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Abstract—Change detection (CD) is critical for analyzing data
collected by planetary exploration missions, e.g., for identification
of new impact craters. However, CD is still a relatively new
topic in the context of planetary exploration. Sheer variation of
planetary data makes CD much more challenging than in the
case of Earth observation (EO). Unlike CD for EO, patch-level
decision is preferred in planetary exploration as it is difficult
to obtain perfect pixelwise alignment/co-registration between
the bi-temporal planetary images. Lack of labeled bi-temporal
data impedes supervised CD. To overcome these challenges,
we propose an unsupervised CD method that exploits a pre-
trained feature extractor to obtain bi-temporal deep features
that are further processed using global max-pooling to obtain
patch-level feature description. Bi-temporal patch-level features
are further analyzed based on difference to determine whether
a patch is changed. Additionally, a self-supervised method is
proposed to estimate the decision boundary between the changed
and unchanged patches. Experimental results on three planetary
CD datasets from two different planetary bodies (Mars and
Moon) demonstrate that the proposed method often outper-
forms supervised planetary CD methods. Code is available at
https://gitlab.lrz.de/aideo/cd/-/tree/main/planetaryCDUnsup.

Index Terms—Change detection, Planetary exploration, Trans-
fer learning, Pooling, Unsupervised learning.

I. INTRODUCTION

Interest in planetary exploration missions has increased
significantly in the last decade [1] as such missions enrich our
knowledge about the solar system [2]. A crucial role in most
such missions is played by the scientific imaging instruments
that are used for various purposes, including planetary surface
characterization and spectral mapping for mineralogy. Large
volume of images are currently being captured by ongoing
planetary imaging investigations, e.g., High Resolution Imag-
ing Science Experiment (HiRISE) and ConTeXtCamera (CTX)
on the MarsReconnaissance Orbiter [3], [4].

Change detection (CD) is one of the most studied topics
in Earth observation (EO). CD plays crucial role in several

The work is jointly supported by by the German Federal Ministry of
Education and Research (BMBF) in the framework of the international future
Al lab ”AI4EO - Artificial Intelligence for Earth Observation: Reasoning,
Uncertainties, Ethics and Beyond” (grant number: 01DD20001), the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. [ERC-2016-StG-714087],
Acronym: So2Sat), by the Helmholtz Association through the Framework
of Helmholtz AI (grant number: ZT-I-PF-5-01) - Local Unit “Munich Unit
@Aeronautics, Space and Transport (MASTr)” and Helmholtz Excellent
Professorship “Data Science in Earth Observation - Big Data Fusion for Urban
Research”(grant number: W2-W3-100) (Corresponding author: Xiao Xiang
Zhu.)

Sudipan Saha is with Department of Aerospace and Geodesy, Data Science
in Earth Observation, Technical University of Munich, 85521 Ottobrunn,
Germany. E-mail: sudipan.saha@tum.de

Xiao Xiang Zhu is with Remote Sensing Technology Institute, German
Aerospace Center (DLR), 82234 Wefling, Germany and also with Department
of Aerospace and Geodesy, Data Science in Earth Observation, Technical Uni-
versity of Munich, 85521 Ottobrunn, Germany. E-mail: xiaoxiang.zhu@dlr.de

EO tasks, e.g., disaster management [5], urban monitoring [6],
and military applications. Despite its established significance
in EO, CD has not been explored much in context of planetary
exploration. However just like EO, CD may play a significant
role in planetary explorations. As detailed by Kerner et. al.
[3], one such application of CD in planetary exploration is
to monitor the changes induced by meteorite impact. Such
impacts strongly alter the landscape of the planets. Another
such application is monitoring of recurring slope lineae (RSL)
that appear/disappear on surface of Mars on timescales close
to a year.

Kerner et. al. [3] studied several supervised methods in
context of planetary CD. However, when talking about CD
for EO, unsupervised methods are more popular than the su-
pervised ones [6]. This is because collection of labeled multi-
temporal training data is difficult in context of CD. Moreover,
even if training data is collected for one particular application
or geography, supervised methods do not generalize well for
other applications or geography. While variation of geography
limits applicability of supervised CD methods for EO (i.e., one
planet), it certainly limits their applicability when considering
many planets and their hundreds of moons. This is confirmed
by the work of Kerner ez. al. [3], where accuracy significantly
drops when a model trained on HiRISE RSL dataset is applied
on CTX meteorite impacts dataset. This shows the necessity of
moving beyond supervised methods for planetary CD. Another
difference between planetary CD and CD for EO is that the
latter assumes near-perfect pixelwise alignment between bi-
temporal input while such alignment is difficult to obtain for
the former. Due to this, previous work on planetary CD [3]
focuses on patch-level CD instead of pixelwise CD.

Deep transfer learning methods that exploit a pre-trained
model for bi-temporal feature extraction and comparison, have
shown excellent performance in different CD applications [6],
[5]. Inspired by this we propose a deep transfer learning based
CD method that ingests bi-temporal patches and processes
it through a set of convolution layers (pre-trained network).
The bi-temporal feature maps are processed using a global
max-pooling to summarize the content of both patches and
account for possible presence of misalignment. Finally the
difference of features after global max-pooling are taken,
thresholded using a decision boundary obtained with a self-
supervised method, to determine whether the considered patch
is changed/unchanged.

The key contributions of this paper are as follows:

1) In context of planetary CD, this paper proposes an
unsupervised deep transfer learning based method that
can determine whether a pair of bi-temporal patches are
changed, even if they are not perfectly co-registered.

2) This paper further proposes a method using pseudo
unchanged pairs to determine threshold for distinguishing
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changed and unchanged patches.

3) The paper validates the proposed method on three diverse
planetary CD datasets, two of which show misalignment
between pre-temporal and post-temporal images.

We organize the rest of the paper as follows. Related works
are discussed in Section II. Section III outlines the proposed
method. Datasets and experimental results are detailed in
Section IV. Finally, we conclude the paper in Section V.

II. RELATED WORK

Considering relevance to our work, in this Section we briefly
discuss unsupervised CD and planetary CD.

A. Unsupervised CD in EO

Prior to the emergence of deep learning, most unsupervised
CD methods for EO used the concept of pixelwise image
differencing, i.e., change vector analysis (CVA) [7]. Many
variants of CVA, e.g., Parcel CVA (PCVA) [8] and Robust
CVA (RCVA) [9], incorporated the notion of spatial context
in CVA. Deep learning based unsupervised CD methods are
generally based on transfer learning [6]. Deep CVA (DCVA)
[6] is one such framework that incorporates CVA with pre-
trained deep network based feature extraction. DCVA has
shown excellent performance in many tasks, e.g., building
CD [5] and agricultural monitoring [10]. Another class of
unsupervised CD methods pre-classifies some samples with
high confidence as changed/unchanged using some traditional
approach and further uses those confident samples for training
a CD model [11]. Such methods have limited applicability
in planetary CD as error introduced by sensor or unseen
geographic characteristics may significantly impact the choice
of confident samples.

B. CD in planetary exploration

Kerner et. al. [3] presented a detailed study of the supervised
methods for planetary CD. To the best of our knowledge, this
is the only work on planetary CD. They specifically promoted
the use of convolutional autoencoder along with different
supervised classifiers for planetary CD. For the scenario where
training data is not available, they reused the supervised CD
model trained on another dataset. However, their results clearly
show that such straightforward reuse of supervised model does
not perform satisfactorily when the source and target domains
are significantly different, e.g., when source domain is HiRISE
RSL dataset and the target domain is CTX meteorite impacts
dataset.

III. PROPOSED METHOD

Let us consider two sets of I unlabeled patches X; =
{x1;,Vi = 1,...,1} and Xo = {xo;,Vi = 1,...,I}, cap-
tured over same planetary surface at time ¢; and ¢5. Spatial
dimension of the patches are R x C'. We assume that x1; and
Xg; represent same area/object, however may not be properly
aligned, which is in stark contrast to near-perfect alignment
assumption made in most CD methods [9], [6]. Instead of
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Fig. 1. Proposed patch-level planetary unsupervised CD technique.

pixel-level CD, we are interested to assign each patch pair a
label: changed or unchanged.

Both x7; and xg; are separately processed through a multi-
layered pre-trained CNN feature extractor, originally trained
for some other task (see Section III-A). Pixelwise features
are summarized using global max-pooling to obtain f3; and
fa;, corresponding to x3; and Xgj, respectively (see Section
III-B). They are compared to obtain a deep feature difference
pi, larger value of which indicates the patch-pair x;; and
Xo; 1s more likely to be changed. We can obtain a binary
changed/unchanged decision by comparing p; to a threshold
T (see Section III-C). We determine the optimum value of 7
by using a self-supervised mechanism that does not require
any label information and uses only the pre-temporal sets of
patches X (see Section III-D). The proposed patch-level CD
method is shown in Figure 1.

While the proposed method is intended for patch-level CD,
pixelwise CD map can also be obtained, which is briefly
discussed in Section III-E.

A. Deep features extraction

Similar to the DCVA framework [6], bi-temporal patches
x1; and xg; are separately processed using a pre-trained CNN
to obtain features corresponding to both x3; and xs;. In this
work, we use VGG-16 model [12] trained on natural image
dataset, however any other suitable pre-trained model can also
be used [13]. By applying this network on our target planetary
images, we reuse the trained CNN model to transfer the
visual descriptors learned by the CNN for its original training
task to solve the planetary CD problem. As previous works
have shown [6], the intermediate layers are more suitable for
transfer learning on targets that are semantically different from
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original training data, as the lower layers of the CNN capture
primitive features like edges and the very last layers capture
features specific to the original training dataset. Following this,
we use the sixth convolution layer of VGG-16 [12] for feature
extraction. The dimension of the feature maps are R’ x C’ x D
where D is the number of features. R’ may or may not be equal
to R depending on whether there are downsampling operations
in the pre-trained feature extractor. Unlike [6], due to possible
misalignment between x1; and Xa;, straightforward pixelwise
comparison of x3; and x2; may lead to errors.

Please note that the above-mentioned process of feature
extraction does not require prior availability of any planetary
data, labeled or unlabeled.

B. Patch summarization

The output feature maps obtained in the previous step are
sensitive to the location of the features in the input patches.
While this property is useful to obtain pixelwise CD map if
xX1; and xo; are perfectly aligned, this may cause error in our
case, as x3; and xo; are possibly misaligned. For patch-level
CD, we need to summarize/downsample the feature maps in
a way such that summarization process is robust to the shift
in the position of the feature in the image.

We use global pooling operation as a global image de-
scriptor, i.e., to summarize the patch. In contrast to popularly
used average pooling, we use max pooling. Average pooling
assumes that the feature descriptors in a patch are independent
and identically distributed. Thus, average pooling is sensi-
tive to more frequently occurring descriptors, a phenomenon
known as visual burstiness [14] that hinders average pooling
from capturing feature relevant to distinguish different sam-
ples.

The use of spatial max pooling was introduced by LeCun
et al. [15] and was later extended for global max pooling [16].
Remarkably, global max pooling achieves partial invariance to
small translations because the max of a patch depends only
on the single largest element in the given patch. If a small
translation doesn’t bring in a new largest element at the edge
of the patch or does not remove the largest element by taking
it outside of the patch, then the outcome of global max pooling
does not change.

Global max pooling summarizes R’ x C’ x D feature maps
obtained from x;; and xs; to D-dimensional fy; and fa;,
respectively.

C. Determining whether patch is changed

f1; is subtracted from fy; and ¢; norm is applied on
difference to obtain a change indicator p;. Denoting the steps
from deep feature extraction to obtaining change indicator as

g:
pi = 9(X1i, X2i) ey

Larger value of p; indicates the patch-pair x3; and xo; are
more likely to be changed. We can determine whether the
patch-pair x;; and xa; are changed or not by comparing p; to
a threshold 7.

(a) (b)

(@

Fig. 2. An example from HiRISE RSL dataset: (a) pre-change patch, (b)
post-change patch, (c) False color composition created using R: pre-change,
G: post-change, B: pre-change patch, (d) pixelwise CD map, as detected by
the proposed method.

D. Threshold determination

We further propose an automatic self-supervised method of
determining 7 used in Section III-C. Taking an unlabeled patch
x1i from Xy, we obtain a noisy version xj}; as:

x1; = h(x1i) 2)

where, h(.) is equivalent to applying Gaussian noise and
shifting the patch by few pixels. In practice, we applied shift
of up to 10 pixels. x1; and x; can be treated as pseudo
unchanged pair as they represent the same scene however with
slight differences as commonly observed in multi-temporal
planetary images. Thus, x1; and x’; are processed following
the steps in Sections III-B, III-C, III-D to obtain p}:

ph = g(x1i,x4;) 3)

p; is a sample p value for an unchanged pair. Similarly, [
such values can be generated for + = 1, ..., I, which provides
us a distribution of p for the unchanged pairs. An upper bound
for p for the unchanged pairs can be used as threshold 7 to
distinguish the unchanged patch pairs from the changed ones.
T can be obtained as:

7 =maz(p}, Py s PT) 4)

In practice, accounting for possible anomaly we exclude the
top 5 percentile of p} while calculating 7.

E. Pixelwise CD

If the proposed method determines a patch-pair x3; and
X2i to be changed, pixelwise CD map can also be obtained if
the patches are reasonably aligned, by pixelwise comparison
of feature maps obtained in Section III-A using the DCVA
framework [6].
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(b) (©

Fig. 3. An example from CTX meteorite impact dataset: (a) pre-change patch;
(b) post-change patch; (c) pixelwise CD map, as detected by the proposed
method.

(b)

Fig. 4. An example from LROC (Moon) dataset: (a) pre-change patch, (b)
post-change patch, and (c) pixelwise CD map as detected by the proposed
method.

IV. EXPERIMENTAL RESULTS

A. Datasets

Following planetary datasets are used for evaluation of the
proposed method:

1) HiRISE RSL: RSL are dark and narrow features that
are thought to be formed due to the shallow subsurface
water flow. They incrementally fade and recur throughout
the year. RSL dataset collected by [3] focuses on Garni
crater on Mars. The images in the dataset are collected
using the HiRISE camera which is onboard the Mars
Reconnaissance Orbiter. The images are of approximately
30 cm/pixel. The dataset is formed using red channel [3].
A total of 254 pairs of 100x100 pixels size (examples
in Figure 2) are used in the test set [3]. The dataset also
has training and validation set that are not used by us
since our proposed method is unsupervised and thus do
not require training.

2) CTX meteorite impacts: Many planets including Mars
are continuously impacted by meteorites. It is important
to know the occurrence and location of such impact as
this data helps scientists to estimate the current cratering
rate in our solar system [17], [18]. The meterorite impact
dataset collected by [3] is composed of 96 images pairs
(example in Figure 3) that are collected by CTX onboard
the Mars Reconnaissance Orbiter with a spatial resolution
of 6 m/pixel and size of 150x 150 pixels. Compared to
HiRISE RSL, the dataset size is much smaller, 254 test
cases versus only 96 test cases.

3) LROC Moon dataset: In this dataset, surface changes are
the result of meteorite impacts and a spacecraft landing.
The bi-temporal images in this dataset are misregistered
by as many as 40 pixels, making it a challenging dataset.
The test set consists of 5 changed pairs and 5 unchanged
pairs of 100x 100 pixels each (example in Figure 4).

4

B. Experiment objectives

The only existing work on planetary CD [3] experimented
on a set of supervised learning paradigms (combination of
classifier and input representation) to find out suitable super-
vised learning paradigm for planetary CD. This experiment
was performed on HiRISE RSL dataset. They further experi-
mented on CTX meterorite impacts dataset and LROC dataset
to investigate if models trained on HiRISE RSL dataset can
be transferred for CD in those datasets.

We compare our proposed unsupervised CD method to the
following methods:

1) All supervised and transfer learning paradigms in [3].

2) Unsupervised RCVA [9]. While RCVA is proposed for
pixel-based prediction, we designed a patch-based version
of it by following similar strategies used for the proposed
method.

3) A variant of the proposed method using global average
pooling instead of max pooling.

4) A variant of the proposed method where instead of the
proposed thresholding scheme, the p; values correspond-
ing to all patch pairs are clustered using k-means clus-
tering with £ = 2 to obtain two clusters, corresponding
to the changed and unchanged patches, respectively.

C. Result analysis

HiRISE RSL dataset: Two supervised methods slightly
outperform (by 0.4%) the proposed unsupervised method.
However, surprisingly the proposed method outperforms as
many as four supervised methods (Table I). The proposed
method outperforms Inception-v3 based three different meth-
ods, Inception-v3 with signed difference, Inception v-3 with
bottleneck representation, and Inception-v3 with composite
grayscale. For more details of these supervised methods, refer
to [3]. This result shows that proposed method’s performance
is almost comparable to the best performing supervised model.
The proposed method also outperforms its average pooling
based version, k-means clustering based version, and unsuper-
vised RCVA. Moreover, Table I shows result of the proposed
method using fifth and seventh convolution layer of VGG-16
for feature extraction. One example from HiRISE dataset is
shown in Figure 2 that shows the proposed method is capable
to indicate the location of change.

CTX meteorite impacts dataset: Here we investigate the
proposed method to the transfer learning capability of the su-
pervised methods in [3]. As tabulated in Table II, the proposed
method outperforms all supervised methods on CTX meteorite
impacts dataset. Notably this dataset has some pairs with sig-
nificant misalignment. Superior result of the proposed method
indicates that it is able to handle misalignment by effectively
summarizing patch with global max-pooling. Moreover, this
proves the superiority of the proposed unsupervised method
in comparison to merely transferring supervised CD model
from another dataset. An example from the CTX meteorite
impacts dataset is shown in Figure 3.

LROC Moon dataset: In spite of strong misalignment error
in this dataset, the proposed method is able to distinguish
the changed patches from the unchanged ones. The proposed
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TABLE I
COMPARISON OF THE PROPOSED UNSUPERVISED METHOD WITH THE
SUPERVISED METHODS IN [3] FOR HIRISE RSL.

Method Accuracy %
Proposed 94.1
Proposed (average pooling) 92.1
Proposed (k-Means clustering) 91.7
Proposed (Layer 7) 92.1
Proposed (Layer 5) 90.9
Inception-v3 absolute difference 94.5
Naive Bayes pixel difference 94.5
Inception-v3 signed difference 91.7
Inception-v3 composite grayscale 89.8
SVM absolute difference 87.8
Inception-v3 bottleneck representation 70.1
RCVA 64.6

TABLE II

COMPARISON OF THE PROPOSED UNSUPERVISED METHOD WITH THE
TRANSFER LEARNING CAPABILITY OF THE SUPERVISED METHODS IN [3]
FOR CTX METEORITE IMPACT DATASET.

Method Accuracy %
Proposed 81.3
Proposed (average pooling) 76.0
Proposed (k-Means clustering) 75.0
Inception-v3 bottleneck representation 75.0
Inception-v3 absolute difference 71.9
Inception-v3 signed difference 54.2
Inception-v3 composite grayscale 55.2
Naive Bayes pixel difference 52.1
SVM absolute difference 67.7
RCVA 59.4

method successfully labels 9 out of 10 test patches, in compari-
son to the method in [3] that can only correctly label 8 patches.
Proposed method also outperforms its average pooling variant,
RCVA (both correctly label 7 patches), and k-means clustering
based variant (correctly labels 8 patches). This shows that
global max-pooling successfully summarizes the content of
bi-temporal feature and subsequent comparison effectively
identifies the changed patches. Example of a prediction on
this dataset is shown in Figure 4 that shows the proposed
method is capable to indicate the location of impact despite
misalignment in dataset.

V. CONCLUSIONS

To the best of our knowledge, this paper introduces deep
transfer learning based unsupervised CD for first time in the
context of planetary exploration. Humankind has reached far
beyond Earth and missions to new destinations are launched
periodically. This poses us with challenge of processing mul-
titemporal planetary data with huge variations. The proposed
unsupervised method enables us to process varieties of unla-
beled multitemporal planetary data without using any label.
Towards this, the proposed method cleverly exploits deep
transfer learning along with automatic threshold determination.
Though unsupervised, proposed method outperforms most of
the existing supervised methods. This shows the proposed
method as a suitable option when labeled multi-temporal
planetary data is not available. Considering the varieties of
planetary mission and applications, it is impossible to always
have abundant labeled multi-temporal data. Though proposed
for multispectral input, the proposed method can be easily
modified for hyperspectral input by choosing a different pre-

trained network. Though proposed in the context of planetary
CD, proposed method can be extended for any CD applica-
tions that require patch-level decision. Our future work will
experiment on more planetary data. To conclude, our work is
one step further in better understanding the temporal evolution
of space and other planets.
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