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Abstract— This work introduces a contact event pipeline to
distinguish task-contact from Human-Robot interaction and
collision during task execution. The increasing need for close
proximity physical human-robot interaction (pHRI) in the
private, health and industrial sector demands for new safety
solutions. One of the most important issues regarding safe
collaboration is the robust recognition and classification of
contacts between human and robot. A solution is designed, that
enables simple task teaching and accurate contact monitoring
during task execution. Besides an external force and torque
sensor, only proprioceptive data is used for the contact eval-
uation. An approach based on demonstrated task knowledge
and the offset resulting from human interaction is designed to
distinguish contact events from normal execution by a contact
event detector. A contact type classifier implemented as Support
Vector Machine is trained with the identified events. The system
is set up to quickly identify contact incidents and enable
appropriate robot reactions. An offline evaluation is conducted
with data recorded from intended and unintended contacts
as well as examples of task-contacts like object manipulation
and environmental interactions. The system’s performance and
its high responsiveness are evaluated in different experiments
including a real world task.

I. INTRODUCTION

Collaborative robots or Cobots are a minor but steadily
increasing sector in robotics. The International Federation
of Robotics (IFR) predicts a compound annual growth rate
between 50% and 60% [1]. With the typical industrial
robot working in evacuated workspaces, there is a steadily
increasing demand for more and more tasks to be performed
with the joined effort of human operator and robot. This
collaboration in industrial surroundings can be of different
forms. The IFR specifies different levels of collaborative ap-
plications [2], ranging from simple coexistence of human an
robot in the workspace to responsive collaboration between
them. In combining the best abilities from both partners,
collaborative robotics can automate tasks that could not be
automated so far and thereby enhance productivity.

Safety of the worker, such as summarized by the ISO
10218-1:2011 standard, is thereby the most pressing objec-
tive. Different perspectives of safe human robot interaction
are analyzed in numerous prior works. Where some analyze
the possible injuries or inflicted pain [3]–[5], others propose
safety strategies [6], actuation mechanisms [7], interaction
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(a) Pulling on paint roller (b) Lifting robot on gripper

(c) Collision (d) Lifting robot on arm

Fig. 1. Four examples of interactions during the experiment to test the
contact type prediction performance of the contact event pipeline.

control schemes [8], collision detection [9], reaction strate-
gies to collisions [10] or even complete contact avoidance
during interaction [11]. In general, when humans want to
work with robots in close proximity, especially when direct
interaction contacts are possible, complete safety cannot be
guaranteed without sacrificing productivity. A monitoring
system must therefore classify such human-robot contact
situations to avoid severe injuries. These monitoring systems
can be based on camera, motion or tactile sensors [9]–[13],
or a combination of them.

For Sequential Collaboration like in [14], human interac-
tion is often confined to the workpiece. Also enabling inter-
action with the robot arm itself makes it feel more natural
to the operator. It is thus desirable to enable all intuitive
types of Physical Human Robot Interaction (pHRI) such as
guidance of the robot when a task is not executed correctly,
reshaping of the trajectory to avoid obstacles in the path,
and hindering of the robot’s movement when the operator is
in the way [15]. Besides these intended human interactions,
contacts can occur in unintended ways if the operator is
not aware of the robot’s designated movement or if the
robot behaves other than expected. These collisions of many
possible forms must be quickly identified to guarantee the
worker’s safety. A collaborative human-robot system must
thus be able to identify different possible human interactions



Fig. 2. Contact types as defined by [16].

(examples in Fig. 1) and classify their type. Additionally, the
robot must be able to differentiate between contacts that are
caused by the task and those that are occurring from human
interaction.

Burghart et al. [16] categorize human-robot and environ-
mental contacts in three main classes (Fig. 2), which are
collision, control contact and task-contact. An example of
control contact is the correction of the end-effector in a
placement task or inhibiting the robot to avoid a collision.
Task-contact occurs when the specified task requires object
handling or when contact between a tool and the environment
is desired. In the following, we will stick to this categoriza-
tion and terminology.

In summary, a monitoring system must always be aware
of the state of contact to discriminate between contacts due
to the task and contacts due to engagement with the human
body. Examples are cameras, motion capturing systems or
artificial robot skin. However, these systems are not without
faults since problems like occlusion are likely with camera
based systems. According to [17] and [1], high technological
flexibility is a key economic factor and task-specific sensor
tuning like in [14] is inefficient and time-consuming.

In this work, we propose a system configured as a contact
event pipeline that can distinguish task-contact from human
interaction and collision during Human-Robot Cooperation.
The operator is enabled to physically interact with any part
of the robot or tool. Furthermore, the user is protected from
unintended, harmful contacts that can possibly occur from
sharing the same workspace with the robot. Advantageously,
these human interactions are recognized even while a task-
contact is active at the same time such that an appropriate
reaction can be triggered.

The main contributions of this work are: (i) robust de-
tection of human related contacts with the robot based
only on one recording of the task as reference sample;
(ii) discrimination of task contact and human interaction
during free motion and while in contact; (iii) a method for
fast contact classification based on newly designed physical
features that outperforms the state of the art (reaction time
< 0.2 s) , which is evaluated both in offline evaluation and
in a real world experiment with a KUKA LWR4+ robot and
human subjects.

II. RELATED WORK

It can be seen by the vast amount of research in this field,
that estimating the contact state of the robot is a critical issue
not only for safety reasons but also for close cooperation and
task completion. To encounter this issue, contact between
the human and the robot might be totally avoided in order
to obviate collisions at any time, as presented in [11]. An
artificial repulsive force field around the human operator

changes the planned trajectory to push the robot away from
the human body at any time. However, a complete avoidance
of physical contact is not desirable for our framework, since
control contacts could not be enabled.

Therefore, a framework is required that reacts to hu-
man contacts accordingly while executing a task. Golz et
al. [12] propose an approach that distinguishes between
intentional and unintentional physical human-robot contacts.
The classification is achieved with independent non-linear
support vector machines per robot joint. In comparison, we
compute features from a number of joint and Cartesian state
space variables to train a common classification model that
resembles an overview of the whole robot arm.

Most existing approaches for collision detection rely solely
on proprioceptive information and use a moment observer
with an experimentally evaluated threshold [18]. However,
they do not consider task and control contact explicitly.
In [13], contact situations are analyzed with the help of
the Spectral Norm Derivative (SND) of force sensor data
measured at the end effector or the proprioceptive joint
torques. Advantageously, this approach does not rely on
any specific model with a prior training phase or data
recordings of example interactions. The distinction threshold
between intended and unintended human-robot interactions
however must be manually defined and might not generalize
over different scenarios. Furthermore, no task-contact can be
evaluated by this method. Nevertheless, the SND value gives
great insights on the frequency changes of a contact event, an
important factor according to [19], and will therefore extend
our set of classification features used in our data driven
approach.

All of the above frameworks do not facilitate the dis-
tinction of task-contact and human interaction including the
classification of the intent of the contact. In [20], only
task contact is detected in the teaching phase without con-
sidering other interaction types. A recent work considers
task contact and different human interaction types [21] by
employing a data-driven approach for contact detection and
evaluation, which is constructed as a three-stage pipeline
based on two Recurrent Neural Networks. An estimate of
the wrench exerted by the human on a contact point along
the robot structure is used to first identify contact events
and sequentially classify the contact type. The reference
data is retrieved from Gaussian Mixture Models trained
by previously recorded samples of the task. Similarly, the
approach in [22] also encodes the nominal behavior in-
cluding the expected force profile in a probabilistic model.
In comparison, we only require a single reference sample
to distinguish contact events from normal execution, which
speeds up the task definition in real systems. Further, we
do not rely on additional sensors such as external vision
systems or sensor arrays since the contact point is irrelevant
to our system. The use of two Recurrent Neural Networks
and a contact point estimation in [21] introduces a delay
between contact and reaction of about 1 s, which hinders a
quick reaction for collisions. We tackle this problem by the
usage of a Support Vector Machine for fast online prediction.
Similar to other data-driven methods, our approach does not



Fig. 3. Contact event pipeline for the detection, classification and reaction
to contact events in robotic scenarios, where fi are the extracted features.

need manually tuned contact force thresholds since these
are chosen automatically through a changepoint detection
algorithm in the training phase.

III. METHOD

In this section, we describe a system to distinguish task-
contact from human-interaction and collision and to classify
the intent of the interaction. For this purpose, we introduce a
contact event pipeline that consists of a contact event detector
(CED) and a contact type classifier (CTC) in order to facility
reaction strategies.

A. Technical Approach

Learning from Demonstration (LfD) via kinesthetic teach-
ing is used to transfer a task to the robot in a single trial.
This avoids the effort of manual programming of the task and
makes the procedure intuitive and open to non-expert users.
A task is executed with a manipulator that has a dynamic
model of the form

τjoint = M(q)q̈+ c(q, q̇) + g(q) + h(q, q̇) + τext . (1)

Here, M(q) is the symmetric and positive-definite iner-
tia matrix, c(q, q̇) denotes the Coriolis and centrifugal
torque, g(q) describes the gravitationally induced torques
and h(q, q̇) includes further torques resulting from damp-
ing and friction. Furthermore, the joint torques τjoint are
influenced by external torques τext resulting from external
loads, such as contacts with the environment or the user. An
estimate of the external joint torques τ̂ext can be derived from

τ̂ext = τjoint − M̃(q)q̈− c̃(q, q̇)− g̃(q)− ĥ(q, q̇), (2)

where the friction has to be modeled to derive an accurate
estimate of ĥ(q, q̇). The parameters of M̃ , c̃, g̃ are the
internal model of the corresponding mechanical terms in (1).
Such an estimate of τ̂ext is already available on some robot
platforms. An estimate of the forces and torques exerted on
the external force/torque sensor can be derived by compen-
sating the gravitational influences of the tool. This process is
generally known as force/torque compensation as described
in [23].

We apply our classification scheme on the execution phase
of the task, where most harm can come to the human. The
entire process must therefore be monitored continuously and
any harmful situation must be eradicated as quickly and
efficiently as possible. We therefore introduce a contact event
pipeline as depicted in Fig. 3. In the following, we introduce
the main concepts of this pipeline.

Fig. 4. Four contact events resulting from control contact indicated by
comparing the current task execution to the reference sample with the
distance metric. Phases of no contact and control contact as classified by
the SVM indicated in green and yellow respectively.

B. Contact Detection
The first step in the contact event pipeline is the detection

of a contact event, which is a simple boolean information,
if at the current time instance a contact event occurred
or is still ongoing. The contact event detector extracts
all the sensor readings xt = [pt,ot, τt,wt, qt] ∈ R27

that are characterized as being part of the contact event,
where pt = [x, y, z] ∈ R3 is the Cartesian end effector
position, ot = [qw, qx, qy, qz] ∈ R4 the orientation in unit
quaternions, τt = [τ1, ..., τ7] ∈ R7 the external torques in
each joint, wt = [fx, fy, fz, tx, ty, tz] ∈ R6 the wrench from
the external sensor and qt = [q1, ..., q7] ∈ R7 the joint angles
at each time step t.

To detect a possible contact event, we introduce a
Distance-Based Method (DBM). This approach uses the
task knowledge in the form of a reference sample obtained
from the human demonstration. Deviations from the expected
sensory data, resulting from human interaction, are detected
as shown in Fig. 4. All internal and external sensor measure-
ments are compared in each instance to the existing time
step in the reference sample of the same task. Deviations
that exceed a threshold are considered as contact. These
deviations are found by computing a distance metric over the
reference sample yt = [pt,ot, tt,wt, qt] and the executed
recording xt. The distance metric measures the dissimilarity
between xt and yt as a sum over all dimensions k, given as

d(xt,yt) =

n∑
k=1

(xtk − ytk)1.5, n = dim(xt) . (3)

This distance metric has been chosen after a preliminary
comparison with the Mahalanobis distance, several forms of
the Minkowski distance (Lp-norm) and mean square error. It
is realtime capable since it does not rely on a time window,
it can be quickly solved online, and it delivers an accurate
representation of the dissimilarity of the samples given
only a single reference trajectory. Small deviations resulting
from sensor noise or environmental uncertainties are not
exponentiated compared to formulations with a higher power.
This method considers all sensor modalities of xt in which
changes, induced by human interaction, can occur. Compared
to methods [21] and [19] where only joint speeds, external
torques or wrench are considered, our proposed method
considers all measured modalities simultaneously to detect
all possible kinds of contact. Offsets resulting solely from an
error in the robot pose are neglected in the mentioned works.
Therefore, even a single reference sample for the nominal
measurements delivers accurate results. Furthermore, our



metric does not cause a further delay like classifier based
methods but instantly indicates contact events due to its
computational efficiency.

To make this approach fully data-driven, an algorithm is
used to automatically find the start and end point of contact
events to avoid manual labeling during the generation of the
training data. Contact events found by this preprocessing step
are then fed to the model in the training phase. This method
guarantees a consistent labelling process since it does not
depend on subjective means, such as hand selecting contact
events from the given data profile as done in related works.
To find contact events with the distance metric over the whole
length of the sample T , a changepoint detection algorithm
is used which finds rapid changes in a signal [24], [25]. It
partitions the signal into sections by minimizing the total
residual error between the signal and a predefined statistical
property. The residual error is given by

J(K) =

K−1∑
r=0

kr+1−1∑
i=kr

∆(di;χ([xkr , ..., xkr+1−1])) + βK ,

(4)
where k0 and kK are the first and the last sample of the
signal, χ denotes the empirical estimate and ∆ is the mea-
sured deviation. A penalty is added for an increasing number
of changepoints K and by the proportionality factor β.
The empirical estimate can be one of a statistical property.
A comparison of possible statistical properties has proven
that the root-mean-square level delivers the most accurate
results in finding the start and end of a contact event even
with multiple contact events in one sample recording. The
root-mean-square level uses a constant mean set to zero
and a piecewise constant variance. By maximizing the log-
likelihood with respect to the variance and a fixed mean [24],
equation (4) reduces to

kr+1−1∑
i=kr

∆(di;χ([xkr , ..., xkr+1−1])) =

(kr+1 − kr)log(
1

kr+1 − kr

kr+1−1∑
i=kr

x2r)

. (5)

The number of changepoints can be specified a-priori.
The penalty term is therefore statically increased towards K,
minimizing the risk of too many changepoints. From the
findings of this algorithm, a threshold is derived for online
contact event detection. This threshold is based on the
mean µ and standard deviation σ of the distance at the
changepoints of the training set with a factor k to increase
robustness. A contact event occurs if

d(xt,yt) > µ+ kσ . (6)

C. Contact Classification

In the second step of the contact event pipeline, the
contact type classifier (CTC) uses only the data samples
characterized as to be part of the contact event to classify
the contact type. The CTC predicts one of the three differ-
ent classes: “no contact”, “control contact” and “collision”.
Contacts resulting from task-contact are already modeled

Fig. 5. K-fold cross validation of parameters N , ωmax and κ.

by the reference sample and are therefore ignored by the
contact detector. The class of “no contact” is included to
filter false positives indicated by the CED, which can result
from high sensor noise. The classification is performed based
on features derived from a sliding window of the instances
in Xt,...,t+N = [xt, ...,xt+N ] ∈ RNx26, where N is the
length of the sliding window. A trade-off for N must be
found between accuracy and delay. The length of N directly
factors in to the delay tdelay = N/fs between contact and
reaction. We use a sample frequency fs of 500 Hz. On
the other hand, the accuracy increases with the number of
evaluated samples N . The optimal value is found through
k-fold cross validation of the training set with different
numbers for N , delay κ for the autocorrelation and the upper
frequency bound ωmax of the feature calculation, depicted
in Fig. 5. The lowest missclassification rate is reached at
N = 85 instances (=̂ 0.17 s).

The features computed from the sliding window N are
both linear and non-linear as suggested in [12]. By com-
puting feature values from all variables instead of using
the measurements directly, we eliminate the need to know
the point of contact and the direction of the contact force
vector. Furthermore, these features give insights on the
contact physics, which is beneficial compared to black box
classification if the approach is applied in a real industrial
environment and high transparency is desired. The predic-
tors are classified by a non-linear, multi-class SVM. The
main reasons for choosing a SVM are that they are among
the fastest classifiers in the field and perform well with
less training samples compared to the number of features.
Furthermore, they excel tolerating irrelevant and redundant
attributes [26].

The Hjorth Complexity along other features is a widely
used feature in touch modality identification via tactile
sensing [27], [28]. When it comes to distinguish between
collision and control contact, an important aspect can be
the motion dynamics. Therefore, features of velocity and
acceleration are included. Kouris et al. [13] draw the line



between collision and control contact based on the rate of
change of a predefined frequency band. The Spectral Norm
Derivative is the time derivative of the 1-norm of a predefined
frequency band defined by an upper and lower bound. We
implement a frequency band in the positive spectrum which
is defined only by an upper bound ωmax. Additionally, the
features about virtual work (f16, f17) indicate if and how
much energy is transferred from the robot to the environment
or vice versa. A complete list of all derived features is
presented in Table I.

The effectiveness of the selected features is evaluated
with two algorithms: The ReliefF [29] and the Minimum
Redundancy Maximum Relevance (MRMR) algorithm [30].
With the MRMR we analyze if any of the chosen features
is irrelevant. Additionally, the robustness of the features is
analyzed by the ReliefF algorithm, which uses a nearest
neighbor type approach. Predictor weights are computed by
rewarding if the k-nearest neighbors of a certain observation
are within the same class. The evaluation results of the
computed predictor data is depicted as feature rankings
in Fig. 6(a) and Fig. 6(b) respectively. For the MRMR
algorithm, a small drop in the weights indicates that the
difference in the predictor importance is not significant.
According to the ReliefF algorithm, only the acceleration
features show a low level of robustness in the observations.
By removing any of the less robust features, the model
accuracy does not significantly increase. The same accounts
for a feature reduction with a principal component analysis.

Feature ranking using minimum redundancy maximum relevance (MRMR) algorithm
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(a) MRMR algorithm for feature ranking.

Feature rankin using ReliefF algorithm
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(b) ReliefF algorithm for feature ranking.

Fig. 6. Results from the MRMR algorithm to determine relevance and
redundancy and the ReliefF algorithm to determine the robustness of the
chosen features.

D. Possible Reaction Strategies
During nominal task execution without human interaction

at which both movements in free air and task-contacts are

TABLE I
LIST OF ALL FEATURES, WITH MATHEMATICAL FORMULATION, USED

FOR CONTACT CLASSIFICATION.

Feature List

f1 Mean x̄ = 1
n

∑n
i=1 xi

f2 Standard Deviation σ = 1
n

∑n
i=1 (xi − x̄)2

f3 Maximum max(x)

f4 y-Range max(x)− min(x)

f5 Median x̃ = median(x)

f6 Hjorth Complexity C(x) =

σdd
σd
σd
σx

f7 Shannon Entropy H(x) = −
∑m
i=0 p(xi)

2log(p(xi))
2

f8 Energy Es =
∫ inf
− inf ‖xt‖

2 dt

f9 Skewness s =
1
n

∑n
i=1 (xi−x̄)

σ3

f10 Autocorrelation a =
∑N−κ
i=1 (xi−x̄)(xi+κ−x̄)∑N−τ

i=1 (xi−x̄)2

f11 Phase Phase(FFT(x)) = arctan Im{FFT(x)}
Re{FFT(x)}

f12 Amplitude 1
N

√
[ Re{FFT(x)}]2[ Im{FFT(x)}]2

f13 Velocity v =
∥∥∥ ∂(x)
∂t

∥∥∥
2

f14 Acceleration a =
∥∥∥ ∂(v)
∂t

∥∥∥
2

f15 SND I SND =
∂‖fωmin;ωmax‖1

∂t

f16 Work in Joints WJ =
∑t2
t=t1

∂At
∂t

TTt

f17 Work in Sensor WS =
∑t2
t=t1

∂[Pt,Ot]
∂t

WT
t

possible, impedance control is advised. It is most common
for compliant in contact applications where a manipulator
interacts with the environment under uncertainties.

1) Control contact: If the user applies control contact, for
instance to reshape the robot trajectory or to give a predefined
touch command to the robot, an increasing force occurs
between end effector state and commanded robot state. This
can be encountered by a compliant robot behavior such as
admittance control, e.g. as applied in [21].

2) Collision: In case of a collision, the main concern is
to restore a safe state for the user as efficient and quick as
possible. This reaction must cover both dynamic interactions
as well as clamping situations. A ”bounce back” in the direc-
tion of the most relief is a possibility [31]. Such a momentum
observer-based reaction only requires proprioceptive sensor
information and no external contact point estimation.

IV. EVALUATION

The viability of the contact event pipeline is tested both
offline and in a real experimental task. First, it is elab-
orated on how training samples are generated and how
the models are trained. More specifically, the accuracy of
contact detection as well as the prediction accuracy of the
correct contact type by the model, are tested. An impedance
controlled KUKA LWR-IV+ robot with a wrist mounted JR3
force/torque-sensor and a Weiss Robotics WSG50 gripper are
used for both the data generation and the experiment.



Fig. 7. Total samples and contact events recorded for model training and
offline evaluation.

A. Training and Evaluation Samples

Initially, motion data is generated from kinesthetic teach-
ing. The robot is put into gravity compensation and phys-
ically guided through the desired trajectory by the user. In
total, 14 different types of movements have been recorded.
Each movement consists of a unique set of motions to
encapsulate a wide range of motions from real robotics
tasks e.g. pick and place, pushing a button, moving etc. We
ensured that different end effector orientations, various linear
movements as well as different nullspace joint configurations
are among the set. This allows the algorithm to learn from a
variety of forces and torques applied on any joint. Once the
set of representative types of movements is recorded, they
are executed once on the robot without human interaction.
These samples are later used as reference samples.

For control contacts, forces and torques are applied both
on the entire robot surface as well as at the tool while the
robot performs linear and angular motions simulating real
world tasks. The contacts are of large variety to teach the
model with a universal set of interactions. Collision samples
are gathered using a human like dummy, shown in Fig. 8.

Fig. 8. Dummy for collision sample
recording.

Five types of movements
are chosen to impact
the dummy on the arm,
shoulder and head. This
represents the human
body parts that would
most likely be affected in
a real collision scenario
with a single arm robot.
Clamping situations are
included. Each run of
the training samples
contains multiple contact

instances. All recorded types of motions for every contact
class are summarized in Fig. 7.

Note that each contact event consists of multiple time steps
(sample rate 2 ms) and that collisions are slightly shorter than
control contacts. In summary, the model is trained on 14393
time samples which results in 28.79 s of human contact
events.

B. Offline Evaluation

The offline evaluation is conducted, on a part of the
initial sample set not part of the training set, to prove that
the method is able to generate valid results for unknown
data before users interact with the robot. The main focus

Fig. 9. Offline evaluation of three collisions. The first two plots show the
torque and force profile from the proprioceptive and the external sensors.
Row three is the output of the CED. The offset between the reference sample
and the sample including human interaction is indicated as distance plot
along the predicted contact class in the lowest plot.

points are: (i) how accurate and quick human interactions are
determined from the data, (ii) the accuracy of the contact type
prediction, especially for the initial instances of the contact
occurrence, and (iii) filtering performance for false positive
contacts.

1) Results: In the following evaluation, the parame-
ters chosen according to the optimization are N = 85,
ωmax = 110, κ = 10 and k = 8. Figure 9 clearly shows three
simulated collisions as indicated by the CED. The data
underlines, that a high rate of change in the contact forces
indicate a quick change of momentum, which is typical for a
collision. The reader’s attention should be directed towards
the initially classified instances of the individual contact
events, which are correctly classified (red area). This section
is of the most importance, since a possible reaction is based
on this early prediction. In Fig. 4, four control contacts are
analyzed, which are classified entirely correctly.

The prior human interactions occurred with the robot in
free motion. In Fig. 10, the robot is in the state of task-contact
from t ≈ 3.0 s to t ≈ 5.2 s and from t ≈ 5.8 s to t ≈ 8.8 s
where an object is slid along a horizontal surface. During the
task-contact, two control contact events are performed (t ≈
3.9 to t ≈ 4.9 and t ≈ 6.9 to t ≈ 7.8). Both interactions are
initially classified correctly but show misclassification due
to the low compliance of the robot. The impact, resulting
of the tool non-smoothly reconnecting with the object, (t ≈
4.9 s and t ≈ 7.8 s) is also classified as collision. Another
important aspect of this result is the filtering capability of
the model. False positives at the beginning of (t ≈ 3.0 s
and t ≈ 5.8 s) and during the task-contact (t ≈ 8.6 s) are
almost entirely filtered out. The overall accuracy for contact
event detection in the offline evaluation is at 99.6%. The
remaining, single instances, are not numerous enough to
trigger a reaction.



Fig. 10. Offline evaluation of two control contacts during an occurring
task-contact. The first two plots show the torque and force profile from the
proprioceptive and the external sensors. Row three is the output of the CED.
The offset between the reference sample and the sample including human
interaction is indicated as distance plot along the predicted contact class in
the lowest plot.

2) Discussion: To generate the data for offline evaluation,
the dummy is set up to intersect the anticipated trajectory of
the robot. After the first rather elastic collision, the dummy is
further pushed by the robot which causes a misclassification
in the ongoing contact state. Additionally, during the genera-
tion of the data, no reaction behavior is employed to examine
the full duration of the contact event. The offline evaluation
results are depicted in Fig. 11. The soundest interpretation of
these results is a contact-wise evaluation. As discussed, the
initial classified instances are considered for the reaction and
therefore determine the whole contact event. By this metric,
the offline classification results are evaluated, which has been
also used in [19]. The results are depicted in Fig. 11(a).
The simulated trials involve both human contact during free
motion and during task-contact. We achieve an accuracy of
92.5% over all contact events with slightly less precision for
control contacts compared to collisions. The later discussed
falsely classified instances during collision state drastically
impact the accuracy of the sample-wise evaluation of the
classification results (Fig. 11(b)). Considering the fact that
no reaction is applied during the data recording phase biases
the sample-wise result. Therefore, the focus is put on the
contact-wise evaluation.

C. Experiment

The goals of the experiment are to evaluate the realtime
capability of the framework, the adaptability of the system
to unknown settings and its performance in a real-world
scenario. The setting of the experiment is chosen so that
interactions with the robot can both be performed separately
and during task contact. The scenario chosen is a paint roller
task. A paint roller is attached to the end effector as depicted
in Fig. 1. From its initial position, the robot moves towards
the table until the paint roller touches the surface and applies

(a) Confusion matrix for contact-
wise evaluation

(b) Confusion matrix for sample-
wise evaluation

Fig. 11. Offline evaluation results as confusion matrices. Contact-wise
evaluation (a) by considering first classified instances of each contact event
and sample-wise evaluation (b) by considering all instances.

(a) Confusion matrix for trained user (b) Confusion matrix for novel users

Fig. 12. Experimental results as confusion matrices. Results of twenty
contact events for each contact type per participant for a user that previously
participated in generation of training samples (a) and for novel users (b).

small amounts of pressure. The contact to the surface is then
kept and the robot performs a painting motion. Thereafter,
the contact is discontinued and the arm moves to a second
position where the motion is repeated. The user is informed
of the current contact situation and type by a dialog window,
indicating the type of contact as well as the progress of the
current task.

1) Results: A small user study is conducted with one user
priorly involved in the generation of the training samples
and four novel users. The participants are asked to interact
with the robot during the task as it would occur most
natural and intuitive to them. The robot is interacted with
during free motion and task-contact, on several positions
on the robot surface including the tool and paint roller
(Figures 1(a), 1(b), 1(d)). Collisions are initiated with the
hand (Fig. 1(c)), arm and elbow and by inducing clamping
of the human hand between the paint roller and the horizontal
surface. For each type of contact, a total of twenty contacts
are performed per user. A total of one hundred contacts are
therefore recorded for each contact type. The outcome of the
trials are depicted in Fig. 12 for the trained user ( 12(a)) and
for the novel users ( 12(b)) separately.

2) Discussion: The results of the trained user show an
accuracy of 92.5% which is equal to the offline evaluation,
but with a higher and lower precision for control contact
and collision respectively. The systems responds correctly
to novel users with an accuracy of 84.4%. This is an 8.1%
decrease compared to the trained user and is mostly due
to lower recall value for collision. More cautious contacts
(initiated collisions) could be an explanation for this result
since a human naturally tries to avoid harmful situations
to the own body. This does not apply to the trained user,
where the accuracy is equal to offline evaluation. However,
the precision is shifted. A significant higher precision is
achieved for control contacts while the precision of colli-
sions has dropped by 4.2%. This difference occurs because



of the further training of the user. Contacts are executed
more cautious, shifting the focus towards control contact.
The results are again obtained by a contact-wise evaluation
metric. During the experiment we obtained a very low false
positive rate for contact event detection. The accuracy lies at
99.9%.

V. CONCLUSION

In this work, a novel contact event pipeline for human-
robot interaction is proposed. It is shown that the system
is able to actively monitor the execution of learned tasks
and to distinguish human interaction and collision from task-
contact. By classifying the interaction to determine the intent
of the user, the system enables safe and intuitive human robot
collaboration. More specifically, the set-up procedure lets
the user easily record new tasks and monitor the execution
without the need for time consuming manual programming.
The proposed monitoring system can detect and classify
contact events considerably quicker than comparable meth-
ods, enabling a fast and robust robot reaction. Based on
only one reference sample, the system is able to detect
contact events with increased robustness by filtering out false
positives. The method is based only on proprioceptive sensor
data and a wrist mounted force/torque sensor, therefore
avoiding additional time consuming and costly sensor data
evaluation. We have proven, by way of experiment and user
study, the adaptability of the system to unknown scenarios
and the intuitiveness and safety gained during human-robot
collaboration.
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