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Abstract 

Applying Automatic Speech Recognition (ASR) in the domain 
of analogue voice communication between air traffic 
controllers (ATCo) and pilots has more end user requirements 
than just transforming spoken words into text. It is useless, 
when word recognition is perfect, as long as the semantic 
interpretation is wrong. For an ATCo it is of no importance if 
the words of greeting are correctly recognized. A wrong 
recognition of a greeting should, however, not disturb the 
correct recognition of e.g. a “descend” command. Recently, 14 
European partners from Air Traffic Management (ATM) 
domain have agreed on a common set of rules, i.e., an ontology 
on how to annotate the speech utterance of an ATCo. This paper 
first extends the ontology to pilot utterances and then compares 
different ASR implementations on semantic level by 
introducing command recognition, command recognition error, 
and command rejection rates. The implementation used in this 
paper achieves a command recognition rate better than 94% for 
Prague Approach, even when WER is above 2.5%. 

Index Terms: word error rate, command recognition rate, 
language understanding, air traffic control, ATC 

1. Introduction 

Nowadays, enhanced Automatic Speech Recognition (ASR) 
systems are used in Air Traffic Control (ATC) training 
simulators to replace expensive pseudo pilots. This work has 
started already in the late 80s [1]. Although ASR systems are 
widely used in everyday life (e.g., Siri®, Alexa®) and ATC 
phraseology is standardized, recognizing and understanding 
controller-pilot communication is still a big challenge and not 
solved with satisfactory performance. Due to the lack of ATC-
specific training data, current ASR systems still face challenges 
with specialized ATC vocabulary and syntax, controllers’ 
deviations from the standard phraseology, and the variety of 
speakers, accents [2]. Cordero et al. (2012) reported WER (= 
word error rate) of more than 80% with different Commercial-
off-the-shelf (COTS) recognizers [3]. 

Different metrics exist to evaluate the performance of ASR. 
The most widely used metric in ASR applications is the WER 
based on the Levenshtein distance [4]. However, the decision 
makers of air navigation service providers (ANSPs) are not 

primarily interested in these low-level metrics. They are 
interested in reducing costs and efforts. The AcListant®-Strips 
project quantified the benefits of using speech recognition with 
respect to both efficiency and ATCo workload: The workload 
for radar label maintenance by ATCo could be reduced by a 
factor of three [5] and the support of ASR enabled fuel savings 
of 50 to 65 liters per flight [6]. 

In this paper we will concentrate on the semantic level, i.e. 
on annotations, to evaluate the ASR performance in ATC 
domain, illustrated by the following two transcriptions for 
ATCo utterances:  

 “good morning lufthansa two bravo alfa radar contact 
descend flight level eight zero and speed two two zero 
knots”,  

 “bravo alfa identified two twenty knots descend level 
eighty”. 

On word level there is a large difference between both 
transcriptions, but semantically they have a similar meaning. 
According to the ontology defined by various European 
partners from the ATM industry and research [7], both 
transcriptions correspond to the following three ATC 
commands: “DLH2BA INIT_RESPONSE, DLH2BA 
DESCEND 80 FL, DLH2BA SPEED 220 kt”, but provided in 
a different order. The ontology rules enable the comparison of 
different speech recognition and understanding systems for 
ATC application: Consider each ATC command (e.g. DLH2BA 
SPEED 220 kt) as one (big) entity, i.e. word, and calculate the 
Levenshtein distances w.r.t. the gold annotations. 

The following section introduces the main elements of the 
ontology for ATC command annotation. The ontology, 
introduced by the CWP HMI project [7] is not final yet, which 
means that updates/changes ae still expected. The projects 
STARFiSH [8] and “HMI Interaction Modes for Airport 
Tower” [1] e.g. expand the ontology with respect to ATC 
ground and tower commands including remote tower 
operations. Section 3 presents the suggested metrics for 
evaluation of speech recognition and understanding systems. 
Section 4 presents evaluation results from different projects, 
followed by the conclusions. 



 

 

2. Ontology for annotation of ATC 
utterances 

A subset of the CWP HMI ontology for annotation, which is 
being extended in the HAAWAII project is presented in this 
section. They define, that an utterance consists of one or more 
instructions (Figure 1) and each instruction starts with the 
callsign, even if the callsign is only said once. The full intended 
callsign (from the flight plan or surveillance data) is provided, 
i.e., AUA123B is used even if only “austrian three bravo” is 
said or recognized. This compensates for misrecognitions on 
word level and also deals with commonly used abbreviations 
for callsigns in ATC.  If no callsign is said or could not be 
uniquely determined, “NO_CALLSIGN” is used. Figure 1 
depicts the structure of an instruction and shows that an 
instruction consists of a callsign, a command and optional 
conditions. A command always has a type, which determines, 
how many values are allowed. Optional fields are unit (e.g., FL, 
ft, kt), qualifier (e.g., LESS, OR_BELOW, LEFT), speaker 
(PILOT or empty), and reason (REQUEST, REPORTING or 
empty for e.g. readbacks and commands).  

Various examples from different application areas should 
illustrate the agreed rules. For approach traffic “speed bird six 
nine six victor keep speed one six zero knots until four miles 
final” would result in “BAW696V MAINTAIN SPEED 160 kt 
UNTIL 4 NM FINAL”. The last four elements after “kt” are the 
conditional clearance with the conjunction “UNTIL”. Here, we 
also see that the Type may consist of two words (e.g., 
MAINTAIN SPEED). An example from the tower is “lufthansa 
four nine nine taxi to alfa five eight via lima and november 
eight”, which results in “DLH499 TAXI TO STAND_A58” 
and “DLH499 TAXI VIA TX-L TX-N8”. The command type 
“TAXI TO” can only have one value, whereas multiple values 
are allowed for “TAXI VIA”. The ontology requires a 
configuration file, which defines that the word sequence “alfa 
five eight” is mapped to “STAND_A58” and that “lima” in a 
TAXI VIA command is mapped to “TX-L”.  

 

Figure 1: Elements of an instruction consisting of a 
callsign, a command and condition(s). 

The following utterance considers both pilot and ATCo 
utterances for enroute traffic: “Pilot: reykjavik control [NE 
Icelandic] godan dag [/NE] iceair six eight lima passing level 
one nine zero climbing two nine zero ATCO: [unk] six eight 
lima reykjavik control [NE Icelandic] godan dag [/NE] 
identified climb to flight level three seven zero”. “NE” means 
“Non-English”. The transcription rules require that the speaker 
names followed by a colon (“ATCO:” and “Pilot:”) are added, 
if more than one speaker occurs in an utterance. The above 
utterance results in the annotation:  

ICE68L PILOT   STATION REYK_RADAR,   
ICE68L PILOT   GREETING,   
ICE68L PILOT   REPORTING ALTITUDE 190 FL,   
ICE68L PILOT   REPORTING CLIMB 290 none,   
ICE68L                STATION REYK_RADAR,  
ICE68L                GREETING,  
ICE68L                INIT_RESPONSE,   
ICE68L                CLIMB 370 FL.  

We add the optional Speaker field in the annotations only, 
if the speaker is not the ATCo. If an altitude report or clearance 
does neither contain “feet” nor “flight level”, the unit field is 
“none”. Even if the full callsign uttered by the ATCo was not 
understandable or said, the annotation always contains the full 
callsign of an aircraft. The reason “REPORTING” is used for 
the pilot speaker only, if the altitude value is not a readback and 
is also not an altitude request. It is, however, not always 
decidable whether e.g., “… descending flight level two five 
zero” from the pilot is an altitude readback or a report. Both 
“ICE68L PILOT REPORTING DESCEND 250 FL” and 
“ICE68L PILOT DESCEND 250 FL” are, therefore, possible. 
One could easily determine which one is correct, by looking 
into the previous utterances. The annotation rules, however, 
require considering only the current utterance for creating the 
annotations. The transcription “okay we check thanks air 
canada eight five four” results in “ACA854 NO_CONCEPT” - 
not all words are covered by the ontology rules. “okay we check 
thanks air canada eight five four descend three thousand feet” 
would, however, result in “ACA854 DESCEND 3000 ft”. 
NO_CONCEPT is extracted only if no other command type is 
extracted for this callsign. An implementation of the ontology 
from DLR already exists, which includes an automatic 
extraction (command recognition) from word sequences to the 
ontology concepts. In general, the command extraction first 
looks for fully matching callsigns followed by extraction of 
complete commands, incomplete commands (i.e., clearances 
given without known keywords), and values. The final step 
extracts non-fully matching callsigns from words not belonging 
to an already extracted command. More details are provided in 
[10] 

3. Metric for semantic extraction accuracy 

The user, e.g., the ATCo using speech recognition, is interested 
in a high recognition and a low error rate on sematic level, i.e., 
the meaning behind the spoken word sequence must be 
interpreted correctly. Quantifying the accuracy on semantic 
level, i.e., recognition accuracy and error rate, is described in 
this section. We use command recognition rate, command 
recognition error rate, and command recognition rejection rate, 
due to consistency with [11], Nevertheless, a wrong condition 
counts as an error in the command recognition error rate. 

Command recognition rates are computed by comparing 
instructions from manual human annotation (gold annotation) 
to the results of the automatic semantic extraction (command 
extraction). For a given speech utterance, each instruction (see  
Figure 1) is treated as one big word. Then, the Levenshtein 
distance between the gold annotation and the results of 
command extraction is calculated, resulting in the number of 
substitutions (subs), insertions (ins) and deletions (del). Table 1 
gives an overview about the different metrics and illustrates an 
example how they are calculated. In the table #gold defines the 
total number of commands in the gold annotation. #match 
defines the number of matches, which is #gold – subs – del. If 
the result of the command extraction contains either 
NO_CONCEPT or NO_CALLSIGN, these substitutions and 
insertions are always calculated as deletions, i.e., these 
extractions contribute to the rejection rate and not to the error 
rate (as shown in the example in Table 1).  

For calculation of the callsign rates CaR, CaE and CaRj we 
just compare the callsigns from the gold annotation and from 
the automatic extraction. For each utterance we consider the 
callsign only once, except when different callsigns are 

Instruction

Command Condition(s)

Type Value(s) Unit Qualifier
Conjunction +
Requirement

ReasonSpeaker
Callsign



 

 

annotated or extracted. For the example in Table 1 this results 
in the three annotated and extracted callsigns AFR123, 
AUA1AB and DLH123.  

Table 1: Metric definition.  

Metric Calculation 
Command Recognition 

Rate (RcR) 
RcR = #matches / #gold 

Command Recognition 
Error Rate (ErR) 

ErR = (subs + ins) / #gold 

Command Rejection 
Rate (RjR) 

RjR = del / #gold 

Callsign Recognition 
Rate (CaR) 

Same as RcR but only for 
callsigns without instructions 

Callsign Recognition 
Error Rate (CaE) 

Same as ErR, but only for 
callsigns without instructions 

Callsign Rejection Rate 
(CaRj) 

Same as RjR, but only for 
callsigns without instructions 

If the command extraction results in different callsigns, the 
calculation is done for each callsign. See example below, which 

also illustrate that the sum of RcR, ErR and RjR can exceed 100%. 

Example 
Gold Annotation Command Extraction 

 
AFR123 INIT_RESPONSE 
AFR123 TURN LEFT 
AUA1AB SPEED 140 kt 
DLH123_NO_CONCEPT 

AFR123 DIRECT_TO OKG none 
AFR123 INIT_RESPONSE 
AFR123 TURN RIGHT 
AUA1AB NO_CONCEPT 
DLH123 NO_CONCEPT 

Result:  
RcR = 2/4 = 50% 

(green) 
ErR = 2 / 4 = 50% 

(purple) 
RjR =1/4 = 25% 

(yellow) 

 

As the ontology is still evolving, the annotations and extractions 
for different data sets are based on different versions of the 
ontology. In most cases new ontology versions introduce new 
command types. The metric calculation has to take this into 
accounts so that older data sets can also be reused. If some 
command types were not considered in the gold annotation or 
by the extraction (set via a configuration file), these command 
types are deleted from both the annotation and from the 
extraction. If after the deletions the set of annotations or 
extraction for a callsign is empty, the command type 
NO_CONCEPT is added for this callsign. If INIT_RESPONSE 
and SPEED command types are not supported for the above 
example from the metric definition this would lead to the 
following result as shown in Table 2. 

Table 2: Example of metric definition with INIT_-
RESPONSE and SPEED commands switched off. 

Gold Annotation Command Extraction 

 
AFR123 TURN LEFT 
AUA1AB NO_CONCEPT 
DLH123 NO_CONCEPT 

AFR123 DIRECT_TO OKG none 
AFR123 TURN RIGHT  
AUA1AB NO_CONCEPT 
DLH123 NO_CONCEPT 

AFR123 INIT_RESPONSE is mapped to AFR123 NO_CONCEPT. 
However, both gold annotation and command extraction contain 

still another command for AFR123. NO_CONCEPT is only 
added, if it is the only command, which is here the case for 

AUA1AB with SPEED mapped to NO_CONCEPT. 
Result:  

RcR = 2/3 = 67% 
(green) 

ErR = 2/3 = 67% 
(purple) 

RjR = 0 = 0% 
(yellow) 

4. Experimental results 

Trials with data from ANSPs of Prague and Vienna from the 
MALORCA and CWP HMI project were performed. For both 
Prague and Vienna gold transcriptions and gold annotations of 
the ATCo voice recordings were available. From simulation 
runs (Lab) of the CWP HMI project 6,885 commands were 
taken from five different ATCos from Prague and 6,005 
commands were taken from two different ATCos from Vienna 
ATCos (see rows with Labs)  [12]. From the MALORCA 
project 6,094  from Prague approach and 4,417 commands from 
Vienna approach were taken from operational environment 
recordings of 12 and 41 ATCos [13], respectively (see rows 
with Ops). The number of commands per speech utterance was 
between one and seven. 

Table 3: Recognition accuracy for ops room and lab. 

 #Cmd #Utt RcR ErR CaR 
Ops Prague 6094 3038 98.5% 0.9% 99.8% 
Lab Prague 6885 4211 99.2% 0.5% 99.7% 
Ops Vienna 4417 2279 94.8% 4.0% 98.2% 
Lab Vienna 6005 3562 95.3% 2.5% 96.4% 
 

Table 3 shows the metrics, number of commands (#Cmd) 
and speech utterances (#Utt) for the different data sets. The 
command extractions in this table are performed on the gold 
transcriptions (WER=0%) and, therefore, shows the upper limit 
of command extraction if the word recognition is perfect. More 
interesting are the results, when the output from a speech-to-
text engine with WERs > 0% is used. For the results of Table 4 
different models and context information were used, which led 
to different WER rates.  

Table 4: Recognition accuracy with different WERs.  

 RcR CaR WER 
Ops Prague, gold transcription 98.5% 99.8% 0.0% 
Ops Prague, no callsign context 96.5% 98.7% 2.3% 

Ops Prague, callsign context 96.6% 98.2% 2.8% 
Ops Prague, bad speech model 76.8% 88.5% 13.5% 
Ops Vienna, gold transcription 94.8% 98.2% 0.0% 
Ops Vienna, no callsign context 89.9% 93.0% 5.1% 

Ops Vienna, callsign context 88.6% 91.6% 6.7% 
Ops Vienna, bad speech model 82.7% 87.8% 9.5% 

 

From Table 4, we see that a lower WER of 2.3% results in 
a worse command recognition rate (96.5%) as compared to a 
WER of 2.8%. The latter WER is based on using the context 
information, i.e., information regarding, which aircraft 
callsigns are currently controlled by the ATCo. The gold 
transcription “austrian two three one” is then recognized as e.g., 
“austrian three three one” if only AUA331 is available in 
context, although the ATCo clearly said “two three”. The rows 
with “bad speech model” in Table 4 refer to an ASR engine 
adapted by transcribed utterances from just one speaker, but 
which was used to recognize speech also from other speakers. 
This, of course, results in a bad performance concerning WER. 
The data does not only show that a lower WER not 
automatically results in a higher command recognition rate, but 
it also shows that fully recognizing an instruction/command 
does not require each word of the command to be correctly 
recognized. The command extraction algorithm always uses the 
information, which callsigns are currently in the air, 



 

 

independent of the fact, whether the speech-to-text block is 
using this information or not. 

Table 5: Command length.  

WER 3 4 5 6 7 8 9 
        

2.3% 93% 91% 89% 87% 85% 83% 81% 
2.8% 92% 89% 87% 84% 82% 80% 78% 
5.1% 85% 81% 77% 73% 69% 66% 62% 
6.7% 81% 76% 71% 66% 62% 57% 54% 
9.5% 74% 67% 61% 55% 50% 45% 41% 

13.6% 65% 56% 48% 42% 36% 31% 27% 
 

Table 5 shows what command recognition rates could be 
expected for certain WER and different average command 
length in words, if the WER would directly translate to the 
command recognition rate. Assuming that the sequence of 
words “descend flight level two one zero” consisting of six 
words only results in “DESCEND 120 FL” if all six words are 
correctly recognized, should result in a command extraction 
rate of 55% given a WER of 9.1%. The average command 
length for Prague data was 7.0 words and for Vienna 5.6 words. 
So, for a WER of 2.8% a command recognition rate of at most 
82% should result, but we have achieved 96.6% (as shown in 
Table 4). Similarly, for a WER of 5.1% for Vienna ops room 
data without using callsign information from the surveillance 
data, we expect a command recognition rate of only 75%, but 
we observed 89.9%. The command extraction algorithm is quite 
robust. 

Table 6 illustrates the results if we concentrate on altitude 
changing command types (column DESCEND) and direction 
changing command types (column Direct to), which are 
important in the ATC world. The upper part shows the results 
for Prague and the lower part for Vienna ops room data. The 
extraction rate for the DESCEND command decreases only 
slightly with increasing WER for acceptable WER, i.e. less 
than 7%, but heavily increases also for DESCEND command if 
WER gets worse. In those case we get also for the DESCEND 
command not better results than the average command 
recognition rates averaged over all command types. 

Table 6: Specific command recognition rates.  

Ops Prague  
WER All DESCEND DIRECT_TO 

 6063 925 370 
0.0% 98.5% 99.8% 97.0% 
2.3% 96.5% 98.3% 95.1% 
2.8% 96.6% 99.0% 87.8% 

13.6% 76.8% 76.1% 77.3% 
Ops Vienna 

WER All DESCEND DIRECT_TO 
 4417 679 387 

0.0% 94.8% 98.5% 91.0% 
5.1% 89.9% 95.9% 86.6% 
6.7% 88.6% 95.4% 82.2% 
9.5% 82.7% 86.5% 77.3% 

 

5. Conclusions 

The paper has extended the ontology developed by SESAR 
solution CWP HMI also for pilot utterances. The 

implementation of the ontology rules results in command 
recognition rates of 99% for Prague airport and achieves 95% 
for Vienna airport. For Vienna the gold annotations are still 
improvable and the used phraseology contains a high 
variability often deviating from published standard 
phraseology. The implementation is robust against errors 
resulting from speech-to-text transformation. WER below 3% 
decreases performance only slightly. WER above 10% still 
enable command recognition rates better than 75%, even 
though the average command length was longer than 6 words. 
The command recognition rate metric is of course not new. The 
transformation of an ATC utterance consisting of a sequence of 
words into its semantic elements, based on the ontology, 
however, is new. Only the presented definition and the 
implementation of the extended ontology, enable a detailed 
comparison of different speech recognition and understanding 
applications also on semantic level and not just on word level. 
Using only the word error rate would be only half of the truth, 
but also not less. WER analysis provides initial hints with 
respect to the ASR performance. 
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