseline, in [27], the FROM-GLC10
dataset was shown to have an overall accuracy of about 72%,
with peak accuracies in the Beijing region in the 70–80%
range [29].

E. Baseline Solutions

In [21], we have summarized a couple of baseline results to
provide the participants of DFC2020 with an idea about the
quality of their solutions. Those baselines were the following:

1) A comparison of MODIS-derived low-resolution labels
against the high-resolution reference labels prepared for
DFC2020. This is supposed to provide an estimate for the
quality of globally available land-cover data, which can
be used for weak supervision;
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TABLE IV
CLASSWISE AND AVERAGE ACCURACIES ACHIEVED ON THE DFC2020 VALIDATION DATASET FOR DIFFERENT BENCHMARKS

S2 only indicates that only Sentinel-2 data have been used for the prediction, whereas S1+S2 indicates the case of Sentinel-1/Sentinel-2 data fusion.
LR-HR indicates the baseline check of evaluating the MODIS-derived low-resolution labels against the high-resolution DFC2020 reference labels.

Fig. 3. Label validation against manually labeled check points (by visual
inspection in Google Earth).

2) Two deep-learning-based semantic segmentation models,
based on the DeepLabv3 and the Unet architectures to
provide an idea about the capabilities of off-the-shelf
convolutional neural network (CNN) approaches. Those
models were trained and tested on either only Sentinel-2
input data or on Sentinel-1 and Sentinel-2 in a data fusion
configuration;

3) An unsupervised shallow learning-based approach: k-
means, also both with Sentinel-2 only or Sentinel-1 plus
Sentinel-2. To make this unsupervised approach compa-
rable to the supervised approaches, the number of clusters
was set to k = 8 (i.e., according to the number of simpli-
fied IGBP classes encountered in the subsampled train-
ing data). The cluster segments were learned completely
unsupervised, while the reordering of cluster labels was
achieved with the Kuhn–Munkres algorithm [30]. For this
purpose, the low-resolution MODIS-derived labels of the
subsampled train split served as reference;

4) A supervised shallow learning-based approach, namely,
RF, also both with Sentinel-2 only or Sentinel-1 plus
Sentinel-2.

Fig. 4. (a) Geographic distribution and (b) position of the participants regis-
tered at IEEE DataPort for DFC2020 [31].

The accuracies achieved with those baselines are summarized
in Table IV.

III. ORGANIZATION, SUBMISSIONS, AND RESULTS

There were 141 unique registrations at the IEEE DataPort
website2 for downloading the DFC2020 data from 22 countries.
Fig. 4 shows the distribution of countries and affiliations. Forty-
seven percent of the registrations were from China as similar to
the previous editions, and students were the majority, indicating
that DFC2020 was widely used for educational purposes. One
hundred and fifty-nine teams registered at the Codalab com-
petition websites during the development phase and 33 teams
entered the test phase after screening the descriptions of their
approaches submitted by the end of the development phase.

We received nearly 3k submissions during the development
phase illustrating the active participation across all registered
teams. After the initial development phase, the maximum num-
ber of submissions per team was limited to ten. Nevertheless,
we received approximately 250 submissions for each track.
The similar number of submissions in each track illustrates
that both scenarios, i.e., having no or only a small amount of
high-resolution labels, are of similar interest to the research
community.

2[Online]. Available: https://ieee-dataport.org/competitions/2020-ieee-grss-
data-fusion-contest

https://ieee-dataport.org/competitions/2020-ieee-grss-data-fusion-contest
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TABLE V
TOP-RANKED TEAMS AND APPROACHES

As a baseline, we provide the result of a CNN, which performed best on the validation set (cf. Table IV), i.e., a UNet trained the Sentinel-2 data of the SEN12MS training
split without further pre- or postprocessing.

The first to fourth ranked teams in Track 1 and the first to
third ranked teams in Track 2 were awarded as winners of the
DFC2020 and presented their solutions during the 2020 IEEE
International Geoscience and Remote Sensing Symposium. The
seven winning teams are the following.

1) First place of Track 1: calebrob6 team; Caleb Robinson,
Kolya Malkin, Lucas Hu, Bistra Dilkina, and Nebojsa Jojic
from the Georgia Institute of Technology, Yale University,
the University of Southern California, and Microsoft Re-
search, USA; a combination of iterative clustering and
epitomic representations, followed by deep image prior
postprocessing [32].

2) Second place of Track 1: WHU_YuXia team; Yu Xia, Yue
Liao, Hongyan Zhang, and Guangyi Yang from Wuhan
University, China; multibranch fusion of unsupervised
multiresolution segmentation, RF classification of remote
sensing indexes, and CNN predictions with postprocess-
ing based on expert priors [33].

3) Third place of Track 1: Pineapples team; Daniele Cerra,
Nina Merkle, Corentin Henry, Kevin Alonso, Pablo
d’Angelo, Stefan Auer, Reza Bahmanyar, Xiangtian
Yuan, Ksenia Bittner, Maximilian Langheinrich, Guichen
Zhang, Miguel Pato, Jiaojiao Tian, and Peter Reinartz
from the German Aerospace Center, Germany; automated
label preprocessing, a Gaussian Naive Bayes classifier
trained on cluster centroids, and classes obtained by k-
means clustering and RFs with bag-of-words features,
followed by classification refinement designed for specific
classes [34].

4) Fourth place of Track 1: Antonia team; Huijun Chen,
Changlin Xiao, Wei Liu, and Rongjun Qin from The Ohio
State University, USA; automated label preprocessing,
RFs, followed by classification refinement based on prior
knowledge on class confusion [35].

5) First place of Track 2: Antonia team; Huijun Chen,
Changlin Xiao, Wei Liu, and Rongjun Qin from The Ohio
State University, USA; an ensemble of RFs trained on
refined labels [36].

6) Second place of Track 2: Pineapples team; Daniele
Cerra, Nina Merkle, Corentin Henry, Kevin Alonso,
Pablo d’Angelo, Stefan Auer, Reza Bahmanyar, Xiangtian

Yuan, Ksenia Bittner, Maximilian Langheinrich, Guichen
Zhang, Miguel Pato, Jiaojiao Tian, and Peter Reinartz
from the German Aerospace Center, Germany; as Track 1
third, but RFs trained on high-resolution labels and no use
of topic vectors and bag-of-words features [37].

7) Third place of Track 2: dfchen team; Shuting Yin, Dafan
Chen, Chengconghui Ma, and Yanchao Lian from Xidian
University, China; a combination of RFs, k-means, and
DeepLabv3++ with postprocessing and retraining [38].

Table V summarizes the teams ranked in the top five of both
tracks and their approaches. The overall trend was that RF as a
shallow supervised classification approach was used frequently
by the winning teams. In more detail, eight approaches among
the top five approaches of both tracks (ten approaches in total)
investigated RF as a part of their classification framework. This
shows that ensemble learning methods for classification are still
found effective for large-scale land-cover classification. CNN
(here as a deep supervised approach) was investigated in six
approaches out of the top five approaches of both tracks.

Preprocessing and postprocessing were regularly utilized in
the suggested frameworks mostly to refine weak labels and
improve the quality of the classification maps, respectively.

IV. FIRST PLACE TEAM OF TRACK 1

The algorithm of the first place team in Track 1 [32] combined
three approaches: 1) neighborhood-informed color clustering; 2)
label super-resolution with epitomic representations; and 3) deep
image prior postprocessing. We describe the three approaches
in order.

A. Neighborhood-Informed Color Clustering

The first approach can be described as latent variable model
of an image and label set, the inference in which involves
clustering pixel intensities and assigning the clusters to the target
classes. Precisely, at each pixel coordinate i—encoding both a
sample’s index in the image set and the coordinate within the
image—we aim to infer the target class, �i. We introduce a latent
cluster variable si placed at each coordinate, ranging from 1
to 32. This cluster variable generates the pixel intensities xi

from a learned diagonal-covariance Gaussian, i.e., si → xi is
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Fig. 5. Inferred color clusters, bag clusters, and labels in the neighborhood-
informed clustering algorithm.

a Gaussian mixture model with 32 components. There is also a
learned distribution p(s|�), the probability of a pixel with a given
label belonging to each color cluster. The inference through such
a model consists in optimizing the Gaussians p(x|s) and the
categorical distributions p(s|�) so as to maximize the likelihood
of the image data; the final predictions are the marginal posterior
distributions over the labels �i. To ground the inference of this
model, we fix a prior pi(�), which sets a weak belief about
the target class of each pixel.3 This prior is derived from the
given low-resolution labels, as we explain below. Note that this
algorithm does not separate training and testing sets: it reasons
over the test images themselves.

To make the model sensitive to textures, we also introduce a
bag-of-clusters variable bi, also in the range {1, 2, . . . , 32}, at
each image coordinate. It is the mixture index in a categorical
mixture model over the clusters si found in a 5× 5 window
around the coordinate i, i.e., it generates the 25 cluster variables
in a neighborhood of i from a distribution p(s|b). The cluster
variables bi indirectly inform the labels �i via the variable si. In
summary, the model can be pictured as follows (see Fig. 5):

�
cat ↓

b −→ S −→ x
cat Gauss

Given the input images {xi} and the prior pi(�), the parameters
p(s|b), p(s|�), the prior p(b), and the Gaussian means and
variances defining p(x|s) are optimized to maximize the data
likelihood

P =
∑

{bj},{si},{�i}

(∏
j

p(bj)
∏
i∈Wj

p(sj |bi)p(xi|si)

∏
i

p(si|�i)pi(�i)

)

3We use bold p to remind the reader that the prior is a fixed input to the
inference algorithm, not a variable being optimized.

Fig. 6. Gaussian mean parameters in an epitome of validation set imagery and
the inferred high-resolution label embedding.

where Wj denotes the set of image coordinates in a 5× 5
window centered at j. The model can be optimized using a vari-
ational expectation–maximization (EM) algorithm, derived in a
standard way by decoupling the posteriors q({bj}, {si}, {�i})
to bound P from below and performing coordinate ascent.

The priorpi(�) is derived from the given low-resolution labels
as follows. [21, Fig. 3] provides us with the probabilities p(�|c)
of finding a high-resolution label � at a point labeled with low-
resolution class c. We first set pi(�) = p(�|ci), where ci is the
low-resolution label at position i, and then introduce uncertainty
by smoothing (adding 0.05 to each p(�|ci) and renormalizing)
and blurring over each 256 × 256 input image (the pointwise
prior is mixed with the mean prior over the patch in a ratio of
10:1).

B. Epitomic Representations

The second approach, super-resolution with epitomic rep-
resentations, is based on the work of [39]. We build a Gaus-
sian mixture model of 7× 7 image patches with a particular
parameter-sharing parameterization—an epitome—and infer an
assignment of labels in the latent variable space to produce a
segmentation model.

The epitome is a 299 × 299 grid of means and variances
for each spectral channel. It parameterizes a Gaussian mixture
model of 7× 7 image patches with 2992 components: each
7× 7window in the epitome generates patches from a diagonal-
covariance Gaussian with the corresponding mean and variance
parameters. The epitome is trained to maximize the likelihood
of all 7× 7 patches in training data; we use the SGD-based
training algorithm of [39] with self-diversification and posterior
regularization. The Gaussian mean parameters of the resulting
model are shown on the left of Fig. 6; each patch in the data is
likely to be similar to some window in the epitome.

Denote the mixture index in this model—the position in
the epitome—by s. By computing the posteriors over mixture
components for a large sample of data patches, we derive a
distribution over epitome positions for patches labeled with each
low-resolution class c, p(s|c). On the other hand, as described
in the previous section, we are given p(�|c), the probability
of a pixel labeled as low-resolution class c belonging to high-
resolution class �. We infer a probabilistic assignment p(�|s)
of the high-resolution label to each epitome position s so as
to minimize the relative entropy between the known p(�|c) and
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Fig. 7. Denoising of predictions by a small neural network.

TABLE VI
AVERAGE ACCURACY RESULTS OF EACH APPROACH ON THE VALIDATION AND

TEST SETS

the inferred model pep(�|c) =
∑

s p(�|s)p(s|c), an optimization
problem that is straightforward to solve by an EM algorithm. The
resulting p(�|s) is shown on the right of Fig. 6.

The epitome can then be used as a segmentation model as
follows: given a 7× 7 patch of imagery x, we compute the
posterior p(s|x) over epitome positions s and then mix the labels
p(�|s) in a window around s, weighted by p(s), to produce the
predicted labels � for the patch.

C. Deep Image Prior Postprocessing

Finally, inspired by the work of [40], we fit a small
neural network—a fully convolutional network with five
ReLU-activated layers of 64-channel 3× 3 convolutions and
a logistic regression classifier—to predict the output of the
best-performing ensemble from the validation set imagery.
We then use the trained model to make predictions over the
same imagery, resulting in our final land-cover estimates.
Because such a model has a small (11× 11) receptive field and
is sensitive only to local textures, it will not perfectly fit the
outputs of the clustering and epitome algorithms. As shown in
Fig. 7, it is not sensitive to certain types of errors made by those
algorithms, such as speckled noise within uniform regions and
boundaries between low-resolution class blocks—relics of the
prior in the clustering algorithm.

D. Results and Discussion

We report the results of the three methods described in the
above sections on the validation set and test set in Tables VI
and VII. Specifically, we report results from five approaches:
Bag clustering, the method described in Section IV-A;
Epitome model, the method described in Section IV-B; En-
semble, an ensemble of the two previous methods; Neural
smoothing, an application of the method described in Sec-
tion IV-C to the results of Ensemble, and Final ensem-
ble, an ensemble of the results of the previous methods based on

TABLE VII
CLASSIFICATION ACCURACIES ON THE TEST SET FOR EACH METHOD USED BY

THE FIRST PLACE TEAM IN TRACK 1

The highest accuracy per row is marked in bold.

the per class accuracy feedback we receive from the evaluation
server.

Table VI compares the results on the validation set to those
on the test set, before any high-resolution labels were known.
We additionally evaluated the neural smoothing model that was
trained on the validation set (i.e., the model that achieved a
70.4%) on the test set and found that it scored a 48.4%. Retrain-
ing the models on the imagery and labels generated by the Bag
and Epitome methods from the test set improves the performance
of this approach to 53.6%. Across both the validation and test
sets, we find that the applying the neural smoothing results in a
performance boost of roughly 3%.

Table VII compares the per class accuracy of each approach
on the test set. Here, we see that the Bag clustering and Epitome
models make complementary errors—for example, despite hav-
ing similar average accuracy, the epitome model achieves a 17%
higher performance on the Wetlands class than the bag model,
and the bag model achieves a 18% higher performance on the
Grassland class. This allows them to be ensembled effectively.
In applied settings, per class leaderboard accuracy is obviously
not available, but can be estimated by hand-labeling random
samples of pixels from the study area.

V. FIRST PLACE TEAM OF TRACK 2

This section describes the algorithm developed by the first-
place team of track 2 and reports the results. The algorithm
is based on an ensemble of RF classifiers trained on refined
samples. We first refine the low-resolution labels based on the
prior knowledge of the confusion matrix of the low-resolution
labels. Subsequently, initial classification results are generated
from an ensemble of RFs, using spectral and textural features
extracted from SAR and optical images. Finally, we implement
a postprocessing step to fuse the classification results of classi-
fiers trained with different features, which further improve the
accuracy of the water class.

The algorithm follows the workflow summarized in Fig. 8,
which comprises four steps: sample refinement, feature extrac-
tion, classification, and postprocessing. Each step is explained
in detailed in the following sections (see Sections V-A– V-D).
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Fig. 8. Workflow of the proposed method.

A. Sample Refinement

The low-resolution labels from the global land-cover mapping
products have been generated using a few (semi)automated
processes, which are not very accurate. For example, the overall
accuracy of the IGBP land-cover product, which the label is
based on, is only 67% [24]. The average accuracy of the provided
low-resolution labels in this contest is below 40% with respect
to the high-resolution reference data (see Table IV). Moreover,
some classes such as barren, shrublands, and wetlands are signif-
icantly unbalanced and associated with low-quality labels [21].

Since the results of the supervised machine learning methods
highly rely on the quality of the training samples, we refine the
samples based on the prior knowledge of the class confusion and
the confidence of the label analyzed in [21]. We take following
steps to correct common errors of the low-resolution labels based
on empirical knowledge learnt from the training data.

1) Barren Refinement: We notice that barren labels are erro-
neous and only 8.8% of them are correct [21]. Since 39.9% of
the shrubland samples are barren [21], we cluster the shrubland
samples using k-means clustering algorithm into five clusters
and choose one of them as the new barren samples.

2) Grassland and Wetland Refinement: We add the Savanna
samples from the patches that contain water as wetland samples
since we learn from the baseline paper [21] that 40.2% of the
Savanna samples are wetlands. The rest of the Savanna samples
are added as grassland samples. This step may produce errors
in the wetland and grassland labels; thus, we try to alleviate this
problem following step 3.

3) Confidence-Based Refinement: Refine the samples using a
posterior confidence generated from a self-trained classifier. The
modified low-resolution samples generated from the previous
steps are used to train RF classifiers, and then, the classifiers
are used to predict on the test set. The confidence of a sample
is measured based on the maximal class probability among
the eight classes. We only keep high confidence wetland and
grassland samples newly added in the previous step.

As for the high-resolution samples, we performed an empir-
ical sampling analysis, and we observed that the distributions
of two classes (i.e., wetlands and grasslands) in the validation
datasets and test datasets are quite different. We, therefore,
exclude the wetlands and grasslands high-resolution samples.

B. Feature Extraction

The optical and SAR bands are first preprocessed before the
feature extraction and classification. The Sentinel-1 SAR bands
are clipped to the interval of [−25, 0] and the Sentinel-2 optical
bands are normalized to the range of 0–1 after truncating the
digital numbers to the value of [0,10 000].

There are five vegetation-related classes including grasslands,
croplands, wetlands, shrublands, and forest in the classifica-
tion scheme. However, there are large confusions between
these hard-to-distinguish vegetation classes with such a low-
resolution label [21]. Therefore, in addition to the optical and
SAR bands, we use the spectral indices to improve dispar-
ity between these classes. Furthermore, some classes, such as
croplands and urban/built-up, have distinct textural patterns;
therefore, we also extracted necessary textural features, which
includes in total 36 features. These features are stacked and
fed into our classifiers, consisting of ten multispectral bands,
two SAR bands, 12 spectral features, and 12 textural features
extracted from the SAR and RGB bands. The features are
described in detail as follows.

1) Optical and SAR Bands: We preprocess ten Sentinel-2
bands whose original resolution is 10 m or 20 m and two
Sentinel-1 SAR bands with the methods mentioned above and
use them as features.

2) Spectral Features: Considering that empirical remote
sensing indices are relatively reliable under different radiometric
conditions, 12 spectral indices are computed from the Sentinel-2
multispectral bands. For more details, refer to [36].

3) Textural Features: Twelve gray-level co-occurrence ma-
trix (GLCM) textural features are extracted, where six of them
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are computed from the gray image of RGB bands and the
other six features are generated from the VH polarized band
from SAR images. The features are six attributes of GLCM:
contrast, dissimilarity, homogeneity, energy, correlation, and
angular second moment. A window size of 13× 13 is selected
through the validation test.

C. Classification

The RF classifier is widely used for addressing the remote
sensing land-cover classification tasks. RF is essentially an
ensemble learning method using decision tree classifiers. The
voting strategy of multiple decision trees and the hierarchical
examination of feature provide a good generalization capability
and the ability to deal with high-dimensional feature spaces.
Moreover, since the bagging strategy selects the training dataset
by randomly drawing with replaceable examples, the RF is
robust to noise. RF is particularly suitable for the classification
task in this contest, because the low-resolution labels inherently
contain many errors due to its mismatched resolution and its
semiautomatic generation process. Thus, we select RFs for
training on our refined labels.

The DFC2020 dataset contains more than five thousand
patches, each with a size of 256 × 256, totaling more than
300 000 000 pixel-level training samples. To cope with a large
number of training samples effectively within the acceptable
memory and computation time, we use an ensemble of RF
classifiers instead of a single RF classifier with a large number
of trees.

To improve the generalization capability of our method and
at the same time reduce training time, we set a large minimum
sample size of 1000 and a small max depth of 60. The number of
trees is set to 10. These hyperparameters are determined using
the validation data. We adapt the class weight inversely propor-
tional to the per-class sample numbers for 20 RF classifiers. We
also train another 20 RF classifiers with equal weights, which
summed up to 40 RF classifiers in total. Each RF was trained on
40 000 000 samples randomly drew from the refined training set
which has more than 300 000 000 samples. In the testing phase,
the classification results are generated via soft voting of the 40
RF classifiers. In the soft voting strategy, each base classifier n
contributes to class probabilities with given weightswn. pn(i, c)
is the class probability of base classifier n for class c of pixel i.
The soft voting class probability for class c of pixel i is

psv(i, c) =
1

N

N∑
n=1

wn · pn(i, c). (1)

Then, the predicted class of pixel i is assigned as the class
with the largest probability. We set equal weight for each base
classifier.

D. Postprocessing

After the preliminary step, we generate the initial classifi-
cation map from the trained ensemble of RFs. However, we
find that models trained with texture features can sometimes
mistakenly classify dynamic water surfaces (such as waves) as

TABLE VIII
EXPERIMENTAL SETTINGS FOR COMPARISON

TABLE IX
CLASSIFICATION ACCURACIES OF THE RESULTS ON TEST SET

The result with the highest accuracy is marked bold for each class.

other classes. To address this problem and classify the pixels
more accurately, we further implement a postprocessing step
to refine the initial classification results. Since water pixels can
be effectively detected by incorporating spectral information, we
first train another 20 RF classifiers using only spectral bands and
spectral indices to generate water masks. Subsequently, the final
classification results are obtained by assigning the corresponding
pixels of the initial classification maps in the water mask as water
class.

E. Results and Discussion

In this section, the experimental results of the proposed
method on the testing dataset are reported. In order to fur-
ther investigate the effectiveness of the sample refinement, the
textural features and the postprocessing step, we evaluate our
method using a few test settings shown in Table VIII. In the
table, “Labels” means whether low-resolution labels are used
to train the RFs; “Features” means which kind of features are
used and “postprocessing” indicates whether postclassification
processing is applied. The classification accuracies for each class
on the test set are summarized in Table IX. The final average
accuracy is 0.6142. Fig. 9 shows example results generated by
our method.

By comparing the results of Exp. #1 and Exp. #2, we can see
that by including the modified low-resolution labels from the
test set, the average accuracy increases from 51.65% to 60.41%.
This indicates that semantic information of the test set, in this
case the low-resolution labels, is important to facilitate the clas-
sification on the test set, even though they contain many errors.
As expected, for croplands and urban/built-up classes, which
have distinguishable textural patterns, by incorporating textural
features, the accuracy increases from 54.40% to 59.43% and
from 81.16% to 83.91%, respectively. Compared with Exp. #3,
Exp. #4 adds the postprocessing step, which aims to improve the
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Fig. 9. Example results of the method of Team Antonia. Refer to Fig. 2 for legends. (a) RGB images. (b) Classification results.

accuracy of water class. We can observe that the water accuracy
increased from 97.85% to 98.96% with the postprocessing. This
also leads to the highest average accuracy of 61.42%.

VI. CONCLUSION

The automatic production of semantic maps of the Earth with
high accuracy as well as high spatial and temporal resolution is
one of the most important application areas of remote sensing
and Earth observation. Since the tremendous amount of data
make manual interpretation infeasible, corresponding systems
have to rely on machine learning, i.e., supervised learning. This,
however, requires not only the image data itself but also data of
the desired system output, e.g., semantic class labels. Despite
the abundance of available remote sensing imagery, the scarce
availability of such reference data to train and evaluate machine-
learning-based models remains a significant bottleneck. Highly
accurate semantic labels produced by manual interpretation of
the data itself or auxiliary images can only cover small geo-
graphic areas leading to models that usually do not generalize
well to other parts of the world. On the other hand, semantic maps
that cover larger areas (or even the whole globe) are notoriously
of low quality with a significant amount of label noise caused
either by being outdated, misaligned, of very low resolution—or
a mixture of those. As a consequence, machine learning methods
applied to remote sensing imagery cannot assume large training
datasets with mostly correct labels. On the contrary, they do have
to be capable to cope with low quality reference data and still
be able to produce semantic maps of high quality (i.e., accurate
and of high resolution).

In this article, we summarized the 2020 IEEE GRSS Data
Fusion Contest, organized by the IEEE GRSS IADF TC, which
addressed the task of weakly supervised learning. In particular,
we described the challenge to create well-generalizing machine
learning models for large-scale land-cover mapping if only noisy
low-resolution labels and/or a small amount of high-resolution

labels are available for training. To this aim, the contest built
upon the SEN12MS dataset consisting of more than 180k im-
age triplets of 256 × 256 pixels containing Sentinel-1 and -2
images as well as low-resolution semantic maps. Additionally,
the contest provided more than 6k image triplets from seven
globally distributed areas, which include not only the Sentinel-1
and -2 image data but also high-resolution labels that had been
created semimanually. This allowed the participants of the con-
test to train on a combination of high-resolution images and
low-resolution reference data (Track 1) or to use a small amount
of additional high-resolution samples (Track 2), and to validate
and evaluate on high-resolution labels. The winning approach in
Track 1 used both a clustering algorithm and generative model
to assign class labels to each high-resolution pixel based on the
spectral values at that pixel and in neighboring pixels and then
smoothed those class predictions with a neural network. This
two-step approach (of assignment, then smoothing) provided
better results than the straightforward approach of treating the
low-resolution labels as if they were high-resolution labels and
training a semantic segmentation network. Since this approach
does not depend on high-resolution data at all, it can be applied
globally by leveraging the comprehensive SEN12MS dataset.
The winning approach in Track 2 refined first the low-resolution
labels based on the prior knowledge of the confusion matrix of
the low-resolution labels. Then, initial classification results were
generated using an ensemble of RFs, using spectral and textural
features extracted from SAR and optical images. Eventually, a
postprocessing step was implemented to fuse the classification
results of classifiers trained with different features to further
improve the accuracy of the water class.

The results of the winning teams are interesting as it exposes
an opportunity to more effectively train neural networks with
low-resolution labels. Future research is needed to understand
the limitations of these approaches in land-cover mapping, as
well as other domains where it could be applied. We are ex-
cited to compare the results of these algorithms against new
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benchmark land-cover datasets that take advantage of Sentinel-2
imagery such as LandCoverNet [41].

The four and three top-ranked solutions of both tracks pre-
sented their methods at IGARSS 2020, while the winning solu-
tion of each track is described in this article in detail and dis-
cusses further insights into the challenges of weakly supervised
learning.

Similar to the previous editions, the DFC2020 attracted again
global attention. Nearly, 150 registrations from more than 20
countries registered for downloading the data. From the nearly
160 teams that registered at the CodaLab page for the contest
during the development stage (and uploaded nearly 3k solu-
tions), more than 30 teams entered the test phase and provided
approximately 250 solutions for each of the two tracks. This
clearly illustrates the importance of the addressed research topic
of weakly supervised learning. Furthermore, the majority of the
participants are students showing that the DFC is introduced to
early career scientists and used for educational purposes.

After the contest, the data have been made available again
and will remain in open access for the benefit of the community.
People interested can find all the related information on the
IEEE GRSS website.4 The SEN12MS dataset is available on
the mediaTUM website,5 and the validation and test datasets are
available on the IEEE DataPort website.6 The public leaderboard
on the Codalab competition website7 will remain open for future
development so that one can submit prediction results to obtain
the performance statistics, compare to other users, and hopefully
improve the results presented in this article. We do believe that
both the motivation of the contest and the corresponding datasets
will continue to foster research toward large-scale land-cover
mapping with modern machine learning models trained on ex-
isting land-cover data.

The DFC2020 provides one of the first benchmark datasets for
large-scale weakly supervised learning in the context of global
land-use/cover classification from multimodal data. Neverthe-
less, already now several extensions and variations can be fore-
seen that should—and hopefully will—be addressed by future
contests and benchmarks. One example are types of label degra-
dation other than low resolution and accuracy, e.g., semantic
maps created by crowdsourcing such as OpenStreetMaps, which
are often misaligned to the image data, outdated, or ambiguous.
Moreover, it will be crucial to investigate solutions for situations
where neither low- nor high-quality reference data are available
in abundance. These approaches, often termed as self-supervised
learning, aim at exploiting the abundance of available image data
to solve at least parts of the mapping problem.

Future solutions have to address these issues to be able to cre-
ate accurate maps of the surface of the Earth with a sufficiently
high spatial and temporal resolution as required by many RS/EO
workflows to model and understand geo-/biophysical processes
as well as socioeconomic developments.

4[Online]. Available: http://www.grss-ieee.org/community/technical-
committees/data-fusion under the ‘Past Contests’ tab.

5[Online]. Available: https://mediatum.ub.tum.de/1474000
6[Online]. Available: https://ieee-dataport.org/competitions/2020-ieee-grss-

data-fusion-contest
7[Online]. Available: https://competitions.codalab.org/competitions/22289
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