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Abstract: This paper presents a method for segmenting a 3D point cloud into planar surfaces using recently obtained discrete-
geometry results. In discrete geometry, a discrete plane is defined as a set of grid points lying between two parallel planes with a small
distance, called thickness. Contrarily to the continuous case, there exist a finite number of local geometric patterns (LGPs) appearing
on discrete planes. Moreover, such a LGP does not possess the unique normal vector but a set of normal vectors. By using those LGP
properties, we first reject non-linear points from a point cloud, and then classify non-rejected points whose LGPs can have common
normal vectors into a planar-surface-point set. From each segmented point set, we also estimate parameters of a discrete plane by
minimizing its thickness.

Keywords: Image segmentation, discrete geometry, planar surface.

1 Introduction

Recent progress of computer vision technologies allows
us to easily acquire a 3D point cloud of an object[1]. Let
us consider a simple case where our interesting object is
polyhedral. Then, reconstructing the whole 3D shape us-
ing several 3D point clouds taken from different viewpoints
requires extracting at least three common planar patches
from every 3D point cloud[2]. This extraction is known as
surface segmentation.

Conventional approaches for the surface segmentation
problem of a 3D point cloud are classified into the follow-
ing three categories: region-based, edge-based, and hybrid
approaches. The first one merges points that have similar
region properties calculated from their neighboring points
such as normal vectors [3, 4], curvatures [5] parameters of
fitted planes [6, 7, 8] or quadratic surfaces [6, 9], and other
indices corresponding to local surface shapes [10]. As calcu-
lated properties are very sensitive to noise and quantization
errors, they cause over segmentation results [11]. Thus, an
additional procedure for merging regions is needed after the
initial segmentation [11, 12]. In the second approach, edges
are searched such that they separate regions by using depth
discontinuities [13]. As edges are not always extracted as
connected curves, they cause under segmentation, contrary
to the first one. Thus, in this case, an additional proce-
dure for splitting regions is needed after the initial segmen-
tation. The third approach is hybrid between the above
two approaches, namely, combinations of region-based and
edge-based approaches [11, 14, 15]. One of interesting ideas
for planar cases in the third approach can be found in [14];
the notion of locally planar points are proposed for a pla-
nar segmentation method. Locally planar points are used
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for detecting not only planar regions but also edges, be-
cause points that are not locally planar are considered to
be potentially edge points.

The above three approaches possess the common prob-
lem of using surface primitives or geometric features for the
surface segmentation. In order to approximate/select sur-
face primitives and calculate geometric features from 3D
discrete points, we are obligated to set parameters from the
practical point of view. Such parameter setting/adaptation
is not simple work, because it depends on the discreteness
of a given 3D point cloud, such as data resolution and noise.
For example, we need to define a set of neighboring points
for calculating geometric features for each 3D point. Note
that, in this paper, a set of neighboring points in a 3D point
cloud is also called a locally geometric pattern, abbreviated
to an LGP. The sizes and patterns of LGPs implicitly give
influences to other parameter values in the post-process of
region merging/splitting, because calculated geometric fea-
tures generally have some errors due to various patterns of
LGPs. However, in most cases, such parameter adaption is
realized experimentally or statistically with some statisti-
cal hypothesis. In this paper, simplifying the surface seg-
mentation problem by focusing only on planar cases, we
present a new method for planar surface segmentation of
a 3D point cloud using recently obtained discrete-geometry
results [16]. The discrete geometry enables us to eliminate
many unnecessary parameters and to simplify the planar
surface segmentation algorithm.

We present a discrete version of the hybrid method, in
this paper, by using fixed-size LGPs in a discrete space. As
a consequence, once we fix the size, it automatically decides
other parameter values thanks to the theory of discrete ge-
ometry [16]. In discrete geometry, a discrete plane is defined
as a set of grid points lying between two parallel planes with
a small distance, called a thickness [16]. Contrarily to the
continuous case, there exist a finite number of local geomet-
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ric patterns, LGPs, appearing on discrete planes, called lin-
ear LGP [17]. In fact, points whose LGPs are linear can be
considered to be discrete version of locally planar points [14].
In addition, each linear LGP does not possess the unique
normal vector but a set of normal vectors [18]. By using
those LGP properties, we present a segmentation method
following the two steps: first reject non-linear points from a
point cloud (edge-based part), and then merge non-rejected
points whose LGPs have common normal vectors (region-
based part). It thus uses only precalculated look-up tables
with respect to LGPs, and does not require any parameter
setting. Furthermore, our method is less sensitive to noise
as well as quantization errors. Indeed linear LGPs already
take into account quantization errors for their generation.
We show the effectiveness by applying our algorithm to 3D
point clouds such as range images. In order to evaluate our
segmentation results, we apply a method for estimating dis-
crete plane parameters from each segmented planar surface
by minimizing its thickness. This problem is solved by a
linear programming method. As the thickness indicates the
segmentation inaccuracy, we consider that the thinner the
thickness, the better the segmentation result.

2 Non-linear point rejection using LGP

2.1 Discrete planes

Let R be the set of real numbers. A plane P in the 3D
Euclidean space R

3 is defined by the following expression:

P = {(p, q, r) ∈ R
3 : αp + βq + γr + δ = 0}

where α, β, γ, δ ∈ R. Let Z
3 be the set of grid points whose

coordinates are integers in R
3. A discrete plane, which is a

digitization of P, is then defined such that

D(P) = {(p, q, r) ∈ Z
3 : 0 ≤ αp + βq + γr + δ < ω} (1)

where ω = max (|α|, |β|, |γ|), called the thickness [16].

2.2 Linear LGP on discrete planes

We consider a cubical grid-point set Q(x) whose edge
length is 2 around a point x ∈ Z

3 such that

Q(x) = {y ∈ Z
3 : ‖x − y‖∞ ≤ 1}. (2)

Let us assume that each point in Z
3 has a binary value such

as either 1 or 0. Such a pattern of binary points in Q(x) is
called local geometric patterns, abbreviated to LGP. There
are 226 different LGP for Q(x) providing that the central
point x always has the fixed value 1. This indicates that
x is considered not to be a background point but to be a
surface point.

Among those different LGPs, we investigated which LGP
can appear on discrete planes [17]. This problem is mathe-
matically written as follows. Let F be a set of points whose
binary values are 1 in Q(x). If there is a plane P such that

F = D(P) ∩ Q(x)

= {(p, q, r) ∈ Q(x) : 0 ≤ αp + βq + γr + δ < ω}, (3)

we say that F forms a discrete plane in Q(x). Therefore,
our problem is solved by looking for all possible F, namely

[1]

[13] [14] [15]

[16] [17] [18] [19] [20] 

[21] [22] [23] [24] [25] 

[26] [27] [28] [29] [30] 

[31] [32] [33]  [34]  

[2] [3] [4] [5]

[6] [7] [8] [9] [10]

[11] [12]

Figure 1 The 34 linear LGPs.

LGPs, satisfying (3). Such LGPs are called linear LGPs.
Since this problem is considered to be the feasibility of the
inequalities of (3) for all (p, q, r) ∈ F, we need to check if
there are feasible solutions α, β, γ, δ for each different LGP
of Q(x). If they exist, such LGP can appear on discrete
planes and become linear LGP.

However, [17] shows that we can avoid computing the fea-
sibility test for all 226 LGPs of Q(x), by taking an approach
based on arithmetic planes [16, 20], which are related to dis-
crete planes. An algorithm is then proposed to generate all
linear LGPs, and it is found that there exist only 34 LGPs
that appear on discrete planes, called linear LGPs, up to
translations, rotations and symmetries, as shown in Fig. 1.
Note that they are generated with the constraints

0 ≤ α ≤ β ≤ 1, γ = 1. (4)

In order to visualize the shapes of linear LGPs in Fig. 1, we
add polyhedral meshes generated for planar surface points
by applying a discrete-marching-cube-like method for the
18-neighborhood system [21] to a digitized half space. Inte-
rior points of planar surfaces are designated as black points
in the figures.

2.3 Locally linear and non-linear points

Experimentally, those linear LGPs can be seen not only
on discrete planes but also on discrete smooth surfaces. In-
tuitively, this is not difficult to understand, since any local
surface patch on a smooth surface can be approximated to
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a planar surface when the size of the patch becomes small.
In the discrete space, even if a point has a linear LGP, we
are uncertain whether such a point appears on a planar
surface or a non-planar surface. Contrarily, if a point has a
non-linear LGP, it never appears on a planar surface. From
this reason, if a point has a linear LGP, it is called a locally
linear point, otherwise, simply called a non-linear point.

2.4 From a point cloud to a grid point set

Before executing the non-linear point rejection to a grid-
point set, we explain how to transform a 3D point cloud
into a grid-point set. Our input in this paper is a range
image represented by a 2D digital image each of whose
pixel (x, y) ∈ [X1, X2] × [Y1, Y2] of Z

2 has a depth infor-
mation d(x, y) from a 3D scanner to an object surface. We
transform such a range image into a 3D triple-valued image
by re-quantizing a depth d(x, y) as follows: for each point
(x, y, z) in a finite subset X = [X1, X2] × [Y1, Y2] × [Z1, Z2]
of Z

3, we define a triple-valued function such that

t(x, y, z) =











2, if z = ⌊ d(x,y)
r

+ 1
2
⌋,

1, if z > ⌊ d(x,y)
r

+ 1
2
⌋,

0, otherwise,

(5)

where r is a sampling interval for depths.
Grid points whose values are 2 are closest to input points

(x, y, d(x, y)) so that they are considered to be discrete sur-
face points and to be visible from a 3D scanner. Thus, we
call them visible surface points and define a set of visible
surface points such that

V = {(x, y, z) ∈ X : t(x, y, z) = 2}. (6)

Concerning grid points whose values are 1, they are in-
visible from a 3D scanner so that we do not know whether
they are surface points or not. Therefore, we simply call
them invisible points. Since the rest of grid points whose
values are 0 are visible and background points, a set of po-
tential points for an object is defined as a union of visible
surface points and invisible points such that

W = {(x, y, z) ∈ X : t(x, y, z) 6= 0}.

Thus, a set of surface points is obtained as a border point
set of W such that

∂W = {x ∈ X : N6(x) ∩ W 6= ∅} (7)

where
N6(x) = {y ∈ Z

3 ‖x − y‖1 ≤ 1}

and W is the complement of W. Note that V ⊆ ∂W and
the equality does not always hold.

A visible surface point set V can be considered to be a
digitization of a point cloud, while a surface point set ∂W

is necessary for making binary patterns of LGPs; the binary
value of a point x is set to be 1 if x ∈ ∂W; otherwise, set
to be 0. This is why we also need ∂W as well as V.

2.5 Non-linear point rejection

By simply checking the LGP linearity, we can therefore
reject non-linear points from a grid-point set, since we know
that non-linear points never appear on any discrete plane.

Figure 2 An experimental example of non-linear point rejection.

In other words, the linear LGPs play an important role in
filtering linear points. Note that it is realized by looking up
the binary table of LGPs (linear or not).

For the experiment, we use a 3D point cloud taken by
a 3D scanner Konica-Minolta VIVID 910 with a resolution
320 × 240. We first re-quantized the z-coordinates with a
similar interval r to those of the x- and y-coordinates from
(5), and obtained two finite grid-point sets, namely, a visible
surface point set V and a surface point set ∂W, from (6)
and (7). Note that the LGP linearity is checked for every
point in V even if binary patterns for LGPs are made from
∂W.

Figure 2 shows an example of locally linear and non-linear
points, colored in light green and black respectively, in a 3D
point cloud taken by a 3D scanner Konica-Minolta VIVID
910 with a resolution 320 × 240. We see in the figure that
points appearing around polyhedral-face edges are rejected
as well as isolated points that are considered to be noise.
However, we also observe that some points around edges
are not rejected, because they are considered to be locally
linear even if they are not linear in a larger region than their
LGPs. This fact implies that a simple post-processing, such
as the connected component labeling [16] of a non-rejected
point set, does not always give satisfactory results for planar
surface segmentation.

In fact, we can generalize the definition of a cubical grid-
point set Q(x) with an infinity norm that is not more than
k, instead of 1, in (2) [17]. If k = 2, for example, we obtain
1574 linear LGPs. However, larger LGPs are not so useful
for the non-linear point rejection. First, they are more sen-
sitive to noise because each point need more neighboring
points to be locally linear. Therefore, we generally obtain
more black points in Fig. 2 if we use larger LGPs. Sec-
ondly, from the practical point of view, we lose a privilege
to use a binary look-up table for checking the LGP linear-
ity, because of the size of all binary patterns of LGPs. In
the cases where k is more than 1, we need to use another
data structure such as a tree to store all linear LGPs and to
check the linearity of a given LGP. Because of these reasons,
we use LGPs for k = 1 in this paper.
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Figure 3 Normal cells on the αβ-plane with constraint (4).

3 Planar surface segmentation of lo-

cally linear points

In order to solve our segmentation problem, we propose a
method using not only the point connectedness but normal
vectors derived from LGPs.

3.1 Feasible normal vectors of linear LGPs

A linear LGP is a discrete plane patch of D(P) in a
bounded space Q(x), denoted by DQ(x)(P). Given a
DQ(x)(P), we can find a set of Euclidean planes P such that
the digitization of each of those planes in Q(x) is equal to
DQ(x)(P). The set of all such Euclidean planes is called the
preimage and it is known that the correspondence between
discrete plane patches and Euclidean planes is not one-to-
one but one-to-many [18]. Because of the one-to-many cor-
respondence, the preimage of DQ(x)(P) is represented by
a set of parameters α, β, γ, δ. More precisely, the preimage
is obtained as a feasible solution set of the inequality set of
(3) for all points (p, q, r) ∈ DQ(x)(P). It means that the
preimage is given by a convex polytope in the parameter
space [18].

As all interesting parameters in this paper are
translation-invariant, we focus on the three parameters
α, β, γ indicating the normal vector of P, distinguished
from the intercept δ of P. We thus apply the Fourier-
Motzkin elimination [22] to the inequality set of (3) for all
(p, q, r) ∈ DQ(x)(P), so that a set of feasible normal vectors
is calculated from each linear LGP. Remark that all calcu-
lations are done by using only integers, i.e., they cause no
rounding errors; the details are found in [17].

The results are derived in the space (α, β) from linear
LGP with the constraints (4), since we use the 34 linear
LGPs in Fig. 1. The feasible region for each linear LGP is
obtained as a convex polygon in the triangle region whose
vertices are (0, 0), (0, 1) and (1, 1) of the space (α, β) be-
cause of (4). Each line in the triangle region in Fig. 3
corresponds to a half plane represented by each inequality
of (3) for every (p, q, r) ∈ DQ(x)(P) for every linear LGP.
We see in Fig. 3 that the inequality set divides the trian-

Table 1 Linear LGPs and their normal cells.

linear LGP normal cells

1 0 25

2 1 9 11 12

3 4 5 7 10 23

4,5 0 1 16 17 18 24

6,17 2 3 4 5 7 8

7 2 3 5 8

8,9 6 9 10 11 14 15 21 23

10,12 8 19 20 25

11 8 17 18 19 20

13,28 2 3 4 5 6 7 9 10 11 12 13 14 15 21 22 23

14 2 3 6 13 14 15 16 21 22 24

15 2 3 6 11 12 13 14 22

16 4 5 7 10 23

18,19 0 18 19 25

20,23 0 1 3 8 12 13 16 17 18 19 20 22 24 25

21,22 3 8 16 17 20 22

24,25 1 9 11 12 13 14 15 24

26,34 2 4 5 6 7 10 21 23

27 2 5 6 7 21 23

29,30 0 17 18 19 20 25

31,32 1 12 13 16 22 24

33 6 9 11 14 15 21

gle region into triangular or quadrilateral polygons in the
space (α, β), called normal cells. The feasible region of each
linear LGP is given as a set of normal cells that constitutes
a convex polygon in the space (α, β). Table 1 shows the
set of normal cells whose union corresponds to the convex
polygon representing the set of feasible normal vectors for
each linear LGP depicted in Fig. 1. Remark that there are
some pairs of linear LGPs both of which have the identical
set of normal cells. In addition, a normal cell corresponds
not only to a simple linear LGP but to several linear LGPs.
Thus, the correspondence between linear LGPs and normal
cells is many-to-many.

3.2 Discrete Gaussian sphere

The 26 normal cells in Fig. 3 are generated with the con-
straints (4). We embed these normal cells into the 3D space
(α, β, γ) with γ = 1, as illustrated in Fig. 4. The triangle
surrounded by thick lines in Fig. 4 corresponds to the tri-
angular region that is the union of normal cells in Fig. 3.
Once the normal cells are embedded into the space (α, β, γ),
we make the congruous ones by applying to them 48 trans-
formations of rotations and symmetries of a cube of edge
length 2, centered at the origin of the 3D space. We see, in
Fig. 4, that there are the 48 triangles on the cube, so that
the whole cube contains 1248 normal cells. Such a cube is
called the cubical Gaussian sphere.

We now project normal cells tiled on the cubical Gaus-
sian sphere onto a unit sphere centered at the origin, as
illustrated in Fig. 5. The unit sphere separated by pro-
jected normal cells is called the discrete Gaussian sphere,
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γ

Figure 4 The cubical Gaussian sphere.

α

β

γ

Figure 5 The discrete Gaussian sphere.

because the size of normal cells indicates the resolution of
digitized normal vectors calculated from linear LGPs. The
triangle surrounded by red lines in Fig. 5 corresponds to the
triangle surrounded by thick lines in Fig. 4 that corresponds
to the union of normal cells in Fig. 3. In the remainder, we
denote G the set of all normal cells on the discrete Gaus-
sian sphere. Remark that we use only integer or rational
numbers to calculate all normal cells, which are related to
the cubical Gaussian sphere.

3.3 Unified discrete Gaussian image

By using the discrete Gaussian sphere, we give a dis-
crete version of extended Gaussian images that are useful
for representing surface shapes [23], called unified discrete
Gaussian images. Let us first consider a discrete version of
the Gaussian image that is the mapping from an object sur-
face point to its normal vector on the Gaussian sphere. Let
V′ be a locally linear point set in Z

3. For a point x ∈ V′,
we define a discrete Gaussian image I(x) as the set of nor-
mal cells corresponding to the linear LGP of x. Choosing
a normal cell c ∈ G, we now consider a point subset of V′

such that

R(c) = {x ∈ V
′ : c ∈ I(x)}. (8)

We then obtain the number of points in R(c) for every
c ∈ G, called the unified discrete Gaussian image, such
that

u(c) = |R(c)|. (9)

Note that u(c) and R(c) are generated by simply looking
up a table such as Table 1.

Figure 6 A synthetic 3D image of a box (top) and its unified
discrete Gaussian image (bottom).

The concept of unified discrete Gaussian images is sim-
ilar to that of extended Gaussian images [23]. The differ-
ences from extended Gaussian images are the followings:
the function (9) is defined with respect to a normal cell c

on the discrete Gaussian sphere G, instead of a point n on
the Gaussian sphere; the value of (9) is the number of grid
points x such that I(x) includes c, instead of the area of
the surface whose normal vector is n. From the definition,
we see that our unified discrete Gaussian image represents
a distribution of normal cells of a digital object surface.

Figure 6 shows an example of the unified discrete Gaus-
sian images for a digitized box. Concerning cell colors on
the discrete Gaussian sphere in Fig. 6 (bottom), the darker
the blue cell, the larger the value of u(c), and the red cell
has the maximum value. The length of the pale blue needle
for each cell c also corresponds to the value of u(c). On a
digitized box in Fig. 6 (top), red and blue points are lo-
cally linear, while green points are non-linear. Note that red
points correspond to the red cell in Fig. 6 (bottom). Figure
6 shows that we can extract a set of grid points that belong
to a digital plane D(P) by choosing a “correct” normal cell,
for example, a red one. This is based on the following fact;
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Algorithm 1: Planar surface segmentation

input : a unified discrete Gaussian image u(c), point
sets R(c), and a minimum surface size s

output: planar-surface point sets Si for i = 1, 2, 3, . . .

begin1

initialize a label such that l = 0;2

repeat3

make a queue Dk of normal cells with priorities4

of values u(c);
increment l and initialize Sl = ∅;5

set h to be the highest priority cell in Dk and6

remove it from Dk;
while |R(h)| > max(s − 1, |Sl|) do7

set C to be the maximum connected8

component of R(h);
if |C| > |Sl| then set Sl = C;9

reset h to be the highest priority normal10

cell in Dk and remove it from Dk;

if |Sl| ≥ s then11

forall c such that u(c) 6= 0 and12

R(c) ∩ Sl 6= ∅ do

reset R(c) = R(c) \ Sl and13

u(c) = |R(c)|;

until |Sl| < s;14

return Si for i = 1, 2, . . . , l − 1;15

end16

if (α, β, γ) is a normal vector of D(P), (α, β, γ) is included
in the common normal cell(s) of I(x) for all x ∈ D(P).

3.4 Algorithm

By using the unified discrete Gaussian image u(c) and the
point sets R(c), we present our algorithm for planar surface
segmentation from a locally linear point set V′. Our prob-
lem is formulated as follows; each point x ∈ V′ is assigned
into one of sets Si for i = 1, 2, . . . such that the points in
each Si constitutes a connected planar-surface set. From
the previous discussions, our method is founded on the
following hypothesis: if there is a connected point subset
S ⊆ V′ such that they have a common normal cell for all
x ∈ S, S may constitute a discrete plane.

Based on this hypothesis, we present Algorithm 1. we
look for the largest connected grid-point set Si, whose
points having a common normal cell by using u(c) and R(c).
As each point has several normal cells, our method cannot
be processed in parallel with respect to normal cells. It
must be a repeated procedure; once we obtain Si, we re-
move all points of Si from every R(c), modify u(c), and
repeat this procedure after the increment of i. Practically,
we would like to avoid obtaining a very small surface patch,
so that we set a parameter s that is the minimum size for
Si.

Algorithm 1 is thus a loop procedure of seeking planar
surfaces Si. Each Si is a maximally connected point set,
whose points have a common normal cell. Once we find
Si, we check the size of Si in Step 11, and if |Si| ≥ s, we
remove all points of Si from every R(c) and also modify
u(c) in Step 13. After such modification and incrementing

i, we seek a new Si. For finding each Si, we look for the
maximum connected component C of each R(c), and then
set Si to be the maximum among all C. In order to re-
duce the frequency of calculation of connected components,
which is a global operation, we make a priority queue Dk of
normal cells with u(c) in Step 4. We then repeat dequeue of
a normal cell h from Dk to obtain the maximum connected
component C of R(h) in Step 8. Comparing the size of
C with the maximum among those of other normal cells
that are already dequeued from Dk, we finally obtain the
currently maximum point set Sl in Step 9. Note that this
loop is repeated until the size of R(h) is less than s or more
than the size of Sl as described in Step 7. For calculating
the maximum connected component of R(h), we apply a
simple method based on a depth-first strategy by using a
queue [16]. The time complexity is linear with respect to
the size of R(h).

3.5 Experimental results

For the experiment, we used six range images of the same
blocks, which are taken by a 3D scanner Konica-Minolta
VIVID 910 from two different viewpoints with three differ-
ent resolutions. The range images were transformed into
grid-point sets by following the explanation in Subsection
2.4. First, we rejected all non-linear points, as described
in Section 2, and then applied Algorithm 1. The results
are illustrated in Figs. 7 and 8. In the cases of Fig. 7,
the numbers of valid (measured) points are 207459 for (a),
51739 for (b) and 12859 for (c). Among those valid points,
we have 184682 locally linear points for (a), 47093 for (b),
and 11346 for (c), respectively. Similarly, in the cases of
Fig. 8, the numbers of valid (measured) points are 195768
for (d), 48797 for (e) and 12139 for (f). Among those valid
points, we have 176697 locally linear points for (d), 44266
for (e), and 10676 for (f), respectively. Tables 2 and 3 show
the number of locally linear points that are assigned to each
segmented planar surface, and their corresponding color in
Figs.7 and 8. We see that 13, 12 and 13 planar surfaces are
found in Fig.7 (a), (b) and (c), and 13, 10 and 13 planar
surfaces are found in Fig.8 (d), (e) and (f), respectively.

We see in Figs.7 and 8 that non-linear points, colored in
light green, appear around edges of block faces, and some-
times appear in faces because of small bumps in faces or
noise in the range images. As we set the minimum sur-
face size s, there are locally linear points that construct
no planar surface whose size is not less than s around the
points, colored in black in the figures. Note that we use
2D connected component labeling in Algorithm 1, instead
of 3D connected component labeling, because locally linear
points are sparsely distributed in the 3D space, but not in
the 2D space.

There are physically 12 visible planar surfaces in Fig. 7
and 10 in Fig. 8; there are actually 11 planes in Fig. 7 be-
cause a table face is separated into two parts with a right
cube. Figures 7 and 8 and Tables 2 and 3 show that all pla-
nar surfaces are segmented by our simple algorithm, which
require neither complicated parameter setting nor param-
eter estimation. We should mention that it may bring us
rather over-segmentation results when the resolution of an
input image is high. For example, the orange and cream
points in Fig. 7 (a) (resp. the pale blue and violet points in
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(a)

(b)

(c)

Figure 7 Planar surface segmentation results from range images
of blocks, which are taken from the same viewpoint, with differ-
ent resolutions: the image sizes are 640× 480 (a), 320× 240 (b),
and 640 × 480 (c). The minimum surfaces sizes s are set to be
1000 (a), 500 (b), and 100 (c), respectively.

(d)

(e)

(f)

Figure 8 Planar surface segmentation results from range images
of blocks, which are taken from a different viewpoint from that
in Fig. 7, with different resolutions: the image sizes are 640×480
(d), 320 × 240 (e), 160 × 120 (f). The minimum surfaces sizes s

are set to be 1000 (d), 500 (e), and 100 (f), respectively.



8

Table 2 Point colors and numbers of segmented planar surfaces
in Fig. 7.

color (a) (b) (c)

1 blue 24649 6755 1770

2 yellow 19865 6194 1578

3 pink 17656 5540 1523

4 pale blue 12724 4655 1191

5 orange 12092 3097 699

6 green 10246 2512 573

7 brown 8974 2253 545

8 turquoise 4734 1629 536

9 olive 3787 1517 440

10 purple 3567 985 248

11 violet 3484 979 232

12 moss green 1948 937 223

13 cream 1734 101

Table 3 Point colors and numbers of segmented planar surfaces
in Fig. 8.

color (d) (e) (f)

1 blue 28053 6814 1850

2 yellow 21931 6738 1583

3 pink 15074 4315 1182

4 pale blue 13414 4245 1161

5 orange 9981 2994 787

6 green 9153 2547 604

7 brown 8905 2409 589

8 turquoise 8525 2222 542

9 olive 3689 1139 281

10 purple 3470 943 218

11 violet 1852 119

12 moss green 1386 114

13 cream 1145 112

Fig. 8 (d)) should be considered to be in the same region,
even if they are separately segmented. We also see that our
method is less sensitive to image noise in lower image reso-
lutions; for example, in Fig. 7 (a), there do not exist many
linear points on the left cubic face colored in moss green,
while more olive and turquoise points are found in Figs. 7
(b) and (c).

As we discussed in Subsection 2.5, we can use larger-
size LGPs for the planar surface segmentation. If we use
lager-size LGPs, then we will have more normal cells on the
discrete Gaussian sphere [17]. This means that each normal
cell becomes relatively small so that we can see smaller dif-
ferences between normal vectors for their distinction. How-
ever, we may have a risk of obtaining over-segmentation
results. Furthermore, as mentioned before, there are other
problems such as obtaining less locally linear points because
larger LGPs are more sensitive to noise, and finding a good
data structure.

4 Estimation of discrete plane parame-

ters

4.1 Formulation

From each segmented planar-surface set Si, we estimate
its discrete-plane parameters. In this paper, we treat the
problem as an linear programming problem. The similar
method for the recognition of blurred discrete plane patches
can be found in [19].

In order to simplify our problem, we first consider the
case that ω = |γ|. From (1), we obtain a linear inequality
set such that, for all (x, y, z) ∈ Si,

0 ≤ α
′

x + β
′

y + z + δ
′ ≤ ǫ (10)

where α′ = α
ω
, β′ = β

ω
, δ′ = δ

ω
. Note that we derive the

constraints

−1 ≤ α
′ ≤ 1,

−1 ≤ β
′ ≤ 1

from these substitutes. We have another constraint

ǫ ≥ 0;

if ǫ < 1, the above inequalities are the same as (1). A
solution set (α′, β′, δ′) is then obtained by minimizing ǫ un-
der the above constraints. In this framework, if we find a
minimum where ǫ < 1, Si is recognized as a discrete plane
patch exactly; otherwise, Si is recognized as a set of grid-
points between two parallel planes whose distance is wider
than the thickness of a discrete plane. Geometrically, our
method looks for two parallel planes such that the z-axial
distance between them becomes minimum.

For all the other cases such that ω = |β|, |α|, we simply
need to modify (10), so that the following inequalities are
obtained respectively

0 ≤ α
′

x + y + γ
′

z + δ
′ ≤ ǫ,

0 ≤ x + β
′

y + γ
′

z + δ
′ ≤ ǫ

where γ′ = γ

ω
. From this substitute, we also derive

−1 ≤ γ
′ ≤ 1.

Practically, we simultaneously use the above 3 types of in-
equality sets to find a parameter set by minimizing ǫ.

4.2 Experimental results

We used a free linear programming solver, lp_solve [24],
for our experiments. Tables 4 and 5 show the estimation
results for segmented planar surfaces obtained in the pre-
vious section, as illustrated in Figs. 7 and 8. Note that we
set ω = 1, so that we have α = α′, β = β′, and γ = γ′.

We first see that the parameter values of α, β and γ

that are obtained for the corresponding planar surfaces, seg-
mented from the range images with different resolutions, are
very similar. For example, the first (resp. second) planes
in Table 4 (a), (b) and (c), colored in blue (resp. yellow) in
Fig. 4, have similar values of α, β and γ.
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Table 4 Parameter estimation results of segmented planar surfaces in Fig. 7

(a)

ǫ α β γ δ

1 7.63025 -0.490022 -0.0829111 1 1860.94

2 8.57463 1 -0.450926 -0.801559 -1354.71

3 6.06245 0.149226 0.410093 1 1843.06

4 3.98103 0.0159472 1 -0.565851 -1316.86

5 8.3099 1 0.408854 0.9880208 -508.393

6 2.33824 -0.00719424 1 -0.561265 -1310.44

7 2.81801 0.0333703 1 -0.387603 -622.829

8 4.49286 1 0.357483 0.70034 1114.11

9 2.17708 1 -0.10359 0.224703 369.444

10 3.31523 1 -0.086893 -0.182444 -477.839

11 7.37345 0.0296537 1 -0.496269 -927.824

12 3.11816 1 -0.482456 -0.998452 -2065.32

13 2.79155 0.991549 0.388732 1 1860.43

(b)

ǫ α β γ δ

1 3.892 -0.492524 -0.086179 1 929.503

2 5.03589 1 -0.4446571 -0.811005 -685.885

3 5.34254 1 0.401473 0.889503 829.663

4 3.32006 0.150978 0.412382 1 921.322

5 2.53489 0.0164474 1 -0.565789 -657.193

6 1.30514 -0.00773908 1 -0.559978 -653.21

7 1.51124 0.0353933 1 -0.387453 -310.698

8 2.53411 1 0.352827 0.699805 557.324

9 1.79852 -0.992593 0.471111 1 1035.22

10 3.67901 0.0308642 1 -0.5 -462.827

11 1.30846 1 -0.0997783 0.228121 188.7

12 1.84748 1 -0.0942873 -0.1797 -235.85

(c)

ǫ α β γ δ

1 2.17386 -0.491985 -0.0850801 1 465.34

2 2.60494 1 -0.444444 -0.802469 -339.074

3 3.03361 1 0.403361 0.886555 414.945

4 1.9854 0.153285 0.416058 1 461.65

5 1.50204 0.00816327 1 -0.595918 -343.045

6 0.763006 -0.0115607 1 -0.560694 -327.104

7 0.839786 0.307076 1 -0.387183 -154.698

8 1.22973 1 -0.486486 -0.986486 -510.216

9 1.39538 1 0.352798 0.701946 280.937

10 0.639312 1 -0.103905 0.224355 93.0285

11 1.65236 0.0729614 1 -0.592275 -273.73

12 0.75812 1 -0.0811966 -0.184615 -119.833

13 1.05861 1 0.556777 0.798535 363.923
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Table 5 Parameter estimation results of segmented planar surfaces in Fig. 8

(d)

ǫ α β γ δ

1 4.77218 0.00593316 1 -0.572602 -1324.12

2 7.05204 0.508394 0.464186 1 1941.96

3 5.69396 -0.222336 0.398329 1 1880.98

4 6.50482 -0.986742 -0.221419 1 1825.7

5 3.56018 1 0.0444174 0.633088 1216.06

6 3.77427 1 -0.211773 -0.319397 -441.095

7 3.36252 0.0244554 1mm1 -0.389848 -622.181

8 6.14341 0.630906 0.492496 1 1781.11

9 7.38064 0.0762753 1mm1 -0.487918 -896.895

10 2.71832 1 -0.225553 -0.466272 -979.645

11 2.72636 1 0.276569 -0.882008 -1577.06

12 2.79741 1 0.0718447 0.083657 -67.6895

13 2.91297 0.115591 1mm1 -0.291331 -758.164

(e)

ǫ α β γ δ

1 2.52068 0.00593786 1 -0.573693 -662.817

2 3.75621 0.503386 0.465011 1 971.786

3 4.43575 1 0.229012 -0.990006 -898.568

4 3.29534 -0.216321 0.409326 1 940.894

5 2.88372 0.613953 0.47907 1 893.614

6 1.99154 1 0.0444047 0.62931 605.345

7 1.9594 1 -0.212029 -0.321437 -222.269

8 1.63415 0.0243902 1 -0.390244 -311.049

9 1.46143 1 -0.226508 -0.464236 -487.532

10 3.10073 0.0680581 1 -0.493648 -454.253

(f)

ǫ α β γ δ

1 2.45884 0.51417 0.460189 1 487.51

2 2.20412 0.013526 1 -0.57055 -328.931

3 2.59351 1 0.228652 -0.997177 -451.424

4 1.99307 -0.228571 0.393939 1 471.536

5 1.82812 0.617188 0.476562 1 447.953

6 1.18626 1 0.0463576 0.631623 304.741

7 0.935347 1 -0.21142 -0.316659 -108.528

8 0.938095 0.0238095 1 -0.390476 -155.233

9 0.746032 1 -0.222222 -0.460317 -241.714

10 1.2268 0.0515464 1 -0.474227 -217.897

11 1.04615 1 0.282051 -0.866667 -385.815

12 0.545455 1 0.0606061 0.0909091 -12.8788

13 0.831683 0.108911 1 -0.316832 -201.564
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Concerning to the parameter δ, the values in Tables 4
(a) and 5 (d) (resp. Tables 4 (b) and 5 (e)) are almost four
times (resp. twice) as large as those in Tables 4 (c) and 5
(f), respectively. The reason is that the grid space of Figs. 7
(a) and 8 (d) (resp. Figs. 7 (b) and 8 (e)) is four times (resp.
twice) as large as that of Figs. 7 (c) and 8 (f), because of
their image resolutions. Note that we set the grid interval
to be 1 for the parameter estimation.

From Tables 4 and 5, we also see that it is rare that
ǫ becomes less than 1, specially when the image resolu-
tion is high. In other words, our segmented planar surfaces
can be exactly discrete planes, when the resolution becomes
lower. The tables show that the higher the image resolu-
tion, the larger the value ǫ. Since each segmented planar
surface contains many grid points when the image resolu-
tion is high, as seen in Table 2, it can generate a thicker
discrete plane. Figure 9 illustrates the estimated discrete
plane with a minimum thickness, namely, the two parallel
planes with a minimum distance, for each segmented point
set in Fig. 7. In Fig. 9, we see that there is no isolated
point in any segmented point set, thanks to the non-linear
point rejection and the connected component labeling in
Algorithm 1. Therefore, the thickness may be related to
the surface curvedness of a segmented point set, as well as
the shape and the size. It might be interesting to study how
we can reduce the thickness ǫ by changing the image resolu-
tion, for the aim of inventing a multiscale method for range
image registration by using planar surfaces, for example.

5 Conclusion

In this paper, we present a discrete version of the hybrid
method for planar surface segmentation from a 3D grid-
point set. Our method simply requires two types of look-up
tables, such as the binary LGP table (linear or non-linear)
and the normal cell list with respect to each linear LGP, and
does not require any parameter setting/estimation. The ex-
perimental results in Figs. 7 and 8 show us that our method
is useful for planar surface segmentation from a point cloud,
because it takes into account not only quantization errors
but also noise. We also present a method for estimating
discrete-plane parameters, which is also based on discrete
geometry. Theoretically, exact discrete planes must be ob-
tained if input is an ideal image, i.e., it does not contain
noise, but contains only quantization errors. However, our
estimation results in Tables 4 and 5 show us that exact dis-
crete planes are rarely obtained for practical images. This
is because input images contain noise as well as quanti-
zation errors. Therefore, we need to eliminate such noise,
for example, by reducing image resolutions, before applying
our method based on discrete geometry. As our method is
fully discrete and such discreteness may help us to build up
a multiscale approach, we will reorient our future work to
inventing a multiscale method for range image registration
by using discrete planes, for example. We expect that our
approach will provide a rough registration result with less
computation.

(a)

(b)

(c)

Figure 9 Estimated two parallel planes with a minimum thickness
for each segmented point set in Fig. 7.



12 International Journal of Automation and Computing 04(1), January 2007

References

[1] R. Hartley, A. Zisserman. Multiple View Geometry in Com-
puter Vision. Second Edition, Cambridge University Press,
Cambridge, 2003.

[2] H.-Y. Shum, K. Ikeuchi, R. Reddy. Principal component
analysis with missing data and its application to polyhedral
object modeling. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 17, no. 9, pp.854–867, 1995.

[3] G. Papaioannou, E.-A. Karabassi, T. Theoharis. Segmen-
tation and surface characterization of arbitrary 3D meshes
for object reconstruction and recognition. in Proceedings of
Ineternational Conference on Pattern Recognition, IEEE,
pp.734–737, 2000.

[4] G. Taylor, L. Kleeman. Robust range data segmentation
using geometric primitives for robotics applications. in Pro-
ceedings of the IASTED International Conference on Signal
and Image Processing, pp.467–472, 2003.

[5] P. J. Besl, R. C. Jain. Segmentation through variable-order
surface fitting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 10, no. 2, pp.167–192, 1988.

[6] O. D. Faugeras, M. Hebert, E. Pauchon. Segmentation of
range data into planar and quadric patches. In Proceed-
ings of Computer Vision and Pattern Recognition, pp.8–13,
1983.

[7] D. Cohen-Steiner, P. Alliez, M. Desbrun. Variational shape
approximation. ACM Transactions on Graphics, vol. 23,
no. 3, pp.905–914, 2004.

[8] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn. An
experimental comparison of range image segmentation al-
gorithms. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 18, no. 7, pp.673–689, 1996.

[9] D. Marshall, G. Lukacs, R. Martin. Robust segmentation
of primitives from range data in the presence of gemetric
degeneracy. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 23, no. 3, pp.304–314, 2001.

[10] H. Chen, B. Bhanu. 3D free-form object recognition in
range images using local surface patches. Pattern Recog-
nition Letters, vol. 28, pp.1252–1262, 2007.

[11] K. Haris, S. N. Efstratiadis, N. Maglaveras, A. K. Katsagge-
los. Hybrid image segmentation using watersheds and fast
region merging. IEEE Transactions on Image Processing,
vol. 7, no. 12, pp.1684–1699, 1998.
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