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Abstract Region merging methods consist of improving an initial segmentation by merging

some pairs of neighboring regions. In a graph, merging two regions is not straightforward.

The perfect fusion graphs defined in a previous paper verify all the properties requested by

region merging algorithms. In this paper, we present a theorem which states that, in any

dimension, the perfect fusion grids introduced previously are the only perfect fusion graphs

between the adjacency relations which are the most frequently used in image analysis.
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Introduction

Image segmentation is the task of delineating objects of interest that appear in an image. In many
cases, the result of such a process, also called a segmentation, is a set of connected regions lying
in a background which constitutes the separation between regions. To define regions, an image is
often considered as a graph whose vertex set is made of the pixels and whose edge set is given by
an adjacency relation between them. Then, the regions are simply the connected components of
foreground pixels (see for instance Fig. 1).

A popular approach to image segmentation, called region merging [6], consists of progressively
merging pairs of regions, starting from an initial segmentation that contains too many regions (see,
for instance, Figs. 1a and b). Given a subset S of an image equipped with an adjacency relation,
merging two neighboring regions (connected components) of S is not straightforward. A problem
occurs when we want to merge a pair of neighboring regions A and B of S and when each point
adjacent to these two regions is also adjacent to a third one, which is not wanted in the merging.
Fig. 1c illustrates such a situation, where x is adjacent to regions A,B,C and y to A,B,D. This
problem has been identified in particular by T. Pavlidis (see [6], section 5.6: “When three regions
meet”), and, as far as we know, has not been solved in general. A major contribution of [2] is the
definition of a merging operation and the study of a class of graphs, called perfect fusion graphs,
which verify all the properties required by region merging algorithms.

Unfortunately, the graphs which are the most frequently used in image analysis (namely, those
induced by direct and indirect adjacency relations on Z

d) are not perfect fusion graphs (see Section
6 in [2]). In [2], we introduced a graph on Z

d that we call the perfect fusion grid, which is indeed
a perfect fusion graph, and which is “between” the graphs induced by the direct and indirect
adjacencies. The main result (whose proof will be given in a forthcoming extended version [1]) in
this paper, is that the perfect fusion grid is the only such graph, in any dimension d ∈ N.

1 Perfect fusion graphs

1.1 Basic notions on graphs

Let E be a set, we denote by 2E the set composed of all subsets of E. Let X ⊆ E, we write X
the complementary set of X in E, i.e., , X = E \X . Let E′ be a set. The Cartesian product of E
by E′, denoted by E × E′, is the set made of all pairs (x, y) such that x ∈ E and y ∈ E′.

1



A B

C

D

x

y

z

(a) (b) (c)

Figure 1: (a): Cross-section of a brain, after applying a gradient operator. (b): A segmentation
of (a) (obtained by a watershed algorithm [5] using the adjacency Γ2

1). (c): A zoom on a part
of (b); the graph induced by Γ2

1 is superimposed in gray.
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Figure 2: (a) A graph (E,Γ) (which is not a PFG) and a set S ⊂ E (gray and white vertices).
(b,c) Illustrations of region merging operations and the problem encountered by this operation
[see text]. (d) Example of a PFG. (c) The graph GN used in Th. 2 to characterize the PFGs.

A graph is a pair (E,Γ) where E is a set and Γ is a binary relation on E (i.e., Γ ⊆ E × E)
which is anti-reflexive (for any x ∈ E, (x, x) /∈ Γ) and symmetric (for any x and y in E, (y, x) ∈ Γ
whenever (x, y) ∈ Γ). Each element of E (resp. Γ) is called a vertex or a point (resp. an edge). We
will also denote by Γ the map from E to 2E such that, for any x ∈ E,Γ(x) = {y ∈ E | (x, y) ∈ Γ}.
Let x ∈ E, the set Γ(x) is called the neighborhood of x and if y ∈ Γ(x), we say that y is adjacent
to x. If X ⊆ E, the neighborhood of X , denoted by Γ(X), is the set [∪x∈XΓ(x)] \X .

Let (E,Γ) be a graph and X ⊆ E. A path in X is a sequence 〈x0, . . . , xℓ〉 such that xi ∈ X ,
i ∈ [0, ℓ], and (xi−1, xi) ∈ Γ, i ∈ [1, ℓ]. The set X is connected if, for any x, y ∈ X , there exists
a path in X from x to y. Let Y ⊆ X , we say that Y is a (connected) component of X if Y is
connected and maximal for this property, i.e., if Z = Y whenever Y ⊆ Z ⊆ X and Z connected.

Important remark. From now on, when speaking about a graph G = (E,Γ), we assume
that E is connected and that G is locally finite, i.e., the set Γ(x) is finite for any x ∈ E.

1.2 Region merging and perfect fusion graphs

Consider the graph (E,Γ) depicted in Fig. 2a, where a subset S of E (white and gray vertices) is
composed of four components. If we replace the set S by, for instance, the set S ∪ T where T =
{x, y, z}, we obtain a set composed of three regions (see Fig. 2b). We can also say that we “merged
two components of S through T ”. This operation may be seen as an “elementary merging” in the
sense that only two regions of S were merged while all other regions of S were preserved. On the
opposite, replacing the set S by the set S ∪ T where T = {w} (see Fig. 2c), would merge three
components of S. This section recalls the definitions introduced in [2] related to such merging
operations in graphs. Then, we remind the definition of the perfect fusion graphs, which are the
graphs in which any two neighboring regions can be merged through their common neighborhood
while preserving all other regions.
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Let (E,Γ) be a graph and let S ⊆ E. Let A and B be two distinct components of S and T ⊆ S.
We say that A and B can be merged (for S) through T if A and B are the only connected
components of S adjacent to T and if A ∪B ∪ T is connected.

In other words (see Property 21 in [2] for a formal proof), the two regions A and B can be
merged through T if and only if A ∪B ∪ T is a component of S ∪ T . More precisely, they can be
merged if and only if the components of S ∪ T are the same as the components of S excepting
that A and B are replaced by A ∪B ∪ T . For instance, in Fig. 2a the two white components can
be merged through {x, y, z} but the two gray components cannot be merged through {z}.

Let (E,Γ) be a graph, S ⊆ E, and let A and B be two distinct connected components of S.
We set Γ(A,B) = Γ(A)∩ Γ(B) and we say that Γ(A,B) is the common neighborhood of A and B.
If the common neighborhood of A and B is nonempty, A and B are said to be neighbors.

Definition 1 (perfect fusion graph). Let (E,Γ) be a graph. We say that (E,Γ) is a perfect
fusion graph (PFG) if, for any S ⊆ E, any two connected components A and B of S which are
neighbors can be merged through Γ(A,B).

The graph of Fig. 2a is not a PFG since the two gray components cannot be merged through
their common neighborhood {w}. On the other hand, the graph of Fig. 2d is a PFG.

The definition of the PFGs is based on a condition which must be verified for all subsets of
the vertex sets. This means, if we want to check whether a graph is a PFG, then, using the
straightforward method based on the definition, this will cost an exponential time with respect
to the number of vertices. In fact, the PFGs can be recognized in a simpler way thanks to the
following conditions which can be checked independently in the neighborhood of each vertex.

Let G = (E,Γ) be a graph and let X ⊆ E. The subgraph of G induced by X is the graph GX =
(X,Γ ∩ [X ×X ]). In this case, we also say that GX is a subgraph of G.

We denote by GN the graph of Fig. 2e.

Theorem 2 (from Th. 41 in [2]). The three following statements are equivalent:
i) (E,Γ) is a PFG;
ii) the graph GN is not a subgraph of (E,Γ);
iii) for any x ∈ E, any X ⊆ Γ(x) contains at most two connected components.

Thanks to Th. 2, it can be verified that the graph (E,Γ) depicted in Fig. 2 is a PFG. Indeed, GN

is not a subgraph of (E,Γ). Remark in particular that the subgraph induced by {p, q, r, s} is not GN

since it contains the edge (r, s).
We finish this section by reminding that, through the notion of a line graph, the region merging

approaches based on “separations” composed of edges (e.g., inter-pixel elements) also fall in the
scope of perfect fusion graphs (see Prop. 29 in [2]).

2 Cubical grids in arbitrary dimensions

Digital images are defined on (hyper-) rectangular subsets of Z
d (with d ∈ N

⋆). Therefore, for
region merging applications, Z

d must be equipped with an adjacency relation reflecting the geomet-
rical relationship between its elements. We provide, in this section, a set of definitions that allows
for recovering the adjacency relations which are the most frequently used in 2- and 3-dimensional
image analysis and permit to extend them to images of arbitrary dimension.

Let Z be the set of integers. We define the families of setsH1
0 andH1

1 such thatH1
0 = {{a} | a ∈

Z} and H1
1 = {{a, a+1} | a ∈ Z}. Let m ∈ [0, d]. A subset C of Z

d which is the Cartesian product
of exactly m elements of H1

1 and (d−m) elements of H1
0 is called a (m-)cube of Z

d.
Observe that an m-cube of Z

d is a point if m = 0, a (unit) interval if m = 1, a (unit) square
if m = 2 and a (unit) cube if m = 3.

Let C be a set of cubes of Z
d. The binary relation induced by C is the set of all pairs (x, y)

of Z
d such that there exists a cube in C which contains both x and y.

Definition 3 (m-adjacency). Let m ∈ [1, d]. The m-adjacency on Z
d is the binary relation Γd

m

induced by the set of all m-cubes of Z
d. If (x, y) ∈ Γd

m
, we say that x and y are m-adjacent.
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Figure 3: Chessboards and perfect fusion grids on Z
2. (a): The map ψ; (b,c): two subgraphs of

(Z2,Λ2
11) and (Z2,Λ2

10) induced by {0, . . . , 4}×{0, . . . , 4} with in gray the associated chessboards.

Observe that two points of Z
d are m-adjacent if and only if |xi − yi| ≤ 1 for any i ∈ [1, d]

and (
∑d

i=1 |xi − yi|) ≤ m. In the literature [4], Γ2
1, Γ2

2, Γ3
1, Γ3

2 and Γ3
3 are often referred to as

the 4-, 8-, 6- 18- and 26-adjacencies. On Z
d, Γd

1 and Γd

d
are sometimes called direct and indirect

adjacencies.
The graphs induced by Γ2

1 are not in general PFGs. For instance, in Fig. 1c the two neighboring
regions A and B cannot be merged through Γ2

1(A,B) = {x, y} and thus the graph is not a PFG.
More generally, the graphs which are the most frequently used in image analysis (namely, those
induced by Γd

1 and Γd

d
, with d = 2, 3) are not PFGs (see Sec. 6 in [2]).

3 Perfect fusion grids

In [2], we introduced a family of graphs on Z
d, called the perfect fusion grids, which are indeed

PFGs and which are “between” Γd
1 and Γd

d
. In this section, we recall the definition of the perfect

fusion grids, give a local characterization and then show that they are the only PFGs “between”
the direct and indirect adjacency relations.

The perfect fusion grids can be defined by the mean of chessboards. Intuitively, a chessboard C
on Z

d is a spanning set of d-cubes (i.e., ∪{C ∈ C} = Z
d) such that the intersection of any two

cubes in C is either empty or reduced to a point. For instance, the gray cubes shown in Figs. 3b
and c constitute subsets of the two chessboards on Z

2. The perfect fusion grids are the graphs
induced by the chessboards on Z

d (see, e.g., the graphs of Figs. 3b and c). Fig. 4a shows a set of
regions obtained in this grid by a watershed algorithm [3]. Note that the problems pointed out in
the introduction do not exist in this case: any pair of neighboring regions can be merged by simply
removing from the black vertices the points which are adjacent to both regions (see Fig. 4b,c).

Let Cd be the set of all d-cubes of Z
d, we define the map ϕ from Cd to Z

d, such that for any
C ∈ Cd, ϕ(C)i = min{xi | x ∈ C}, where ϕ(C)i is the i-th coordinate of ϕ(C). It may be seen
that C is equal to the Cartesian product: {ϕ(C)1, ϕ(C)1 + 1} × · · · × {ϕ(C)d, ϕ(C)d + 1}. Thus,
clearly ϕ is a bijection and allows for indexing the cubes of Z

d.
Let B = {0, 1}. We set 0 = 1 and 1 = 0. A binary word of length d is an element in B

d. If
b = (b1, . . . , bd) is in B

d, we define b as the binary word of B
d such that for any i ∈ [1, d], (b)i = (bi).

We define the map ψ from Cd to B
d such that for any C ∈ Cd and any i ∈ [1, d], ψ(C)i is equal

to [ϕ(C)i mod 2], that is the remainder in the integer division of ϕ(C)i by 2.

Definition 4 (chessboard & perfect fusion grid). Let b ∈ B
d.

We set Cd

b
= {C ∈ Cd | ψ(C) = b} and we say that the set Cd

b
∪ Cd

b
is a (global) chessboard on Z

d.

Let C be the chessboard on Z
d defined by Cd

b
∪ Cd

b
. We denote by Λd

b
the binary relation induced

by C and we say that the pair (Zd,Λd

b
) is a perfect fusion grid on Z

d.

Fig. 3 illustrates these definitions on Z
2.

Since the cardinality of B
d is 2d, from the previous definition, it can be deduced that there

are exactly 2d−1 distinct perfect fusion grids on Z
d. However, any two perfect fusion grids are
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Figure 4: (a) A segmentation of Fig. 1a obtained on a perfect fusion grid. (b) A zoom on a part of
(a); the regions A, B, C and D correspond to the ones of Fig. 1c; the corresponding perfect fusion
grid is shown in gray. (c) Same as (b) after having merged B and C to form a new region E.
(b,c,d) Several steps, starting from (a), of a region merging process on a perfect fusion grid.

equivalent up to a “binary translation”. More precisely, it is proved in [2] that for any b and b′

in B
d, there exists t ∈ B

d such that, for any x and y in Z
d, y ∈ Λd

b
(x) if and only if y+t ∈ Λd

b′
(x+t).

3.1 Local characterization

Certain classes of graphs can be locally characterized, i.e., we can test if an arbitrary graph belongs
to such a class by independently checking a condition in the neighborhood of each point. The next
theorem states that the chessboards (hence the perfect fusion grids) can be locally characterized.

We set U⋆ = {1,−1}. Let x ∈ Z
d and u ∈ U

d, we denote by C(u, x) the d-cube of Z
d defined

by {x1, x1 + u1} × · · · × {xd, xd + ud} and we set Ĉ(u, x) = C(−u, x). In other words, C(u, x) is
the set of all points y such that, for any i ∈ [1, d], yi = xi or yi = xi + ui.

Definition 5 (local chessboard). Let C be a set of d-cubes of Z
d. We say that C is a local

chessboard on Z
d if, for any x ∈ Z

d, there exists u ∈ U
d
⋆

such that C(u, x) and Ĉ(u, x) belong to C
and such that they are the only two elements in C which contain x.

On Z
2 (resp. Z

3), a local chessboard C is a set of 2-cubes (resp. 3-cubes) such that, for any
point x, the cubes of C which contain x match one of two (resp. four) configurations depicted in the
first (resp. second) column of Fig. 5. Observe that this notion of a local chessboard corresponds
exactly to the intuitive idea given in the introduction of the section. As assessed by the following
theorem, we can indeed prove the equivalence between global and local chessboards.

Theorem 6. Let C be a set of d-cubes of Z
d. The set C is a chessboard on Z

d if and only if C is
a local chessboard on Z

d.
Furthermore, if C = Cd

b
∪Cd

b
(with b ∈ B

d), then for any x ∈ Z
d, the only two d-cubes of C which

contain x are defined by C(u, x) and Ĉ(u, x) with u ∈ U
d
⋆, and ui = (−1)(xi−bi) for any i ∈ [1, d].

From this local characterization of chessboards and by Th. 2.iii, it can be deduced that any
perfect fusion grid (Zd,Λd

b
) is indeed a PFG between Γd

1 and Γd

d
(in the sense Γd

1 ⊆ Λd

b
⊆ Γd

d
). Fur-

5



2

1

u = (1,1)

u = (1,−1)

x

x

1

2

3u = (1,1,1) u = (1,−1,1)

u = (1,1,−1) u = (1,−1,−1)

x x

x x

Figure 5: First (resp. second) column: local configurations in a local chessboard on Z
2 (resp. Z

3).
In each column, we assume that Z

d is oriented as shown by the arrows. Then, the element of u ∈ U
d
⋆

which “generates” each configuration as C(u, x ∪ Ĉ(u, x)) is written under the configuration.

thermore, we point out that the second assertion of Th. 6 constitutes a practical way for computing
the neighborhood of a point in a perfect fusion grid, as it is often required in applications.

3.2 Unicity theorem

The following theorem asserts that the only PFGs “between” Γd
1 and Γd

d
are the perfect fusion

grids. Since any two perfect fusion grids are equivalent up to a binary translation, this result
establishes the uniqueness of the perfect fusion grid in any dimension d ∈ N.

Theorem 7. The graph (Zd,Γd) is a PFG such that Γd
1 ⊆ Γd ⊆ Γd

d
if and only if it is a perfect

fusion grid on Z
d.

In other words, the perfect fusion grid is, in any dimension, the only graph, “between” the
direct and indirect adjacencies, which guarantees that any two neighboring regions can be merged
through their common neighborhood while preserving all other regions. Fig. 4a,d,e,f show an
example in image segmentation of such a region merging procedure in a perfect fusion grid.
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