Quantum Shift Scheduling — A Comparison to Classical Approaches

Sven Priifer, Antonius Scherer, Andreas Sporl, Tobias Guggemos, Nikolas Pomplun,
Christoph Lenzen
DLR e.V. - German Aerospace Center

Miinchner Strafie 20
82234 WeBling, Germany

Abstract

Solving discrete optimization problems with constraints is a
very common task in industry and research as it is fundamental
in solving many planning tasks.

In this paper we will look at an instance of a time table prob-
lem for generating shift schedules at the German Space Op-
eration Center (GSOC). We describe the implementation of
a quantum approach and compare the differences to classical
optimization strategies, knowing that the problem sizes given
to the quantum systems are not competitive yet. By doing so
we are establishing a software chain that is able to map our
problem to different physical systems which paves the way to
problem solving as a hybrid solution where sub-problems are
distributed among classical and quantum hardware.

In this study we included three approaches to tackle the de-
scribed problem. For the quantum part, we included a pro-
grammatically generated quantum circuit that yields a solution
to a (sub) problem using Grover’s algorithm, able to be run on
any general quantum computer with sufficiently many qubits
of sufficiently high quality. On the classical side, as a vali-
dation and benchmark reference, we use a heuristic search
method, implemented by GSOC’s own planning tool set Plato
and PINTA (Lenzen et al. 2012; Nibler et al. 2021) as well
as a constraint integer programming formulation solved by
an external software framework, such as e. g. GLPK or SCIP
(Gamrath et al. 2020).

This paper builds on and extends results from (Scherer et al.
2021).

1 Problem Setup

Creating and updating a valid shift schedule for on-ground
support of several missions for different time slots, people
and qualifications is a common task at GSOC when run-
ning operations. This paper shows an approach to solve this
combinatorical scheduling problem with the use of Grover’s
algorithm obeying auxiliary conditions as described below.

In this paper we will use the notation convention similar
to the one in (Scherer et al. 2021). Therefore we introduce
binary variables for operators, positions and time slots as
shown in Table 1 that span the problem space. A valid so-
Iutionis a D x P x O-Matrix of zeros and ones indicating
operator o scheduled at position p on day d which does not
violate any constraints.

Copyright © 2021, All rights reserved.

Table 1: Variable names used in this paper, uppercase letters
refer to the problem parameter count, whereas lowercase
letters refer to specific indices.

Parameter Total Count Variable
Operators (@]

Time Slots (Days) D
Positions P

Given schedule -
Domain of schedule -

*ﬂgﬁ SIS
S}

We selected the constraints listed in Table 2 to be required
for a valid solution.

At GSOC, with roughly 50 operators that need to work on
20 positions for planning periods of up to 365 days, the search
space amounts to roughly 366,000 binary variables. Due
to various other constraints, there usually is no completely
valid solution, so some manual manipulation afterwards is
needed in order to ignore some individual constraints and
arrive at a (nearly-valid) plan. However, to be able to run the
computations, we restrict the planning duration in particular
for Section 3.3 considerably. Since personnel tend to share
positions inside missions, the distribution of operators on
positions is rather sparse. This fact may be exploited to reduce
the problem size considerably Sections 3.2 and 3.3.

2 Quantum Scheduling

In this section we want to give a brief introduction to the basic
ideas and ingredients required to understand the working
of Grover’s algorithm when searching for a valid solution
inside the problem space. We focus on quantum computers
using a gate-model, but there exist different approaches such
as quantum annealers requiring a different description. See
e. g. (Nielsen and Chuang 2010) for a general and thorough
introduction.

2.1 Quantum Computing

Similar to classical computers which compute on bits, the
basic computational unit of a quantum computer is a qubit (or
registers of multiple qubits). A qubit’s state is described by a
two-dimensional complex unit vector, i.e. |¢)) = «|0)+31),
where a, 3 € C with |a|? + |3|?> = 1 and {|0), |1)} form

Table 2: Constraints for a valid schedule.

Description

I Operators can only work on some given posi-
tions.
II Per tuple of day and position at least one operator
needs to be assigned.
Il An operator can be assigned to at most one posi-
tion a day.
IV Operators can specify days in advance when they
are unavailable.”
V A partial on-call schedule may be supplied and
needs to be obeyed. ”
VI Operators can work at most two out of any three
consecutive weeks.
VII Operators can work at most 35 days out of any
105 consecutive days.
VIII Operators shall work preferably whole weeks.
IX All operators shall work a similar amount of days.

“This is called an outage

bThis is needed e. g. for updating an on-call sched-
ule during the year when operators have updated their
vacations. In this case only the future will be replanned,
but the past may influence the applied constraints in this
planning interval

an orthonormal basis of C? equipped with the standard inner
product. Such a linear combination is called a superposition
of the states |0) and |1).

Similarly to a classical computer, there are gates modifying
the amplitudes «, 8 of the qubit’s state. These gates corre-
spond to quantum-mechanical operators evolving the qubit
state and thus need to be unitary, i.e. complex-linear and
preserving the inner product. Common single-qubit gates are
the Pauli X, Y, Z gates, or the Hadamard gate H which maps
the basis states to the superpositions |+) = %(|0> + 1))
and |—) = %(\0) — |1)). Note that the precise physical
implementation of a qubit and the gates may differ drasti-
cally between different quantum computers. For example,
there exist e. g. superconducting (Clarke and Wilhelm 2008),
trapped-ion (Friis et al. 2018) and photonic quantum comput-
ers (Adami and Cerf 1999).

To get a result from a quantum computer, it is necessary
to measure the state of (potentially a subset of) the qubits. In
quantum mechanics such a measurement will do two things:
It will output the value for the measurement according to
a probabilistic process depending on the state but at the
same time project the current state onto a state represent-
ing the result. As an example, when measuring whether a
qubit 1)) = «|0) + B]1) is in state |0) or |1), we observe
|0) with probability |«|? and |1) with probability |3|?. When
measuring a qubit after applying the H-gate, |0) and |1) are
observed with equal probability 1/2.

To write quantum algorithm we thus need to map our
problem onto a set of qubits and add gates corresponding to
the algorithm, which should increase the state’s amplitude

corresponding to the correct solution. At the end we will
measure the quantum state and obtain a single result, this
will be repeated a suitable amount of times in order to obtain
a statistic of observed states and, thus, the most probable
solution.

2.2 Grover’s Algorithm

Grover’s Search quantum algorithm (Grover 1996) features a
quadratic speed-up for every problem which can be described
as a search in an unsorted database and, thus, problems where
finding solutions requires searching through a large part of
the input space.

After initialising the input state as a uniform superposition
of all possible states, the algorithm contains two more major
steps, which are illustrated in Fig. 1:

1. Initial state We prepare an input state that corresponds
to all possible inputs of the problem, i.e. {0,1,...,2" —
1}, by applying the aforementioned Hadamard gate on
an input register of n qubits. We receive a state [¢)) =

Zilg ! ay, |k) where every possible input will be measured

with the same probability |az|? = | \/127|2

2. Oracle Invocation The oracle bears the knowledge about
the solution. By invoking it, possible solutions are flagged
in the given quantum states. The algorithm uses the fact,
that the amplitudes of a superpostion («, 3) can be negative.
By negating the amplitude of the inputs that are a solution
for the problem (i.e. 010 in Fig. 1), the solution is marked.
As a consequence, the arithmetic mean m = i ax (red
line) over all amplitudes is reduced.

3. Diffusion The reduction of the arithmetic mean is used
to increase the amplitude of the solution, while reducing
those of invalid states. Pictorial speaking, all amplitudes
ay, are reflected at m according to Gpew = 2Mm — Qoid,
during the diffusion step. In the example of Fig. 1 this
increases the amplitude of 010 to ﬁ and reduces the

1
others to YNoR

By repeating step 2 and 3 the measurement probability of the
searched space can be significantly increased. The optimal
number of iteration is %\ /N/k, where N is the number of
inputs and k is the number of correct solutions. The key for
solving a problem with Grover’s algorithm is the construction
of an efficient set of gates for implementing the Oracle in
step 2. The implementation of the Oracle, or Uy, for the On-
Call scheduling problem will be shown in the next section.

3 Approaches to the Scheduling Problem
3.1 Heuristic Search for Solutions

To tackle the on-call problem, GSOC currently uses the Plato
library for modelling the problem and specifying algorithms
as well as Pinta for manual verification and modification, see
(Lenzen et al. 2012; Nibler et al. 2021). Several times per
year, the on-call plan is adjusted by employing a heuristic
search for suitable solutions using the algorithm described as
follows. Notice that with the available number and qualifica-
tion of operators, satisfying all constraints in Table 2 tends

1 ® 1. Initial State

3/4 2. Oracle
1/2 £ 3. Diffusion
1/4

0 N
|000> |001> |

-1/4

-1/2
-3/4
-1

Amplitude

Input State

Figure 1: Illustration of the Grover Diffusion with the exam-
ple of n = 3 for the search string 010.

to be impossible, which is why the algorithm works in an
opportunistic way: It schedules as many shifts as possible
in a certain order satisfying some subset of constraints and
varies parameters to get a set of possibly incomplete plans of
which one is chosen according to some criteria. Remaining
issues are than fixed by a responsible human on-call planner.
The optimization goals are considered in the following order:

1. Minimize the number of times slots that a position is not
covered.

2. Minimize the maximum number of scheduled time slots
per person.

3. Minimize the maximum number of scheduled time slots
per person on holidays.

This algorithm repeats a configurable amount of times
using some partially randomized input. Each round contains
two nearly identical runs, one for planning whole weeks and
a subsequent one for single days to fill gaps left by the first
run. From the resulting on-call plans, the algorithm chooses
the best result according to the above optimization goals.

One run for either whole weeks or single days looks as
follows:

1. Every run tries to fill the timeline by subsequently adding
operators to time slots according to the following rules:

(a) Select an operator with a minimal max-value on the
optimization goals, but allow for some random variation.
(b) For this operator, choose a random position that the
operator can serve.
(c) Add this operator to a time slot for the chosen position
by
i. considering conflict-free times,
ii. trying to reduce the number of conflicts,
iii. preferring time slots where the position is not yet oc-
cupied,
iv. preferring time slots far away from existing time slots
that the operator may already have, and
v. some random variation.

2. After adding an on-call shift, the algorithm checks for time
slots where positions are covered twice and tries to remove
shifts with the maximal max-value on the optimization
goals.

Table 3: Constraint implementations for an integer program-
ming optimization suite. Notice that this assumes that the
tool supports quadratic constraints or quadratic goals. Also
constraints VIII and IX are formulated directly as goals.

Const. Formula
I Xipo=0 VdeD,oeO,p¢gP,
1T Y ocoXdpo >1 Vde D,pc P
111 Zperdpogl VYde D,oe O
v Xipo=0 YoeO,de€ D,,pe P
Y Xdpo = deo V(d,p, O) eT

VI Zi:@.]go KXitipo <14 Yo € O,d € Dyeex
pE
VI Zi:o..lljozx Xatipo <35 YoeO,de D
pe
VIl min, var (Zp Xapor-- 1Y, XM,,O)
IX min. var (Zdﬁp Xdp17~-- ’Ed,p Xde)

Of course, this algorithm is heuristic and does not generally
find global minima. Nevertheless, it has quite a few parame-
ters that one may tweak to get better results and allows easy
customization of special cases. We see that the constraints I,
IIT and IV-VII are strictly implemented, whereas the algo-
rithm tries to minimize the violations of constraint II, VIII
and IX.

3.2 Integer Programming

Integer (linear or quadratic) programming and optimization is
a non-quantum standard technique for scheduling problems
such as the on-call problem at hand. A generic solver for the
appropriate subclass of integer programming optimization
problem can be applied to find solutions to the problem,
such as e. g. SCIP (Gamrath et al. 2020). Notice that there
is quite some difference in the speed and capabilities of the
available solvers, so performance comparisons between such
implementations and other techniques depend heavily on the
used software. Modelling the on-call problem for an integer
programming optimization is in principle straight forward:
A binary variable X4,, € {0,1} specifies whether or not
an operator o is scheduled for position p on timeslot d. We
can then translate the constraints from Table 2 as shown in
Table 3. Here, we use

» P, for the set of positions that operator o can support,

* D, for outages of operator o, i. e. days when they cannot
be scheduled,

* Y40 for a partial on-call plan with (d, p, o) defined in some
domainT C D x P x O,

* Dk for starting days of on-call weeks, and
e var(zy,...,2z,) for the variance of the arguments
LlyeenyLp.

Notice that there are multiple reasons why one may need
to consider partial plans as inputs. For example, one may
extend an already scheduled plan, such as when one replans
later parts of a year. Also, it is possible that one embeds

Operator 0 ... Operator 3
dopo, : 10) — 9=
dopo, : |0) T T T
dop1, :10) Bl B F\L

.]
dop1, + |0) — 45—t ty
¢, :10) H H -
S| 4L | 41| +1
¢, +10) 4 i H H 3

(a) Constraint III for four Operators, one day and two
positions; no operator works the same day at two different
positions.

Operator (Dperator 1
o 10) — o=
dipo : |0) — T T
dapo @ [0) — _— :
\ I \
d3p0 : |O> Ll — 71 o 1
¢, ¢ |0) i i i -
+1 | +1] +1] +1
¢, |0) 4 i i i

(b) Constraint VI for four days, two operators and one
position; no operator is allowed to work 3 days in a row.

Figure 2: Exemplary circuits Constraint IIT and VI that increment the counter |c¢1co) if one of the constraints is violated.

this step into an algorithm that first tries to schedule weeks
and afterwards refines to days, such as e. g. the heuristic
approach in Section 3.1. Furthermore, one may incorporate
manual operator input this way. Indeed, the PINTA and Plato
approach from Section 3.1 allows this explicitly.

Notice that optimization goals VIII and IX are quadratic
and may contain quite a lot of summands causing difficulties
when running the optimization tool. It is thus advisable to
look for alternative formulations that may relax the problem
slightly but are still acceptable. As an example, if can take
only integer values from 0 to 7, the function z — (7 — x)
has minima at 0 and 7, we can thus replace the variance in
constraint VIII by

Z XdJripo 7T— Z Xdpo (1)
i=0..6 i=0..6
peP peP
for every operator o and every on-call week starting on d €
Dyeex. This is an alternative formulation which has fewer
terms but optimizes for a subtly different goal.

3.3 Quantum Scheduling

Our third approach to solve the presented Scheduling Prob-
lem utilizes Grover’s Algorithm in order to find a valid solu-
tion. Considering the major steps of Grover’s algorithm as
in Section 2.2, there are two parts which must be adjusted
in order to solve our problem: The encoding or mapping of
the problem’s variables on the circuit’s qubits and a method
which allows a scalable construction of oracles that imple-
ment the problem’s constraints.

Current quantum devices are restricted in the number of
available qubits, hence, efficient encoding of the problem
to a minimal number of qubits is desired. A naive encoding
would assign every binary variable to a single qubit, so that
all combinations of day d, position p and operator o are rep-
resented in the input state. In contrast, our approach encodes
an operator to a time-position in the schedule, as such:

|00) , operator 0 is assigned to position p at day d

|¢1¢o>d,p =

|11) , operator 3 is assigned to position p at day d

This not only reduces the necessary qubits to D x P X
log,(O), but additionally satisfies Constraint II as there is

exactly one operator assigned to every tuple of position and
day. The other constraints are implemented in the Grover
Oracle by counting the number of violations of a certain
schedule, which is stored in a counter register. e. g. , if a state
that represents a schedule would imply an operator to work
three consecutive days, the counter would be increased by
1. Fig. 2b and Fig. 2a show our implementation of Grover’s
Oracle for constraints III and VI respectively. The increase

of the counter register is depicted as a controlled -gate.
If and only if the counter equals 0 for a state that represents
a schedule, its amplitude will be negated. Hence, there are
a maximum of P x O x (D — 2) increments in the circuit,

however only P(D —2)+ D((123)) violations can be activated
at the same time. Since the constraint counting is binary, this
adds a total of [log,(P(D —2)+ D((g’) +1))] qubits to the
circuit. Those numbers can be seen as upper bounds of the
circuit depth and width, and are subject to future optimiza-
tions.

Our methods to implement the scalable constraint oracles
and the encoding are independent from programming frame-
works. In fact, while we mainly used IBM’s framework giskit,
we can easily convert them to the QASM language, a widely
accepted standard for quantum circuits. This allows us to run
our simulations on other frameworks, i. e. Atos or Google.

For validation, we use IBM’s publicly available simulator
which is capable up to 32 qubits. We use a set of small scale
sub-problem depicted in Table 4, as well as the constraints II,
IIT and VI in Table 2. The problems differ in the number of
days and operators to maximize the number of used qubits.
Even though constraint VI originally indicates that an opera-
tor can work at most two out of three consecutive weeks, we
apply it here on days which of course has the same affect as
both can be seen as time units.

Given our sub-problems, 15 to 29 qubits are required to
encode the operators, days and positions respectively, and
another 3 to 4 to implement our conflict counter and perform
the phase flip. The increase of required qubits is explained
through the higher number of input variables and the accom-
panied increase in countable conflicts. Executing the circuit
through IBM’s simulator returns valid results with a suc-
cess rate of up to ~ 99%. The success rate is calculated by
running the circuit 8000 times and counting the returned so-
lutions that represent valid schedules. We can see that the

success rate is stable throughout cases I-1V, with a slight dip
for case V. This is mainly explained through the initially high
percentage of valid solutions within the search space which
limits Grover’s search abilities. Case X was used as our true
negative test case, for which the optimal number of Grover
iterations cannot be determined with the formula given in
Section 2.2. Its configuration allows no valid solution which
resulted in our method having a correct success rate of 0%.

Of course, using one of IBM’s real quantum devices would
be desired, unfortunately the circuit depth (number of gates)
exceeded their current chip’s computational time limits. To
get a glimpse on what results we would expect from near
term quantum devices, we introduced a simulated gate error
rate that mimics one of IBM’s available quantum hardware.
It decreases the success probability to ~ 33%, which is no
longer distinguishable from a uniform distribution over all
possible input states.

3.4 Comparison

Comparing the approaches from Sections 3.1 to 3.3 quan-
titatively is non-trivial as this is highly implementation-
dependent and the problem techniques have vastly different
ranges of possible problem sizes. To get an idea of consid-
ered problem sizes and necessary qubits for the quantum
scheduler, consider Table 4. The heuristic approach using the
Plato library has a very large overhead for smaller problem
sizes. Similarly, current quantum computers are too noisy to
run such large circuits but simulators performance depends
crucially on the available computation power.

As one can see from the description in Section 3.3, the
current Grover implementation does not implement all con-
straints from Table 2, whereas both the heuristic and the
integer programming approach can deal with all constraints.
Both of them are easily extendable in case of new require-
ments, whereas for the quantum scheduler one has to consider
and implement each constraint individually. Also, allowing
the quantum scheduler to actually optimize instead of just
looking for valid solutions requires a different technique or a
major change whereas this is easy to implement in the other
two approaches.

Both the integer programming and the quantum scheduler
techniques suffer from a large number of variables and terms
making the implementations grow in size very quickly. Al-
though one can in principle translate some of the constraint
implementations from Table 3 to a quantum circuit, the re-
sults are rather unfeasible. For example, translating inequality
constraints into equalities by using slack variables increases
the number of necessary qubits considerably. Thus special
care has to be taken when implementing a usable quantum cir-
cuit this way. One improvement that one may employ in both
integer programming and the quantum scheduling approach
is to take the input data better into account when encoding
the problem. As an example, it rarely happens that more than
eight operators can work at a given position. We can thus drop
all variables or qubits that are zero from the start and instead
make the encoding input-dependent. This way, we save a lot
of variables and summands as well as qubits, respectively. In
the case of the quantum circuit this means that implementing
additional constraints actually reduces the circuit size.

All three techniques have a well-defined interface and can
be nearly exchanged for one another. While the heuristic ap-
proach is built into Pinta, the other two algorithms are part
of a single software which can import on-call problem input
from Pinta. In this way, we can consider these algorithms
as back boxes in the overall on-call planning workflow and,
up to the existence of large-enough quantum computers, al-
low the operational on-call schedule to be planned using a
quantum computer.

4 Conclusion and Outlook

Knowing of the shortcomings of today’s NISQ devices in
terms of absolute computational power, we use the classical
solvers as a reference of result verification and computational
benchmark. Our main focus of course lies on the perfor-
mance of the quantum algorithm. Due to the absence of a
sufficiently large and stable quantum computer to approach
a realistic problem setup, we validated our circuits with ad-
equately small input sizes on a quantum simulator capable
of processing up to 32 qubits. Even though the problem com-
plexity is small, execution on a real quantum device would
still require an improvement of qubit stability and control
or application of error-corrected schemes (resulting in more
qubits). Nevertheless, once quantum devices become usable,
we showed that one can immediately start to incorporate re-
sults of sub-problems computed on quantum devices with
impressive success rates.

A precursor of software interface utilizes the underlying
mathematical representation to map the problem to compa-
rable solvers by classical and quantum means. In a hybrid
approach this should be capable of transforming the problem
into a performing synergy of quantum and classical process-
ing units with well balanced work loads. To do so, the quan-
tum algorithm is configurable in the range of the variables,
allowing the problem to be split by time slices for example.

To judge the value of the interface, a sophisticated com-
parison with classical methods is still mandatory, but we
showed that we are able to establish the interface between
classical and quantum computers. This approach allows to
run the algorithm as a quantum subroutine within a classical
framework.

We restricted our approach to gate based quantum de-
vices (e. g. IBM, Google), but left out quantum annealers
such as the one provided by D-Wave. Our problem purely
includes logical statements in terms of boolean variables and
satisfiability clauses, and can hence be transformed into a
QUBO, and used to solve it on D-Dave., as shown here (Ikeda,
Nakamura, and Humble 2019). The two quantum computing
paradigms have not been directly compared for performance
on scheduling problems. Future work should establish a quan-
titative benchmark for scheduling problems with quantum
computers.

Anticipating the next generations of quantum hardware,
there will still be restrictions regarding the number of qubits
and circuit width. Hence, our next steps are to further mini-
mize the number of required qubits, e. g. by improving con-
flict counting, and reducing the circuit’s width e. g. by apply-
ing the ZX-calculus language (Duncan et al. 2020). Addition-
ally, extending the current Grover implementation to a nested

Table 4: Simulation results for different problem sizes used for evaluation.

Case 1 11 111 v A" X
Operators 4 4 4 4 8 4
Postions 2 2 2 2 2 3
Days 3 4 5 6 3 3
Used Qubits 15 21 25 29 21 23
Used Counter Qubits 2 (3) 4 (4) 4 4) 44 2 (3) 4 (4)
Fraction of Solutions 0.223 0.107 0.048 0.022 0.587 0
Grover Iterations 1 2 3 5 2 -
Success Rate 0.99 0.99 0.99 0.96 0.88 0

Grover Search algorithm (Cerf, Grover, and Williams 2000)
or using quantum reinforcement learning (Saggio et al. 2021)
are of interest.

References

Adami, C.; and Cerf, N. J. 1999. Quantum Computation with
Linear Optics. In Williams, C. P, ed., Quantum Computing
and Quantum Communications, 391-401. Berlin, Heidelberg:
Springer Berlin Heidelberg. ISBN 978-3-540-49208-5.

Cerf, N. J.; Grover, L. K.; and Williams, C. P. 2000. Nested
quantum search and structured problems. Phys. Rev. A 61:
032303. doi:10.1103/PhysRevA.61.032303. URL https://
link.aps.org/doi/10.1103/PhysRevA.61.032303.

Clarke, J.; and Wilhelm, F. K. 2008. Superconducting quan-
tum bits. Nature 453(7198): 1031-1042. doi:10.1038/
nature07128. URL https://doi.org/10.1038/nature07128.

Duncan, R.; Kissinger, A.; Perdrix, S.; and van de Wetering,
J. 2020. Graph-theoretic Simplification of Quantum Circuits
with the ZX-calculus. Quantum 4: 279. ISSN 2521-327X.
doi:10.22331/q-2020-06-04-279. URL http://dx.doi.org/10.
22331/q-2020-06-04-279.

Friis, N.; Marty, O.; Maier, C.; Hempel, C.; Holzipfel, M.;
Jurcevic, P.; Plenio, M. B.; Huber, M.; Roos, C.; Blatt, R.;
and Lanyon, B. 2018. Observation of Entangled States of a
Fully Controlled 20-Qubit System. Phys. Rev. X 8: 021012.
doi:10.1103/PhysRevX.8.021012. URL https://link.aps.org/
doi/10.1103/PhysRevX.8.021012.

Gamrath, G.; Anderson, D.; Bestuzheva, K.; Chen, W.-K_; Ei-
fler, L.; Gasse, M.; Gemander, P.; Gleixner, A.; Gottwald, L.;
Halbig, K.; Hendel, G.; Hojny, C.; Koch, T.; Le Bodic, P.; Ma-
her, S. J.; Matter, F.; Miltenberger, M.; Miihmer, E.; Miiller,
B.; Pfetsch, M. E.; Schlosser, F.; Serrano, F.; Shinano, Y.;
Tawfik, C.; Vigerske, S.; Wegscheider, F.; Weninger, D.; and
Witzig, J. 2020. The SCIP Optimization Suite 7.0. Technical
report, Optimization Online. URL http://www.optimization-
online.org/DB_HTML/2020/03/7705.html.

Grover, L. K. 1996. A fast quantum mechanical algorithm
for database search. In Miller, G. L., ed., Proceedings of the

twenty-eighth annual ACM symposium on Theory of comput-
ing, 212-219. New York, NY: ACM. ISBN 0897917855.

Ikeda, K.; Nakamura, Y.; and Humble, T. S. 2019. Applica-
tion of Quantum Annealing to Nurse Scheduling Problem.

Scientific Reports 9: 12837. doi:10.1038/s41598-019-49172-
3. URL https://doi.org/10.1038/s41598-019-49172-3.

Lenzen, C.; Worle, M. T.; Mrowka, F.; Sporl, A.; and Klaehn,
R. 2012. The Algorithm Assembly Set of Plato. In SpaceOps
2012 Conference, SpaceOps Conferences. American Insti-
tute of Aeronautics and Astronautics. doi:10.2514/6.2012-
1255731. URL https://doi.org/10.2514/6.2012-1255731.

Nibler, R.; Mrowka, F.; Hartung, J.; Schneider, A.; and Brogl,
S.2021. PINTA - one Tool to plan them all. To Be Published.

Nielsen, M. A.; and Chuang, I. L. 2010. Quantum
Computation and Quantum Information: 10th Anniver-
sary Edition. Cambridge University Press. doi:10.1017/
CB0O9780511976667.

Saggio, V.; Asenbeck, B. E.; Hamann, A.; Stromberg, T.;
Schiansky, P.; Dunjko, V.; Friis, N.; and et al., S. W. 2021.
Experimental Quantum Speed-up in Reinforcement Learning
Agents. Nature 591: 229-33. URL https://doi.org/10.1038/
s41586-021-03242-7.

Scherer, A.; Guggemos, T.; Grundner-Culemann, S.; Pom-
plun, N.; Priifer, S.; and Sporl, A. 2021. OnCall Opera-
tor Scheduling for Satellites with Grover’s Algorithm. In
Paszynski, M.; Kranzlmiiller, D.; Krzhizhanovskaya, V. V.;
Dongarra, J. J.; and Sloot, P. M. A., eds., Computational
Science — ICCS 2021, 17-29. Cham: Springer International
Publishing. ISBN 978-3-030-77980-1.

