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ABSTRACT

With the ever-growing availability of different remote sens-
ing (RS) products from both satellite and airborne platforms,
simultaneous processing and interpretation of multimodal RS
data have shown increasing significance in the RS field. Dif-
ferent resolutions, contexts, and sensors of multimodal RS
data enable the identification and recognition of the materials
lying on the earth’s surface at a more accurate level by de-
scribing the same object from different points of the view. As
a result, the topic on multimodal RS data fusion has gradually
emerged as a hotspot research direction in recent years.

This paper aims at presenting an overview of multimodal
RS data fusion in several mainstream applications, which can
be roughly categorized by 1) image pansharpening, 2) hyper-
spectral and multispectral image fusion, 3) multimodal fea-
ture learning, and (4) crossmodal feature learning. For each
topic, we will briefly describe what is the to-be-addressed re-
search problem related to multimodal RS data fusion and give
the representative and state-of-the-art models from shallow to
deep perspectives.

Index Terms— Classification, crossmodal, data fusion,
deep learning, feature learning, multimodal, pansharpening,
remote sensing, shallow models.

1. INTRODUCTION

Single remote sensing (RS) data, e.g., hyperspectral (HS) [1],
Synthetic Aperture Radar (SAR) [2], Light Detection and
Ranging (LiDAR) [3], and multispectral (MS) [4], inevitably
meets the performance bottleneck in classifying the materials
of interest, due to the lack of diverse information. With the
ever-growing availability of different RS modalities, a variety
of applications, such as land cover land use mapping [5, 6],
mineral exploration [7, 8], object/target detection [9, 10],
environmental monitoring [11], disaster response and man-
agement [12], have achieved a big performance improvement
compared to that using only single modalities.

To provide a big picture of multimodal RS data fusion to
the researchers, Ph.D. students, and senior engineers who are
interested and would like to go deeper along this direction, we

summarize some current state-of-the-art algorithms around
this topic. This is further categorized by four sub-topics: im-
age pansharpening, HS-MS data fusion, multimodal feature
learning, and crossmodal feature learning.

2. IMAGE PANSHARPENING

Image pansharpening, as the name suggests, aims to sharpen
the spatial components of the image, e.g., edge, texture, geo-
metric structure, etc. This task can be also seen as a special
fusion case. That is, the low-resolution MS image, can be
super-resolved by the means of a single-band high resolution
panchromatic (PAN) image.

A crucial survey on the pansharpening methods has been
made in [13], where the two main types are considered for
pansharpening, i.e., Component substitution (CS) and mul-
tiresolution analysis (MRA). The former one can be per-
formed by learning a spectral transformation function to sub-
stitute the components of the MS data with the PAN image.
Some well-known CS-based approaches, such as the inten-
sity–hue–saturation (IHS) [14], principal component analysis
(PCA) [15], the Gram–Schmidt (GS) [16], high-fidelity CS
[17], matting model [18], and model-based reduced-rank
[19], have been developed well for the pansharpening task.
The latter one aims to inject multiresolution detailed informa-
tion of the PAN image into the resampled MS bands, yielding
the high-resolution MS products. These multiresolution ex-
traction algorithms consist of decimated wavelet transform
(DWT) [20], undecimated wavelet transform (UDWT) [21],
“a trous” wavelet transform (ATWT) [22], super-wavelets
transforms(e.g., contourlet [23], curvelet [24]).

Beyond traditional pansharpening models, deep learning
(DL) techniques, owing to its powerful learning ability, have
achieved more potential results. A representative method
presented in [25] to perform the task is PNN by the means
of convolutional neural networks (CNNs), named PNN. Fol-
lowing this framework, numerous DL-based pansharpening
networks, e.g., DRPNN [26], PanNet [27], MSDCNN [28],
PNN+ [29], RSIFNN [30], pyramidNet [31], DiCNN [32],
have been successively proposed to further enhance the spa-
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tial details of pan-sharpened images.

3. HYPERSPECTRAL AND MULTISPECTRAL
IMAGE FUSION

Characterized by high spectral resolution, HS images enable
us to detect the objects of interest more easily. However, there
is a trade-off between the spatial and spectral resolutions of
the HS image. For this reason, enormous effects have been
made to enhance spatial resolution of HS images by fusing
overlapped MS images with high resolution.

The subspace-based approach is a representative tradi-
tional model for fusing the HS-MS images by means of cou-
pled matrix factorization or spectral unmixing [33, 34, 35] or
Bayesian estimation [36, 37, 38, 39]. Beyond the 2-D mod-
eling, the researchers have attempted to directly consider the
original HS image as a 3-D tensor to simultaneously capture
its spatial and spectral properties. As a result, Tucker and
CP decomposition approaches are used to model the fusion
problem, leading to a coupled sparse tensor factorization
approach [40, 41].

Very recently, some preliminary works related to the HS-
MS fusion task have been proposed by designing advanced
deep networks [42, 43, 44, 45, 46, 47]. These models have
demonstrated their effectiveness and superiority in the fusion
task. However, some remaining challenges, e.g., lack of prior
knowledge, limited training pairs, etc. still hinder the perfor-
mance improvement.

4. MULTIMODAL FEATURE LEARNING

Different from the image level data fusion, multimodal fea-
ture learning (MFL) directly learns feature level fusion. Many
popular approaches related to MFL have been largely pro-
posed and widely applied in various high-level applications,
such as classification, object detection, image segmentation.

Morphological profiles are a classic and well-known
methodology to extract and fuse rich spatial information of
multimodal RS images [48, 49, 50]. Another group is the
manifold learning based approach. It aims at learning the
shared representations by aligning different modalities of RS
data, thereby achieving the information exchange [51, 52, 53].

Inspired by the recent success of DL techniques, some ex-
ploratory researches [54, 55, 56, 57] have been developed to
perform the feature learning with the multimodal data input.
It is worthy noting that a general and unified DL framework is
proposed for multimodal RS image classification [58]. This
is a seminal work in the RS community, which has been gar-
nering increasing attention by researchers.

5. CROSSMODAL FEATURE LEARNING

It is well known that the overlapped or registered data from
different sensors or platforms are expensive to be collected

simultaneously, especially on a large-scale region. Therefore,
how to only utilize partially overlapped multimodal data to
process and analysis a large-scale RS data is a to-be-solved
challenge [59]. This is a typical crossmodal feature learn-
ing (CFL) issue. More specifically, CFL is defined as “multi-
ple modalities are used for training but several modalities are
missing in the testing phase, or vice versa [60]”.

Manifold alignment (MA) is an effective solution with re-
spect to the CFL’s issue, since it can align multiple modalities
on manifold subspaces, further achieving information trans-
fer and retrieval of different modalities [61]. Beyond MA-
based approaches, shared subspace learning (SSL) directly
bridges the learned features and label information, yielding
more competitive fusion performance in features. In recent
years, some SLL-related methods have been developed in a
supervised or semisupevised way [62, 63, 6, 1].

Although a large number of deep networks have been de-
signed to address this issue in computer vision or machine
learning, yet it is still less investigated in RS. Until now, only
a few DL-related works are made to provide possible and po-
tential solutions for the CFL’s issue, e.g., [59, 64].

6. CONCLUSION

In this paper, we provide an overview on multimodal RS data
fusion from different perspectives, such as image level, fea-
ture level, shallow model, and deep model. More specifically,
we briefly introduce four different research directions, they
are image pansharpening, HS and MS image fusion, multi-
modal feature learning, and its special case: crossmodal fea-
ture learning. We believe that multimodal RS, particularly
multimodal data processing and analysis, e.g., fusion, would
be the leading-edge research hotspot in the future, which is
worth paying close attention to.
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