
SYSTEM ARCHITECTURE DESIGN SPACE MODELING AND
OPTIMIZATION ELEMENTS

J.H. Bussemaker1, P.D. Ciampa1 & B. Nagel1

1DLR (German Aerospace Center), Institute of System Architectures in Aeronautics, Hamburg, Germany

Abstract

Optimization of complex system architectures can support the non-biased search for novel architectures in the
early design phase. Four aspects needed to enable architecture optimization are discussed: formalization of
the architecture design space, systematic exploration of the design space, conversion from architecture model
to simulation model, and flexible simulation of architecture performance. Modeling the design space is driven by
system requirements and simulation capabilities and should be based on functional decomposition. Systematic
exploration can be done using enumeration, design of experiments, or optimization. Various approaches for
converting architectures to simulation models are discussed. Finally, simulation environments should expose
a flexible and modular interface to be used in architecture optimization. A jet engine architecting problem is
presented that demonstrates various aspects of system architecture optimization.
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Nomenclature

DOE Design of Experiments
MBSE Model-Based Systems Engineering
SBO Surrogate-Based Optimization

1 Introduction

Model-Based Systems Engineering (MBSE) aims to improve the development process of complex
systems by leveraging models and physics-based simulation [11]. Such approaches require the
modeling of the complete product life-cycle across all design stages. On the one hand, upstream
design stages deal with the identification and formalization of requirements and scenarios, taking
all involved stakeholders into account. System architecture options are identified and trade-offs are
performed. On the other hand, downstream phases deal with the detailed design and optimization
of the system taking the complete life-cycle into account. The design process may benefit from
delaying the selection of a design solution until later in the design process, in order to keep options
open while knowledge of the system is continuously increased [38]. Such approaches, however,
have been difficult to implement practically at the architecture selection level, because of the difficulty
of exploring the design space subject to the combinatorial explosion of alternatives and expensive
black-box simulation [21]. Time and knowledge constraints are normally solved by involving expert
judgment to limit the size of the architectural design space [35]. This, however, can expose the
system design to expert bias and conservatism [25].

Enabling the practical implementation of architecture optimization capabilities then requires the up-
stream and downstream product development phases to be bridged. This is done by extending the
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scope of product optimization capabilities to also include the exploration and optimization of the sys-
tem architecture itself, and by formulating the system architecture in terms of abstract functions and
components. Such a formulation supports the non-biased recombination of components into archi-
tectures [27], and the smooth integration with upstream MBSE processes. However, a function-based
representation will also mean that such a generic architecture representation must be converted into
some simulation model and/or environment before its performance can be evaluated. This paper ar-
gues that to successfully formulate and deploy an architecture optimization problem, four interacting
aspects will have to be taken care of:

1. Formalization of the architecture design space in terms of functions and components;

2. Systematic exploration of the design space using optimization algorithms;

3. Generic and re-usable interpretation of an architecture model into a simulation model;

4. Flexible and modular quantitative evaluation of architecture performance.

The first two aspects enable the systematic generation of candidate architecture instances. These ar-
chitecture instances fulfill functional requirements by assigning components to functions and further
specifying component attributes; for example configuration options, connections, and sizing variables.
Formalization of the architecture design space (aspect 1) and systematic exploration using optimiza-
tion algorithm (aspect 2) fall in this category. To then select one or more system architectures to
continue the detailed design process with, it is needed to evaluate the performances of the candi-
date architecture instances. Architecture model interpretation (aspect 3) and quantitative evaluation
(aspect 4) fall in this category.

First, this introduction is extended by a discussion on design automation in general and its more
specific application to the design of complex system architecture in Section 1.1. In Section 2 the
aspects needed for systematically generating architecture instances are discussed. Aspects related
to architecture performance evaluation are discussed in Section 3. Section 4 presents an example
application of the discussed architecting process, and the paper concludes with Section 5.

1.1 Design Automation for Complex Mechanical Systems

Designing can be seen as the creation of a solution for a problem, defined in terms of functions to
be achieved. In the context of complex mechanical systems, however, design problems are non-
deterministic: a direct derivation of a solution from functions is not possible, and often many possible
solutions can fulfill the functions [34]. In general then, designing involves suggesting solutions, pre-
dicting performance of these solutions, evaluating solutions based on the performance predictions,
and the proposal of modifications to the design. It quickly becomes infeasible to follow, however, if
the number of possible solutions is sufficiently large, as is often the case for complex system design
spaces due to the combinatorial explosion of alternatives [21]. In this case, it is needed to take
a more systematic approach to these design steps in order to ensure the sufficient exploration of
the design space [37]. An additional issue mitigated by a systematic design approach is that usually
subject matter experts are involved in the design steps, and whereas their knowledge can accelerate
the design process, it can also suffer from expert bias, subjectivity, conservatism or overconfidence,
and thereby hinder the discovery of novel solutions [25].

In the past, several (partly) automated design approaches have been developed: design by rea-
soning, design by learning, and design by analogy [9]. For the design of complex systems, design
by analogy is most relevant [34]. One form of design by analogy is optimization: building blocks
are systematically combined and recombined in search of an optimal design. Optimization requires
the definition of a merit function that precisely quantifies how "good" a design is compared to other
designs, which can be problematic because of the knowledge paradox [38]: the phenomena that
early in the design process design freedom is higher, however system knowledge is less detailed and
therefore the performance prediction step is much more difficult to reliably execute [5].
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Further lifting of the knowledge paradox, by increasing both system knowledge and design freedom
earlier in the design process, requires a careful definition of the design problem even at the very
early design stages. One way of doing this is by using systems engineering methods, where the
solution to be designed is treated as a set of interconnected components working together to fulfill
well-defined requirements, taking all stakeholders and the complete lifecycle into account [12]. The
materialization of the design is described by the system architecture: a mapping of functions to
components, formalizing the way a system (solution) fulfills its requirements (problem). To explore
larger design spaces and allow the designer to find innovative solutions, it is therefore needed to
extend design automation techniques to the design of system architectures [22].

When generating possible design solutions, it is important to distinguish design goals, what is to
be achieved, from design options, how are the goals achieved [25]. In systems engineering, this
is done by separating between function and form: function represents what the system does and
ultimately represents the reason for the existence of the system; form represents the thing that will be
implemented in the end to perform the functions, and can also be referred to as the components of a
system. Therefore when formulating the architecture design space in terms of options and decisions,
the best way of decomposing the solution space is by functional decomposition [27]: the breakdown
is generic to any architecture alternative, it is free of solution bias by not suggesting architecture
concepts, fits well with upstream systems engineering steps by explicitly specifying how requirements
are fulfilled, and functions suggest types of solutions rather than specific technologies.

At the Institute of System Architectures in Aeronautics of the German Aerospace Center (DLR), the
development of a system architecture design and optimization methodology is addressed as part of
a larger effort to improve the way complex aeronautical systems are designed. In the context of the
AGILE 4.0 project [1], a model-based conceptual framework for streamlining the architecting, design
and optimization of complex aeronautical systems is under development. The generation of design
solutions and system architectures is supported by the acceleration of upstream MBSE phases.
System functions specified from requirements form the basis for deriving the system architecture de-
sign space in combination with available system component and component characterization options
[7]. This design space model provides a semantic view of the architecture design space and its archi-
tectural decisions. These decisions can be mapped to design variables to formulate an optimization
problem or design of experiments for generating architectures. More details regarding the system
architecting process and related efforts will be published in [6].

Architecture evaluation is enabled by the use of distributed collaborative MDO techniques [10]. Here,
different engineering disciplines, as appropriate for the design problem at hand, are combined into
one automated design process that takes all relevant cyber-physical effects into account and yields an
accurate system performance estimation. Collaborative MDO is based on the use of a common data
language for representing the product or system to be analyzed and/or optimized. Such a common
language reduces the amount of data interfaces to be implemented, and enable the automatic linking
of data connections between tools [30]. The distributed nature of collaborative MDO ensures that
intellectual property constraints occurring when different organizations, teams, and/or departments
collaborate on a design are not violated.

Combining these ideas, a systematic architecture design space exploration concept can be for-
mulated. First, the architecture design space is modeled using a function-based decomposition (de-
sign space formalization, Section 2.1). Using this design space model, an architecture optimization
problem can be formulated and architecture instances are automatically generated using an optimiza-
tion algorithm (design space exploration, Section 2.2). Then, to compare architectures, performance
of architectures instances are quantitatively evaluated using simulation techniques (quantitative eval-
uation, Section 3.2). An interpretation step is needed to convert the abstract architecture represen-
tation into a simulation model (architecture interpretation, Section 3.1). This systematic architecture
design space exploration process is visualized in Fig. 1.
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Figure 1 – Systematic architecture design space exploration concept.

2 Generating System Architectures

One of the aspects to consider in architecture optimization is the mechanism by which candidate
architecture instances are generated. An architecture instance represents one design solution in the
architecture design space, the space spanning all possible architectures as made up by the com-
bination of all architectural choices. Before evaluation, they are denoted as candidate architecture
instances, because whereas they satisfy function fulfillment and structural constraints, it is not yet
known whether or not these architecture are feasible from a performance point of view.

The first step to enable architecture generation is to model the architectural design space by iden-
tifying all the different solution options available using a function-based decomposition. This design
space model is then used to identify architectural decisions to be taken in order to define an archi-
tecture instance. Not taking structural constraints and incompatibilities between components into
account, this design space model can also be used to get a rough estimate on the number of possi-
ble architectures; it is not uncommon to see extremely large numbers of possible architectures (e.g.
1.16 ·1019 for an aircraft [23]). Modeling the design space and formalization of architectural choices is
further discussed in Section 2.1.

The formalized architectural choices, together with the definition of evaluation metrics, can then be
used to formulate an optimization problem. The types and number of design variables, objectives,
and constraints, along with properties of the architecture evaluation determine which optimization
algorithms are most appropriate for the design space exploration. Design space exploration using
optimization is discussed in Section 2.2.

2.1 Formalization of Architectural Choices

The formalization of architectural choices is an important enabler for architecture optimization. Not
only because design automation requires a formalized mathematical model to work with, but also be-
cause it helps map out and document the design space and thereby enables discussion and offloads
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Figure 2 – Interaction between the architecture design space model and evaluation capabilities.
Engine architecture image reproduced from [33].

the mind to focus on one part of the design space at a time [25]. The architectural choice model
should be built from upstream systems engineering results, such as requirements, scenarios, and
use cases. This way, traceability of decisions is maintained, and it is made sure that all stakeholder
needs are taken care of. The result of this exercise is to build a model of the architectural design
space that specifies how candidate architecture instances can be generated, and explicitly identifies
all architectural choices and performance evaluation metrics.

The architecture design space model drives the selection of the exploration algorithm, as needed for
systematically exploring the design space, through the number and types of architectural decisions
(mapped to design variables) and the allocation of performance metrics. During design space explo-
ration, performance metrics are used to compare different architecture instances to each other. In
the case of optimization, this is done by assigning the role of objective or constraint to these metrics.
More details regarding the impact of these kind of assignments are discussed in Section 2.2.

The architecture design space thus describes the architectural choices and metrics by mapping func-
tions to component options and modeling component characterization options. The actual variety in
architecture components and their various forms and connections that can be modeled, however, is
determined by the architecture evaluation capabilities, mainly the architecture simulation. Next to the
components and arrangements that the simulation environment can represent, it also determines the
metrics that can be calculated and the accuracy of the impact that different architectural decisions
have on these performance metrics [38]. In the end, the architecture instances generated in an archi-
tecture optimization loop can only exist of the architectural elements that can actually be represented
in the simulation environment. However, because system requirements and simulation capabilities
might not completely match, the architecture design space model can be used to identify missing
capabilities and/or explicitly remove or disable architectural decisions that are not possible to be sim-
ulated. Instead of being based on implicit assumptions or experience, at least the decision to not
include some architectural decision in the optimization process is then explicitly defined. Practically,
the process of matching the architectural design space model and the simulation environment will
be iterative: the system requirements and architecture design space model drive the architectural
decisions and metrics to be evaluated, whereas the existing architecture evaluation capabilities limit
the decisions and metrics that can be evaluated. This concept is visualized in Fig. 2.

Several methods for modeling the architectural design space and identifying decisions and options
have been developed, including morphological matrix methods [27], graph-based methods [17], and
methods based on function mapping [22]. For a more detailed literature review, the reader is referred
to [6].

The Architecture Design Space Graph (ADSG) [7] method has been developed as part of the model-
based conceptual framework of the DLR. The ADSG has been specifically developed to map func-
tions to components and in addition take component characterization and connection (i.e. structure)
architectural decisions, incompatibility constraints, and performance metrics into account, in order to
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Figure 3 – An example Architecture Design Space Graph (ADSG). Figure from [7].

offer the most general applicability to and compatibility with MBSE methods. Fig. 3 shows an example
of an ADSG, mapping functions to components and component characterization and connection op-
tions. Design space elements are defined and linked to each other: a repository of components that
define which functions they fulfill and which functions they induce (i.e. need) is constructed. Then,
boundary functions are defined from system requirements, and these are used to select components
from the repository to build-up the ADSG and get an overview of which possibilities exist to fulfill
all functions. Next to mapping functions to components, component characterization and connec-
tions are also modeled, and can therefore be used to represent complex system architecting design
spaces, while at the same time offering a formalized model that can be used to define architecture
optimization problems. Currently, a web-based graphical editing environment is in development that
enables intuitive and flexible editing of the ADSG, and allows seamless connection to other MBSE
phases and optimization frameworks.

2.2 Systematically Exploring the Design Space

The other aspect needed for generating architectures is a way to suggest new design points to eval-
uate. Architectural decisions are known from the design space model, and can readily be mapped to
mixed-discrete design variables. To ensure the design space is explored sufficiently, the most obvious
choice is to simply enumerate all possible combinations of design variable values. This approach is
feasible if either the number of different architectures is low (e.g. in the hundreds), evaluating the per-
formance of one architecture instance does not take much time (e.g. in the order of seconds), or both
are true. For example, Shougarian et al. [37] take this approach: on an engine architecture problem,
127 different architectures were generated (low number of architecture); for a mobile phone architec-
ture problem, 21168 architectures were generated, however evaluating one architecture takes less
than a second as it is based on several relatively simple equations.

If, however, evaluating the performance of one architecture instance take more time, for example
due to higher-fidelity simulations, and there are many architecture alternatives (e.g. thousands or
millions), it is not feasible to enumerate all possible architectures. In that case, some algorithm must
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Figure 4 – Three ways of dealing with hierarchical design variables.

be used to create architecture alternatives to sufficiently explore the design space without needing to
generate all possible architectures. To generate an overview of the behavior of the design space a
Design of Experiments (DOE) can be generated. To find optimal architectures, it is needed to apply
an optimization algorithm: architectural decisions are mapped to design variables, and performance
metrics are used as objectives or constraints. In the most general sense, architecture optimization
problems have the following properties [7]:

• Design variables can be hierarchical, due to incompatibility constraints and decisions depend-
ing on options of other decisions;

• Design variables are mixed-discrete, as architectural decisions often are categorical or integer
design variables, and (continuous) sizing parameters can also be taken into account in an
architecture optimization;

• The optimization problem can be multi-objective, due to the presence of conflicting design
goals coming from stakeholder needs.

All three of these properties can be dealt with in several ways, which drives the selection of the
optimization algorithm that can solve these optimization problems. For example, Ölvander et al.
[29] apply a mixed-discrete Tabu search algorithm to optimize the architecture of a more-electric
Unmanned Aerial Vehicle (UAV). One of their test cases was to both design for minimum weight
and minimum costs, which are conflicting objectives. To solve this, they modified the multi-objective
problem into a series of single-objective problems using normalization and the datum concept.

Another appropriate class of optimization algorithms are evolutionary algorithms. These optimization
algorithms mimic the biological process of evolution to improve a population of individuals (i.e. design
points) by creating offspring (i.e. new design points) by crossover and mutation based on parents (i.e.
selected design points from the population) [14]. Evolutionary algorithms are well-suited for solving
mixed-discrete problems and finding global optima, and multi-objective evolutionary algorithms have
been developed as well. Judt et al. [22] used a combination of Ant Colony Optimization (ACO) and a
Genetic Algorithm (GA) to solve a single-objective optimization problem created by weighing multiple
objectives. Albarello et al. [2] and Frank et al. [13] applied the Non-Dominated Sorting Genetic
Algorithm 2 (NSGA2) to solve multi-objective architecting problems.
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Another property of system architecture optimization is design variable hierarchy: design variables
can be activated or deactivated based on values of other design variables. The three ways of dealing
with this problem are: ignoring the effect (naive approach), imputation, and explicit consideration
[39]. As also visualized in Fig. 4, ignoring the effect might confuse the optimization algorithm due
to the possibility of different design vectors mapping to the same architecture, and therefore having
the same performance metrics. Imputation solves this by replacing inactive design variables by some
default value in the design vector. Explicitly considering the hierarchy effect by applying special-
purpose optimization algorithms has the greatest potential for accurately and efficiently exploring the
hierarchical design space, however this needs an optimization framework that supports this, and
availability of the design variable activity function δ [20]. The imputation approach works well for
genetic algorithms, for example by correcting the design vectors of newly created offspring. The
explicit consideration approach is more relevant in model-building algorithms, for example Surrogate
Based Optimization (SBO): here, a surrogate model (e.g. Kriging) of the design space is created,
and accuracy can be increased by using hierarchical kernels. Recent research into hierarchical SBO
algorithms can be found in [19, 20, 32, 39].

3 Quantitative Evaluation of System Architectures

The degree to which architecture optimization can be implemented in practice greatly depends on
the capability to quantitatively evaluate the performance of all candidate architecture instances. This
is needed both for comparing different architecture instances for selection of the best architecture(s),
and as feedback to the exploration (i.e. optimization) algorithm as needed for exploring new designs.

For complex mechanical systems, architecture evaluation often involves the simulation of the perfor-
mance of the system in various operating scenarios and from the point-of-view of different engineering
disciplines (e.g. structural design, aerodynamic/hydrodynamic design, electronics, thermodynamics).
The architecture evaluation capabilities are then realized by focusing on two aspects: how to convert
the abstract architecture instance model into a model of which the performance can be evaluated
(Section 3.1), and how to prepare the simulation capabilities for use in architecture optimization (Sec-
tion 3.2).

3.1 Interpreting the Architecture Model

Generated architecture instances, as coming from the design space exploration algorithm and de-
sign space model, are abstract descriptions of a system architecture: they describe the architecture
in terms of architectural decisions, options, functions, etc. To evaluate the performance of an archi-
tecture, it is therefore needed to convert the model to an executable format first. This conversion
should be an automated procedure, as it need to happen within the optimization loop. For example,
as part of the architecture generator step as described in [7].

One of the most popular languages for describing system architectures is SysML1 [18]. Whereas
SysML does include parametric modeling capabilities, it does not contain any functionality for evalu-
ating system behavior. One way that has attracted research effort is then to directly convert a SysML
model into a simulation model. This 1-to-1 conversion approach requires the specification of all inputs
needed for simulation into the SysML model. Such approaches work well if the system describes a
mechanical or physical system, and if a single simulation model can indeed sufficiently capture all
relevant physical phenomena to compare different architecture alternatives.

SysML4Modelica [31] can be used to convert SysML models to executable Modelica models. Model-
ica2 is a general-purpose continuous- and discrete-time differential equation solver, and comes with a
large library of elements that can be used to simulate among others mechanical, electrical, hydraulic,
and control systems. To convert a SysML model to a Modelica model, a SysML profile is applied to
the SysML model that can be used to represent flow types, Modelica library parts, and more. An ex-
ample of a SysML model of a mass-damper system and its corresponding Modelica model is shown

1OMG SysML: https://www.omgsysml.org/
2Modelica: https://modelica.org/
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Figure 5 – Mass-damper system in SysML (left) and Modelica (right) formats. Figure reproduced
from [31].

in Fig. 5. Guenov et al. [15] apply SysML4Modelica for designing aircraft on-board systems, for
example the Environmental Control System (ECS). Balestrini-Robinson et al. [4] present a method
for translating SysML to OpenMDAO3, an open-source MDO framework. They do note, however, that
it might require significant effort to model the detailed data connections in the SysML model, and it
might be needed to perform manual steps before the OpenMDAO workflow is executable.

Bile et al. present a method for directly converting SysML model elements into a computational
workflow. To enable this, each model element has defined source-sink behavior and connections to
other elements. Similarly, Roelofs et al. [36] present a graph-based system model that can be directly
converted into a computational model. Both these methods are possible when the system model itself
is already fairly close to the computational model, and data flow and equations are already modeled
in the system model.

This brief overview shows that converting a system model (e.g. SysML) into a simulation model
(e.g. Modelica, OpenMDAO) is a non-trivial endeavor. This is even more so the case when dealing
with complicated multidisciplinary simulation tools, which might require the architect to model the
computation process in addition to the system architecture itself.

3.2 Towards Flexible Simulation

The simulation capabilities are the main enabler of the architectural options that can be explored in an
architecture optimization problem, see also Fig. 2. The possibilities for the architecture optimization
problem are mainly limited by the following simulation environment aspects:

1. The architecture components and architectures that can be modeled;

2. The availability and accuracy of performance metrics;

3. The execution time of one simulation.

The first relates to the design space model itself; the architectures that can be included in the design
space. For example, from requirements analysis and architecture modeling, various components that

3OpenMDAO: https://openmdao.org/
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Figure 6 – Comparison between flexible and inflexible interfaces to the simulation environment.

can fulfill a given function can be identified. If, however, the simulation environment is not capable of
representing some of these components, these cannot be taken into account in the architecture opti-
mization problem. This does not necessarily have to be a problem, however it should be recognized
and documented that components are left out of the evaluation if in principle they could be viable
options. Another limitation can come from the architectures that can be represented in the simulation
environment, for example in terms of number of components, connections, and other variations.

The second point relates to the performance metrics used to compare different architecture instances.
If it is not possible to compute certain metrics currently, this can signal the need for selection or devel-
opment of additional engineering tools. Additionally, architectural options need to have sufficient and
accurate influence on the performance metrics, to give the optimization algorithm enough opportunity
for improving the design. Finally, the third point drives the selection of the optimization algorithm: for
longer execution times algorithms specifically designed to limit the number of function evaluations,
such as Surrogate-Based Optimization (SBO) algorithms, might be needed.

System architecture instances are defined based on some kind of decomposition of the system, for
example function-based decomposition. This is needed to automatically generate new architecture by
(re)combining elements and connections. When it comes to evaluating architecture performance, it
then makes sense that the evaluation environment supports a similar level of modularity and flexibility:
if the simulation environment is less flexible than the architecture design space model, it reduces the
types of architecture instances that can be explored (the first point in the list above). The simulation
environment should expose a modular interface that enables an almost 1-to-1 translation from the
architecture elements and connections to the evaluation model. The only extra information that then
needs to be specified are boundary and operating conditions. The interface modularity concept is
visualized in Fig. 6: an inflexible interface means that only predefined architectures can be simulated,
whereas a flexible interface enables the evaluation of any generated architecture.

One example of an engineering tool exposing a flexible, modular interface is Modelica [31]. As also
discussed in the previous section, Modelica is a general-purpose differential equation solver with a
large library of model elements. All available elements are implemented such that their inputs and
outputs are well-defined and each block defines the representation of its physics as differential equa-
tions. Another example of a tool with a flexible interface is pyCycle [16], a thermodynamic cycle
solver used for the design of aircraft engines, with a library of engine components (e.g. compressor,
combustor, turbine). At their basic level, each of these components define a transformation of air-
flow in terms of thermodynamic quantities such as pressure, entropy, and temperature. Knowledge
Based Engineering (KBE) method rely on a library of primitives to build complex geometrical engi-
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neering models based on design rules [24]. Such models can then be queried and translated to other
engineering disciplines (e.g. structural or aerodynamic models) for further simulation.

These kind of engineering tools rely on the Object-Oriented Programming (OOP) concepts of ab-
straction and inheritance to maintain a high level of flexibility and modularity. These concepts allow
elements and processes to be represented as hierarchies: all objects share a common interfaces,
and progressively refine their internal implementations. This allows both the development of special-
ized solvers (e.g. for differential equations), and the co-location of element and its behavior. Thereby
the development of the core solver and implementation of new elements is decoupled, and the defi-
nition of new architecture by (re)combination of elements is supported.

The design of complex systems often involves multiple engineering disciplines coordinating their
evaluations and design suggestions in an MDO process. An enabling element for dealing with the
challenge of integrating heterogeneous engineering disciplines into MDO processes is the use of a
common data language for exchanging data between disciplines [10]. Such a common data language
reduces the number of data interfaces that need to be implemented [3] and allow automatic identi-
fication of data connections and formulation of the MDO workflow [30]. It should be ensured that
such a central data format supports the flexible definition of architectures. Once all tools correctly
implement their data interfaces, the flexibility of the central data format is precipitated into the whole
MDO toolchain. To fully take advantage of the strengths of collaborative MDO, it should be possible
to define how changes in system architectures are precipitated into changes of the common data
language, and it should be possible to do this without needing to produce programming code. At the
current stage, such a connection is not yet possible at this level, and would require a custom ad-hoc
implementation. However, efforts are underway to develop a reusable and user-friendly way of doing
this in the AGILE 4.0 project [1].

Figure 7 – Structure of the aircraft jet engine benchmark problem from [8]: a variety of architectural
choices and performance metrics are available, and the optimization problem difficulty can be

adjusted. Engine performance is evaluating using pyCycle and various empirical methods.

4 Example Application: Aircraft Jet Engine Architecting

The previously discussed aspects are demonstrated using the multidisciplinary aircraft jet engine ar-
chitecting problem from [8] (see Fig. 7 for an overview): a benchmark problem based on pyCycle [16]
that demonstrates the salient behaviors of architecture optimization problems, and can be used to ed-
ucate stakeholders about these challenges and to test optimization algorithms. It is composed of two
components: the engine architecting framework that defines choices and metrics, and implements
the logic to create jet engine architectures from design vectors, and the engine evaluator that enables
the quantitative evaluation of jet engine architecture instances. The architecting framework allows the
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user to create a specific optimization problem by selecting a subset of available architectural choices
and performance metrics. Two optimization problem instances are presented: a single-objective ar-
chitecting problem with 15 design variables (the "simple" problem), and a multi-objective problem
with three objectives and 41 design variables (the "realistic" problem). The source code is published
open-source.

The four aspects of system architecture optimization are demonstrated as follows:

1. Formalization of the architecture design space: the architecture optimization problem is con-
structed by selecting architectural choices to consider and performance metrics to optimize for,
thereby enabling the formalization of an optimization problem. The design space is not mod-
eled in terms of functions and components at this stage, so no link to upstream MBSE steps is
established. This approach can be seen as a non-generalizable, ad-hoc implementation, which
might be appropriate for certain architecture problems, although reusability is impacted. The
establishment of a link to upstream MBSE steps through function and component modeling is
part of ongoing work.

2. Systematic design space exploration: the defined optimization problems include mixed-discrete
and hierarchical design variables, and can have multiple objectives. In the realistic problem
from [8], 85 architectures with millions of design points can be generated, and one architecture
evaluation takes approximately two minutes: enumeration of the design space is therefore not
possible. The multi-objective evolutionary algorithm NSGA2 has been used to explore the de-
sign space using 4000 evaluations, showing that this optimization algorithm is a good choice for
architecture optimization problems if it is feasible (e.g. because of time constraints) to evaluate
several thousands of design points. The solved optimization problems are subject to hidden
constraints [28]: constraints exhibited by invalid evaluation results due to non-convergence of
the evaluator (e.g. because of infeasible physics). Only 33% of the design points in the initial
DOE of the realistic problem converged to a meaningful result, showing this is important to take
into account.

3. Interpretation into a simulation model: the engine architecting framework implements the con-
version from design vectors to jet engine architecture models. This is done by each architectural
choice modifying a base turbojet architecture: for example, a fan-choice implements the logic
for adding a fan and bypass duct to the turbojet; a gearbox-choice inserts a gearbox between
the fan (if present) and the low-pressure compressor. The result of this conversion step is a
TURBOFANARCHITECTURE class instance that can be evaluated.

4. Flexible and modular quantitative evaluation of architectures: the engine evaluator uses pyCy-
cle, where engine architectures are defined by instantiating components from its library (e.g.
compressor, gearbox, bleed offtake), and establishing airflow (e.g. compressor to combustor)
and mechanical (e.g. shaft to fan) connections. All components inherit from some base class
that defines generic airflow and mechanical connection capabilities, demonstrating the applica-
tions of abstraction and inheritance. The engine evaluator adds a small layer on top of pyCycle
to convert a TURBOFANARCHITECTURE to a pyCycle problem, thereby maintaining the flexibility
and modularity of the pyCycle interface.

This jet engine architecting problem additionally demonstrates that compared to traditional processes,
where a handful of system architectures are evaluated in more details over the course of months, it
is possible to perform a more exhaustive design space exploration. This does come at the price
of spending more time before results can be generated, a trend also observed for MBSE [26]. In
this specific case, it took about two months to implement the evaluation environment (i.e. linking to
pyCycle, extracting metrics, adding new disciplines, validating and debugging), and three months to
implement the architecture generation logic (i.e. researching common architectures and choices, im-
plementing and testing the logic). Once that was completed, it took three days to run the architecture
optimization problem, thereby generating and evaluation 4000 engine architectures.
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When it comes to reducing expert bias in system architecting, this problem shows that bias is moved
from architecture selection to the selection of architectural choices and performance metrics. Ar-
chitecture selection is an objective step, because comparison between architectures is quantitative.
However, choice and metric selection still involves prior decision making, mostly coming from time
and feasibility constraints (i.e. project-related constraints; in this case it was a masters thesis project)
related to the implementation of the choices and metrics. However, when more resources are applied
to the problem, it is well possible to include all choices and metrics found in literature into such an
optimization problem, without pre-filtering based on expected performance impacts.

5 Conclusions and Outlook

Systematically exploring and optimization system architectures can help non-biased search for novel
architectures in large design spaces subject to the combinatorial explosion of alternatives. System
architectures should be defined based on function and form, and MBSE method should be applied to
ensure all stakeholder needs and the product lifecycle are taken into account. Four aspects that en-
able the optimization of system architectures are discussed: formalization of the architecture design
space, systematic exploration using optimization algorithms, interpretation of the architecture model
into a simulation model, and quantitative evaluation of architecture performance.

The first step to generate system architectures is to formally model the architecture design space. All
solutions for fulfilling system functions are identified and represented using a function-based decom-
position. The extent of the architectural choices that can be modeled depends on the performance
evaluation capabilities available. The formal architecture design space model maintains traceability
from stakeholder needs all the way to system components. Morphological matrix methods, as well
as various graph-based methods for modeling the design space are discussed.

Systematically generating new architectures can then be done in various ways: full enumeration of
the design space, a Design of Experiments (DOE), or optimization. Enumeration of the design space
is only possible if the number of possible architectures is low, or the time it takes to evaluate an archi-
tecture is low. If any of these two properties does not apply, only a subset of possible architectures
can be evaluated. A DOE can give a good overview of the design space an opportunities, however
finding the best architecture(s) in the design space requires the use of an optimization algorithm. Ar-
chitecture optimization problems can have hierarchical and mixed-discrete design variables, and can
feature multiple objectives due to conflicting stakeholder needs. These kind of problems can be solv-
ing using evolutionary algorithms (e.g. Genetic Algorithm, NSGA2). Surrogate-Based Optimization
(SBO) algorithms can also be applied, and generally need less function evaluations that evolutionary
algorithms. Dealing with design variable hierarchy is challenging, and can be done in multiple ways:
naive, imputation, or explicit consideration.

Quantitative evaluation of architecture instances, as needed for optimization, is enabled by convert-
ing architecture instances to simulation models, and by having sufficiently flexible simulation tools
for representing the great variety of system architectures typically seen in architecture optimization
problems. Various approaches for converting architectures from system models (e.g. SysML) to sim-
ulation models (e.g. Modelica) are discussed. Simulation environments need modular interfaces to
be used for architecture optimization, and limit the exploration possibilities of the optimization problem
in three ways: by the architectures that can be modeled, the availability and accuracy of performance
metrics, and the execution time of one simulation. Abstraction and inheritance play an important role
in the implementation of modular simulation tools suited for architecture optimization.

The four aspects are demonstrated using a jet engine architecting problem. It is shown how archi-
tecture optimization is enabled in this architecting problem, and how flexibility and modularity of the
evaluation code is maintained. In the end, 4000 architectures are generated and evaluated in three
days, showing that at the cost of more time spent on implementing the problem, in the end more
architectures can be evaluated and in less time than with a traditional approach. Additionally, expert
bias in architecture selection is removed, because architectures can be compared quantitatively. The
only bias remaining is in the selection of architectural choices and metrics to implement, which can
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be mitigated by spending more resources in the implementation phase.

To increase the practical use of architecture optimization, it is needed to integrate the design steps
in the MBSE approach. Efforts to do this are underway at the DLR Institute of System Architec-
tures in Aeronautics. The implemented method should be made practical by the development of
user-friendly and intuitive graphical modeling tools, and the development of generic and reusable ar-
chitecture conversion frameworks. Especially the connection to collaborative MDO methods should
be explored, to enable the detailed multidisciplinary analysis of system architectures. Connecting the
practical architecture optimization method with both upstream MBSE and downstream collaborative
MDO phases will be done in the AGILE 4.0 project [1]. There, the method will be applied to several
industry-provided use cases related to cyber-physical complex systems design.

Architecture optimization should then be applied to various design problems in aeronautics and other
engineering fields. Promising design problems include engine and (hybrid-electric) propulsion sys-
tem design, on-board system design, and System of Systems (SoS) design. Application to these
kind of realistic but expensive-to-evaluate problems will also drive the development of appropriate
optimization algorithms. Surrogate-Based Optimization is promising when considering the reduction
of function evaluations needed to solve an optimization problem.
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