

EGU21-10996

https://doi.org/10.5194/egusphere-egu21-10996 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Quantification of lightning-produced NO_x over the Pyrenees by using different TROPOMI-NO₂ research products

Francisco Javier Perez-Invernon¹, Heidi Huntrieser¹, Thilo Erbertseder², Diego Loyola³, Pieter Valks³, Song Liu³, Dale Allen⁴, Kenneth Pickering⁴, Eric Bucsela⁵, Patrick Jöckel¹, Jos van Greffen⁶, Henk Eskes⁶, Sergio Soler⁷, and Francisco J. Gordillo-Vázquez⁷

¹Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Wessling, Germany (franciscojavier.perezinvernon@dlr.de)

Lightning discharges are one of the main sources of atmospheric NO_x , contributing about 10% of NO_x emissions globally and playing an important role for the concentration of ozone and other chemical species in the upper troposphere. Lightning produces between 2-8 Tg N per year globally (100-400 mol NO_x per flash). Reducing the uncertainty of the NO_x production by lightning and understanding the factors that influence this production is still a challenge.

The TROPOspheric Monitoring Instrument (TROPOMI) is orbiting the Earth from a near-polar, sunsynchronous orbit since October 2017. TROPOMI is equipped with four spectrometers that provide information about the chemical composition of the troposphere with unprecedented horizontal spatial resolutions of 3.5 x 7 km before 6 August 2019 and 3.5 x 5.5 km after that date. In this work, we combine the DLR-NO $_2$ research product, the DLR cloud operational product and the TROPOMI v2.1_test NO $_2$ product to estimate the production of NO $_x$ per flash (LNO $_x$). The v2.1_test NO $_2$ product contains more useful data pixels than the official offline v1.x data product, because of better treatment of saturation of the TROPOMI measurements (which occurs frequently over high bright clouds that are often linked with LNOx) and the use of an improved version of the FRESCO cloud algorithm.

We for the first time ever use these chemical measurements from TROPOMI combined with lightning radio measurements provided by the EUropean Cooperation for LIghtning Detection (EUCLID) and the Earth Network Total Lightning Network (ENTLN), together with lightning optical measurements provided by the space-based Lightning Imaging Sensor (LIS) to estimate the Detection Effiency (DE) of EUCLID and ENTLN. In addition, we use the ECHAM5/MESSy Atmospheric Chemistry (EMAC) simulations to calculate the air mass factor employed to convert tropospheric slant column of measured NO_2 to vertical column LNO $_{\mathrm{x}}$ and the winds provided by reanalysis data

²Deutsches Zentrum für Luft- und Raumfahrt, Deutsches Fernerkundungsdatenzentrum, Oberpfaffenhofen, Germany

³Deutches Zentrum für Luft- und Raumfahrt, Methodik der Fernerkundung, Oberpfaffenhofen, Germany

⁴University of Maryland, USA

⁵SRI International, USA

⁶Royal Netherlands Meteorological Institute, Netherlands

⁷Instituto de Astrofísica de Andalucía (IAA), CSIC, Granada, Spain

to eliminate the influence of upwind storms in the estimation of the background NO_x . Concentration.

We focus our analysis on different remote regions, where the background concentration of NO is relatively low. In particular, we focus our analysis on 11 thunderstorm cases taking place near the Pyrenees, where intense thunderstorms are frequent and the DE of EUCLID and ENTLN is relatively high and homogeneous. According to our preliminary results from a single case using the DLR-NO $_2$ research product, we get about 400 mol NO $_x$ per flash when we estimate the background using NO $_x$ from CARIBIC flights and about 200-600 mol per flash when we estimate the background using TROPOMI measurements from non-flashing pixels.