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ABSTRACT This work discusses a variational Bayesian learning approach towards decentralized blind
deconvolution of seismic signals within a sensor network. Blind seismic deconvolution is cast into a
probabilistic framework based on Sparse Bayesian learning developed for blind image deconvolution. The
posterior distribution of the signals of interest is then approximated using a variational Bayesian method.
Depending on a particular form of selected variational factors, the scheme is shown to generalize the
state-of-the-art distributed seismic blind deconvolution algorithm. The algorithm operates by repeatedly
alternating between two stages: (i) estimation of seismic source wavelet and (ii) reflectivity estimation.
The wavelet is computed in a distributed fashion using Alternating Direction Method of Multipliers. Based
on this estimate each sensor then locally obtains a sparse reflectivity estimate. Numerical evaluation with
synthetic seismic data shows that the proposed method outperforms existing deconvolution algorithms in
the high signal-to-noise ratio (SNR) regime. In the low SNR regime a higher sensitivity of sparse Bayesian
learning regarding model mismatches in the estimated source wavelet is observed. Also, processing of
seismic data generated with an acoustic wave equation shows that the proposed method is able to recover
the original reflectivities more accurately, with more distinct support of the reflectivities, as compared to
existing methods despite present model mismatches. The algorithm is also applied to the estimation of real
seismic data, and shows improved performance as compared to a state-of-the-art estimation method.

INDEX TERMS Blind deconvolution, sparse Bayesian learning, decentralized estimation, seismic signal
processing, seismic networks

I. INTRODUCTION
A. MOTIVATION

Seismic surveys such as reflection or refraction methods use
multiple seismic sensors or geophones to record the seismic
waves reflected at underground layers. Based on received
waves the subsurface of a given area can be reconstructed us-
ing signal processing and imaging techniques [1]. However,
most of these algorithms assume a centralized operation,
when all measurement data are available at one central entity.
In this work we instead focus on a distributed approach
towards subsurface reconstruction realized over a network
of “intelligent” geophones that are equipped with computing
and communication capabilities. The latter allows for a coop-
erative processing of measured data. Such an architecture is
particularly relevant for autonomous exploration of a planet’s
subsurface such as that on Mars or Moon [2], where an
autonomous operation is required and a central processing

entity might not be available.

A common survey methodology in seismic exploration is
a reflectivity survey. In such a survey a seismic source such
as a sledge hammer or an air gun is activated. The generated
waves are reflected at underground layers and then recorded
at multiple geophones that are placed over an area of interest.
This measurement process can be modeled by a single-input-
multiple-output system where a source signal is convolved
with impulse responses of multiple reflectivity paths. Each
such reflectivity path describes a structure profile of a path
that a seismic wave travels from the source to the receiver.
The goal is to recover the hidden impulse response of the
reflectivity profile by deconvolving the source signal and the
reflectivity profile from geophone measurements. However,
the seismic source (also called wavelet) is usually unknown,
which poses challenges for the deconvolution. Hence, blind
deconvolution algorithms are needed that recover both the
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source signal and the reflectivity profile.
In the past, a significant research work has been dedicated

to blind deconvolution of signals for images processing (see
e.g., [3]) as well as specifically for seismic signals (see e.g.,
[4]–[6] and references therein). The methods in general
follow an iterative approach, where at first a model of an
excitation signal is estimated, followed by the inference of
the signal – the seismic reflectivity profile. In particular,
sparse multichannel blind deconvolution (SMBD) methods
have shown promising performance results for the reflectivity
estimation. The recent work of [5] uses an iterative algorithm
that alternates between wavelet and reflectivity estimation.
The wavelet estimation is conducted in the frequency domain
whereas the reflectivity estimation is done in the time domain
to exploit sparsity in the reflectivity’s impulse response.
The sparsity is achieved through an `1 penalty, which leads
to a LASSO-type optimization [7]. Although optimization
of LASSO-type functionals does lead to a sparse estimate,
such methods were found to be inferior to sparse Bayesian
learning (SBL) [8], which results in a sparser support [9],
and provides uncertainty estimates of the parameters.

Bayesian learning has been applied to blind deconvolution
problems in the past. However, most works do not con-
sider seismic signals and focus on the problem of image
deconvolution as in [10], [11]; the transfer of the results for
image processing into the seismic domain is not straight-
forward and can pose significant challenges, despite formal
similarities between the models. In [12], sparse multichannel
deconvolution of seismic traces is conducted using block
sparse Bayesian learning techniques and the expectation-
maximization algorithm. However, this work assumes knowl-
edge of the source wavelet and therefore is not a blind
approach. Also typical blind deconvolution methods adopt a
centralized operation. This contribution instead, builds upon
and extends these ideas for a distributed operation in a
network of geophones.

B. MAIN CONTRIBUTIONS
The main contribution of this work consists of deriving a
decentralized blind deconvolution algorithm within a vari-
ational Bayesian framework and analyzing its performance
for the deconvolution of seismic signals. In particular, the
estimation of the source signal – the wavelet – is conducted
in a distributed fashion such that this algorithm is applicable
to sensor networks where no central entity is handling the
estimation procedure.

The proposed methodology follows a blind deconvolution
approach of [5] and [10] and extends our previous work [13],
where the wavelet estimation is implemented in a distributed
fashion followed by a local reflectivity estimation. In [13]
the wavelet estimation is implemented using the alternating
directions method of multipliers (ADMM) algorithm [14].
Based on the estimated wavelet each sensor then solves an
`1-regularized problem locally to obtain a sparse estimate
of the impulse response of its reflectivity. In this work, we
cast the proposed blind iterative estimation scheme into a

variational Bayesian framework, which on the one hand,
provides a formal basis for the algorithm in [13], while on the
other hand, allows for application of empirical Bayesian tech-
niques to fix (or rather learn) the regularization parameters
both for the wavelet as well as for the reflectivity estimation.
Based on the variational Bayesian formulation, we derive
a distributed wavelet estimation that enables each sensor in
the network to obtain a wavelet estimate by exchanging data
with neighboring sensors. For the reflectivity estimation, we
employ SBL locally at each sensor. SBL techniques also fa-
cilitate analytical inference of model parameters and account
for posterior variance of the reflectivity estimate, which is
difficult for the `1-type constraints due to non-smoothness of
the posterior function. Note that the use of non-variational
approaches, such as EM-based estimation of SBL parameters
with approximate message passing (AMP), as in e.g., [15],
also provide analytical inference expressions for some of the
parameters.1 Yet due to the dimensionality of the electrical
impedance tomography problem addressed in [15], not all
inference expressions (and in particular the E-step of the EM
algorithm) are computationally feasible, which requires the
use of numerical approximations. The numerical complexity
of the considered problem remains, however, tractable; more-
over, the computation of the E-step (or of the corresponding
variational approximation factor) can be avoided as in e.g.,
fast marginal likelihood SBL realisations [17], [18]. These
aspects of the algorithm implementation are, however, left
outside the scope of the paper.

C. NOTATION
Column vectors are represented as boldface lowercase letters,
e.g., x, and matrices as boldface uppercase letters, e.g., X .
Their transpose is denoted by (·)T . For some positive-
semidefinite matrix A, ‖x‖A ,

√
xTAx is the weighted

`2 norm of vector x; similarly, ‖x‖ ,
√
xTx. Notation

‖x‖1 is used to denote an `1 norm of the vector x. The
expectation operator is denoted by E{·}, or Eq{·} when the
context requires to explicitly state the probability density
function (pdf) q over which expectation is taken. We denote
the pdf of a Gaussian random vector x with expectation
a , E{x} and covariance matrixB , E{(x−a)(x−a)T}
as N(x|a,B). Also, we denote the pdf of a Gamma random
variable x as Ga(x; a, b) = baxa−1e−bx/Γ(a), where a is
a shape parameter, b is a rate parameter, and Γ(·) is the
Gamma function. The notation δa(x) is used to denote a
Dirac distribution over domain of x with a support a. We
will also use notation log x ∝e a to imply that x ∝ ea.

II. SYSTEM MODEL
Consider a network of J interconnected sensors/geophones
each measuring a seismic trace at its corresponding position.
We describe the network topology by a graph G = {J , E}
with a set of nodes J = {1, 2, . . . , J} and a set of edges E =

1Variational Bayesian methods generalize the EM-algorithm for a specific
choice of approximating factors [16]
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{(j, i)|j, i ∈ J , j 6= i}. With Nj we denote a neighborhood
of the sensor j – a set of all sensors directly connected to
sensor j, including sensor j itself. In addition, we assume that
the network graph is undirected and strongly connected [19].

It is common to model the acquisition of seismic traces
via a convolution of a seismic source wavelet w and a set
of impulse responses hj , j ∈ J , that model the subsurface
reflections between the source and the receiver j [1]. Note
that the waveletw is a common source signal for all sensors,
while responses hj , j ∈ J , differ between sensors. The
impulse responses hj , j ∈ J , are typically termed reflectivi-
ties. They naturally characterize the reflections occurring as a
seismic wave passes between the source and the receiver via
subsurface layers. It is thus the key to a quantification of the
subsurface under investigation.

Unfortunately, due to the non-ideal form of the seismic
source, the reflectivity profile of the subsurface is blurred,
which makes a reliable subsurface reconstruction difficult.
Therefore, the goal of seismic deconvolution is to remove
the influence of the seismic source in the seismic traces in
order to infer “a clean” reflectivity. However, neither source
wavelet w nor the reflectivities hj , j ∈ J are typically
known. Thus, blind approaches are required. In [5] it was
suggested to implement a blind deconvolution approach as
a sequence of two consecutive steps: a wavelet estimation
and a reflectivity estimation. In [13] we cast this approach
in a distributed setting, where the wavelet estimation was
solved using ADMM algorithm [14], followed by a “local”
estimation of the reflectivities hj , j ∈ J . Both are then
iteratively repeated until a certain convergence criterion is
met.

In the following we will show that the algorithm in [13] can
be seen as a solution to a variational Bayesian optimization
of a posterior distribution of wavelet and reflectivity signals.
Moreover, the variational setting allows one to extend the
method in [13] and estimate the regularization parameters
within the empirical Bayes approach. This is detailed in the
following.

A. BAYESIAN FORMULATION OF THE SPARSE BLIND
DECONVOLUTION
Each sensor j acquires a noisy seismic trace dj [l], which can
be described by a noisy convolution between a length LW
discrete time source wavelet w[l] and a length LR reflectivity
hj [l], j ∈ J :

dj [l] = w[l] ∗hj [l] +nj [l] =

LW∑
ν=0

hj [l− ν]w[ν] +nj [l], (1)

where l = 0, . . . , LW + LR − 2. By defining

dj , [dj [0], . . . , dj [LW + LR − 2]]T,

w , [w[0], w[1], . . . , w[LW − 1]]T, and

hj , [hj [0], hj [1], . . . , hj [LR − 1]]T

model (1) can be reformulated in equivalent matrix-vector
forms as

dj = Hjw + nj = Whj + nj = hj ∗w + nj , j ∈ J ,
(2)

where Hj ∈ R(LW+LR−1)×LW is the convolution matrix of
the reflectivity hj at sensor j, W ∈ R(LW+LR−1)×LR is
the convolution matrix consisting of wavelet w, and nj ∈
RLW+LR−1 are additive noise samples. Note that the products
Whj and Hjw are absolutely equivalent. The third form
hj ∗w with a slight abuse of a vector notation also indicates a
convolution operation. Depending on the context, these forms
will be used interchangeably to simplify notation.

We will assume that noise samplesnj , j ∈ J , observed by
seismic sensors are statistically independent across sensors.
Furthermore, we assume that each nj , j ∈ J , follows a
normal distribution with zero mean and scaled covariance
matrix τ−1j I , where τj , j ∈ J , is a noise precision parameter.

To simplify further notation, let us now define D ,
{d1, . . . ,dJ}, T , {τ1, . . . , τJ}, and H , {h1, . . . ,hJ} as
a collection of variables associated with J sensors. Now, we
can begin with formulating the probabilistic structure of the
estimation model. Let us point out the following modeling
is similar to that proposed in [10], [11] for blind image
deconvolution. In the following it is adapted to blind seismic
deconvolution in a distributed setting.

1) Probabilistic formulation of the model
Due to the assumption made for the additive noise terms nj ,
j ∈ J , we can write the likelihood function of seismic traces
H, wavelet w, and noise precisions T as follows

p(D|H,w, T ) =
∏
j∈J

p(dj |w,hj , τj) (3)

where p(dj |w,hj , τj) = N(dj |Hjw, τ
−1
j I).

Let us now assume that the wavelet w likewise follows
a Gaussian distribution, with zero mean and circular co-
variance matrix controlled by an unknown precision λw.
Specifically, we assume that

p(w|λw) = N(w|0, λ−1w I). (4)

In general, we can also treat the precision parameter λw as
an unknown random variable. As such, we also select a prior
distribution p(λw) = Ga(λw; c, d) for it. The choice of a
Gamma prior is motivated by the conjugacy [20] of the latter
to p(w|λw), which will eventually simplify the inference of
λw, as we will see later.

Now, we define a prior distribution for reflectivities hj ,
j ∈ J . As seismic reflectivities are known to be sparse [21],
[22] – the nonzero entries reflect the propagation velocity
jumps in the subsurface structure – the statistical model for
hj , j ∈ J , should be selected to reflect this. To this end we
model the prior p(hj), j ∈ J , with a so-called scale mixture
distribution [9]:

p(hj) =

∫
p(hj |αj)p(αj)dαj , j ∈ J , (5)
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where p(αj) is called a mixing density and p(hj |αj) belongs
to a power-exponential family of distributions [23]. Note that
parameters αj , j ∈ J , are also treated as unknown random
variables.

Finally, we endow the probabilistic model with a prior
distribution p(T ) =

∏
j∈J p(τj) for noise precision pa-

rameters T . Similarly to parameter λw, we select p(τj) =
Ga(τj ; sj , tj), j ∈ J .

Now, the probabilistic model underlying the estimation
problem can be summarized with the following joint pdf

p(D,w,H,λw, T ,A) = p(w|λw)p(λw)

×
∏
j∈J

p(dj |w,hj , τj)p(hj |αj)p(αj)p(τj). (6)

where we defined A , {α1, . . . ,αJ} to simplify notation.
The blind deconvolution under sparsity constraints for reflec-
tivities can then be posed as a maximization of the following
posterior:

p(w,H, λw, T ,A|D) =
p(D,w,H, λw, T ,A)

p(D)
. (7)

In general the inference of the posterior in (7) cannot be
done in a closed form and numerical approaches are needed.
Here we make use of variational Bayesian inference to ap-
proximate the posterior of interest with a proxy distribution
q(w,H, λw, T ,A) which makes analysis tractable.

2) Variational Bayesian inference
Variational Bayesian inference (VBI) techniques are
a class of global approximative inference approaches.
They attempt to approximate an intractable posterior
p(w,H, λw, T ,A|D) with a simpler pdf q(w,H, λw, T ,A).
The latter is in general a “free” pdf function that is
chosen to minimize the Kullback-Leibler divergence [16]
KL(q(w,H, λw, T ,A)||p(w,H, λw, T ,A|D). Although the
latter cannot be computed since the posterior of interest
p(w,H, λw, T ,A|D) is unknown, the divergence can be
minimized indirectly, by maximizing the lower bound on the
log-evidence [16] given as:

log p(D) ≥ E
q(w,H,λw,T ,A)

{
log

p(D,w,H, λw, T ,A)

q(w,H, λw, T ,A)

}
.

(8)
The approximating density q(w,H, λw, T ,A) can be further
constrained to reduce the complexity. Specifically, we will
adopt a mean field approximation [16], which implies that

q(w,H, λw, T ,A) = q(w)q(λw)

J∏
j=1

q(hj)q(τj)q(αj).

(9)
In other words, we assume independence of all the factors
in the approximating distribution. Furthermore, we will con-
strain individual factors in (9) to parametric pdfs. This will
allow us to cast variational optimization into a parametric
one. Specific choices of individual factors will be discussed
in the following.

B. DISTRIBUTED SPARSE BLIND DECONVOLUTION AS
A VARIATIONAL INFERENCE PROBLEM
The maximization of the lower bound in (8) requires speci-
fying (i) the form of the factors in (9) and (ii) the sparsifying
prior p(hj) in (5). Depending on a particular choice of
the factors in (9) different inference schemes can be imple-
mented. In particular, the distributed sparse blind deconvolu-
tion (D-SBD) algorithm proposed in [13] can be shown to be
an instance of the proposed variational optimization of (8), as
we will describe in the following.

Let us assume that p(hj) in (5) is selected such that

p(hj |αj) =

LR∏
i=1

N(hi,j |0, αi,j), p(αi,j) =
µ2

2
e−

µ2

2 αi,j ,

(10)
for some fixed parameter µ and i ∈ {1, . . . , LR}, j ∈ J .
Then a direct integration of (5) shows that p(hj) is given by

p(hj) =
µLR

2
e−

µ
2 ‖hj‖1 , j ∈ J ,

which is a multivariate Laplace distribution for (independent)
entries in hj . By marginalizing the posterior (7) overA using
this result, we obtain a variational lower bound in the form

log p(D) ≥ E
q(w,H,λw,T )

{
log

p(D,w,H, λw, T )

q(w,H, λw, T )

}
. (11)

Note that a “direct” approach to a specification of the prior
is referred to as Type-I sparse Bayesian signal reconstruction
[9].

Now, an instance of the D-SBD algorithm from [13] is
obtained by selecting all variational factors as Dirac measures
defined over the corresponding domains.

q(hj) = δĥj (hj), q(τj) = δτ̂j (τj), j ∈ J , and (12a)

q(λw) = δλ̂w(λw), q(w) = δŵ(w). (12b)

In [13], however, the factors q(λw) and q(τj), j ∈ J , are
assumed to be fixed, with the supports of these factors being
free parameters of the D-SBD algorithm. With this choice of
variational factors, it then becomes easy to evaluate the bound
(11) and maximize it with respect to q(w) and q(hj), j ∈ J .

Specifically, it can be shown that with respect to q(w) the
bound (11) can be expressed as

log p(D) ≥ E
q(w)

{
log

p̃(w)

q(w)

}
= −KL(q(w)||p̃(w)) (13)

where

log p̃(w) ∝e E
q(H)q(T )

{log p(D|w,H, T )}

+ E
q(λw)

{log p(w|λw)} . (14)

As we see, the variational bound is maximized, when the
divergence KL(q(w)||p̃(w)) is minimized. Since q(w) is
constrained to a space of Dirac measures, the minimum
of KL(q(w)||p̃(w)) is obtained when support ŵ of q(w)
coincides with the location of the maximum of p̃(w), or
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equivalently, with the maximum of log p̃(w). Evaluating
log p̃(w), we find ŵ as the solution to the following problem:

ŵ = argmin
w

J∑
j=1

τ̂j
2
||dj − Ĥjw||2 +

λ̂w
2
‖w‖22, (15)

where Ĥj is a reflectivity convolution matrix composed of
elements of ĥj – support of q(hj).

Similarly, the bound in (11) with respect to q(hj) can be
expressed as

log p(D) ≥ E
q(hj)

{
log

p̃(hj)

q(hj)

}
= −KL(q(hj)||p̃(hj)),

where

log p̃(hj) ∝e E
q(w)q(T )q(λw)

{log p(D|w,H, T )p(hj)} .

Computing the latter, we find that the support of q(hj), j ∈
J , that maximizes the bound is obtained from

ĥj = argmin
hj

τ̂j
2
||dj − Ŵhj ||2 +

µ

2
‖hj‖1, j ∈ J . (16)

The estimation of factors q(hj), j ∈ J and q(w) are
then done iteratively until convergence. This will lead to
the maximization of the marginalized lower bound in (11).
Expressions (15) and (16) coincide with those obtained in
[13]. A distributed solution to optimization (15) can be found
using the ADMM algorithm [14], while (16) is a least abso-
lute shrinkage and selection operator (LASSO) problem that
can be solved individually by each agent, as was proposed in
[13].

Constraining the variational factors in (12) to Dirac dis-
tributions does simplify numerical evaluation of the varia-
tional bound, yet it unnecessarily simplifies the variational
approximation. In the following, we propose a more com-
plete treatment of the inference problem with non-degenerate
variational factors. Moreover, we include the estimation of
q(αj), q(τj), j ∈ J , and q(λw) into the algorithms.

III. BLIND SEISMIC DECONVOLUTION USING SPARSE
BAYESIAN LEARNING
We will begin by specifying the model for the sparsity
inducing prior p(hj), j ∈ J . Here we will follow a Sparse
Bayesian Learning (SBL) approach, where we select

p(hj |αj) =

LR∏
i=1

N(hi,j |0, α−1i,j ) (17)

with αj = [α1,j , . . . , αLR,j ]
T. Note that in contrast to

(10), here αj are precisions rather than variance parameters;
within SBL they are referred to as sparsity parameters. As a
mixing density p(αj), j ∈ J , SBL selects a Gamma prior
[8], [9]:

p(αj) =

LR∏
i=1

p(αi,j) =

LR∏
i=1

Ga(αi,j ; aj , bj), j ∈ J . (18)

Note that for each agent j ∈ J there is a single scale
parameter aj and a rate parameter bj that define the prior
p(αj). Such formulation leads to p(hj), j ∈ J , being
Student’s t-distributed [8], [9].

Although in general we can again follow a Type-I approach
and marginalize the posterior over A, as we did before, this
will lead to an intractable variational inference. Instead, a
Type-II approach, where parameters A are treated as un-
known random variables and estimated alongside the other
parameters, is computationally simpler, and thus marginal-
ization is done implicitly. The same approach was also
proposed for images in [10].

We will now constrain individual factors in (9) to paramet-
ric pdfs to cast variational optimization into a parametric one.
To this end we select

q(hj) = N(hj |ĥj , Ŝhj ), j ∈ J , (19a)

q(τj) = Ga(τj |ŝj , t̂j), j ∈ J , (19b)

q(αj) =

LR∏
i=1

Ga(αi,j |âi,j , b̂i,j), j ∈ J , (19c)

q(λw) = Ga(λw|ĉ, d̂), (19d)
q(w) = δŵ(w), (19e)

where δŵ(w) is a Dirac measure with a support ŵ on the
RLW -dimensional domain of wavelets. Note that in contrast
to all other factors, q(w) is selected as a degenerated density,
despite the fact that it is not difficult to show that the posterior
for the wavelet is Gaussian and thus an optimal variational
factor q(w) should be Gaussian as well. Yet since computa-
tion of this factor requires decentralized processing, it would
imply communication of both mean and covariance matrix of
q(w), which in general grows as O(LW

2). By constraining
this factor to a set of Dirac measures, we thus ignore the
impact of wavelet estimation uncertainty on the inference of
other parameters and resort to a maximum a posteriori (MAP)
estimation of its value. This reduces the communication
load on the network as only the support ŵ needs to be
communicated. This leads to anO(LW) communication load.
Additionally, this simplifies the evaluation of the bound in
(8).

Now, the inference of factors (9) is done in sequential
fashion, one factor at a time, with each factor selected so as
to maximize the bound in (8) until convergence.

A. ESTIMATION OF q(w)

We begin with estimating the wavelet factor q(w). Evaluating
(14) with variational factors (19a), (19b) and (19d) (see also
Appendix A-A) we find that the divergence KL(q(w)||p̃(w))
in (13) is minimized when support ŵ of q(w) is found as a
solution to the optimization problem

ŵ = argmin
w

J∑
j=1

τ̂j
2

(
||dj − Ĥjw||2 + ‖w‖2

Ω̂j

)
+
λ̂w
2
‖w‖2 (20)

VOLUME 0, 2016 5



Shutin, Shin: Variational Bayesian Learning for Decentralized Blind Deconvolution of Seismic Signals Over Sensor Networks

Observe now that the matrix Ω̂j (see (48) in Appendix A-A)
appears due to uncertainty in the reflectivity estimate q(hj),
specifically, due to its covariance Ŝhj . This uncertainty has
an additional “smoothing” effect on the optimization (20) in
terms of a weighted `2 norm of the wavelet estimate. Due
to the quadratic form of (20), its solution is then readily
obtained as

ŵ =

 J∑
j=1

τ̂jĤ
T

j Ĥj +

J∑
j=1

τ̂jΩ̂j + λ̂wI

−1 J∑
j=1

τ̂jĤ
T

j dj ,

(21)
from which the regularization effect of the reflectivity covari-
ance Ŝhj becomes apparent.

1) Distributed estimation of q(w)

As we see, the solution (21) requires cooperation between
J sensors. To find this solution in a distributed setting we
propose to use the ADMM algorithm [14], similar to that
used in [24].

Let us introduce a latent variable zj ∈ RLW at each
sensor j and reformulate optimization (20) as

min
{wj ,zj}Jj=1

1

2

J∑
j=1

τ̂j ||dj − Ĥjwj ||2 + zTj
(
τ̂jΩ̂j + λ̂wI

)
zj

s.t. wj = zi, ∀i ∈ Nj . (22)

Note that in (22) we added the constraint wj = zi, ∀i ∈
Nj that enforces a consensus solution for {wj}j∈J over the
whole network. Hence, all estimates {wj}j∈J will converge
to the same solution, i.e., the solution of (20). Applying the
ADMM algorithm to problem (22) we obtain the following
iterative update equations:

w
[k+1]
j = argmin

wj

{
τ̂j
2

∥∥∥dj − Ĥjwj

∥∥∥2 (23)

+
ρ

2

∑
i∈Nj

∥∥∥wj − z[k]i + u
[k]
ij

∥∥∥2}

z
[k+1]
j = argmin

zj

1

2

{
zTj

(
τ̂jΩ̂j + λ̂wI

)
zj

+
ρ

2

∑
i∈Nj

∥∥∥w[k+1]
j − zi + u

[k]
ij

∥∥∥2}

= argmin
zj

1

2

{
zTj

(
τ̂jΩ̂j + λ̂wI

)
zj (24)

+
ρ

2

∑
i∈Nj

∥∥∥w[k+1]
i − zj + u

[k]
ij |
∥∥∥2}

u
[k+1]
ij = u

[k]
ij +w

[k+1]
j − z[k+1]

i . (25)

In the above the variable u[k]
ij is a Lagrange multiplier orig-

inating from the employed consensus constraint and ρ is the

ADMM penalty parameter. Note that for the latent variable
zj , j ∈ J , in (24) we swapped the order of indices i and j in
the last term. This is valid since in the augmented Lagrangian
cost function we have a double summation over all receivers
j ∈ J . Therefore, swapping these indices only changes the
order of the summation, not the result. We do this in order
to allow for a minimization with respect to zj in closed form.
Solving (23)-(24) we finally obtain

w
[k+1]
j =

(
τ̂jĤ

T

j Ĥj + ρ|Nj |I
)−1
×τ̂jĤT

j dj + ρ
∑
i∈Nj

z
[k]
i − u

[k]
ij

 (26a)

z
[k+1]
j =

(
τjΩ̂j + (λ̂w + ρ|Nj |)I

)−1
×ρ ∑

i∈Nj

(
w

[k+1]
i + u

[k]
ij

) , (26b)

u
[k+1]
ij = u

[k]
ij +w

[k+1]
j − z[k+1]

i . (26c)

Above equations enable a distributed estimation of the
wavelet w at each sensor j in the network. To this end, each
sensor needs to exchange variables w[k]

j , z
[k]
j and u[k]

ij with
its neighboring sensors in Nj \ {j}. All other quantities are
available for each sensor j.

B. ESTIMATION OF q(λw)

With the factor q(λw) we proceed in a similar fash-
ion and reformulate the bound (8) as log p(D) ≥
Eq(λw) {log p̃(λw)/q(λw)} where (see also Appendix A-B)

log p̃(λw) ∝e E
q(H)q(w)q(T )q(A)

{log p(D,w,H, λw, T ,A)}

∝e E
q(w)
{p(w|λw)p(λw)} . (27)

Computing the expectation in (27) we find that

log p̃(λw) ∝e

(
LW

2
+ c− 1

)
log(λw)− ‖ŵ‖

2 + 2d

2
λw.(28)

Now, q(λw) is found so as to minimize the Kullback-Leibler
divergence KL(q(λw)||p̃(λw)).

Inspecting (28) we notice that its right-hand side coincides
with the logarithms of a Gamma pdf. As such, by selecting
the parameters ĉ and d̂ of q(λw) as

ĉ =
LW

2
+ c and d̂ =

1

2
‖ŵ‖2 + d (29)

we ensure KL(q(λw)||p̃(λw)) = 0. From the properties of
the Gamma distribution we can also compute the mean λ̂w of
q(λw) as

λ̂w =
ĉ

d̂
=

LW + 2c

‖ŵ‖2 + 2d
. (30)

Note, that once support ŵ of q(w) becomes known to the
sensors, (29) can be computed “locally”, i.e., no cooperation
is required for this computation.
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C. ESTIMATION OF q(τj)
With q(τj) we proceed in a similar fashion and simplify (8)
as log p(D) ≥ Eq(τj) {log p̃(τj)/q(τj)} where

log p̃(τj) ∝e E
q(H)q(w)q(T )q(A)

{log p(D,w,H, λw, T ,A)}

∝e E
q(w)q(H)q(T \{τj})

{log p(D|w,H, T )p(τj)} . (31)

Using the fact that the likelihood p(D|ŵ,H, T ) can be
factored as p(D|ŵ,H, T ) =

∏J
j=1 p(dj |ŵ, ĥj , τj), we can

evaluate (31) using the same steps as for the factor q(λw) (see
Appendix A-B). As a result,

log p̃(τj) ∝e

(
LW + LR − 1

2
+ sj − 1

)
log τj (32)

−
(

1

2
‖dj − Ĥjŵ‖2 +

1

2
ŵTΩ̂jŵ + tj

)
τj .

Expression (32) is similar in its structure to p̃(λw) in (28):
it is the logarithm of a Gamma pdf. Therefore, by selecting
parameters ŝj and t̂j of q(τj) as

ŝj =
LW + LR − 1

2
+ sj and (33a)

t̂j =
1

2
‖dj − Ĥjŵ‖2 +

1

2
tr{ŜhjŴ

T
Ŵ }+ tj (33b)

we will ensure that KL(q(τj)||p̃(τj)) = 0. The mean τ̂j of
q(τj) used in, e.g., (21), can then be computed as

τ̂j =
ŝj

t̂j
=

LW + LR − 1 + 2sj

‖dj − Ĥjŵ‖2 + tr{ŜhjŴ
T
Ŵ }+ 2tj

.

(34)
Again, similarly to the estimation of q(λw) we see that
once support ŵ of q(w) becomes known to each sensor j,
computing (33) does not require cooperation.

D. ESTIMATION OF q(hj) AND q(αj)

Following similar steps we can now estimate factors q(hj)
and q(αj) by optimizing bounds

log p(D) ≥ E
q(hj)

{log p̃(hj)/q(hj)}

and
log p(D) ≥ E

q(αj)
{log p̃(αj)/q(αj)}

respectively, where

log p̃(hj) ∝e E
q(w)q(T )q(A)

{log p(D,w,H, λw, T ,A)}

∝e E
q(w)q(τj)q(αj)

{log p(dj |w,hj , τj)p(hj |αj)}

∝e log p(dj |ŵ,hj , τ̂j) + log p(hj |α̂j), (35)

α̂j = [α̂j,1, . . . , α̂j,LR ]T is the mean of q(αj), and

log p̃(αj) ∝e E
q(H)q(w)q(T )

{log p(D,w,H, λw, T ,A)}

∝e E
q(hj)

{log p(hj |αj)p(αj)} . (36)

From (35) we can see that since both p(dj |ŵ,hj , τ̂j) and
p(hj |α̂j) are Gaussian, log p̃(hj) must be quadratic in

hj . As such, p̃(hj) must be Gaussian. The optimal pdf
q(hj) that will minimize the Kullback-Leibler divergence
KL(q(hj)||p̃(hj)) should thus be selected so that its mo-
ments coincide with those of p̃(hj). These moments can
be found by computing the first and second derivative of
log p̃(hj) in (35) with respect to hj , which leads to

Ŝhj =
(
τ̂jŴ

T
Ŵ + Âj

)−1
, ĥj = τ̂jŜhjŴ

T
d̂j , (37)

where Âj = diag{α̂j,1, . . . , α̂j,LR}. Expression (37) can
be recognized as a regularized least squares estimate of
the reflectivity, with αj playing the role of regularization
parameters.

To compute q(αj) we evaluate the expectation in (36),
which results in

log p̃(αj) ∝e 1

2
log |Aj | −

1

2
ĥ
T

jAjĥj (38)

−1

2
trace

[
AjŜhj

]
+

LR∑
i=1

(aj − 1) logαi,j − bjαi,j

=

LR∑
i=1

(aj −
1

2
) logαi,j (39)

+

LR∑
i=1

1

2

(
[ĥj ]

2
i + [Ŝhj ]i,i + 2bj

)
αi,j

which can be recognized as a sum of logarithms of Gamma
pdfs with a shape parameter (aj + 1

2 ) and LR rate parameters
1
2

(
[ĥj ]

2
i + [Ŝhj ]i,i + 2bj

)
, i = 1, . . . , LR. Thus, optimal

q(αj) =
∏LR
i=1 q(αi,j) should be selected as a product of

Gamma distributions, with the shape and rate parameters of
each factor q(αi,j) set to

âi,j= aj +
1

2
and b̂i,j =

1

2
[ĥj ]

2
i +

1

2
[Ŝhj ]i,i + bj , (40)

respectively. Note that the mean of q(αi,j), i = 1, . . . , LR,
used in (37), is then computed as

α̂i,j =
âi,j

b̂i,j
. (41)

E. INITIALIZATION AND SUMMARY OF THE
ALGORITHM
Let us now discuss initialization of the proposed inference
scheme and summarize the overall algorithm structure. In the
following we will refer to the proposed blind deconvolution
algorithm with sparse Bayesian learning as VBI+SBL.

We begin with specifying the prior distributions p(λw),
p(αj) and p(τj), j ∈ J . For both p(αj), j ∈ J , and p(λw)
we use non-informative priors, i.e., we set aj = bj = 0,∀j ∈
J , i = 0, . . . , LR, and c = d = 0. However, in case of noise
prior p(τ̂j) we set non-zero values to parameters sj , tj ,∀j ∈
J . This is done to better account for the model mismatch in
the estimated wavelet ŵ in addition to additive measurement
noise nj , j ∈ J . We observed that this improves empir-
ical performance of the VBI+SBL deconvolution scheme,
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FIGURE 1: Gamma PDF.

as compared to a non-informative choice of p(τj), j ∈ J .
Figure 1 exemplary shows the Gamma pdf Ga(τj |sj , tj) for
different prior parameter values. In particular, the ratio sj/tj
determines the mean of the respective Gamma pdf and this
was used as a guiding rule to select appropriate parameter
values. Beside prior parameters, we also need to initialize the
variational factors in (19). We begin the iterative estimation
with a factor q(w), which implies that factors (19a)-(19d),
or rather their parameters, have to be specified. For the noise
precision and sparsity parameters we set, respectively, τ̂j = 1
and α̂j = 1,∀j ∈ J , where 1 is an all-one vector of an
appropriate dimension.

A bit more care is needed for initialization of factors q(hj),
j ∈ J . To obtain initial estimates of the reflectivities the
authors in [5] proposed to use a peak locator for each seismic
trace dj . Here we adopt the same approach and set means of
q(hj), j ∈ J , to estimated peak locations of corresponding
seismic traces. Note, however, that to obtain an appropriate
initial estimate of the reflectivities we need to take into
account the peak position of the wavelet w. Since the source
wavelet w is modeled as a causal FIR system, its peak does
not lie at the 0-th sample, but is delayed by lpeak samples.
Therefore, the peaks in the seismic trace dj are not aligned to
the original peak positions, but rather shifted by lpeak samples
as well. Hence, if we apply a peak locator on the seismic trace
dj the original peaks inhj will be shifted by lpeak in the initial
reflectivity estimate ĥj . This offset will eventually lead to a
corrupted wavelet estimate. To enable an appropriate wavelet
estimation, after applying the peak locator on the trace dj
the located peaks are shifted back in time by lpeak samples.
We agree that in reality this information needs to be appro-
priately estimated based on preliminary calibration studies.
For validation purposes, however, we assume that lpeak is
known perfectly. The initial estimate of each reflectivity is
then modified as follows:

ĥj ← [ĥj(lpeak), ĥj(1 + lpeak), . . . , ĥj(LR + lpeak)], (42)

where the last lpeak entries in ĥj are set to 0. Finally, we set
the initial covariance matrix of the reflectivities to Ŝhj = I

and Ω̂j = I .
We now summarize the key steps of the proposed dis-

tributed VBI+SBL blind deconvolution scheme in Algo-
rithm 1. As we see, it consists of two estimation stages: (i)
a wavelet estimation stage that is conducted in a cooperative
fashion by all sensors, and (ii) a reflectivity estimation stage
that is done locally at each sensor without data exchange.
Furthermore, note that the algorithm has inner and outer
iterations, which we index by superscripts [m],[n] and (k),
respectively. The outer iterations correspond to a cycle over
variational factors. The inner ones, on the other hand, are
iterative updates of some of these factors.

Algorithm 1 Distributed VBI + SBL Blind Deconvolution

Set ρ, c, d, aj , bj , sj , tj
Initialize α̂j , τ̂j , Ŝhj , Ω̂j

Initialize reflectivity ĥ
(0)

j via peak locator on dj
for k ← 1, . . . ,K do

Update convolution matrix Ĥj ,∀j ∈ J , using ĥ
(k−1)
j

for m← 0,M − 1 do . Distributed wavelet stage
u
[m+1]
ij ← (26c)
z
[m+1]
j ← (26b)
w

[m+1]
j ← (26a)

end for
w

(k)
j ← w

[M ]
j

Compute ĉ, d̂← (29) and λ̂w ← (30)
Compute noise precision τ̂j ← (34)
Update convolution matrix Ŵ j ,∀j ∈ J , using w(k)

j

for n← 0, N − 1 do . Local reflectivity stage
α̂i,j ← (41)

Ŝhj , ĥ
[n+1]

j ← (37)
end for
ĥ
(k)

j ← ĥ
[N ]

j

Compute matrix Ω̂j ← (48)
end for
return Estimated wavelet w(K)

j and reflectivity ĥ
(K)

j

IV. NUMERICAL RESULTS
A. SYNTHETIC REFLECTIVITIES
In the following, we evaluate the performance of the pro-
posed algorithm in numerical experiments using synthetic re-
flectivity data. To this end, we consider a network of J = 10
fixed sensors in a line topology where the outer sensors have
two neighbours and other sensors have from three to four
neighbors depending on the position in the line array. We use
synthetically constructed reflectivities to generate seismic
traces at the sensors at a sampling frequency of fs = 500 Hz.
As a source signal w we use a Ricker wavelet [25] with
dominant frequency fR = 40 Hz, phase shift of 30◦ and
duration TW = 0.1 s. Furthermore, we perturb the generated
measurements for each sensor with additive white Gaussian
noise with zero mean and variance σ2

j , j ∈ J . To assess the
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impact of noise we also define the signal-to-noise ratio (SNR)
as SNR = 10 log10

{
||sj ||2/

(
Lsσ

2
j

)}
, where sj ∈ RLs is

the noise-free seismic trace at sensor j. For each sensor j
we assume the same SNR conditions, i.e., SNRj = SNR,
∀j ∈ J . Also, we will average the performance of the
algorithms over 100 independent Monte Carlo runs to collect
statistics.

The generated true reflectivities are exemplified in Fig-
ure 2a together with corresponding seismic traces at SNR =
10 dB in Figure 2b.
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FIGURE 2: (a) Synthetic reflectivities and (b) example of
seismic traces at SNR = 10 dB.

As performance metric for the deconvolution algorithm,
we will consider two measures: the Pearson correlation coef-
ficient (PCC) and the earth mover’s distance (EMD) metrics
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SBL SNR-adapted ŵ
VBI+SBL

FIGURE 3: Reflectivity PCC performance of all schemes
averaged over 100 trials.
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VBI+SBL

FIGURE 4: Wavelet PCC performance of all schemes aver-
aged over 100 trials.

5 10 15 20

0.4

0.6

0.8

SNR in dB

PC
C

D-SBD
VBI+SBL

FIGURE 5: Reflectivity PCC performance of VBI+SBL and
D-SBD. For D-SBD the minimum and maximum achievable
PCC values depending on the `1 regularization parameter are
shown as shadowed region.

[26], [27]. For vectors x and x̂ from the same signal space,
the PCC is simply defined as PCC = |xTx̂|/ (||x|| · ||x̂||).
A PCC value close to one indicates a high similarity between
the two vectors; a value of 0 implies highest dissimilarity
(i.e., orthogonality) of vectors. However, since the PCC is
not explicitly taking into account the distance between cor-
rect and estimated peak location in the signal vectors, we
additionally employ the EMD metric, which is a discrete
version of the Kantorovich–Rubinstein metric for probability
distributions on metric spaces [28]. Since sparse vectors
can be regarded as distributions, EMD will thus quantify
similarity between sparse vectors more accurately.

In the implementation of the VBI+SBL algorithm we set
the ADMM penalty parameter for wavelet estimation to ρ =
15 and also set sj = 10, tj = 10,∀j ∈ J for the estimate
of the noise precision p(τj). We also assume K = 10 outer
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iterations and M = N = 10 inner iterations for the wavelet
estimation and reflectivity estimation each.

We will compare the proposed VBI+SBL to (i) a dis-
tributed sparse blind deconvolution (D-SBD) algorithm pro-
posed in [13], which uses LASSO for recovery of a sparse
signal, and (ii) sparse multichannel blind deconvolution using
spectral projected-gradient (SPG) in [5]. Additionally, we
include two further cases of the proposed deconvolution
using SBL into the analysis. For both cases, we substitute the
wavelet estimation with a fixed function. In the first case, we
use a wavelet that has been pre-estimated with the D-SBD at
the corresponding SNRs, termed SBL SNR-adapted ŵ in the
following comparisons. In the second case, we use a wavelet
estimate with a high PCC = 0.99. This approach we term
SBL fixed ŵ. This is done to test how sensitive the VBI+SBL
is to mismatches in the wavelet estimation.

Figure 3 shows the PCC performance of reflectivity esti-
mation as a function of SNR and in Figure 4 we show the cor-
responding PCC of the wavelet estimates. For D-SBD, the `1-
regularization parameter has been chosen such, that an over-
all good performance is achieved over the considered SNR
range. As we see, VBI+SBL outperforms both D-SBD and
SMBD-SPG in the middle to high SNR regime, but degrades
as SNR drops. Note that SBL learns optimal regularisation
with a factor q(αj), j ∈ J . As such, its reflectivity estimate
is adapted over SNRs. On the other hand, D-SBD employs
a LASSO estimator with a fixed regularization parameter for
the `1-norm and thus lacks the ability to adapt it to changing
SNR values. SMBD-SPG employs the spectral projected
gradient that adapts the sparsity threshold based on the noise
power. Nevertheless, we observe that it performs worse than
the other two methods despite the fact that it conducts the
deconvolution based on all the available network data at once
in a centralized manner. By fixing the wavelet estimate in
VBI+SBL, we see that performance of our proposed method
improves: for SBL SNR-adapted ŵ we observe performance
improvement in the middle-to-high SNR regime (see also
in Figure 4). For the case of a nearly “perfect” wavelet
estimate, VBI+SBL clearly outperforms D-SBD and SMBD-
SPG over the whole SNR region. This implies that VBI+SBL
is sensitive to a good choice of wavelet model w, yet it does
provide a more accurate sparsity estimate as compared to `1-
based optimization when the wavelet is accurately estimated.

Nonetheless, let us mention that the `1- regularization in
D-SBD algorithm has been optimized so that an overall good
performance is achieved. In Figure 5 we additionally show
the impact of this parameter on D-SBD performance. Specif-
ically, we show bounds of achievable PCC performance with
respect to variation of the regularization parameter. We can
observe that especially in the low SNR regime the PCC
performance of D-SBD varies significantly depending on the
choice of λ`1 . If λ`1 is selected without care, VBI+SBL
performs similar to the D-SBD also in the low SNR regime.

In terms of the EMD performance shown in Figure 6,
we can observe a similar behavior of the algorithms as
in Figure 3. However, in both cases with a pre-estimated
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FIGURE 6: EMD performance of reflectivity estimates for
all schemes averaged over 100 trials.
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FIGURE 7: EMD performance of VBI+SBL and D-SBD. For
D-SBD the minimum and maximum achievable PCC values
depending on the `1 regularization parameter are shown as
shadowed region.

wavelet used in VBI+SBL we see a performance increase
as compared to D-SBD at the considered SNR range. Fur-
thermore, for higher SNRs all SBL-based schemes outper-
form D-SBD and SMBD-SPG quite significantly. This again
indicates more accurate sparsity estimation results. Also,
note that both D-SBD and SMBD-SPG show a very flat
EMD performance especially in the high SNR regime where
SMBD-SPG outperforms D-SBD. Again here, the learning
ability of SBL becomes particularly apparent. If we include
maximum and minimum achievable EMD performance of D-
SBD depending on the `1 regularization parameter, we can
observe that the EMD varies significantly in the low SNR
regime (see Figure 7) and around SNR = 10 dB VBI+SBL
falls in the same performance region as D-SBD.
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FIGURE 8: Subsurface model with source and receivers
positioned on the surface as indicated by crosses.

B. SYNTHETIC DATA GENERATED WITH AN ACOUSTIC
WAVE EQUATION
Let us now consider the algorithm performance using data
generated based on a physical model of an acoustic wave
propagating in a medium. Specifically, we use an acoustic
wave equation to generate seismic measurements at the sen-
sors. The acoustic wave equation is given by

∂2

∂t2
u(x, t) = c(x)2∆u(x, t) + f(x, t) (43)

where u(x, t) is the acoustic pressure at position x and
time t, c(x) is the P -wave velocity in the medium and f(x, t)
is the source term. We solve (43) numerically using finite-
difference method with absorbing boundary conditions to
avoid reflections at the borders of the computational domain
[29]. The solution – the computed wave field u(x, t) – is then
sampled at the corresponding sensor positions xj , j ∈ J to
obtain the seismic measurements at the sensors. Note that
in this case the model (2) is only approximately valid, in
contrast to the previous simulation case; this implies a higher
model mismatch.

As subsurface we use a two-layer model in 2D with layer
depths d1 = 100 m, d2 = 200 m and wave velocities v1 =
1000 m/s, v2 = 1800 m/s, respectively. We assume J = 20
sensors uniformly spaced on a line over a length of 200 m. As
source term f(x, t) we choose a Ricker wavelet with fR =
20 Hz and phase shift of 30◦. We place the source on the
surface at the center of the sensor line array. The subsurface
model together with the source-receiver setup is depicted in
Figure 8.

Figure 9a shows the measured seismic traces at SNR =
20 dB as a function of the trace number, where we can clearly
see the arrival of the direct wave and the reflections from
the interface between the first and second layer. We apply
both VBI+SBL and D-SBD algorithms with K = 10 outer
iterations and M = N = 10 inner iterations for wavelet
and reflectivity estimation, respectively. Furthermore, for
VBI+SBL we set the ADMM penalty parameter for wavelet

estimation to ρ = 15 and set the parameters for the estimation
of p(τj) to sj = 10, tj = 50 for all sensors and for the
estimation of p(λw) to c = 1, d = 50. The deconvolution
results can be seen in Figure 9b and 9c. One can observe that
both SBL and D-SBD successfully recover the reflectivity
peaks at the corresponding arrival times. However, VBI+SBL
tends to obtain more distinct reflectivity peaks compared to
D-SBD. This can be attributed to a better EMD performance
of the proposed VBI+SBL algorithm. Especially in the range
of 0.3 s to 0.35 s VBI+SBL clearly recovers the significant
reflections from the first layer while suppressing unwanted
reflections in the measurement data. Figure 10 depicts the
same results but with wiggle plots instead of images. Here,
it can be more noticeably observed that VBI+SBL recovers a
cleaner structure of the seismic signal, as can be seen on the
zoomed portion of the reconstructed signal.

C. REAL SEISMIC DATA
For the last evaluation example, we use real seismic data
from a reflection survey provided by the National Petroleum
Reserve, Alaska (NPRA) Legacy Data Archive by USGS
(1976), Line ID 31-81 in SEG-Y format available at http:
//certmapper.cr.usgs.gov/data/apps/npra/. The data has been
recorded with a sampling frequency of 250 Hz. For our
purposes we use measurement data from 100 traces between
1 s and 1.6 s. For the geophone constellation we assume a line
array where each geophone has up to six connected neighbors
to each of its side. Again, we compare VBI+SBL to D-SBD.

For both VBI+SBL and D-SBD we employ K = 5 itera-
tions with M = N = 10 iterations for wavelet and reflec-
tivity estimation, respectively. Furthermore, for VBI+SBL
we set ρ = 1 and sj = 100, tj = 0, c = 1000, d = 0.
These parameter settings were found to give a satisfactory
deconvolution result. The original real seismic data and the
deconvolved results by D-SBD and VBI+SBL can be seen
in Figure 11. For both D-SBD and VBI+SBL one can ob-
serve clear deblurring and removal of ringing artifacts of
the recorded seismic data. In particular, VBI+SBL obtains
a much cleaner image with sharper features compared to D-
SBD. This observation coincides with the spikier deconvolu-
tion result of VBI+SBL seen in Section IV-B. These results
show that VBI+SBL provides satisfactory results also for
data from real seismic surveys.

V. CONCLUSION AND FUTURE WORK
This paper presents a distributed probabilistic framework
for blind deconvolution of seismic signals under sparsity
constraints. The probabilistic formulation of the inference
problem allows applying a variational Bayesian inference
to efficiently approximate the posterior distribution of the
parameters of interest, thus accounting for uncertainty of
parameter estimates. Depending on a particular choice of
variational factors an instance of the distributed sparse blind
deconvolution (D-SBD) algorithm, proposed in [13], can
be obtained. Furthermore, the variational formulation also
allows for extending the algorithm with an automatic choice
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(c) VBI+SBL
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FIGURE 9: Image of (a) measured seismic traces at SNR = 20 dB, (b) estimated reflectivities by D-SBD and (c) estimated
reflectivities by VBI+SBL after K = 10 iterations.
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FIGURE 10: Wiggle plots of (a) measured seismic traces at SNR = 20 dB(b) estimated reflectivities by D-SBD and (c)
estimated reflectivities by VBI+SBL after K = 10 iterations.

of regularization factors that are learned using empirical
Bayesian method along with the other parameters within the
estimation framework. This represents an extension of the
previous method. Specifically, (i) instead of `1-penalization
used in [13] we apply sparse Bayesian learning for a sparse
reconstruction of the reflectivity profile, (ii) we learn un-
known additive noise variances at sensors, and (iii) adaptively
regularize wavelet estimation using a probabilistic version of
ridge regression.

The estimation algorithm includes two key steps repeated
iteratively. The first step is a distributed wavelet estima-

tion, which is done cooperatively over the network of sen-
sors/agents using the ADMM algorithm. In the second step,
the reflectivity profiles of the subsurface are estimated locally
based on the estimate of the wavelet; this computation step
does not require any cooperation.

For performance evaluation we compared the proposed
VBI+SBL algorithm with D-SBD and SMBD-SPG using
Pearson correlation coefficient (PCC) and earth mover’s dis-
tance (EMD) metrics for estimated wavelet and reflectivity
signals. The analysis of the methods in simulated environ-
ments have shown that the VBI+SBL learning scheme, which
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100 120 140 160 180 200

1

1.1

1.2

1.3

1.4

1.5

1.6

Trace no.

Ti
m

e
in

s

−0.2

−0.1

0

0.1

0.2

FIGURE 11: Image of (a) measured seismic traces from reflectivity survey, (b) estimated reflectivities by D-SBD and (c)
estimated reflectivities by VBI+SBL.

includes estimation of both wavelet and reflectivity signals,
as well as regularization parameters performs well in the
middle to high SNR regime. In the low SNR regime the
coupled estimation of wavelet and reflectivities apparently
leads to a propagation of estimation errors between these
two stages, which degrades the deconvolution performance.
Although, in our evaluations the D-SBD algorithm was found
to perform better in the low SNR regime, it requires manual
tuning of regularization parameters which is not necessary
for VBL+SBL. When not selected properly, D-SBD and
VBI+SBL can perform similarly in the low SNR regime.
Furthermore, for D-SBD the EMD metric flattens out in
the high SNR regime, which indicates that further, more
precise tuning of regularization parameters is needed. In case
of VBI+SBL this is not observed, since the parameters are
automatically tuned.

Furthermore, we also used synthetic seismic data gen-
erated by solving the acoustic wave equation. This pro-
duces more realistic testing data, yet at the same time the
data generated in this way does not exactly follow the
signal model used for deconvolution. In general, we see
that both methods produce an acceptable performance, with
VBI+SBL resulting in more accurate signal sparsity. How-
ever, VBI+SBL seems to be more sensitive to the model
mismatches. This can be explained by a higher number of
available degrees of freedom and higher nonlinearity/non-
convexity of the optimization problem. This consecutively
leads to a higher sensitivity in the algorithm initialization.
Additionally, we tested VBI+SBL with real seismic data
obtained in a reflectivity survey. Compared to D-SBD our
proposed method achieves a sharper reflectivity image with
higher amplitudes showing the effectiveness of SBL for the
reflectivity estimation. Furthermore, ringing effects from the

original measurement data are successfully removed. Hence,
also for the decentralized blind deconvolution of real seismic
data the VBI+SBL provides a satisfactory solution.

Finally, we conclude that in practice it seems reasonable
to combine D-SBD and VBI+SBL, where the former can
provide an initialization, while our proposed algorithm can
be used to fine-tune signal estimates. For future work, we
will investigate such combination in more detail.

.

APPENDIX A COMPUTATION OF THE VARIATION
LOWER BOUNDS
To evaluate the variational bound (8) we compute
log p(D,w,H, λw, T ,A) and ignore constant terms.

log p(D,w,H, λw, T ,A) = const+ (44)
LW

2
log λw −

1

2
λw‖w‖2 + (c− 1) log(λw)− dλw

+
∑
j∈J

[LW + LR − 1

2
log τj −

1

2
τj‖dj − hj ∗w‖2

−1

2
hT
jAjhj + (sj − 1) log τj − tjτj

+

LR∑
i=1

1

2
logαi,j + (aj − 1) logαi,j − bjαi,j

]
To evaluate the variational lower bound, the expectation

of (44) is evaluated with respect to the Markov Blanket [16]
of the variable being estimated, as will be detailed in the
following.

A. VARIATION LOWER BOUND WITH RESPECT TO q(w)

For estimation of q(w) we need to evaluate (14). By inserting
(6) into (44) and retaining the terms that depend on w we
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obtain

log p̃(w) ∝e const−1

2
E

q(λw)
{λw} ‖w‖2 (45)

−1

2

∑
j∈J

E
q(τj)
{τj} E

q(hj)

{
‖dj − hj ∗w‖2

}
Since q(λw) and q(τj), j ∈ J , are selected as Gamma
distributions, we can compute

E
q(λw)

{λw} =
ĉ

d̂
= λ̂w, and E

q(τj)
{τj} =

ŝj

t̂j
= τ̂j , j ∈ J ,

(46)

which follows from the properties of Gamma pdfs. Now, let
us compute Eq(hj)

{
‖dj − hj ∗w‖2

}
. First we note that

E
q(hj)

{
‖dj − hj ∗w‖2

}
=

E
q(hj)

{
LR+LW−2∑

l=0

(
dj [l]−

LW−1∑
ν=0

w[ν]hj [l − ν]
)2}

(47)

Expanding the square and computing the expectations we
find that

E
q(hj)

{
‖dj − hj ∗w‖2

}
= ‖dj‖2 − 2dTj ĥj ∗w+

LR+LW−2∑
l=0

LW−1∑
ν=0

LW−1∑
r=0

w[ν]w[r] E
q(hj)

{hj [l − ν]hj [l − r]}

where the expectation in the latter expression can be com-
puted as

E
q(hj)

{hj [l − ν]hj [l − r]} = ĥj [l−ν]ĥj [l−r]+[Shj ]l−ν,l−r

Finally, we can compute

E
q(hj)

{
‖dj − hj ∗w‖2

}
= ‖dj − ĥj ∗w‖2

+

LW−1∑
ν=0

LW−1∑
r=0

w[ν]w[r]

LR+LW−2∑
l=0

[Shj ]l−ν,l−r

By introducing a matrix Ω̂j with ν, r-th element defined as

[Ω̂j ]ν,r =

LW+LR−2∑
l=0

{
[Ŝhj ]l−ν,l−r

0 ≤ l − ν,
l − r ≤ LR − 1

0 otherwise
(48)

we finally obtain

log p̃(w) ∝e−1

2
λ̂w‖w‖2 −

∑
j∈J

τ̂j
2
‖dj − ĥj ∗w‖2

−
∑
j∈J

τ̂j
2
wTΩ̂jw. (49)

B. VARIATION LOWER BOUND WITH RESPECT TO
q(λw)

For estimation of q(λw) we evaluate (27). After inserting (6)
into (44) and retaining the terms depending on λw we obtain

log p̃(w) ∝e LW

2
log λw −

1

2
λw E

q(w)

{
‖w‖2

}
(50)

+(c− 1) log(λw)− dλw
By noting that Eq(w)

{
‖w‖2

}
= ‖ŵ‖2 we obtain

log p̃(w) ∝e

(
LW

2
+ c− 1

)
log λw −

(
1

2
‖ŵ‖2 + d

)
λw
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