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Analyzing the Performance Limits of Articulated
Soft Robots based on the ESPi Framework:

Applications to Damping and Impedance Control
Manuel Keppler1, Florian Loeffl1, David Wandinger1, and Clara Raschel1, and Christian Ott1

Abstract—In situations of harsh impacts, damping injection
directly on the link of an articulated soft robot is challenging and
usually requires high actuator torques at the moment of impact.
In this work, we discuss the underlying reasons and analyze
the performance limitations arising in the implementation of
basic impedance elements, such as springs and dampers, through
the elastic structure preserving impedance (ESPi) control frame-
work. Using the insights obtained, we present a way to design
impedance controllers with a damping design based on dynamic
extensions. Inspired by the design of shock absorbers and the
muscle-tendon model, the presented damping layout requires sub-
stantially smaller actuator torques in situations where the robot
is subject to harsh impacts. The implementation is facilitated
through the ESPi control framework resulting in a physically
intuitive impedance design. The resulting closed-loop system can
be interpreted as an interconnection of passive Euler Lagrange
systems, which again, yields a passive system. The design’s passive
nature ensures stability in the free motion case and enables the
robot to interact robustly and safely with its environment. The
work focuses on robotic systems with no inertial coupling between
the motor and link dynamics. Experimental results, obtained with
the presented design on a dedicated series elastic actuator (SEA)
test bed, are reported and discussed.

Index Terms—Compliance and Impedance Control, Compliant
Joints and Mechanisms

I. INTRODUCTION

THE safe and controlled interaction of a robotic system
with its environment plays an ever-increasing role. As

pointed out by Hogan [1], classic position and force control are
inadequate for physical interaction tasks since they are insuf-
ficient to control the work exchanged between a manipulator
and its environment. In contrast, impedance-based techniques
focusing on the mechanical energy exchanged between a robot
and its environment, are excellent candidates when interaction
with the physical world is at the center. They enable to
modulate and control the dynamic behavior of the robot while
simultaneously commanding a desired position.

In [2], we introduced the elastic structure preserving
impedance (ESPi) framework that enables the direct adoption
of impedance control techniques to underactuated articulated
soft robots (ASRs) [3]–[6]. This adoption is facilitated by
establishing a link-side power port, (ū1, q̇u), that contains a
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virtual link-side control input, ū1, at the non collocated output
(link position), q̇u. Experimental results are reported in [2], [7]
and shown here: https://youtu.be/sbhiNNIxMNQ.

Situations may arise, however, where an ASR is subject
to hard and/or fast impacts, and in these scenarios, the im-
plementation of a damping term directly on the link can be
challenging since the actuators easily run into torque satura-
tions at the moment of impact. Motivated by this observation,
we analyze the performance limits of ASRs concerning the
implementation of basic impedance elements such as springs
and dampers through the ESPi framework. Based on the
insights gained, we present enhanced damping designs, based
on dynamic extensions, which significantly reduce the risk
of input saturation in the moment of a harsh impact. The
inspiration for these damping designs was drawn from shock
absorbers and the muscle-tendon system, which are required
to showcase a smooth force variation at the moment of
impact. Dynamic extension is a familiar concept in control.
In [8]–[10] dynamic extensions were used to create artificial
damping without the need for velocity measurements. Further,
[9], [10] report elegant solutions to deal with actuator torque
limits. However, such dynamic extensions have not yet been
used in the context of enhancing the damping behavior of
an ASR. In fact, the gain design required for our purpose is
diametrical to what is recommended in [10], [11]. Roughly
speaking, in [9], [10], and for the implementation of ,,dirty
derivatives” (filtered derivatives) [8], the spring that decouples
the damper is usually chosen as stiff as possible. However,
for reducing the control effort during impacts the opposite
is favorable as argued in this work. The work [12] reports
a tracking controller for ASRs using a filtered derivative to
avoid feedback of the link jerk signals. In contrast to [12],
the proposed controllers preserve the intrinsic system structure
and result in a physically intuitive closed-loop behavior. In
fact, the resulting closed-loop systems can be interpreted as
the negative feedback interconnection of two passive Euler
Lagrange systems, which again, results in a passive system. A
physically motivated design allows the operator to anticipate
the robot’s interaction behavior with the environment (i.e.
another physical system). Loosely speaking, the interaction
between two physical systems that are visualizable in terms of
basic mechanical elements (springs, masses, dampers), is eas-
ier to comprehend and anticipate than the interaction between a
set of differential equations and the environment. This fact can
hardly be overestimated when it comes to the commissioning
stage since physical intuition is of immense value for tuning
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the controller. In addition, having a physically intuitive closed-
loop behavior provides—to some extent—a feeling for the
extent of system shaping imposed by a particular controller
choice. The concept imposes no limitations on the achievable
closed-loop stiffness and, in particular, it can be increased
above the system’s intrinsic stiffness. However, on a real
system with motor saturation, limits obviously exist.

The paper is organized as follows. In Section II, we establish
a link-side interconnection port. Section III discusses the
challenges of link-side damping injection. In Section IV, we
analyze the performance limits of ASRs based on the ESPi
framework. Based on the insights, enhanced damping designs
are presented in Section V. Section VI concludes this work
with a presentation and discussion of experimental results that
have been obtained on a SEA test bed.

A. Model Assumptions

Throughout this work, we consider ASRs satisfying the
assumptions introduced in [13], i.e. the angular part of the
kinetic energy of each rotor can be considered due only to its
own rotation. Let q ≜

[
qT
u, q

T
a

]T
, qu, qa ∈ Rn be the general-

ized coordinates representing the unactuated link and actuated
motor angles, respectively.1 The control inputs are the actuator
torques u ∈ Rn. The kinetic and potential energies are given
by T (qu, q̇) ≜ 1

2 q̇
TM(qu)q̇ and V(q) ≜ 1

2q
TKq + Vg(qu),

with symmetric and positive definite stiffness and generalized
inertia matrices

K ≜

[
K −K
−K K

]
, M(qu) ≜

[
M(qu) 0

0 B

]
,

where M(qu) is the generalized link-side inertia matrix,
B = diag(b1, . . . , bn) is a constant diagonal matrix of the
reflected motor inertias, K = diag(k1, . . . , kn) is a con-
stant diagonal matrix containing the joint stiffness values and
Vg(qu) is the gravitational potential energy. The total energy
is given by:

H = 1
2 q̇

TM(qu)q̇ +
1
2q

TKq + Vg(qu) (1)

Assuming external generalized forces Q ≜
[
QT

1,QT
2

]T
,

Q1,Q2 ∈ Rn, the corresponding equations of motion are:

Σq : M(qu)q̈ + C(qu, q̇u)q̇ +Kq +G(qu) =

[
0
u

]
+Q, (2)

with G(qu) ≜
[
g(qu)

T,0
]T

=
∂Vg(qu)

∂q and the
Coriolis/centrifugal matrix C(qu, q̇u) ≜ diag(C(qu, q̇u),0),
which is formulated such that the skew-symmetry
Ṁ(qu) = C(qu, q̇u) + C(qu, q̇u)T holds [14], [15]. For
the generalized elastic forces, we use the abbreviation
ψ(q) =K(qa − qu). It is well known that ASRs define a
passive operator from the applied actuator torques to motor
shaft velocities, though it is not passive from the applied
actuator torques to the link velocities [16].

1Throughout the text, the following indices are used: u . . .unactuated,
a . . .actuated, v . . . virtual, c . . . controller states due to dynamic extension.

II. SHAPING THE INTERACTION WITH THE PHYSICAL
WORLD

The ESPi framework [7] allows us to establish a link-side
interconnection port which will play a central role for the
implementation of impedance control concepts throughout this
work. Introducing virtual motor coordinates qv ∈ Rn and
virtual inputs ū1, ū2 ∈ Rn such that

qa =qv +K
−1ū1, (3)

u =BK−1 ¨̄u1 + ū1 + ū2, (4)

and applying these two transformations to system Σq yields:

Σq̄ : M(qu)¨̄q + C(qu, q̇u) ˙̄q +Kq̄ +G(qu) = ū+Q, (5)

with the new generalized coordinates q̄ ≜ [qT
u, q

T
v ]

T and
input vector ū ≜ [ūT

1, ū
T
2]

T. We refrain from providing an
extensive proof, since (5) is a direct result of applying the
methodology introduced in [7] for the special case of linear
springs (replace n in eq. (13) of [7] with ū1). It is also
straightforward to confirm by substituting (3)–(4) into (2) and
observing the equivalence with (5). Comparing (2) with (5), it
is clear that both equations of motion are characterized by the
same Lagrangian L, and thus the structure of the equations of
motion is entirely preserved under the transforming equations
(3) and (4). The only difference being: for Σq̄ the Lagrangian
is evaluated in terms of the q̄’s, whereas for Σq the Lagrangian
is evaluated in terms of the q’s. Figure 1 compares the original
and the transformed system. Intuitively, we can think of the
virtual motor coordinates qv being formed by shifting the
original motor coordinates qa. The magnitude of this shift
is direct proportional to the input ū1 with the factor of
proportionality being the joint compliance K−1. Note that
(3)–(4) comprise n independent2 scalar equations each since,
both, the stiffness and motor inertia matrix are diagonal. The
following assumption guarantees boundedness of u.

Assumption 1. The virtual link-side inputs ū1 are sufficiently
smooth such that ˙̄u1 exists and that ¨̄u1 is bounded.

Remark. The smoothness constraint on the virtual input de-
fined in Assumption 1 is not specific to the ESPi framework,
indeed, it is a manifestation of the physical fact that the
link-side torque bandwidth of ASRs is fundamentally reduced
compared to directly actuated systems.

A closer examination of the input transformation (4) reveals
an interesting connection to the natural frequencies of the
individual mass-spring systems which are constituted by the
motor inertias and joint springs. Introducing ωn,i ≜

√
ki/bi,

allows us to rewrite the input transformation (4) as:

u = Ω−2 ¨̄u1 + ū1 + ū2, (6)

with Ω−2 ≜ BK−1 = diag(ω−2
n,1, . . . , ω

−2
n,n). The input

transformation (4) has important implications for the design
of elastic robots, since it reveals the fundamental connection
between the system’s inherent natural eigenfrequencies ωi and

2Independent in the sense that each of the n scalar state and input
transformation equations can be solved separately.
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Fig. 1. The structure of the original and the transformed system. The
controller interconnected with the physical system, realizes the interconnected
link- and motor-side impedances on the virtual system.

the achievable link-side torque control bandwidth. This matter
is discussed in detailed in Section IV.

The interaction of an ASR with its environment is char-
acterized by the way energy is exchanged. This energy ex-
change can be computed by taking the time derivative of
the robot’s total energy H. For the system Σq , we obtain
Ḣ(q, q̇) = q̇T

([
0, In

]T
u+Qext

)
and time integration from

0 to T establishes the key energy balance equation

H
(
q(T ), q̇(T )

)
−H

(
q(0), q̇(0)

)
=∫ T

0

(
q̇T
uQ1

)
ds︸ ︷︷ ︸

natural exchange

+

∫ T

0

q̇T
auds︸ ︷︷ ︸

supplied

. (7)

Proceeding mutatis mutandis for the virtual system Σq̄ , we
obtain Ḣ(q̄, ˙̄q) = ˙̄qT (ū+Qext) and

H
(
q̄(T ), ˙̄q(T )

)
−H

(
q̄(0), ˙̄q(0)

)
=∫ T

0

(
q̇T
uQ1

)
ds︸ ︷︷ ︸

natural exchange

+

∫ T

0

(
q̇T
uū1 + q̇

T
v ū2

)
ds︸ ︷︷ ︸

supplied

, (8)

respectively. In either case, we can identify two types of power
flows, see also Figure 1. The first terms on the RHS of (7) and
(8) denote the respective system’s natural exchange of energy
with its environment. The second term on the RHS represents
the artificial supply rate imposed by a particular controller. In
conclusion, the Hamiltonian H suits as a storage function to
show that Σq̄ defines a passive operator ū 7→ q̄. Critically,
the key port q̇T

uQ1 is preserved under the transformations
(3)–(4). From the physical point of view, this port behavior
determines the interaction behavior of the robot with its
environment. Exploiting the link-side interconnection port,
ū1, q̇u, to interconnect impedance elements, we can shape
the interaction behavior. Throughout this paper, Zu,i and Zv,i

denote impedances interconnected with the ith link and virtual
motor, respectively, c.f. Figure 1. The control structure that
results from such interconnections is shown in Figure 2.

An interesting aspect of impedance control is the superposi-
tion principle, which facilitates the understanding of complex
interconnected systems.

uū1

ū2

q̇u

−
+

d2

dt2

d
dt

Σ

q̇v

Zu,i

Zv,i

q̇a

Ω−2

rigid robot path

K−1

Fig. 2. Control structure for interconnecting an ASR with impedances.

III. CHALLENGES OF LINK-SIDE DAMPING INJECTION

In this section, we discuss the challenges regarding direct
link-side damping injection on ASR. Based on the insights ob-
tained, we formulate enhanced damping designs in Section IV.
The challenges arise from the fact that implementation of a
damping term, that acts directly on a link, requires feedback
of the link jerks. This fact is easily revealed within the ESPi
control framework. We can use input ū1 to interconnect a
viscous damper with each link

ū1,i = −dq,iq̇u,i, (9)

where dq,i is the damping coefficient for the ith link. Making
the substitutions (4) and (9), it is clear that the implementation
requires feedback of the jerk signals q

(3)
u,i . A fundamental

property of the model (2) is that these quantities can be
derived from the dynamics equations without numerical dif-
ferentiation, see Appendix. However, (15) reveals that the
link jerk magnitudes are related to the rate of change of the
external forces Q1 and, in fact, grow unbounded for impact
forces approaching a step-like variation. As a consequence,
the feedback of jerk signals can potentially lead to input
saturation during harsh impacts with the environment. Notice
that deactivation of active damping during impacts is no viable
option, as it would require non-smooth joint torque variations
which are physically impossible. Unless the system is at rest,
such switching would cause a non-smooth variation of ū1,
which would violate Assumption 1. What defines a harsh
impact? Let us assume a sine-like force excitation of constant
amplitude A and frequency ω on the ith joint of the form
Q1,i(t) = A sin(ωt), then the magnitude of Q̇1,i rises linearly
with ω. Hence, for the limit case ω → ∞, we have Q̇1,i → ∞
and, thus, q(3)u,i → ∞. In conclusion, in impact situations where
the impact force signal contains substantial high frequency
content, the implementation of direct link damping requires
large actuator torques. Note that jerk signals are contained
in the feedback terms ¨̄u1,i which are scaled with ω−2

n,i . We
conclude, the softer the joint, the harder the challenge of direct
damping injection on the links. In practice, the ”harshness”
of an impact depends significantly on the relative speed and
hardness of the collision partners.

It is important to notice that the challenge regarding link-
side damping injection does not arise from limitations of
the ESPi framework, we used for analysis here. In fact,
these limitations are a manifestation of the mechanical band-
width limitation of an elastic joint [3]. To support this
statement, let us consider one of the most straightforward
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ways to implement a link-side damping term of the form
(9). Implementation with a classic joint torque tracking con-
troller3 [17] u = Ω−2 ¨̄u1 + ū1 −Ω−2 (Deė+Kee) +Bq̈,
with e ≜ ψ − ū1, reveals the feedback necessity of the link
jerks through the same term, Ω−2 ¨̄u1, as the damping imple-
mentation via (4). We conclude, that in order to reduce the
actuator torque requirements in situations of harsh impacts,
we have to avoid link jerk signals in the feedback path.

IV. PERFORMANCE LIMITATIONS

Let us analyze the actuator torques required for intercon-
necting basic link impedances through the link-side port estab-
lished above. The insights obtained are crucial for the layout of
the enhanced damping designs presented in Section V. Since
the transformation equations (3) and (4) are constituted by n
independent scalar equations, the performance analysis for a
multi-joint manipulator can be conducted by analyzing each
joint individually. Setting ū2 = 0 and performing a Laplace
transform on the input transformation (4) yields:

Ui = Ūi +
(
ω−1
n,is

)2
Ūi, (10)

which expresses the ith motor torque in terms of the ith link-
side input. The first, Ūi, is the torque transmitted through the
elastic element to the link. The second,

(
ω−1
n,is

)2
Ūi, is the

torque required to accelerate the motor’s mass so as to track
the deformation of the elastic element [3]. Only the latter is
unique to elastic robots.

Ignoring motor velocity saturation, we can compute per-
formance limits by imposing a symmetric bound on the
magnitude of each actuator torque |ui| ≤ umax,i. Introducing

GESP,i(s) ≜
Ui(s)

Ūi(s)
= 1 + (ω−1

n,is)
2, (11)

which maps link-side torques to actuator torques, substituting
s = jω and analyzing its magnitude over ω, provides valuable
insight into the performance characteristics of an elastic joint,
see Figure 3 (top). Interestingly, the important performance
characteristic GESP,i is independent of the link inertias or
masses. Suppose, we want to interconnect a link impedance
Zu,i = Ūi/Vi with the ith link. Assuming that the environment
acts as an admittance and imposes a link velocity Vi on the
ith joint, then the corresponding control effort is determined
by:

Ui(s)

Vi(s)
= GESP,i(s)Zu,i(s). (12)

In comparison, the control effort for the rigid robot coun-
terpart4, to interconnect a link impedance Zu,i, is simply
given by Zu,i itself. Comparing (12) with Zu,i allows for the
following conclusion. In the frequency range 0 < ω <

√
2ωn,

where |GESP| < 1, the elastic system is superior to the rigid
counterpart, in the sense that it requires less control effort to
interconnect a link impedance Zu,i = Ūi/Vi on the ith link.

3Considering ū1 as the desired joint torque, the controller achieves global
asymptotic convergence ψ → ū1 for t → ∞.

4When speaking of the rigid robot counterpart, we refer to the limit case
where the joint stiffness values approach infinity.
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Fig. 3. Top: GESP maps the link side torques to the actuator torques. Mid–
bottom: Frequency responses of the control effort transfer functions GESPZu,i

and Zu,i, which map the ith link velocity to the ith control torque in case of
an ASR and rigid robot case, respectively. Mid: implementation of a linear
spring. Bottom: implementation of a linear spring and damper.

This property is independent of the particular link impedance
choice. This important fact becomes clear considering that the
multiplication of two transfer functions, c.f. (12), translates
into an addition of their magnitudes responses. A closer
inspection of GESP reveals that the superiority of the elastic
system is maximal for imposed link velocities with a frequency
of ω = ωn. For ω >

√
2ωn, the slope of |GESP| is 40

db/decade and, thus, the elastic system becomes vastly inferior
in this frequency range. It is for this reason, that in order
to maximize the operational frequency range of an elastic
system, it is paramount to minimize the amplitude of Zu,i

beyond
√
2ωn. This aspect is particularly important whenever

the environmental admittance imposes velocities with a high
frequency content on the ith link.

It is important to underline that the performance analysis
results obtained via the ESPi transformation are of general
nature and not specific to this particular framework. The 40 dB
rise, in the red zone of Figure 3, is a manifestation of the fact
that the joint elasticity acts as a low-pass filter on the actuator
output, as highlighted by Pratt in his fundamental work on
SEA [3].

A. Implementing Basic Impedance Elements

Let us compute the control effort required to interconnect
linear spring/damper elements to obtain further insights into
the performance limits of an ASR. For the ith motor iner-
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tia and joint stiffness, we assume the test bed parameters
reported in Table I. Suppose, we want to interconnect a
spring element, with spring constant kq,i, with the ith link,
then ū1,i = −kq,iqu,i and for the ith link impedance, we
have Zu,i = kq,i/s. The corresponding frequency responses
of GESP,iZu,i and Zu,i are reported in Figure 3 (mid) for
the stiffness values kq,i = {ki/2, ki, 2ki}. Doubling/halving
the stiffness kq,i translates into rising/lowering the magnitude
of GESP,iZu,i by 6 dB as indicated by the dashed lines. This
becomes immediately clear by inspecting the transfer function.
When implementing an additional damper dq,i = 2ξq

√
kibi,

where ξq denotes the damping ratio, then, according to the
superposition principle, we can simply add up the individual
impedances s.t. Zu,i = kq,i/s+ dq,i. The resulting frequency
responses of GESP,iZu,i and Zu,i are reported in Figure 3,
with ξq = 0.7 and kq,i = {ki/2, ki, 2ki} as above. Clearly,
the actuator torque required to implement an additional link-
side damper is significantly increased compared to a pure
spring implementation in the high frequency regime, where
the damper dominates over the spring. Again, the dashed lines
indicate a doubling/halving of the imposed stiffness kq,i (the
damping factors change accordingly). Inspecting the transfer
functions GESP,iZu,i and Zu,i, it is straightforward to verify
that doubling/halving the stiffness kq,i moves the magnitude
plots up/down by 6 dB in the low frequency domain (spring-
like behavior) and up/down by ±3 dB in the high frequency
domain (damper-like behavior), c.f. Figure 3.

V. IMPROVED DISTURBANCE REJECTION VIA DYNAMIC
EXTENSIONS

Building on the insights of the previous two sections,
we can formulate damping designs that reduce the control
effort in case of an environmental disturbance with high
frequency content. Inspired by the design of shock absorbers
and considering the observations above, it appears natural
to decouple the damper element with a spring-like element
to low-pass filter shock loads, thereby greatly reducing the
peaks of the interconnection torques ūi at the moment of
impact, see Figure 4 for examples. In fact, choosing a link
impedance Zui, with such a decoupled damper, reduces the
slope of |GESP,iZu,i| from 40 dB/dec to 20 dB/dec in the
high frequency regime ω >

√
2ωn,i, c.f. Figure 3 (mid) with

Figure 3 (bottom). This is a direct consequence of the fact that
the interconnection of such elements, via input ū1,i, no longer
requires velocity feedback. Consequently, the implementation
of (4) no longer requires the critical jerk signals. Impedance
elements Zu1 to Zu4 have in common that the damper is
decoupled via a spring element (orange), which results in
a dynamics extension with one (Variants 1 & 3) or two
additional states (Variants 2 & 4). Importantly, interconnecting
these elements via (4) results in a closed-loop system that can
be interpreted as an interconnection of passive Euler Lagrange
systems, which again, yields a passive system, see [18] for
details.

The dynamic extension Zu1 can be interpreted as the
mechanical realization of the popular ,,dirty derivatives” filter
[8], Zu2 has been initially introduced in [9], [10] and Zu3

qu qc qd

kc

Zu1 :

Zu2 :

Zu3 :

Zu4 :

mc

kref

dref

Zu0 :

ku

du

ku

du

ku

du

ku

du

kc

kc

kc
mc

Fig. 4. Mechanical impedance candidates that can be interconnected via
the link-side power port to achieve a desired interaction. For Variant 1, the
PD element is decoupled via an additional elastic element. In Variant 2, the
additional (small) mass guarantees that the dynamic extension represents an
actual physical system. Variants 3–4 differ in the sense that only the damper
is decoupled via an additional elastic element, thus, the stiffness is uniquely
determined by ku analog to kref of the reference impedance Zu0.

can be conceived as Hill’s muscle model [19]. However,
the motivations for these dynamic extensions were different,
and thus the recommended gain layouts differ. In case of
the dirty derivative filter, the gain kc is usually chosen as
high as possible with the intention of approximating the real
velocities reasonably well. In [10], [11] the gains are chosen
s.t. kc >> kq and mc << m, where m is the link inertia,
based on the intuitive reasoning that in this case the two masses
tend to become one and the ,,felt” stiffness will become kq
[10], [20]. In other words, the impedance behavior Zu,2 can be
well approximated by the black spring/damper part in Figure 4.
When it comes to reducing the actuator torque magnitudes in
the moment of a harsh impact, a diametrical layout is desirable.
Physical intuition suggests: the lower the coupling stiffness kc
the lower the required actuator torque magnitude.

VI. EXPERIMENTS

A dedicated single joint setup has been used to compare the
performance of the enhanced damping design Zu2 to the ,,stan-
dard” approach Zu0. Figure 5 shows the setup, which consists
of a DLR LWR III motor unit in series with a compliant
element from DLR C-Runner and a horizontally moving link.
The system’s dynamics is that of a single elastic joint with a
linear spring. To evaluate the closed-loop interaction behavior,
the link is equipped with a force sensor (ME KD40s). The link
and motor positions are measured with an optical Heidenhain
sensor (EBI1023 with 23 bit resolution) and the default LWR
III motor sensor. Velocity signals were computed with a
standard fourth-order derivative filter with a cut-off frequency
of 80Hz. Link acceleration and jerk signals were computed
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Fig. 5. Experimental setup.

TABLE I
SYSTEM AND CONTROL PARAMETERS

System parameters Force sensor/control parameters

Link inertia 1 kgm2 Sensor accuracy 0.1%
Motor inertia 0.6 kgm2 Sensor range ±500N
Joint stiffness 374Nmrad−1 Sensor sample rate 375Hz
Actuator limits ±100Nm Controller sample rate 3000Hz

as discussed in the Appendix. The test bed parameters are
summarized in Table I and the controller parameters are
reported in Table II. The virtual motor was interconnected
with a damper, ū2 = −dv q̇v , with dv = 2ξv

√
bk. A factor of

α = 1/5 in Table II indicates a reduction of the motor inertia
to one fifth of its original value. The motor inertia shaping em-
ployed is elaborated in [7]. The dynamic extension parameters
were computed with the optimization procedure presented in
[21]. The results obtained, c.f. Table II, minimize the H∞
norm of the disturbance transfer function U/Q1 under the
following constraint: the manipulator impedance, Q1/V , must
approximate the reference manipulator impedance defined by
the mass-spring-damper system Zref = ms+dref +kref/s with
a maximal deviation of ±6 dB, where m is the link inertia,
dref = 2ξv

√
bkref, kref =200Nmrad−1. The link impedance

obtained from this optimization is plotted in Figure 6 and the
parameters are reported in Table II. For comparison, Z∗

u2 with
the mass and stiffness ratios m/mc = 10 and k/kc = 10 used
by [10] is plotted as well. Clearly, the optimization results
deviate from the recommendation m >> mc and k >> kc
[10]. The reason for this deviation is intuitive, following the
arguments from Section V, we know that in order to reduce
the control effort the link impedance should fall after

√
2ωn.

The reason why it does not drop immediately after
√
2ωn is

due to the constraint that the resulting closed-loop behavior
must approximate the reference manipulator impedance within
±6 dB.
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Fig. 6. Frequency responses of the link-side impedance candidates.

TABLE II
CONTROLLER CONFIGURATIONS

Con- Link Motor α kref ku kc ξu ξv mc

troller Impedance [Nmrad−1] [kg]

ESPref Zu0 Zv 1 200 - - 0.7 0.3 -
ESP∗

ref Zu0 Zv 1/5 200 - - 0.7 0.3 -
ESP2 Zu2 Zv 1 - 273 745 0.7 0.3 0.39
ESP∗

2 Zu2 Zv 1/5 - 273 745 0.7 0.3 0.39
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Fig. 7. From top to bottom: frequency response of the manipulator impedance
Q1/V , the control efforts U/V and U/Q1.

In the following, three types of experiments are presented.
The first one is concerned with the identification of the closed-
loop manipulator impedance, Q1/V , and the control effort
transfer functions U/V and U/Q1, cf. (12). The second one
refers to the set-point regulation performance of the control
loops. The last one illustrates the performance of the schemes
in a basic manipulation task.

A. Experiment 1: Identification of Interaction Behavior

In this test, a 4 kg impactor generated a impulse-like
excitation of the link, which was followed by a frequency
analysis to obtain the frequency responses of the manipulator
impedance Q1/V , and the control efforts U/V and U/Q1, see
Figure 7 from top to bottom. Clearly, the resulting manipulator
impedances for ESP2 and ESP∗

2 satisfy the tuning goal of lying
within a ±6 dB band (green) of the reference impedance Zref
(dashed grey curve). Figure 7 further reveals the increase in
control effort due to motor inertia shaping.

The effect of the dynamic extension in reducing the control
effort in case of high frequency disturbances is clearly visible
in the critical frequency range (ω >

√
2ωn). As predicted by
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the performance analysis in Section IV, for controllers with
a direct damping injection, ESPref and ESP∗

ref, |U/V | exhibits
a slope of 40 dB/dec, whereas for controllers with indirect
damping injection, ESP2 and ESP∗

2, |U/V | exhibits a slope
of 20 dB/dec, see Figure 7 (mid). To check whether these
results transfer to the case of external forces Q1 as disturbance
input, we identified the frequency response that relates external
forces to the control effort, U/Q1, see Figure 7 (bottom).
Again, the structural difference between a direct damper and
a dynamically decoupled damper implementation is clearly
visible past ω =

√
2ωn.

B. Experiment 2: Set-Point Regulation

This experiment is concerned with the analysis of the step
response behavior and the results are reported in Figure 8.
The new controllers were evaluated without (blue curve)
and with motor inertia shaping (red curve). To eliminate
the (slight) overshooting of ESP2 and ESP⋆

2, we increased
the motor damping ratio to ξv = 0.4 for this experiment.
The performance of the motor PD controller demonstrates
the necessity for link-side damping for a system with low
intrinsic damping. The marginal steady state error is mostly
due to Coulomb friction acting on the link and the elastic
mechanism. The slight asymmetry of the steady state error
suggests a minor sensor calibration inaccuracy and/or some
hysteresis effect. The reduction of the motor inertia reduces
the overshooting as physical intuition suggests. Even though
link kinetic energy is dissipated only indirectly in the dynamic
extension case (underdamped closed-loop system), satisfactory
point regulation behaviors can be achieved.

C. Experiment 3: A Simple Manipulation Task

Figure 9 reports an experiment involving the interaction
of the link with the environment. The desired motion qd(t)
follows a sinusoidal trajectory, leading to an unplanned contact
with an obstacle. To analyze the worst case contact impact
scenario, the link was commanded to impact with a rigid
obstacle (end stop). Thus, both impact partners had negligible
intrinsic damping properties. The course of the real link
position indicates that a transition from a free-space motion
to a contact does not cause any stability issue. The energy
is properly dissipated and the system is stable in free motion
and passive during the entire motion. The total energy of the
physical and the virtual (closed-loop) system is reported in
Figure 9, cf. Hq and Hq̄ . In the latter case, the total energy can
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Fig. 9. Top: desired and real position of the link. Mid: real total energy and
virtual closed-loop energy. Bottom: measured and estimated external torques
Q1 and Q̂1, respectively.

be considered as a storage function for the respective closed-
loop system and was obtained by summing up all kinetic and
potential energies of the virtual system.

Remark. In general, no force sensors are implemented in
ASRs and in order to reflect a realistic scenario, we used a
momentum based observer [22] instead to estimate the external
force to compute link acceleration and jerk signals, via (14)
and (15) for experiment 3. The sensor was only used to report
the interaction force.

D. Monte-Carlo Simulation

This section reports a Monte Carlo simulation [23] to
evaluate the control system robustness with respect to pa-
rameter uncertainties. We simulated a single joint with the
plant parameters reported in Table I and considered the same
scenario as reported in Experiment 2, with the addition of
a step-like force disturbance of −11Nm at t = 2s. A
uniform probability density function models the parameter
uncertainties, with variations between ±5% of the nominal
values for the link and motor inertias, m and b, and ±10%
for the joint stiffness k, which is a very pessimistic uncertainty
set, c.f. [23]. The control parameters were set as reported in
Table II, with only ξq changed to 1 since the lack of link-
side friction in the simulation necessitates a higher damping
ratio to avoid overshooting. The result of 500 runs is plotted
in Figure 10. Analyzing the equilibrium conditions for the
nominal case, we have that q − qd = Q1/kr, where kr is the
resultant closed-loop stiffness, i.e. kref for ESPref,

(
1
ku

+ 1
kc

)−1

for ESP1–2, and ku for ESP3–4. Let us assume the model
parameters are not known exactly, and let m̂, b̂ and k̂ be the
estimates of m, b and k used for the controller implementation.
Introducing β ≜ k̂/k and analyzing the equilibrium conditions
gives the following relation for the deviation of the equilibrium
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position from the nominal one:

e =
Q1

kr

(
1− α

)(
1− β

)
, (13)

which matches the result from the Monte-Carlo simulation,
c.f. Figure 10. From (13), we observe that e is non-zero
only if α ̸= 1 and β ̸= 1. Uncertainties in either m or b
have no influence on the equilibrium position. The arguments
above are no substitute for an in-depth robustness analysis
of the proposed designs, and further investigations regarding
the stability of an n-DoF ASR in the presence of parameter
uncertainties are required in future work.

VII. CONCLUSION

Using the ESPi control framework for ASRs, we analyzed
the performance limits arising in the implementation of link-
side impedance elements and discussed the challenges con-
cerning link-side damping injection in impact scenarios. These
challenges are fundamentally linked to the feedback necessity
of the link jerks. Based on the insights obtained, we presented
impedance controllers with an enhanced damping design that
is based on dynamic extensions. These impedance controllers
require fundamentally smaller actuator torques at the moment
of impact. Experimental results confirm this favorable behavior
compared to classical impedance controllers with a direct
damping implementation. As demonstrated on a dedicated test
bed, the new impedance designs combine this advantage with
the set-point regulation performance of classical impedance
controllers. Since the presented impedance controllers are im-
plemented through the ESPi control framework, the system’s
intrinsic structure is preserved and the resulting closed-loop
dynamics are passive and physically intuitive.

APPENDIX

Using δ(q, q̇u) ≜ −C(qu, q̇u)q̇u − ∂V(q)
∂qu

+ Q1 and the
positive definiteness of M, we get obtain from (2) that

q̈u =M−1(qu)δ(q, q̇u). (14)

Deriving (14) w.r.t time yields an expression of the link jerks:

q(3)u =M−1(qu)δ̇(q, q̇u) + Ṁ(qu)δ(q, q̇u). (15)

We see that both the link accelerations and jerks can be written
as function of the system states. For the latter case, substitution
of (14) into (15) is required.
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