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Abstract 

Thermoplastic composites (TCs) are a famous choice when it comes to high performance designs for industrial applications. Since the growing 
demand on the use of this material, it is important to be able to evaluate suitable processing technologies. One of those technologies is 
continuous ultrasonic welding (CUSW) which creates continuous joints, also called seams, between two or more TCs parts. In CUSW 
mechanical oscillations are applied to the material and result in melting and connecting of the welding parts. 
The approach to predict joint strength (qualities) of continuous ultrasonic welded TCs by training different neural networks is investigated in 
this study. Quality class prediction around 72 % accuracy is achieved with a fully connected neural network. Concluding, quality prediction of 
welded TCs with the help of artificial intelligence seems to be a suitable approach for quality observation but more research could lead to more 
reliable neural networks for industrial applications. 
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1. Introduction 

Thermoplastic composite (TC) materials have grown on 
popularity since they are used in automotive and aerospace 
applications and other fields of engineering [1]. In addition to 
the wide use in industry, TCs have many different advantages 
as for example a better strength- and stiffness-to-weight ratio 
(in comparison to metal) [2, 3]. Another major advantage of 
thermoplastics is their weldability. However, own assumptions 
lead to the conclusion that the use of welding processes in 
industry is easier to accomplish if the process and the quality 
can be reliably monitored during production steps. 

There are already some approaches to predict bonding 
qualities of ultrasonic welded TCs based on process 
observations. One research group investigated power- and 
displacement curves in order to be able to monitor the welding 

process and make assumptions about the produced welding 
quality [4]. Another research group developed a wave 
transmission model for predicting a weld quality class out of 
three [5]. This prediction model reached error rates in its 
prediction between 2 % and 42 %, depending on the setup [5]. 
Beside these two research groups there are other groups which 
investigate welding parameters and their influence [6] which 
underlines the importance of this topic.  

All these researches seem to focus on the basic 
understanding of the welding process in order to deduce from 
this knowledge to weld quality or a better parameterization of 
the welding process. The use of an artificial intelligence (AI) 
to predict the bonding quality of continuous ultrasonic welded 
thermoplastic composites is, to the authors knowledge, a new 
approach and first preliminary tests indicate that this new 
method could lead to an accurate prediction method [7]. 
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1. Introduction 

Thermoplastic composite (TC) materials have grown on 
popularity since they are used in automotive and aerospace 
applications and other fields of engineering [1]. In addition to 
the wide use in industry, TCs have many different advantages 
as for example a better strength- and stiffness-to-weight ratio 
(in comparison to metal) [2, 3]. Another major advantage of 
thermoplastics is their weldability. However, own assumptions 
lead to the conclusion that the use of welding processes in 
industry is easier to accomplish if the process and the quality 
can be reliably monitored during production steps. 

There are already some approaches to predict bonding 
qualities of ultrasonic welded TCs based on process 
observations. One research group investigated power- and 
displacement curves in order to be able to monitor the welding 

process and make assumptions about the produced welding 
quality [4]. Another research group developed a wave 
transmission model for predicting a weld quality class out of 
three [5]. This prediction model reached error rates in its 
prediction between 2 % and 42 %, depending on the setup [5]. 
Beside these two research groups there are other groups which 
investigate welding parameters and their influence [6] which 
underlines the importance of this topic.  

All these researches seem to focus on the basic 
understanding of the welding process in order to deduce from 
this knowledge to weld quality or a better parameterization of 
the welding process. The use of an artificial intelligence (AI) 
to predict the bonding quality of continuous ultrasonic welded 
thermoplastic composites is, to the authors knowledge, a new 
approach and first preliminary tests indicate that this new 
method could lead to an accurate prediction method [7]. 
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This work will investigate the quality prediction approach 
of continuous ultrasonic welded seams of TCs by using 
artificial intelligence and process data. For this investigation 
different types of process data (sequential- and single values) 
are measured and processed. The different data types lead to 
the necessity to use the Keras implemented functional API 
which is able to combine different neural networks and allows 
multiple inputs and outputs [8]. For sequential data a 1D-
convolutional neural network (1DCNN) and for single values 
a fully connected neural network (FCNN) is used. In order to 
see if the prediction quality of a single FCNN is weaker, equal 
or better than the API approach, the sequential values are 
transformed into single values and fed to a FCNN. 

All described experiments and results were created at the 
German Aerospace Center (DLR) at the Center for 
Lightweight Production Technology in the city of Augsburg 
[9]. 

Going further in this study, the theoretical background 
about ultrasonic welding and artificial intelligence will be 
described. After that, a paragraph about the experimental 
procedure of this work follows. Later on, the results of the 
network training- and testing phase are shown and 
summarized in a conclusion. 

2. Theoretical Knowledge 

2.1. Ultrasonic Welding 

Ultrasonic welding (USW) and continuous ultrasonic 
welding (CUSW) are considered as good joining techniques 
for TCs [10, 11]. In the following subsection a description of 
USW takes place. It has to be considered that the general 
mechanisms of CUSW are the same than in USW [10].  

In the process of USW an electrical signal with a 20-
50 kHz frequency [12, 13] is transformed in mechanical 
oscillations [2, 11, 13] with 10-250 m amplitudes [13]. The 
mechanical oscillations are transferred with a sonotrode into 
the welding parts [2, 11]. The necessary heat for the joining of 
the welding parts results from internal damping [12] or, more 
specific, form surface friction between the two welding parts 
and intermolecular friction [5]. A mathematical description of 
the internal heating process can be found in Appendix A. It is 
possible to place an energy director (ED) between two 
welding parts in order to focus the oscillations and create a 
smaller area where the heat is generated [14]. Figure 1 shows 
a schematic setup of the used ultrasonic welding setup. 

The term continuous ultrasonic welding is applied when the 
seam is not consisting of single welded spots but of one 
continuous seam [13]. 

2.2. Artificial Intelligence 

Artificial intelligence has different definitions in literature 
[8, 15]. For the purpose of this work it is adequate to 
understand AI as a designed, rational thinking agent which has 
to perform some kind of thinking process in order to solve a 
specific, cognitive task [15]. 

A subfield of AI is called machine learning where 
algorithms get labeled data and learn rules to describe the 

correlation between the data and its labels [8]. Goal of 
machine learning is that the learned rules can be applied to 
new data in order to make decisions about suitable labels [8].  

If the representation of the data is learned by stacked layers 
of neurons, a neural network (NN) has been created and the 
term deep learning is used [8]. Neurons in different layers 
propagate an input signal form one neural layer up to the next 
neural layer [8, 16]. During the learning process of the NN, 
different weights of the connections between the neurons 
evolve and the algorithm learns how to connect the input to its 
fitting output [8, 16]. 

Since FCNNs and 1DCNNs are programmed in this work, 
the algorithms are settled in the category of deep learning. 
 

 

Figure 1: Scheme of the welding apparatus. An electrical signal is changed by 
a converter (blue) and a booster (red) in mechanical oscillations and used for 
welding two plates together. Figure inspired by descriptions of Bhudolia et al. 
[2]. 

2.3. Network Types 

A FCNN can be seen as the basic network architecture of a 
deep learning algorithm. As displayed in Figure 2, stacked 
layers of neurons are used to build such a FCNN. Each neuron 
in a layer is connected to each neuron in the previous and 
following layer. These connections have each an initial weight 
which is changed during a learning process in order to produce 
the right output for given input data. In which way the weights 
are changed is regularized by a loss function which describes 
the error rate of the network in the prediction of outputs. The 
accuracy in the prediction of the network is maximized and 
the network learns, when the loss function is minimized. 
FCNNs are able to process multiple single input values. Since 
NNs calculate tensor operations, a single input value could be 
seen as zero-dimensional input. Figure 2 (a) shows the scheme 
of the basic structure of a FCNN. [8, 16] 

1DCNNs are able to process one-dimensional input, as for 
example a measurement of a parameter over a period of time. 
In comparison to the architecture described above, 1DCNNs 
do not have single connected neurons but process the given 
input signals by convolving the signals with filters. Here, the 
weights in the filters are changed in order to give the 1DCNN 
the ability to learn. [8] 

Figure 2 (b) shows the working mechanism of a 1DCNN. A 
real 1DCNN usually has different kinds of layers (see Figure 5 
and Figure 6 in Appendix B) and not only convoluting ones. 
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Figure 2: a) Scheme of FCNN. a-e represent five single input values which enter the FCNN over the input layer (blue). Together the input values are one-
dimensional while each value represents another welding/process parameter. The data is processed in the hidden layers (yellow) and an output is produced 
(green/ red). The output layer shows the label decision (prediction) of the FCNN (red). A loss function changes the weights on the single neuron connections 
dependent on the right/ wrong decision of the FCNN during the training (red arrows). b) Scheme of a 1DCNN. One sequential input (here: one parameter 
measurement over time) is given to the algorithm (blue). A filter convolves the signal with a predefined size (red) and the results of the convolution are saved in a 
feature map (yellow). The filter runs over the length of the time sequence (grey arrow). The data can run through several convolutions and other processing layers 
(grey) until the data is fed to neurons which make a label prediction (yellow and green, label prediction red). Both figures are inspired by descriptions of Chollet 
[8].

3. Experimental Work & Methods 

3.1. Design and Evaluation of the Welding Process 

In order to get a NN which classifies data correctly, 
training of the NN is essential. Real TCs plates have to be 
welded for the generation of appropriate training data. During 
the welding of different samples, important welding 
parameters have to be varied so that good and bad welds can 
be fed to the NN. As welding material Toray Cetex® TC1225 
with a carbon fiber orientation of [(0/90)3]s is used. The fibers 
are embedded in a low melt PolyAkrylEtherKetone (LM-
PAEK) matrix. The 1.8 mm thick and 500*500 mm wide 
plates are buzz sawed in 250.1*104 mm samples. One up to 
four EDs consisting of LM-PAEK with 60 to 200 m 
thickness each, are placed between the welding plates. The 
plates and EDs are stored for at least 12 h at 60 °C and 0 %rH 
(relative humidity) before the welding takes place. For the 
welding process the plates are fixed with a 12.7 mm overlap 
(Figure 3) on an anvil. The here created overlap is equal to the 
area which connect the upper with the lower plate after the 
welding took place. CUSW is then performed by an end 
effector which was designed at the DLR [10] and mounted on 
a KUKA KR300 R2500 Ultra Robot. The spherical shaped 
sonotrode (welding surface dimension of 25 mm) is 
powered by a 20 kHz Branson generator while the process 
data of the welding is measured by a flied bus system which is 
able to record the measuring parameters with a frequency of 
1 kHz. After the completed welding process the plates are 
water jet cut in 25.4 mm wide samples. With this procedure 
each welded plate is divided into nine samples for quality 
evaluation and one extra sample for other documentary 
purpose. For the experiments which are performed in this 
work 486 samples are used. In order to have a variety of 
welding setups covered, three design of experiments with 

weld forces between 400-900 N, amplitudes over 90 % 
(referred to the maximal output), welding velocities of 18-
24.75 mm/s, consolidation pressure of 0.4-1.0 MPa, 
compaction roll (wheel unit which runs over the area which 
should be welded) force of 100-750 N and combined ED 
thicknesses of 120 m (2*60), 200 m (2*100 or 1*200) and 
240 m (4*60) are made. Caused to the limited availability of 
the welding material some older welding results are reused for 
these experiments (13 welds, process parameters are in the 
ranges which are described above). 

Quality evaluation of the welded joints is done by lab shear 
strength (LSS) tests. The tests are performed as described in 
the ASTM D1002 norm. Cross head speed during the tests is 
set to 1.3 mm/min with a cross head starting distance of 
80 mm. Shear strength was saved for each sample in the unit 
MPa. 

3.2. Data Production and Processing 

Five process parameters of the welding process are 
recorded and fed to the NN. Namely these parameters are the: 
 
 applied welding force [N] 
 amplitude output of the Branson unit [%] 
 power output for the welding process [W] 
 welding speed of the tool center point (TCP) [mm/s] 
 pressure of the consolidation unit [bar] 

 
Additionally, three other parameters are added manually to 
each data set. The layer thickness describes the thickness of 
the applied EDs in m and is supplemented by the number of 
layers [abs] with which the total ED thickness can be 
calculated. The position of a sample (1-9) in the welded plate 
has to be used in a later step.  
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Figure 3: Upper part: Scheme of a welded plate with its division in lab shear 
strength test samples and one sample for documentary purpose (between 5 
and 6). Lower part: Welding power (=Branson Power Out) signal which is 
divided in sub-samples which contain the values measured during the welding 
of each cut sample. 

The recorded data are in their raw shape after the welding 
process. Preprocessing has to be done in order to make the 
data fit to the input layers of the different networks.  

The first step of preprocessing the data is to create suitable 
labels for the data. If the task of the NN is to predict joint 
strength as continuous values, the measured LSS values are 
suitable for labeling the process data. In order to be able to 
make a quality prediction in terms of a quality class the LSS 
values have to get class labels. For this task the LSS values are 
divided in three quality classes. The first class contains all 
weld samples with an LSS value of 0 up to 15 MPa. The 
second class reaches from over 15 to 30 MPa and the last class 
stores all samples which have a joint strength of over 30 MPa.  

The second step of preprocessing is to transform the data in 
order to bring them in the same range and similar shape. For 
this purpose, the data is normalized so that the parameter 
values range between 0 and 1. In the signal of the amplitude 
some measure points lay over 100 %. This measure points 
may occur because of irregularities in the measurement. Most 
of these outliers are nevertheless eliminated by the 
normalization process. In this process, the maximum of every 
process parameter is multiplied by 1.03 before dividing the 
whole data sequences by this value. Additionally, the moving 
average is calculated for each parameter measurement 
(window size of 31 measurement points). The moving average 
smooths the measurement and eliminates potentially edgy 
signals which may develop caused by the quantization of the 
process signals.  

In the third step the sequential data of a welded plate is 
divided in the same sub-samples as the real plate is divided in 
(Figure 3). Each of these sub-samples gets a position tag 
which describes the relative position of the sample in the 
plate. The tags range from one to nine and were added in their 
normalized shape to the sequential sub-sampled data. Some of 
the measured parameters are steady values (e.g. velocity) or 
have a mean standard deviation near zero. From all these 

constant or nearly constant parameters the mean value over 
their sub-samples is calculated and taken as single input value 
for the training process. The parameters ‘Welding Force’ and 
‘Welding Power’ are taken as sequential values. 

The data storage contains 486 single LSS values and 
quality classes at the end of the preprocessing. Connected to 
these values, 486 files are stored which contain measured 
process parameters and manually added process information 
which should either be processed as a single value or a 
sequential value. 

3.3. Network Architectures 

Besides the libraries Keras and TensorFlow, matplotlib, 
pandas and numpy are used for the programming tasks. All 
programming is done in Python (3.6.8).  

Four different network architectures were designed in order 
to perform quality class label prediction (classification) and 
LSS value prediction (regression). The use of an API makes it 
possible to feed a network with single and sequential values of 
a sample at the same time. For this purpose, a 1DCNN is 
designed to take the sequential input and a FCNN is supposed 
to compute the single values. Both NNs create the input for a 
final FCNN which should create the final prediction of a class 
label or a joint strength. Single FCNNs are designed for 
investigating the importance of the chosen sequential values 
and the necessity of a 1DCNN. The mean values of all 
parameters are calculated for the single FCNN approach. Both 
architectural approaches are shown in Figure 4. 

Independent of the network architecture, k-fold cross 
validation (k=4) was performed with each network in order to 
reduce the overfitting and to create a more generalized model 
[17]. Not every sequence of the sequential values has the same 
length. Since the layer dimensions are fixed parameters, the 
network cannot take different sequence length as input. Due to 
this, shorter sequences are filled at the end with zeros so all 
fed sequential data has the same length. 

Each network is trained and validated (cross validation) 
with a data size of 386 samples (290 training, 96 validation) in 
order to hyper parameterize the network. Afterwards the final 
networks are trained with 386 and tested with 100 samples. 
The samples are randomly divided in a training/ validation and 
a testing data set. Of all 486 samples 41.98 % have a joint 
strength >30 MPa, 32.51 % lie between >15 and <=30 MPa 
and 25.51 % belong to the quality group of <=15 MPa. 

The specific designs of each network are shown in Figure 5 
and Figure 6 in Appendix B. The API network which 
performs regression uses the Adam optimizer and has a 
learning rate of 0.001. The other API for the classification task 
used the Adamax optimizer with a learning rate of 0.002. The 
FCNN uses the Adagrad optimizer with a learning rate of 0.02 
for predicting a continuous value while the last FCNN for the 
classification task uses the Adam optimizer with a learning 
rate of 0.001. 

Dependent on the type and structure of the NN, different 
amounts of training epochs are necessary. The epoch number 
which leads to the best result during the architectural 
development of a network is taken as default setup for the 
final trainings. The term ‘best result’ is defined by a low mean 
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absolute error (mae) for the joint strength prediction task or a 
high prediction accuracy in terms of class prediction. The 
network is overfitted if the mae/ the prediction accuracy of the 
training phase is lower/ higher than the mae/ prediction 
accuracy of the test phase [8]. To observe the overfit of a 

network, the delta () of the training and the testing mae/ 
prediction accuracy is calculated and the number of training 
epochs is reduced with the goal to get the delta as closest to 
zero as possible. 

 

Figure 4: Schematic of the architectures of the developed NNs. Left: API approach with the possibility to have sequential input and single value input. Right: A 
model with can only take single value input. Both architectures are able to perform either a classification or a regression. 

4. Results 

The final training of the API network for the regression 
task is started with an epoch number of 290. Since the two 
mae values have a difference of nearly one, the epoch number 
is reduced to 50 which leads to a network with a smaller delta 
and a mae in joint strength prediction of around 5.44 MPa for 
new data (Table 1). 

Table 1: Mae values of the API for the regression task. Units of mae and delta 
in [MPa]. Results from training (train) and testing (test) are listed. 

epochs mae train mae test  
290 3.777 4.742 0.965 
190 4.061 5.187 1.126 
90 4.959 5.323 0.364 
50 5.402 5.435 0.033 

 
The training process of the FCNN for the regression task 

starts with 776 trainings epochs. This starting point leads to a 
relatively high delta so the epoch number is reduced until the 
delta measures 0.040 and the network has a mae of 5.315 MPa 
for new data (Table 2). 

The delta from the API with the classification task starts at 
-15.3 % with 124 training epochs. A reduction of the epoch 
number leads to bigger differences between training- and 
testing accuracy. In this case the overfitting cannot be reduced 
since the deltas are, according to amount, rising (Table 3). 
 
 

Table 2: Mae values of the FCNN for the regression task. Units of mae and 
delta in [MPa]. Results from training (train) and testing (test) are listed. 

epochs mae train mae test  
776 3.506 4.308 0.802 
600 3.971 4.492 0.521 
400 3.955 4.268 0.313 
200 5.275 5.315 0.040 

Table 3: Accuracy (acc) of prediction values of the API for the classification 
task. Units of acc and delta in [%/100]. Results from training (train) and 
testing (test) are listed. 

epochs acc train acc test  
124 0.793 0.640 -0.153 
100 0.782 0.590 -0.192 
75 0.769 0.530 -0.239 
50 0.712 0.480 -0.232 

 
The FCNN has a prediction accuracy of quality classes of 

68 % with an already small absolute delta of 2.5 % with a 
default setup of 394 training epochs. The best result in 
prediction accuracy is achieved with 300 training epochs and 
measures 72 %. The corresponding delta is +0.5 % (Table 4). 
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Table 4: Accuracy (acc) of prediction values of the FCNN for the 
classification task. Units of acc and delta in [%/100]. Results from training 
(train) and testing (test) are listed. 

epochs acc train acc test  
394 0.705 0.680 -0.025 
350 0.720 0.660 -0.060 
300 0.715 0.720 +0.005 
250 0.668 0.680 +0.012 

 
After the testing process of the four developed networks the 

FCNN with a mae of 5.315 MPa makes the best joint strength 
predictions and the FCNN with a prediction accuracy of 
quality classes of 72 % deliver the best and most reliable 
results.  

5. Conclusion 

In the experiments the FCNN for the classification task 
achieved a class prediction accuracy of 72 % which is the best 
outcome so far. If this prediction value is compared to 
randomly guessing the quality classes (33.33 % accuracy) the 
results are more than twice as good in their accuracy. The 
accuracy for randomly guessing results from the thought that 
there are three classes with an unknown distribution which 
results in 33.33 % accuracy. Hypothetically it is possible to 
guess always the same class, so possible accuracy values are 
25.51 (samples <=15 MPa), 32.51 (samples between >15 and 
<=30 MPa) and 41.98 % (samples >30 MPa) (mean of 
33.33 %) which is while for this conclusion 33.33 % is chosen 
as a value to compare the results with. Nevertheless, the 
prediction of joint strength has a minimal mae of 5.315 MPa 
which gives every prediction a relatively high tolerance. 
Despite this tolerance, the algorithms seem to respond to the 
given data in a positive way. It may be necessary to create 
more/ other input data in order to maximize the NNs 
prediction performance. 

At the moment the use of an API with a 1DCNN and a 
FCNN has no advantage but leads to weaker prediction 
results. Other research teams report outstanding results with 
the use of 1DCNNs for computing sequential process data 
[17-21]. This fact leads to the conclusion that the used 
sequential data in this study seem to contain not enough 
information to train the NNs more accurately. In general, the 
training with other sequential or non-sequential data might 
lead to a more reliable network and has to be investigated. 

Since the networks show a learning behavior, the attempt to 
predict the weld quality of continuous ultrasonic welded parts 
can be seen as a first success. Nevertheless, more 
investigations about which process data are used and in what 
shape they are given to the NNs are necessary in order to 
create a more reliable network. If a NN with a higher 
prediction accuracy is developed, it could supervise the 
quality of continuous ultrasonic welded seams or even monitor 
and control the welding process in industrial applications. This 
work is the first step in the development of an in-line, non-
destructive technique to evaluate the joining quality of CUSW 
TCs parts and therefore can lead to advanced approaches 
which enable the use of CUSW of TCs in industry. 
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Appendix A. Internal Heat Generation 

A formula (Equation 1) which describes the internal heat 
generation (per unit time and per unit volume) during the 
ultrasonic welding process is mentioned in literature [22]: 
 
�̇�𝑄��� = ������

�

�
              (1) 

 
The average internal heat generation  Q̇���  is here 

calculated with the operating frequency ω in the unit rad/s, the 
loss modulus E''  of the welded material and the strain 
amplitude ε� [22].  

Appendix B. Network Designs 

The following figures (Figure 5 and Figure 6) display the 
structural characteristics of the four designed networks. Here, 
it has to be noticed that the used convention is not equal to the 
way the NNs are programmed. The shown figures have only 
the purpose of visualizing the general structure. 

For the creation of the figures most of the common names 
of the Keras library are used. The layer type is always written 
in front of the brackets. The brackets contain further 
information about the configuration of a single layer. For 
further details about the different layer types and their 
functionalities read [8, 9]. 

Figure 5 (a) shows the schematic structure of the used API 
for the regression task. On the left-hand side the structure of 
the 1DCNN is displayed. Here, convolving- and pooling 
layers are used in order to process given sequential data. At 
the end of the 1DCNN a flatten layer is used before the data 
enters the FCNN which makes the quality prediction. On the 
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right-hand side the structure of the FCNN is displayed. This 
network is built by dense layers. The FCNN is connected to 
the same FCNN as the 1DCNN in order to merge the data 
processing together in one network. The final FCNN creates 
an output based on the data from the previous two networks. 
In the last layer no activation function is used and a 
continuous value is generated as output of this network. 

In Figure 5 (b) the architecture of the FCNN for the 
regression task is displayed. Except of one dropout layer, this 
network is built by dense layers only. Similar to the API, the 
last layer has no activation function. 

Figure 6 (a) shows the API network for the classification 
task. Similar to the API for the regression task, the API for the 
classification is built with a 1DCNN consisting of 
convolutional- and pooling layers and a FCNN with dense 
layers. Both networks merge their data in a final FCNN which 
makes the class prediction. This prediction is made by an 
activation function in the last layer. 

Figure 6 (b) displays the setup of the FCNN for the 
classification task. This network is built by similar layers than 
the FCNN for the regression task but has an activation 
function in its output layer. 
 

 

 

Figure 5: a) Structure of the API for the regression task. On the left-hand side, the structure of the 1DCNN is displayed which processes the sequential values. On 
the right-hand side is the structure of the FCNN for taking the single values as input. Both network outputs are combined in a final network which generated the 
output (prediction of joint strength in MPa) b) Structure of the FCNN for the regression task. 

 
Figure 6: a) Structure of the API for the classification task. On the left-hand side, the structure of the 1DCNN is displayed which processes the sequential values. 
On the right-hand side is the structure of the FCNN for taking the single values as input. Both network outputs are combined in a final network which generated 
the output (prediction of a quality class) b) Structure of the FCNN for the classification task.
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