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Quantum algorithms for solving the Quantum Linear System (QLS) problem are
among the most investigated quantum algorithms of recent times, with potential appli-
cations including the solution of computationally intractable differential equations and
speed-ups in machine learning. A fundamental parameter governing the efficiency of
QLS solvers is κ, the condition number of the coefficient matrix A, as it has been known
since the inception of the QLS problem that for worst-case instances the runtime scales
at least linearly in κ [1]. However, for the case of positive-definite matrices classical
algorithms can solve linear systems with a runtime scaling as

√
κ, a quadratic improve-

ment compared to the the indefinite case. It is then natural to ask whether QLS solvers
may hold an analogous improvement. In this work we answer the question in the neg-
ative, showing that solving a QLS entails a runtime linear in κ also when A is positive
definite. We then identify broad classes of positive-definite QLS where this lower bound
can be circumvented and present two new quantum algorithms featuring a quadratic
speed-up in κ: the first is based on efficiently implementing a matrix-block-encoding
of A−1, the second constructs a decomposition of the form A = LL† to precondition
the system. These methods are widely applicable and both allow to efficiently solve
BQP-complete problems.

1 Introduction
Quantum computation is described using the formalism of linear algebra, suggesting that quantum
methods may be intrinsically well-suited to perform linear algebraic tasks. Algorithms solving
linear systems of equations, in particular, are at the cornerstone of linear algebra [2, Chapter 2],
having many direct applications and playing a pivotal role in several computational methods [3].
In the seminal work of Harrow, Hassadim, and Lloyd (HHL) the so-called Quantum Linear System
(QLS) problem was introduced and a quantum algorithm was presented that allows solving the
QLS exponentially faster than classical algorithms solving classical linear systems [1]. In subse-
quent works, several new algorithms have been put forward that solve QLS with further increased
efficiency in comparison to the original HHL algorithm, improving the runtime dependence on the
condition number [4], on the precision [5] and on the sparsity [6]. Recently, a new approach inspired
by adiabatic quantum computation has introduced a significantly simpler quasi-optimal solving al-
gorithm [7, 8], significantly narrowing the gap with experimental implementations [9], making the
algorithm compatible with Near-term Intermediate Scale Quantum (NISQ) devices [10, 11] and
leading to the development of the presently most efficient QLS solvers [12].

A key idea underpinning the possibility of achieving large quantum speed-ups in linear algebra
tasks is the fact that an exponentially large complex vector can be compactly encoded in the
amplitudes of a pure quantum state; e.g., a n-qubit state is described via 2n amplitudes. This
intuition is indeed correct for the QLS problem, which has been proven to be BQP-complete [1]:
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any quantum computation can be re-formulated as a QLS with only a polynomial overhead and
therefore there exist families of QLS problems that afford super-polynomial speed-ups compared
to classical solution methods (unless BPP = BQP1). While this reduction shows that almost
certainly there exist families of QLS problems that allow an exponential speed-up compared to all
classical methods, the crucial question is whether there are natural problems that can be directly
formulated and solved as QLS. The ubiquity of linear systems seems to suggests their quantum
variant should be broadly applicable as well, but still it is not guaranteed, since in the QLS setting
further significant constraints have to be met to obtain exponential speed-ups [13].

A prominent fundamental bottleneck of QLS solvers is that, to efficiently obtain the solution,
it is not sufficient that the coefficient matrix A of the system Ax = b is invertible, but it also have
to be robustly invertible, that is well-conditioned : it is required that the condition number of the
matrix A, defined as the ratio between the largest and the smallest singular values, is small. In
fact, solving a QLS necessarily entails a runtime scaling at least linearly in the condition number
(unless BQP = PSPACE2) as was already proven in Ref. [1]. Therefore, an exponential quantum
speed-up for QLS solving is achievable only when the condition number scales polylogarithmically
with the system size and, unfortunately, it seems rather difficult to find natural examples of
matrix families that exhibit such mild growth of the condition number [14]. However, polynomial
quantum speed-ups for linear system solving should be rather broadly achievable and could still
provide a quantum advantage if the degree of the polynomial is large enough [15]. In this view,
obtaining a further quadratic improvement in the dependence on the condition number for some
restricted classes of matrices, that are however of wide practical interest, could be of the uttermost
importance for obtaining a broader impact of QLS solving algorithms. A previous publication
showed that in the context of quantum algorithms for solving certain Markov chain problems
the use of specialised QLS solvers for positive-definite matrices provides an improvement in the
condition number dependence [16]. Exploring the general positive-definite QLS problem is the
main focus of this work.

In the rest of the Introduction we motivate why quadratic speed-ups in the condition number
in positive-definite QLS may be expected (Section 1.1), review some related results present in
the literature (Section 1.2) and then proceed to give high-level overviews of our two algorithms
(Section 1.3 and Section 1.4). In Section 2 we fix the notation and give the main definitions. In
Section 3 we prove that QLS solvers require, even when restricting to positive-definite matrices, a
runtime scaling linearly in the condition number. We then move to the main results of this work,
that is, achieving improved runtime scaling for solving certain classes of positive-definite QLS:
in Section 4 we show a method based on an efficient implementation of a matrix-block-encoding
of A−1 and in Section 5 a method based on decomposing the coefficient matrix as A = LL† to
effectively precondition the system. Finally, an outlook of possible future research directions is
given in Section 6.

1.1 Positive definite linear systems and quadratic speed-ups
In this work, we investigate the efficiency of QLS solving algorithms specialised to the case where
the coefficient matrix A ∈ CN×N is Hermitian and positive definite (PD). We will call this sub-class
the positive-definite Quantum Linear System (PD-QLS) problem.

A first reason to focus specifically on the PD case is that in the classical setting several problems
of practical relevance are formulated as linear systems involving PD coefficient matrices. A second
important reason is that the few fully worked-out examples in the literature providing strong
evidence of polynomial quantum speed-ups for “natural” QLS problems involve PD coefficient
matrices [14, 17]. In particular, the discretization of a partial differential equation (PDE) having
a positive-definite kernel (such as, e.g., Poisson’s equation) results in a large linear system where
the coefficient matrix is positive definite. Montanaro and Pallister perform in Ref. [14] a detailed

1BPP is the class of decision problems that can be solved in bounded-error probabilistic polynomial time, BQP are
those that can be solved with bounded-error polynomial time quantum computations. Loosely speaking, BPP = BQP
would mean that the power of quantum computers is equal to that of classical computers.

2PSPACE is the class of decision problems that can be solved in classical polynomial space. With a Feymann
sum-over-paths approach one can show that any quantum computation can be classically simulated in exponential
time but with only polynomial space, thus BQP ⊆ PSPACE. It is widely believed that BQP 6= PSPACE.
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Method Result Requirements

Reduction to
majority problem

Ω(κ) query complexity lower bound
Proposition 6

Access to A via a matrix-block-encoding
or via a sparse-oracle access

Block-encoding
of A−1

O(
√
κ) query and gate complexity

Proposition 12 and Proposition 13
Access to normalised matrix-block-encoding
of B = (I − ηA) and

∣∣∣∣A−1 |b〉
∣∣∣∣ is large

Decomposition
as A = LL†

O(
√
κ) gate complexity

Proposition 16
A is the sum of PD local Hamiltonians,
b is sparse and 1/γ in Eq. (91) is small

Table 1: Summary of the main results of this work. The results provided in the second column of the table
hold under the conditions specified in the third column. The big-Ω notation is used for runtime lower bounds
(in query complexity), the big-O notation for runtime upper bounds (exhibiting an explicit solving algorithm).

analysis of how QLS may be employed to solve the finite-element formulation of a PDE and show
that the linear dependence on the condition number is the main bottleneck to obtaining large
quantum speed-ups. In fact, the discretization of PDEs for functions defined in RD typically
results in positive-definite linear systems where the condition number scales as O

(
N2/D) [14].

We highlight that one might have reasonably conjectured that it is possible to have a quadrat-
ically better scaling in κ, the condition number of A, in the PD case. First, note that the runtime
lower bound of Ref. [1] is proven using a special family of matrices that are indefinite (neither
positive nor negative definite) by construction, hence it is not directly applicable to the PD case.
A standard method allows to transform an indefinite linear system into a PD one, but having a
quadratically larger condition number3; hence, the lower bound in Ref. [1] directly yields a

√
κ run-

time lower bound for PD-QLS solvers. Second, the conjugate gradient (CG) descent method is the
most efficient classical algorithm for solving PD linear systems and requires only O

(√
κ log(1/ε)

)
iterations to converge to the correct solution, up to ε approximation. Each iteration consists in the
update of some vectors having N entries, where N is the dimension of the linear system, thus result-
ing in a total runtime in O

(
N
√
κ log(1/ε)

)
[18]. Then, it might seem plausible that a quantization

of the CG method could yield a quantum algorithm having runtime in O
(
polylog(N)

√
κ log(1/ε)

)
.

This conjectured quadratic speed-up is however not always achievable since, as we prove in
Section 3, PD-QLS solvers have runtime scaling linearly in κ in worst-case problem instances. But
this no-go result can be used as guidance to understand what is preventing us from achieving a
better runtime scaling and, conversely, what additional conditions have to be imposed in order to
achieve a quadratic speed-up in κ for PD-QLS solvers.

1.2 Previous related results
In context of general QLS solvers, i.e. solvers applicable also to indefinite or non-Hermitian matri-
ces, the best algorithms have a runtime scaling quasi-linearly in κ, i.e. scaling as O

(
κpolylog(κ)

)
,

thus almost saturating the linear lower bound [1]. Note that the original HHL algorithm has a worse
performance, with a runtime scaling as O(κ2/ε) where ε is the target precision. The first algorithm
to achieve a quasi-linear scaling in κ was proposed by Ambainis in Ref. [4], which introduces a
technique called Variable-Time Amplitude Amplification (VTAA) and employs it to optimize to
the HHL algorithm. Subsequently, Childs, Kothari and Somma [5] introduced polynomial approx-
imations of A−1 to exponentially improve the runtime dependence on the approximation error to
O
(
κ2 polylog(κ/ε)

)
; they show, furthermore, that the VTAA-based optimization can be used also

for this algorithm, thus yielding a O
(
κpolylog(κ/ε)

)
runtime. Later, Chakraborty et al. showed

that also the pseudo-inversion problem, whereby the matrix A may be non-invertible and even non-
square, can be solved with a runtime in O

(
κ
√
γ polylog(κ/ε)

)
, where γ parametrises the overlap

of b with the subspace where A is non-singular [19]. Finally, the current state-of-the-art methods
for general QLS solving is given in Ref. [12], which does not rely on VTAA but instead is based

3Namely, for a given indefinite matrix A, the systems Ax = b and A′x = b′, with b′ := A†b and A′ := A†A,
have the same solution. The matrix A′ is positive definite and κ(A′) = κ(A)2.
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on ideas stemming from adiabatic quantum computation [7], which result in conceptually simpler
algorithms and in a significant improvement of the polylogarithmic factors.

Furthermore, several specialized quantum algorithms have been introduced with the scope of
more efficiently solving QLS for particular sub-classes of matrices. A few works, e.g. [17, 20, 21],
have investigated the use of preconditioning to speed-up the solution. The main idea, which is
well-known in classical linear system solving methods, is to look for an invertible matrix B, a
so-called preconditioner, such that the matrix BA has a smaller condition number than A, and
subsequently solve the equivalent linear system BA = B b. An algorithm based on a sparse precon-
ditioning matrix was introduced in Ref. [17], but it has very little formal guarantees of performance
improvement. Another method based on circulant preconditioners was presented in Ref. [20], for
which it is clearer how to assess when a runtime improvement can be achieved. Runtime improve-
ments have been obtained in Ref. [21] applying new preconditioning methods to Hamiltonians
arising in many-body physics. An entirely different approach, based on hybrid classical-quantum
algorithms, has been explored in Ref. [22], which yields runtime speed-ups for the case where the
rows or columns of the coefficient matrix can be prepared with polylogarithmic-depth quantum
circuits. We also mention the result of Ref. [23], showing that it is possible to solve QLS for the
special class of tridiagonal Toeplitz matrix with a runtime that scales polylogarithmically in all
parameters, condition number included; note, however, that matrices of this class can be fully spec-
ified with just two real parameters. Finally, the PD-QLS problem has been previously considered
in Ref. [16], where it is suggested that positive-definite systems could be solved more efficiently
than indefinite ones.

1.3 Overview of the method based on a matrix-block-encoding of A−1

Our first method for solving PD-QLS with improved runtime is based on implementing as a quan-
tum circuit a unitary matrix UA−1 that encodes in a sub-block a matrix proportional to A−1, i.e. a
so-called matrix-block-encoding [24, 25]. The solution state

∣∣A−1b
〉

can be subsequently obtained
via matrix-vector multiplication, achieved by applying the circuit encoding A−1 and projecting
onto the correct sub-block. This method is analogous to the one introduced by Childs, Kothari
and Somma in Ref. [5], where it is shown that exponentially precise polynomial approximations of
the inverse function can be constructed, which then allow to implement a matrix-block-encoding
of A−1 up to exponentially small error and finally solve the QLS problem via matrix-vector mul-
tiplication. Here, we show that if A is a PD matrix, an equally good approximation of A−1 can
be obtained with polynomials having a quadratically smaller degree, leading to the possibility of a
quadratic speed-up in PD-QLS solving.

More in detail, Ref. [5] considers a Hermitian matrix A whose spectrum is by assumption
contained in the domain D∆ := [−1,−∆] ∪ [+∆,+1], with ∆ ≤ 1/κ. Then, families of real
polynomials P (x) are constructed such that |P (x)−1/x| ≤ ε on the domain D∆ and have a degree
` ∈ O

(
κ log(1/ε)

)
, see panel (a) of Figure 1 for an illustrative example. Using either the Linear

Combination of Unitaries (LCU) [26, 27] or the Quantum Signal Processing (QSP) [28, 24, 25]
method, it is possible to implement a matrix-block-encoding of P (A), up to some rescaling factor
K > 0 such that P (A)/K can be encoded a sub-block of a unitary matrix, and then we have∣∣∣∣P (A)−A−1

∣∣∣∣ ≤ ε in operator norm. The query complexities of LCU and QSP scale at least
linearly in the degree of the polynomial, hence the use of polynomials of low degree is crucial
to construct efficient QLS solvers. Moreover, the normalisation factor K of the matrix-block-
encoding of P (A) scales linearly in κ and enters multiplicatively in the cost of the matrix-vector
multiplication step necessary to produce

∣∣A−1b
〉
.

In case A is a PD matrix, we can exploit the knowledge that its spectrum is contained in
D+

∆ := [∆, 1] to perform the following trick: we assume to have access to a normalised matrix-
block-encoding of B := I − η A, for some constant4 η ∈ (0, 2], so that the spectrum of B is
always contained in the interval DB = [−1, 1 − η∆]. We then construct a polynomial P (x) that
approximates the function f(x) := 1/(1− x) on the domain DB up to ε distance. Using the QSP

4We show in Section 4.3 that B can be efficiently constructed for η = 1 when A is diagonally dominant and for
η = 1/J when A is the sum of J positive semi-definite local Hamiltonian terms.
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Figure 1: In panel (a) are shown two polynomials approximating the function 1/x (in black) chosen from the
family of polynomials given in Ref. [5, Lemma 14], using as parameters b = 200, j0 = 10 (red curve) and
b = 200, j0 = 20 (blue curve curve). In panel (b) are shown two polynomials approximating the function
1/(1 − x) (in black) chosen from the family given in Eq. (26), using as parameters ` = 6, κ = 15 (red curve)
and ` = 10, κ = 9 (blue curve). The shaded regions in each panel indicate the intervals where the polynomial
approximation is not accurate.

method to implement a matrix-block-encoding of the matrix P (B) we then have

P (B) ≈ f(B) = 1
I −B

= 1
I − (I − η A) = 1

η
A−1 (1)

which is the required matrix inverse, up to a 1/η rescaling factor. Importantly, our polynomial ap-
proximation of 1/(1−x) has a degree ` ∈ O

(√
κ/η log(κ/(ηε))

)
, a quadratically better dependence

on κ with respect to the approximation of 1/x given in Ref. [5], see panel (b) of Figure 1. Moreover,
the normalisation factor K scales again linearly in κ, which is the best dependence achievable.

From a mathematical standpoint, the possibility of a quadratic reduction of the degree of the
approximating polynomial can be interpreted as a consequence of Bernstein’s inequality [29]. This
inequality states that in the class of real polynomials P (x) of degree ` such that |P (x)| ≤ 1 for
all x ∈ [−1,+1] the derivative P ′(x) satisfies |P ′(x)| ≤ (1 − x2)−1/2` for all −1 < x < 1, while
we have |P ′(x)| ≤ `2 for x = 1 and x = −1 (and these last bounds are saturated by Chebyschev
polynomials). Note that polynomials approximations of 1/x and of 1/(x− 1) have high derivative
close to the singularities, respectively in x = 0 and in x = 1, and because of Bernstein’s inequality
the latter case allows good polynomial approximations having a quadratically lower degree.

We need next to perform matrix-vector multiplication to obtain the state
∣∣A−1b

〉
and thus solve

the QLS; this is obtained by applying the quantum circuit that encodes the matrix P (B) ∝ A−1

to a quantum state of the form |0〉 |b〉 and then post-selecting the ancilla register to be in |0〉 or,
more efficiently, using amplitude amplification [30]. The amplitude amplification step implies a
multiplicative overhead of order 1/κ in the worst case, yielding a total runtime in O

(
κ3/2 log(κ/ε)

)
for this PD-QLS solver. However, the efficiency the matrix-vector multiplication depends on the
post-selection success probability and thus on the specific choice for the vector b. In a best-case
scenario the post-selection success probability is constant and thus the overall runtime of the PD-
QLS solver is O

(√
κ log(κ/ε)

)
, while in the same high-success-probability scenario the QLS solver

of Ref. [5] has a runtime in O
(
κ log(κ/ε)

)
, since this is the cost of implementing a polynomial

approximation of A−1 for indefinite matrices.
We remark that there is a technical assumption that has to be satisfied to allow the realisation

of our method, namely, that it is possible to implement a normalised matrix block encoding of
B = I − η A. This is a non-trivial task: standard methods could allow us to prepare, for instance,
a normalised matrix-block-encoding of B/d where d ≥ 2 is the sparsity of B, i.e. the maximum
number of non-zero entries in each column of B [5]. Note, however, that we would then need
to implement an approximation of the function g(x) := 1/(1 − xd) to obtain g(B/d) = 1

ηA
−1;

the function g(x) has a singularity in x = 1/d, which is in the interior of the domain [−1,+1],
and thus Bernstein’s inequality precludes us from achieving good approximations with low-degree
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polynomials for this function.
We will show that it is possible to implement normalised matrix-block encodings of B for two

special classes of QLS problems: the first is when A is a diagonally dominant matrix; the second,
when A is given as the sum of local PD Hamiltonian terms, where by “local” we mean that it
acts non-trivially only on a small number of qubits. In these two cases it is therefore possible to
implement our improved PD-QLS solver. We leave the question whether it is possible in broader
generality to prepare normalised block-encodings as an open research question.

1.4 Overview of the method based on the A = LL† decomposition
Our second method for solving PD-QLS with improved runtime is based on finding a decomposition
A = LL†, akin to the classical Cholesky decomposition [31] which exists for all PD matrices, and
then use L−1 as an efficient and effective preconditioner. Note, in fact, that L†x = b′ for b′ = L−1b
is a linear system equivalent to the original one, but the decomposition A = LL† immediately
implies κ(L) = κ(L†) =

√
κ(A) and thus the new system provably has a quadratically smaller

condition number. This decomposition is similar to a spectral gap amplification of A [32].
The method involves thus two main steps: in the first one we use classical computation to

efficiently obtain a description of a matrix L such that LL† = A and such that it is possible to
efficiently find, using only classical computation, a description of the vector

∣∣b′〉 :=
∣∣L−1b

〉
; in

the second one, we use an efficient quantum algorithm, having runtime quasi-linear in κ, to solve∣∣L†x〉 =
∣∣b′〉, which thus gives |x〉 =

∣∣(L†)−1L−1b
〉

=
∣∣A−1b

〉
. Note that the classical descriptions

of L† and of
∣∣b′〉 should also allow the efficient compilation the quantum algorithm used to solve

the preconditioned QLS.
The picture is not yet complete, since we actually use a matrix L that is non-square and thus

singular. As a result, the inversion operation has to be substituted by a pseudo-inversion and the
condition number by the effective condition number, the ratio between the largest and the smallest
non-zero singular value; when A is invertible the effective condition number of L is quadratically
smaller than the condition number of A. We also use two different pseudo-inverses in the classical
and in the quantum part of the computation: in the quantum step the Moore-Penrose pseudo-
inverse (L†)+ is employed and in the classical preconditioning a generalised pseudo-inverse Lg

chosen such that (L†)+Lg = A−1; thus, they yield the desired solution |x〉 =
∣∣A−1b

〉
when applied

in sequence. These extensions to non-square matrices and to different pseudo-inverses are made to
give leeway in the design of the classical part of the algorithm, allowing us to meet the efficiency
requirements mentioned above. Finally, we will employ the QLS solver of [19], which can tackle
pseudo-inversion problems and has a runtime quasi-linear in the effective condition number.

We show that a fully suitable decomposition of the form A = LL† can be constructed for the
Sum-QLS problem, i.e., when A is a sum of local PD Hamiltonian terms. In this case, the matrix
L is formed by several blocks, each constructed from a single Hamiltonian term, while the pseudo-
inverse Lg is obtained inverting the individual blocks, operations involving only small matrices and
thus classically feasible. We also require that the vector b is sparse, containing only polynomially
many non-zero entries, thus allowing to efficiently compute the description of

∣∣b′〉 = |Lg b〉.
As a final technical caveat, we note that because of the mismatch between the pseudo-inverse

used in the classical and in the quantum part of the algorithm (Lg and (L†)+), the vector b′ is not
entirely contained in the support of (L†)+ and thus amplitude amplification of the component in
the correct subspace is required. This incurs in a multiplicative overhead of a factor 1/√γ, where√
γ > 0 is a known bound for the amplitude of the “good” component of b′. This method thus has

a provable runtime improvement over competing QLS solvers whenever 1/√γ is sufficiently small.

2 Notation and definitions
We assume knowledge of the main quantum computation concepts, as given for instance in Ref. [33].
A quantum computation is described using a Hilbert space of dimension 2n for some n, corresponds
to a system of n qubits, having a distinguished computational basis.
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2.1 Linear algebra and asymptotic notation
We consistently denote with N ∈ N the dimension of the QLS we aim to solve and we define
n := dlog2Ne, so that a vector in CN (possibly padded with zeroes at the end if N is not a power
of two) can be described as pure state of n qubits. For any complex matrix A ∈ CN×M having N
rows and M columns we write its Singular Value Decomposition (SVD) as A = V ΣW † where V
and W are unitary matrices of size N ×N and M ×M respectively and Σ is a real non-negative
matrix of size N ×M which is uniquely determined up to reordering of the diagonal entries and
contains the singular values of A on the main diagonal. An Hermitian matrix A is positive definite
if 〈v|A |v〉 > 0 for all |v〉 and is is positive semi-definite if 〈v|A |v〉 ≥ 0. The eigenvalues of A are
real, positive (in the definite case) or non-negative (in the semi-definite case) and coincide with
its singular values. For a general A, ςmin, ςmax and λmin, λmax denote the minimum and maximum
singular values and eigenvalues, respectively. The Moore-Penrose pseudo-inverse of A is obtained
by applying to the singular values ςi of A the function f : R 7→ R defined as f(x) = 1/x for x 6= 0
and f(0) = 0. More precisely, for a diagonal matrix Σ we define Σ+ = f(Σ), while for a general
matrix A = V ΣW † the pseudo-inverse is given as A+ := WΣ+V †. Given A ∈ CN×M a generalised
pseudo-inverse Ag ∈ CM×N is any matrix satisfying the equation AAgA = A.

In this work we employ the `2-norm for vectors ||v||2 :=
∑N
i=1 v2

i and the induced operator
norm for matrices ||A|| := maxv 6=0 ||Av|| / ||v||. The condition number of a matrix is given by
κ(A) := ||A|| ||A−1||. Since we have ||A|| = ςmax(A) and ||A−1|| = 1/ςmin(A), the condition

number can be also written as κ(A) = ςmax(A)
ςmin(A) . For a singular matrix A we define the effective

condition number to be κeff(A) := ||A|| ||A+||, which is equal to the ratio between the largest
and the smallest non-zero singular value of A. A Hermitian matrix A is diagonally dominant if∑
j:j 6=i |Aij | ≤ |Aii| for all i and note that |Aii| = Aii > 0 when A is positive definite.
We use the standard big-O and small-o notations for asymptotic scaling, together with the

following definitions: f(x) ∈ Ω(g(x)) if and only if g(x) ∈ O(f(x)), which is used to give lower
bounds, and Θ(g(x)) = O(g(x)) ∩ Ω(g(x)). We also use the soft-O and soft-Ω notations where

f(x) ∈ Õ(g(x)) means f(x) ∈ O
(
g(x) polylog [g(x)]

)
, and similarly for Ω̃(g(x)), which are used to

give more coarse-grained bounds.

2.2 Definition of the Quantum Linear System problem
In this section we introduce the main definitions that are relevant in the contest of the QLS
problem, which is a quantum analogue of the classical linear algebra problem of solving the system
of equations Ax = b, having solution x = A−1b when A is invertible.

We use pure quantum states to encode N -dimensional complex vectors. A vector v enclosed in
a bra or in a ket is always assumed to be normalised,

∣∣∣∣ |v〉 ∣∣∣∣ = 1. In particular we have:

|b〉 = b

||b||
=

∑N
i=1 bi |i〉(∑N
i=1 |bi|2

)1/2 (2)

∣∣A−1b
〉

= A−1 |b〉
||A−1 |b〉||

. (3)

We now give a general definition of the QLS problem. The formulation is similar to the one
provided in Ref. [7] and is intentionally not specifying the access models employed for the coefficient
matrix A and the known-term vector b, for sake of generality.

Definition 1 (Quantum Linear System). Suppose we have access to a vector b ∈ CN \ {0} and to
a non-singular matrix A ∈ CN×N (access is given via quantum oracles, or some kind of implicit or
explicit description). We are given two real positive parameters ς∗ and ς∗ such that ς∗ ≤ ςmin(A)
and ςmax(A) ≤ ς∗, i.e. the singular values of A are contained in the interval DA =

[
ς∗, ς

∗];
equivalently, we are given two parameters κ > 1 and α > 0 that provide the upper bounds κ(A) ≤ κ
and ||A|| ≤ α. We are also given a target precision ε > 0.

The QLS problem then consists in preparing a density matrix ρx which is ε-close in trace
distance to the solution vector |x〉 =

∣∣A−1b
〉
; that is, we require that∣∣∣∣ ρx − |x 〉〈x |

∣∣∣∣
Tr ≤ ε (4)
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(a)
A,b, ε

|0〉⊗n
∣∣A−1b

〉A[A,b,ε]

compiling

(b)
α, κ, ε

|0〉⊗n
∣∣A−1b

〉A b A b A

compiling

Figure 2: Different access models for QLS algorithms. Panel (a) illustrates the case where a classical description
of A and b (and the target precision ε) is provided and then used to compile a quantum algorithm A, solving
the QLS for the given A and b. The description of A and b does not need to be fully explicit: it is sufficient
that it allows to efficiently compute the sequence of elementary quantum gates of A. Panel (b) illustrates the
case of a relativising quantum algorithm; in this case, the sequence of elementary quantum gates only depends
on a few parameters (e.g., α, κ, ε as in Definition 1) while two fixed sub-routines specify A and b and these
sub-routines can be treated as black-boxes.

where the trace norm is defined as ||X||Tr := 1
2Tr

(√
XX†

)
.

Definition 2 (Positive-definite Quantum Linear System). A PD-QLS problem is a QLS problem,
as given in Definition 1, where the coefficient matrix A is Hermitian and positive definite.

We note that a more commonly employed definition requires that the QLS solver outputs a
state |x̃〉 such that

∣∣∣∣ |x̃〉 − |x〉 ∣∣∣∣ ≤ ε. We prefer to use the trace distance since it is operationally
motivated, as it equals the probability of distinguishing two copies of two quantum states when
optimizing over all possible measurements, see [33, Section 9.2.1]. The trace distance then also
bounds the maximum relative error that can be introduced when estimating the expectation value
Tr(|x〉〈x|M) for a given observable M and computing expectation values was the end goal of
Ref. [1]. Finally, for pure normalised states |ψ〉 and |φ〉 the trace distance simplifies as dTr(ψ, φ) :=∣∣∣∣ |ψ〉〈ψ|−|φ〉〈φ| ∣∣∣∣Tr =

√
1− |〈ψ|φ〉|2 and using |〈ψ|φ〉| ≥ 1− 1

2
∣∣∣∣ |ψ〉−|φ〉 ∣∣∣∣2 we obtain the inequality

dTr(ψ, φ) ≤
∣∣∣∣ |ψ〉 − |φ〉 ∣∣∣∣ , (5)

thus the trace distance between |x̃〉 and |x〉 is at least as small as their `2 distance.
It is customary to assume that A has been rescaled by a factor α ≥ ||A||, so that we take,

without loss of generality, ||A|| ≤ 1 and the only parameter that needs to be specified is an upper
bound to the condition number. This will be also our convention, unless otherwise specified.

2.3 Oracles for quantum linear system solving
We now define and discuss a few different access models for A and b, since the results we present
for the PD-QLS solvers crucially depend on which access model is assumed. A fundamental dis-
tinction is between oracular and non-oracular (a.k.a. relativising and non-relativising) algorithms,
see Figure 2. For instance, in oracular settings it is often possible to establish unconditional query
complexity lower bounds, while in non-oracular settings non-trivial runtime lower bounds typically
can be proven only under some (reasonable) complexity theory assumptions, such as P 6= NP. Note
that most of the literature on QLS assumes oracular access to A and b [1, 4, 5, 6, 7, 12, 19].

We start defining the access model for b that we assume throughout this paper, except where
differently specified.

Definition 3 (State preparation oracle, as in [1]). Given a vector b ∈ CN we say that we have
quantum access to a state preparation oracle for b if there is a unitary operator Ub such that
Ub |0n〉 =

∣∣b′〉, where b′ is obtained by padding b with zeroes until its size is a power of 2.
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As already noted by HHL, a general setting where it is possible to efficiently implement UB is
the one presented by Grover and Rudolph [34]; another possibility is that Ub is directly encoded
in a qRAM [35], as may be required in quantum machine learning contexts.

Next, we define two models for access to A, which we denote as PA and UA and which correspond
to a sparse-matrix-access and matrix-block-encoding, respectively.

Definition 4 (Sparse-matrix-access, as in [5]). Given a Hermitian matrix5 A which is d-sparse
(i.e., has at most d non-zero entries in each row and column) a quantum sparse-matrix-access PA
is given by a pair of oracular functions

PA := (PposA ,PvalA ) (6)

where PposA and PvalA specify the positions of the (potentially) non-zero entries of A and the values
of those entries, respectively, i.e.

PposA : |i, ν〉 7→ |i, j(i, ν)〉 ∀ i, j ∈ {1, . . . , N} and ν ∈ {1, . . . , d} (7)

PvalA : |i, j, z〉 7→ |i, j, Ai,j⊕z〉 ∀ z ∈ {0, 1}∗ (8)

where Ai,j⊕z ∈ {0, 1}∗ denotes a bit string of arbitrary length that encodes the value Ai,j ∈ C.

In order to keep the presentation simple, we assume here and throughout the paper that numeric
representations of complex numbers can be specified exactly or with a sufficiently high number of
digits of precision.

Definition 5 (Matrix block encoding, as in [28, 25]). A unitary operator UA acting on n+a qubits
is called an (α, a, ε)-matrix-block-encoding of a n-qubit operator A if 6∣∣∣∣A− α (〈0a| ⊗ I)UA (|0a〉 ⊗ I)

∣∣∣∣ ≤ ε (9)

which can be expressed also as:

UA =
(
Ã/α ∗
∗ ∗

)
with

∣∣∣∣∣∣Ã−A∣∣∣∣∣∣ ≤ ε , (10)

where the asterisks (∗) denote arbitrary matrix blocks of appropriate dimensions.
We call α the normalization factor of the matrix-block-encoding and we say in the special case

where α = 1 that UA is a normalised matrix-block-encoding of A.

A technique introduced by Childs allows to implement a (d, 1, 0)-matrix-block-encoding of A,
where the normalisation constant d is equal to the sparsity of A, using only a constant number
of accesses to PA and O

(
poly(n)

)
extra elementary gates, see Ref. [5] and references therein. In

short, we have the reduction:

PA =⇒ UA (11)

where the arrows means that having access to an oracle of first type allows to efficiently implement
the oracle of the second type.

We also note that other access models to A have been considered in the literature; for example
in Ref. [36] it is assumed that is possible to efficiently prepare quantum states that are proportional
to each one of the columns of A.

5Since A is Hermitian, access by rows and by columns are equivalent. The definition can be extended to non-
Hermitian matrices, but we need to assume access both by rows and by columns.

6The circuit UA may also act on other ancilla qubits, which are in |0〉 both before and after the application of
UA. For a given (·, a, ·)-matrix-block-encoding we only count the a ancilla qubits that require post-selection to 〈0a|
to obtain the encoding of A.
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2.4 Quantum linear systems in non-oracular settings
We consider in Section 5 (and also briefly in Section 4.3) a case that we call the Sum-of-Hamiltonians
QLS (Sum-QLS) problem, which is not formulated as an oracular algorithm but is based, instead,
on a classical description of A and b. In order to obtain efficient Sum-QLS solving algorithms, it
is thus necessary that the descriptions of A and b are compact, depending at most on O

(
poly(n)

)
real or complex parameters.

For the known term vector b, we will simply assume that it is a sparse vector in the computa-
tional basis, with at most O

(
poly(n)

)
non-zero entries, whose position is also known. Hence, a fully

explicit classical description of b can be provided and this also enables efficiently implementing a
state preparation circuit Ub.

For the coefficient matrix A we give a more implicit description: the entries of A are not specified
one-by-one (which would be inefficient, as the matrix size N ∈ Θ(2n) is assumed to be very large)
but rather can be computed from only a relatively small set of parameters, scaling polynomially
in the number of qubits. Specifically, we assume that A is given as the sum of polynomially many
local Hamiltonian terms:

A =
J∑
j=1

H(j) ∀j H(j) is positive (semi)-definite, (12)

where the number of terms is J ∈ O
(
poly(n)

)
and each Hamiltonian H(j) acts on a small number

of qubits, namely, on at most O
(

log(n)
)

qubits. This case has been previously considered in
Ref. [16].

3 Query complexity lower bound
In this section we prove a Ω(κ) lower bound on the runtime of QLS which is alternative to the
ones given by HHL in Ref. [1]. The main innovation we introduce is that our lower bound applies

also to the PD-QLS case, while the proofs given by HHL only yield a Ω̃(
√
κ) lower bound when

specialised to PD matrices. More precisely, we have the following result.

Proposition 6 (Query complexity lower bound). Consider oracular quantum algorithms that
solve the PD-QLS problem as presented in Definition 2 for different access models to A and b.
Namely, access to b is given via a state preparation oracle Ub (Definition 3), while access to A
is given either via a sparse-matrix oracle PA (Definition 4) or via a matrix-block-encoding UA
(Definition 5). Then, PD-QLS solving algorithms reaching a constant precision ε ∈ O(1) have
query complexities Q[Ub], Q[UA], Q[PA] all in Ω

(
min(κ,N)

)
.

The proof of these lower bounds is rather technical and can be found in Appendix A. We now
present a weaker result that, however, can be easily proven as a consequence of the optimality of
Grover search [37]; namely, we show that PD-QLS solving has a linear scaling in κ for all κ ≤

√
N .

Proposition 7. Consider a PD-QLS problem as presented in Definition 2 and suppose that access
to A is given by a sparse-matrix oracle PA (Definition 4), with no assumption on the access model
for b. Then, a quantum algorithm that solves the QLS up to any constant precision ε ∈ [0, 1) must
make Ω

(
min(κ,

√
N)
)

accesses to PA.

Proof. Consider the search problem of finding an element j ∈ S, where S ⊆ {1, . . . , N} is a subset
containing M elements. The membership of a element j in S is encoded as a quantum oracle PS
which flips a ancilla qubit if j ∈ S and leaves the ancilla unchanged if j /∈ S.

Consider, next, a matrix A that is diagonal (and thus 1-sparse) having entries

Aj,j =

α =
√

N−M
N if j /∈ S

β =
√

M
N if j ∈ S .

(13)

The sparse-matrix oracle PA = (PposA ,PvalA ) for this diagonal matrix A can be implemented with
exactly one access to the membership oracle PS . In fact, PposA can be implemented without any
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access to PS , since it is known that the non-zero entries are on the diagonal, while PvalA can be
implemented with a single access to PS , assuming that M and N are known: by definition we have
PS |j, 0〉 = |j, 0〉 if j /∈ S and PS |j, 0〉 = |j, 1〉 if j ∈ S, thus it is sufficient to apply on the ancilla
system the transformation |0〉 7→ |α〉 and |1〉 7→ |β〉, where the quantum register contains a binary
representation of the numbers α and β, to implement PvalA .

Now notice that A is a matrix having condition number κ = α
β =

√
N−M
M ∈ Θ

(√
N
M

)
assuming

M ≤ N/2. Moreover, A−1 is also diagonal, with entries

(A−1)j,j =


√

N
N−M if j /∈ S√
N
M if j ∈ S .

(14)

Solving the QLS for the known-term vector |b〉 = |1N 〉 = 1√
N

∑N
j=1 |j〉 yields

|x〉 = A−1 |1N 〉
||A−1 |1N 〉||

(15)

= 1√
2N

(√
N

N −M
∑
j /∈S

|j〉+
√
N

M

∑
j∈S
|j〉
)

(16)

≡ 1√
2

(
|j /∈ S〉+ |j ∈ S〉

)
, (17)

where in the last line we have introduced the normalised vectors |j /∈ S〉 := 1√
N−M

∑
j /∈S |j〉 and

|j ∈ S〉 := 1√
M

∑
j∈S |j〉. Measuring |x〉 in the computational basis therefore solves the search

problem with probability 1/2.
Suppose now that exists a quantum algorithm A that solves the QLS problem exactly (ε = 0)

for PD matrices and that queries o
(
κ
)

times the oracle PA. Applying A to the diagonal matrix
A and |b〉 = |1N 〉 would then require only o(

√
N/M ) calls to PA, and hence to PS , in order

to produce |x〉. This means that using A we can solve an unstructured search problem using
o(
√
N/M ) queries to PS , violating the optimality of Grover search.

Next, suppose that the algorithm A is an approximate PD-QLS solver, i.e. that it produces a
state ρx such that

∣∣∣∣ ρx−|x 〉〈x |
∣∣∣∣

Tr ≤ ε for some constant ε < 1/2. Apply a projective measurement
to ρx that projects it on the space spanned by {|j〉}j∈S with probability p and projects it onto
the orthogonal subspace with probability q = 1 − p; in the ideal case (ε = 0) we would have
p = q = 1/2. By the operational definition of the trace distance, the probability distribution (p, q)
must be at most ε-distinguishable from (1/2, 1/2), i.e. max{|p − 1/2|, |q − 1/2|} ≤ ε. Thus, the
success probability is a constant p ≥ 1/2− ε > 0.

Finally, this argument can be extended to any constant precision ε < 1. It is sufficient to define
a new diagonal matrix Â by changing the values α and β in Eq. (13), so that the probability p̂ of
finding an element j ∈ S when measuring |x̂〉 = |Â−11N 〉 satisfies p̂ > 1− ε.

Notice that in the proof the vector |b〉 = |1N 〉 is fixed and easy to produce and hence the access
model for |b〉 plays no role in our reduction. We also remark that this proof can be straightforwardly
modified to prove that the operation of quantum matrix-vector multiplication (i.e., obtaining a
state proportional to A |b〉) must also have a linear cost in κ. Moreover, since a sparse oracle
access PA allows to efficiently implement also a matrix-block encoding UA [5], the same reduction
immediately rules out oracular algorithms that use o(κ) accesses to UA (for κ ≤

√
N). Finally, a

simple argument shows that a Ω(κ) lower bound holds also for the Ub-query complexity: an initial
small difference between two input states b and b′ can be magnified κ-fold in the corresponding
outputs

∣∣A−1b
〉

and
∣∣A−1b′

〉
, which is impossible unless one uses at least κ accesses to Ub [38].

4 Method based on low-degree polynomial approximations of A−1

We start this section giving a few details on how to use the Quantum Signal Processing (QSP)
method to implement polynomial functions of a matrix that we can access through a matrix-
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block-encoding (Section 4.1) and then we provide the explicit definition of the approximating
polynomials of the inverse function (Section 4.2). Next (Section 4.3) we discuss two cases where
we can implement a matrix-block-encoding of B = I − η A, as required to achieve a quadratic
reduction in the degree of the approximating polynomials. Finally (Section 4.4) we discuss the
cost of matrix-vector multiplication and summarise the cost of PD-QLS solving via this approach.

4.1 The quantum signal processing method
We employ QSP as a tool to implement UA−1 , a matrix-block-encoding of A−1, assuming that we
have access to a normalised matrix-block-encoding UB of

B := I − η A (18)

for some η > 0. We assume that the spectrum of B is contained in the interval DB = [−1, 1−η/κ],
where κ is an upper bound to the condition number of A. The QSP method can be stated, already
specialised to our case of interest, as follows [25, Theorem 56].

Theorem 8. Consider a (β, b, ε)-block-encoding UB of a Hermitian matrix B and let P (x) be a
degree-` real polynomial with |P (x)| ≤ 1/2 for all x ∈ [−1, 1]. Then there is a quantum circuit
UP (B/β) which is a (1, b + 2, 4`

√
ε/β)-block-encoding of P (B/β), and requires ` applications of

UB and U†B, a single application of controlled-UB and O
(
(n + b)`

)
elementary quantum gates.

Moreover, the same result holds for polynomials satisfying |P (x)| ≤ 1 if P (x) has defined parity,
i.e., P (−x) = P (x) or P (−x) = −P (x).

Importantly, there are explicit classical algorithms that can efficiently compute a parametriza-
tion of UP (B/β) for any polynomial P and then compile an explicit quantum circuit that implements
it, see Refs. [39, 40] for the current state-of-the-art.

We now further motivate the need to choose β = 1, i.e., that the matrix-block-encoding of B
is normalised; equivalently, the part proportional to the identity in the definition (18) must not
be rescaled. We remind that, as presented in Section 1.3, our goal is to implement an polynomial
P (B/β) approximating A−1, that is

P (B/β) ≈ f(B) = 1
I −B

= 1
I − (I − η A) = 1

η
A−1. (19)

Note, however, that in this expression actually we have P (x) ≈ 1
1−βx , a function that has a

singularity in x = 1/β ≤ 1. As a consequence of Bernstein’s inequality [29] this function may have
polynomial approximations with quadratically better degree only when the singularity is in x = 1,
i.e. when we have β = 1.

4.2 Polynomial approximation of 1/(1− x)
In this section we show analytical polynomial approximations of the function f(x) = 1/(1− x) so
that we can use the QSP method to implement it for the matrix B = I − η A as in Eq. (18). To
keep the notation simple we assume η = 1 and that the spectrum of A is contained in DA =

[ 1
κ , 2

]
,

while we can account for any value η < 1 simply by rescaling κ to κ/η. Consequently, it is only
necessary for the polynomial P (x) to be a good approximation of our target function in the domain
DB =

[
−1, 1− 1

κ

]
.

Our starting point will be the polynomial T̂`,κ(x), a shifted and rescaled version of T`(x), the
`-degree Chebyshev polynomial of the first kind,

T̂`,κ(x) :=
T`
(
x+ 1

2κ
1− 1

2κ

)
T`
(

1+ 1
2κ

1− 1
2κ

) , (20)

which is the solution of the following minimax problem (see Ref. [3, Theorem 6.25]):

T̂`,κ(x) = argmin
P∈R`,
P (1)=1

max
x∈[−1,1− 1

κ ]

∣∣P (x)
∣∣ . (21)
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Chebyschev polynomials satisfy the property that |T`(x)| ≤ 1 for all ` ∈ N and all x ∈ [−1,+1],
while T`(1 + δ) ≥ 1

2e
`
√
δ for 0 ≤ δ ≤ 1/6, see e.g. [12, Lemma 13]. Using the changes of variables

y(x) :=
x+ 1

2κ
1− 1

2κ
δ :=

1 + 1
2κ

1− 1
2κ
− 1 = 1

κ− 1/2 (22)

we can rewrite the definition in Eq. (20) as

T̂`,κ(x) =
T`
(
y(x)

)
T`
(
1 + δ

) . (23)

Then, the numerator satisfies
∣∣T`(y(x)

)∣∣ ≤ 1 for all x ∈ DB = [−1, 1− 1
κ ], while the denominator is

T`
(
1+δ

)
≥ 1

2e
`
√
δ. This means that it is sufficient to choose ` ≥ 1√

δ
log
( 2
ε

)
, i.e. ` ∈ Θ

(√
κ log(1/ε)

)
,

to obtain
∣∣T̂`,κ(x)

∣∣ ≤ ε on the interval DB .
We then use the following (2`− 1)-degree polynomial as our approximation of f(x) = 1

1−x :

P2`−1,κ(x) := 1
1− x

[
1− T̂`,κ(x)

]2
. (24)

To see that P2`−1,κ(x) is indeed a polynomial, note that [1− T̂`,κ(x)] has a twofold root in x = 1,
thus is exactly divisible by 1−x and moreover P2`−1,κ(1) = 0. This last property is useful because
it allows us to implement the pseudo-inverse A+ for a singular matrix A; i.e., in the case in which
A has some eigenvalues that are equal to 0 (equivalently, B = I − A has eigenvalues equal to 1)
these will be mapped to 0 and if moreover all the non-zero eigenvalues are separated from zero by
a gap 1/κ, the the polynomial in Eq. (24) is a close approximation of the mapping (1− λ) 7→ 1/λ
for all λ 6= 0 in the spectrum of A. We choose the degree ` ∈ Θ

(√
κ log(κ/ε)

)
in such a way that∣∣T̂`,κ(x)

∣∣ ≤ ε/(3κ) for all x ∈ DB and thus we obtain from Eq. (24)∣∣∣∣P2`−1,κ(x)− 1
1− x

∣∣∣∣ ≤ κ

(
2 ε

3κ + ε2

9κ2

)
≤ ε ∀x ∈ DB , (25)

that is, we have an ε-close polynomial approximation on the interval DB = [−1, 1 − 1
κ ]. This

directly implies
∣∣∣∣P2`−1,κ(B)−A−1

∣∣∣∣ ≤ ε in operator norm.
Finally, the polynomial in Eq. (24) has to be normalised so that it becomes compatible with

the QSP method. Therefore we define

P̂2`−1,κ(x) := P2`−1,κ(x)
K

, where K := 2 max
x∈[−1,+1]

|P2`−1(x)| . (26)

With this definition we have |P̂2`−1(x)| ≤ 1
2 for x ∈ [−1,+1], as required. The normalisation

constant satisfies K ∈ Θ(κ) for ` ∈ Ω(
√
κ), see Appendix B for the proof of this bound. In

conclusion, the QSP method allows us to implement a (K, b+ 2, ε)-matrix-block-encoding of A−1,
where b is the number of ancilla qubits required in the block-encoding of B.

4.3 Implementing normalised matrix-block-encodings of B = I - ηA
In this subsection we show two methods that, under different assumptions, allow us to efficiently
implement a normalised matrix-block-encoding of B = I − η A. Preliminarily, we remark that this
is a non-trivial task, as we argue with the following three considerations.

First, any Hermitian matrix M ∈ CN×N satisfying ||M || ≤ 1 can be implemented as a nor-
malised sub-block of a unitary, since an explicit construction is given by [28]

UM =
(

M −
√
I −M2

√
I −M2 M

)
. (27)

Implementing the circuit corresponding to UM in general requires up toO(N2) elementary quantum
gates [42] and is thus inefficient; however, efficient constructions are possible in specialised cases.
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Second, standard quantum methods allow us to efficiently implement sub-normalised matrix-
block-encodings of B. As a first example, Childs’ quantum walk operator uses O(1) accesses to a
sparse-matrix oracle PB to implement UM for M = B/d, where d is the column-sparsity of B [5].
A second example is to assume that we have access to UA, a block-encoding of A with ||A|| ≤ 1,
and then use the LCU lemma [26] to implement a linear combination of I and −UA, yielding a
normalised block-encoding of p I − (1− p)A ≡ pB, for some p ∈ (0, 1). However, any “black-box”
method that aims at amplifying a block-encoding of B/β (with β > 1) to a normalised block-
encoding of B is in general inefficient. This can be proven, for instance, applying the lower bound
in Ref. [25, Theorem 73] to the function f(x) = β x.

Third, it is currently an open problem whether it is possible or not to implement a normalised
matrix-block-encoding UM given access to a sparse-matrix oracle PM with ||M || ≤ 1. In absence
of general results of this kind, we then turn to developing specialised methods to efficiently imple-
menting a normalised block-encoding UB , with B = I − η A, in the cases where (i) A is diagonally
dominant or (ii) A is the sum of positive semi-definite local Hamiltonians.

4.3.1 Diagonally-dominant coefficient matrix

In this section, we implement a normalised block-encoding of B = I − A employing the method
described in Ref. [25, Lemma 47], which we report here in Lemma 9. Our construction requires
the preparation of some families of states {|ψi〉}i, {|φj〉}j that are well-defined only when A is
diagonally-dominant, while attempts at extending the method to B = I − η A for non-diagonally-
dominant PD matrices results in non-normalisable states for any η > 0. We also remark that the
problem of solving linear systems involving diagonally dominant PD matrices (which includes the
noteworthy class of Laplacian matrices [43]) is well studied in classical linear algebra: for these
classes of matrices there are classical algorithms that can solve a linear system substantially faster
than what is possible for more general matrices [44].

Lemma 9. Suppose that we have access to two “state preparation” unitaries UL and UR (left and
right) acting on a+ s qubits such that

UL : |0a〉 |i〉 7→ |ψi〉 (28)
UR : |0a〉 |j〉 7→ |φj〉 , (29)

for any i, j ∈ {1, . . . , 2s} and for some families of states {|ψi〉}i and {|φj〉}j. Then, it is immediate
to see that U†LUR is a (1, a, 0)-matrix-block-encoding of the Gram matrix H such that Hij = 〈ψi|φj〉.

Let A be a Hermitian d-sparse diagonally-dominant matrix, i.e.
∑
j 6=i |Aij | ≤ Aii ≤ 1 for all i.

By Gershgorin theorem [41], diagonal dominance of a Hermitian matrix is sufficient to guarantee
positive semi-definiteness, i.e. λmin(A) ≥ 0, and both λmin(A) = 0 and λmin(A) 6= 0 are possible7.
Consider then the states

|ψi〉 :=
∑

l∈supp(Ai)

√
δil −Ail |l〉 +

√
ri |N + 1〉 (30)

|φj〉 :=
∑

k∈supp(Aj)

√
δjk −A∗jk |k〉 + √rj |N + 1〉 (31)

where supp(Ai) are the position of the (at most) d non-zero entries of the column vector Ai and
the value 0 ≤ ri ≤ 1 can be computed so that the states are normalised, since we have

|ri| = 1−
∑

l∈supp(Ai)

∣∣∣√δil −Ail∣∣∣2 = Aii −
∑
l 6=i

∣∣Ail∣∣ ≥ 0 (32)

where we have used Aii ≤ 1 and the diagonal dominance of A. We then define the following
state-preparation unitaries:

UL : |0a〉 |i〉 7→ |0b〉 |i〉 |ψ∗i 〉 (33)
UR : |0a〉 |j〉 7→ |0b〉 |φj〉 |j〉 , (34)

7If A is strictly diagonally dominant we have λmin(A) ≥ mini

{
Aii −

∑
j 6=i
|Aij |

}
> 0 and then the condition

number is immediately bounded by κ(A) ≤ 1/λmin(A) when ||A|| ≤ 1.
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for certain numbers a and b of ancilla qubits initialised in |0〉, and where |ψ∗i 〉 is the complex

conjugate of the state |ψi〉 w.r.t. the computational basis. Then, U†LUR is a normalised encoding
of the matrix B = I −A, as one can verify using A∗ji = Aij :

Bij = 〈0b, i, ψ∗i |0b, φj , j〉 =
√
δji −A∗ji︸ ︷︷ ︸
〈i|φj〉

√
δij −Aij︸ ︷︷ ︸
〈ψ∗
i
|j〉

= δij −Aij . (35)

The quantum circuit UL can be implemented efficiently (and similarly for UR), as we now show.
We use d calls to PposA to recover the values jν ≡ j(i, ν) for ν ∈ {1, . . . , d}, i.e., the positions of all
the (potentially) non-zero entries of Ai. This corresponds to implementing the following isometry
(i.e., a unitary circuit plus the possibility of adding ancillas):

|i〉
d×Ppos

A7→ |i〉 |j1, . . . , jd〉 . (36)

Next, we use d calls to PvalA to recover all the values Ai,j , i.e.:

(36) d×P
val
A7→ |i〉 |j1, . . . , jd〉 |Aij1 , . . . , Aijd〉 . (37)

We then use reversible (classical) computation to calculate the numerical values of all the ampli-

tudes ψ(i) := (
√
−Aij1

∗
, . . . ,

√
1−Aii

∗
, . . . ,

√
−Aijd

∗
,
√
ri
∗)T :

(37) compute7→ |i〉 |j1, . . . , jd〉 |Aij1 , . . . , Aijd〉 |ψ
(i)〉 . (38)

Then, we use a general state preparation quantum circuit which, given a classical description of the
amplitudes of a (d+ 1)-dimensional quantum state, effectively prepares the corresponding state:

(38) prepare7→ |i〉 |j1, . . . , jd〉 |Aij1 , . . . , Aijd〉 |ψ
(i)〉

d+1∑
ν=1

ψ(i)
ν |ν〉 . (39)

Next, we use a single call to PposA in quantum superposition to map |i, ν〉 7→ |i, j(i, ν)〉 = |i, jν〉 and
thus we obtain

(39)
Ppos
A7→ |i〉 |j1, . . . , jd〉 |Aij1 , . . . , Aijd〉 |ψ

(i)〉
d+1∑
ν=1

ψ(i)
ν |jν〉 (40)

and now note that, adopting the definition j(i, d + 1) := N + 1, on the right-hand side we have

obtained
∑d+1
ν=1 ψ

(i)
ν |jν〉 = |ψ∗i 〉, the complex conjugate (w.r.t. the computational basis) of the state

defined in Eq. (30). Finally, we “uncompute” the intermediate registers |j1, . . . , jd〉, |Aij1 , . . . , Aijd〉
and |ψ(i)〉, mapping them to

∣∣0b〉 (where b is the number of left-over ancillas), performing the steps

(36) to (39) in reverse. With a final swapping of |i〉 and
∣∣0b〉, we have implemented the circuit UL

given in Eq. (33).
We can now estimate the query and gate cost of implementing UL (and the cost of implementing

UR is the same). Going through the derivation, we see that 4d+1 oracle calls to PA = (PposA ,PvalA )
are required, that is the query complexity is Q[PA] ∈ O(d). Regarding gate complexity, step (38)
requires O

(
dpoly(p)

)
Toffoli gates (which are universal for classical reversible computation) to

perform the computation up to p digits of precision; moreover, step (39) can be performed using
O(d) control-nots and single-qubit rotations employing the methods of Ref. [42]. In conclusion,
treating the number of digits of precision as a constant and the single-qubit rotations as exact,
both the query and the gate complexities are in O(d) and we thus obtain the following result.

Proposition 10 (Normalised matrix-block-encoding, diagonally-dominant case). Suppose that we
have access to a d-sparse diagonally-dominant PD matrix A ∈ CN×N via PA as in Definition 4.
Then it is possible to implement a normalised block-encoding of B = I−A with O(d) query and gate
complexity, assuming exact single-qubit rotations and that all arithmetic operations are performed
with a constant number of digits of precision.
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We finally remark that, in some cases, it might be possible to implement UL and UR with a
query and gate complexity in O(

√
d) instead of linearly in d. First, we may assume that we have

directly access to an oracle Pψ that directly returns the amplitudes ψ
(i)
ν (including the value

√
ri),

instead of needing to compute these vales from the non-zero entries of Ai. Second, one can use
an algorithm that generalises Grover search to prepare the state |ψ∗i 〉 using O(

√
d) accesses to

Pψ [45], and an even more efficient implementation can be realised using the method of Ref. [46],
which avoids synthesising arithmetical operations and brings about an improvement of two orders
of magnitude over prior works for realistic levels of precision.

4.3.2 Sum of positive semi-definite Hamiltonians

We now consider the case where A ∈ CN×N is given by the sum of positive semi-definite Hamilto-
nian terms; i.e., we consider the case

A =
J∑
j=1

H(j) ∀j H(j) is positive semi-definite, (41)

which is similar to the case presented in Section 5, but here we allow the Hamiltonian terms to
have eigenvalue zero. We assume that the number J of Hamiltonian terms scales polynomially
in n = dlog2Ne and that each Hamiltonian term H(j) is local, i.e., that it acts upon a small
number of qubits; specifically, we require that the set Sj ⊆ {1, . . . , n} of qubits upon which Hj

acts non-trivially satisfies |Sj | ≤ s ∈ O(logn) for all j. Each H(j) can thus be expressed as8

H(j) = h(j) ⊗ I¬Sj (43)

where h(j) is a positive-definite matrix of dimension 2s × 2s, which can be fully specified with

2O(logn) = O(polyn) parameters. We also impose
∣∣∣∣h(j)

∣∣∣∣ ≤ 2 for all j.
Now we define w(j) := I − h(j) and note that it is a small matrix, of at most O(polyn) size,

with
∣∣∣∣w(j)

∣∣∣∣ ≤ 1. Then, we can rapidly compute, with classical algorithms, a unitary extension
u(j) for each w(j), each requiring only one ancilla qubit. Specifically, we define

u(j) :=

 w(j) −
√
I − w2

(j)√
I − w2

(j) w(j)

 (44)

and then we (implicitly) define W(j) ∈ CN×N and the unitary U(j) ∈ C2N×2N

W(j) = w(j) ⊗ I¬Sj (45)
U(j) = u(j) ⊗ I¬Sj (46)

where the interpretations are the same as in Eq. (43). Note that each U(j) can be efficiently
compiled as a quantum circuit: it is sufficient to determine the gate decomposition of the (s+ 1)-
qubit matrix u(j) and then embed the circuit in a (n+ 1)-qubit quantum register. We assume that
the ancilla qubit used for the extension given in Eq. (44) is one and shared across all circuits U(j).

We then employ the LCU lemma [26] as follows. Given access to the controlled version of each
circuit U(j), it is possible to efficiently implement the multi-controlled unitary

USelect =
J∑
j=1
|j〉〈j|c ⊗ U(j) (47)

8The correct expression for an operator H(j) acting on a set Sj ⊆ {1, . . . , n} of s qubits is

H(j) =
∑

a1···as∈{0,1}s
b1···bs∈{0,1}s

h
(j)
a1···as,b1···bs

n⊗
r=1

Or with Or =
{
I = |0〉〈0|+|1〉〈1| if r /∈ Sj

|ar〉〈br| if r ∈ Sj
. (42)
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where the subscript c denotes the control register. Then, defining a unitary Had that acts as
Had |0〉c =

∑J
j=1

1√
J
|j〉c, we obtain:

(
〈0|c Had† ⊗ I

)
USelect

(
Had |0〉c ⊗ I

)
=

J∑
j=1

1
J
U(j) (48)

and further post-selecting to the “top-left” corner of each U(j), according to Eq. (44) we obtain:

(
〈0| ⊗ I

) J∑
j=1

1
J
U(j)

(
|0〉 ⊗ I

)
=

J∑
j=1

1
J
W(j) =

J∑
j=1

1
J

(
I −H(j)

)
= I − 1

J
A . (49)

In conclusion, UB := (Had† ⊗ I)USelect (Had ⊗ I) is a normalised matrix-block-encoding of
B = I − ηA, where the factor η = 1/J scales, by assumption, polynomially in n. The gate
complexity of UB can be estimated as follows. Each u(j) requires O(22s) elementary gates to be
implemented [42] and thus the gate complexity of U(j) is also in O(22s), assuming that two-qubit
gates can be applied among arbitrary pairs of qubits. Then, USelect has gate complexity scaling
as the sum of the complexities of the individual U(j) [27] and is thus in O(J22s). The complexity
of Had is O(log J), a sub-leading additive term that can be neglected in the asymptotic gate
complexity of UB . Hence we have the following result.

Proposition 11 (Normalised matrix-block-encoding, Sum-of-Hamiltonians case). Suppose that
we have an explicit classical description of positive semi-definite matrices h(j) ∈ C2s×2s with j ∈
{1, . . . , J} and consider the positive semi-definite Hamiltonian terms H(j) each obtained by applying
h(j) to a subset of qubits Sj ⊆ {1, . . . , n}, as given in Eq. (43). Consider then a coefficient matrix
A ∈ C2n×2n as given in Eq. (41). Then it is possible to implement a normalised block-encoding of
B = I − 1

JA with a gate complexity in O(J2s), assuming exact single-qubit rotations.

4.4 From matrix inversion to solving the quantum linear system problem
Suppose now that we have a matrix-block-encoding of

P̂2`−1,κ(B) ≈ 1
K

1
I −B

= A−1

η K
(50)

where K ∈ Θ(κ/η) is the normalization factor of the matrix-block-encoding (recall the rescaling
of κ to κ/η), upper bounded by O(κ/η) as we show in Appendix B. This is equivalent to say that
we have implemented the unitary

UA−1 ≈
(
A−1/(η K) ∗

∗ ∗

)
(51)

where the left-upper block corresponds to having a ancilla qubits in |0a〉. Then, one can directly
solve a QLS by applying the unitary quantum circuit UA−1 to the vector |0a〉 |b〉 and then post-select
the outcome |0a〉 on the ancilla system; however, post-selection might introduce large overheads,
since we have

UA−1 : |0a〉 |b〉 7→ 1
η K

|0a〉A−1 |b〉+
√

1− 1
η2K2

∣∣Ψ⊥〉 (52)

=
∣∣∣∣A−1 |b〉

∣∣∣∣
η K

|0a〉
∣∣A−1b

〉
+
√

1− 1
η2K2

∣∣Ψ⊥〉 (53)

where
∣∣Ψ⊥〉 is a state perpendicular to all states of the form |0a, ψ〉. Therefore, the probability of

successfully obtaining the state
∣∣A−1b

〉
when post-selecting on the ancilla measurement is

psucc =
∣∣∣∣A−1 |b〉

∣∣∣∣2
η2K2 . (54)
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A PD-QLS solver that prepares a matrix-encoding of A−1 and obtains
∣∣A−1b

〉
via post-selection

requires O(1/psucc) accesses to Ub and O((2`−1)/psucc) accesses to UB . Recall, 2`−1 is the degree

of P̂2`−1,κ(B) and ` ∈ Θ
(√

κ
η log κ

ηε

)
. The query complexities can be quadratically improved

to O(1/√psucc) and O((2` − 1)/√psucc), respectively, using amplitude amplification [30]. Having

implemented an approximate matrix-encoding of Ã−1 that is ε-close to A−1 (using Definition 5),

the output state |Ã−1b〉 = Ã−1 |b〉 /||Ã−1 |b〉|| satisfies [5, Proposition 9]∣∣∣∣∣∣∣∣Ã−1b
〉
−
∣∣A−1b

〉∣∣∣∣∣∣ ≤ 4 ε . (55)

The same inequality holds in trace distance because of (5) and it is true both when using post-
selection and when using amplitude amplification. In conclusion, we have the following results.

Proposition 12 (Complexity of the PD-QLS solver). Suppose that we have access to a (1, b, 0)-
matrix-block-encoding UB of B = I − η A, where η ∈ (0, 1] and A ∈ CN×N is a PD matrix
with eigenvalues contained in the interval DA =

[ 1
κ , 2
]

for some known value κ > 1; see e.g.
Proposition 10 and Proposition 11 for explicit constructions.

First, using the QSP method of Theorem 8 and the polynomial approximation given in Eq. (24),
it is possible to implement a (K, b + 2, ε)-matrix-block-encoding of A−1, where K ∈ Θ(κ/η), and
the method has a query complexity

Q[UB ] ∈ O
(√

κ

η
log κ

η ε

)
, (56)

where Q[UB ] denotes the number of accesses to UB. Moreover, the algorithm is gate-efficient, i.e.
it requires O

(
poly(n)Q[UB ]

)
extra elementary quantum gates.

Second, suppose that we want to solve a PD-QLS as in Definition 2, where access to A is given
(indirectly) by UB and access to b via a state preparation oracle Ub as in Definition 3. Then, the
QLS can be solved up to precision O(ε) using the (K, b + 2, ε)-matrix-block-encoding of A−1 and
employing amplitude amplification to perform matrix-vector multiplication with constant success
probability. The total query complexities, in terms of accesses to UB and Ub, are

Q[Ub] ∈ O
(

κ

||A−1 |b〉||

)
(57)

Q[UB ] ∈ O
(√

κ

η

κ

||A−1 |b〉||
log κ

η ε

)
(58)

and the algorithm is gate efficient, that is, the gate complexity is in O
(
Qpoly(logQ, logN)

)
. A

quadratic speed-up in κ (up to polylogarithmic factors) is achieved over general QLS solvers when∣∣∣∣A−1 |b〉
∣∣∣∣ ∈ O(κ).

We now proceed to a worst-case, average case, and best-case scenario analysis of a PD-QLS
solver as given in the previous Proposition.

Worst-case scenario: In the worst case we have
∣∣∣∣A−1 |b〉

∣∣∣∣ ∈ O(1) and consequently the post-
selection success probability is psucc ∈ Ω(1/κ2). One can in alternative use O(κ) rounds of am-
plitude amplification to reach a constant success probability. Using amplitude amplification, the
overall query complexity is in O(κ3/2), which is an improvement compared to the O(κ2) runtime

achieved by the HHL algorithm, but still falls shorts of the Õ(κ) runtime that can be achieved using
more advanced methods such as Variable-Time Amplitude Amplification (VTAA) [4] or eigenpath
transversal [7].

Average-case scenario: We now look at the distribution of runtimes that arises when using a
randomly chosen vector |b〉. As observed in the work by Subaşı and Somma [47, Section III.B]
one could model the eigenvalues of a positive-definite matrix A as uniformly distributed over the
interval [1/κ, 1] while if |b〉 is chosen from the outcome of a random quantum circuit its amplitudes
are sampled according to a Porter-Thomas distribution; then,

∣∣∣∣A−1 |b〉
∣∣∣∣ ∈ O(

√
κ) almost surely
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Figure 3: Bi-logarithmic plots of the asymptotic runtimes of general QLS solvers and of our PD-QLS solvers.
The plot on the left represents the scaling of the query complexity for methods based on direct matrix-vector
multiplication (together with amplitude amplification) in terms of the variable

∣∣∣∣A−1 |b〉
∣∣∣∣−1 ∈ [ 1, κ ]. The

plot on the right represents the scaling of the query complexity for methods based on VTAA in terms of the
variable ΓA,b :=

√
κ
||A−1/2|b〉||
||A−1|b〉|| ∈ [ 1,

√
κ ]. In both plots we ignore poly-logarithmic multiplicative factors and

we express all the variables in units of powers of κ, assuming κ� 1 as constant. See the main text for details.

in the regime 1� κ� N . This implies that a randomly sampled PD-QLS problem (according to
the specified distribution) can be solved almost surely with a query complexity in O(κ), employing
amplitude amplification in the post-selection step. This method then matches (actually, improves
by a polylog(κ) factor) the asymptotic runtime of more sophisticated methods (such as those that
employ VTAA or adiabatic evolution) when considering “typical” instances of PD-QLS.

Best-case scenario: The largest value that
∣∣∣∣A−1 |b〉

∣∣∣∣ can reach is κ. In such case the post-
selection probability is constant and the overall query complexity is inO(

√
κ), even without employ-

ing amplitude-amplification. This is a quadratic improvement for PD-QLS solving over competing
methods working for indefinite QLS, since implementing a block-encoding of A−1 for indefinite
matrices already requires O(κ) oracle calls to UA [5]. We note these best-case problems almost
never occur under the probabilistic model described before, but real-world problems have intrin-
sic structure that could make them depart from the Porter-Thomas distribution and thus have∣∣∣∣A−1 |b〉

∣∣∣∣ � √κ: for instance, this is the case if |b〉 has constant overlap with the eigenvector
relative to the largest eigenvalue of A−1. Note, finally, that it is not required that we know in
advance how large the success probability is, since by definition |0a〉 heralds the success.

4.5 Optimization using Variable-Time Amplitude Amplification
In Appendix C we show how to use VTAA to obtain a PD-QLS solver having improved asymptotic
query complexities. We proceed as in Ref. [5, Section 5] and Ref. [19, Section 3]: first we reformulate
our algorithm as a variable-stopping-time quantum algorithm and afterwards we apply the VTAA
optimisation to improve its runtime. There is, however, a technical hurdle to overcome: all previous
VTAA-based QLS solvers use a phase estimation subroutine having a O(κ) runtime; its use would
then preclude us from achieving a runtime sub-linear in κ. The main new idea we introduce is
to replace phase estimation with efficient “windowing functions” whose implementation via QSP
requires only Õ(

√
κ) accesses to UB .
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More precisely, in Ref. [5] the so-called Gapped Phase Estimation (GPE) method is introduced,
with the purpose of reliably selecting eigenvalues of A that are larger than some value δ. For these
eigenvalues it is possible to implement an approximate inverse at a reduced cost, scaling as O(1/δ)
instead of O(κ). Then, a sequence of increasingly small values of δ is considered, until δ ≤ 1/κ,
and VTAA is employed to enhance the success probability. Since GPE has a query complexity in
Ω(1/δ) and the required precision is δ ≤ 1/κ, its complexity is in Ω(κ).

Instead, we introduce a “windowing function” Wε,δ(λ) to select eigenvalues of B = I − ηA that
satisfy λ ∈ [−1+2δ, 1−2δ] and to reject eigenvalues λ ∈ [−1,−1+δ]∪ [1−δ,+1], except for a small
error probability ε. Thus, Wε,δ(x) is a polynomial ε-close to 1 in the center of the interval [−1,+1]
and ε-close to 0 near the edges of the interval, with a steep fall around the points ±(1−1.5δ). The
intervals where the function derivative is large (of order 1/δ) are very close to the extrema of the
interval [−1,+1]. According to Bernstein’s inequality [29] it is not prohibited that a windowing

function could be implemented with a polynomial having a degree ` ∈ Õ(1/
√
δ), a quadratically

smaller degree compared to case where the large derivative is near the center of the interval. In
Appendix C we then show, with an explicit construction, that windowing polynomial with degree
` ∈ Õ(1/

√
δ) indeed can be implemented. We defer to the Appendix for further details.

The end result is summarized in the following Proposition.

Proposition 13 (Complexity of PD-QLS with VTAA). Consider a PD-QLS where we have access
to a normalised matrix-encoding of B = I − η A and to a state preparation unitary for b. Then,
there is a VTAA-based solver having target precision ε, constant success probability, and query
complexities given by

Q[Ub] ∈ O
(√

log(κ) + κ

||A−1 |b〉||

)
(59)

Q[UB ] ∈ O
(√

κ

η
ΓA,b polylog(κ, ε̃−1, η−1)

)
(60)

with ΓA,b :=
√
κ

∣∣∣∣A−1/2 |b〉
∣∣∣∣

||A−1 |b〉||
, ε̃ ∈ O

(
ε

κ
√

log κ

)
(61)

and polylog(κ, ε̃−1, η−1) = log2(κ) log7/4(ε̃−1) log3/2(η−1). (62)

Moreover, the algorithm is gate efficient.

Now we discuss the runtime of this VTAA PD-QLS solver.

• We always have Q[UB ] ≥ Q[Ub], thus the UB-complexity is the dominant factor.

• Compared to Proposition 12, the Ub query complexity increases here only by an additive√
log(κ) factor, while the UB complexity typically (i.e., for almost all values of ΓA,b) has a

polynomial improvement. To prove it, note that
∣∣∣∣A−1/2 |b〉

∣∣∣∣2 = 〈b|A−1 |b〉 ≤ κ and thus

ΓA,b =
√
κ
||A−1/2|b〉||
||A−1|b〉|| ≤

κ
||A−1|b〉|| .

• Compared to the general VTAA-based QLS solver of Ref. [5], our PD-QLS solver has a
polynomial speed-up for almost all values of ΓA,b, see the right plot in Figure 3. This is a
consequence of Lemma 20, where we prove that ΓA,b ∈ [ 1,

√
κ ].

5 Method based on a quadratic reduction of the condition number via
matrix decomposition

In this section we start giving some preliminary considerations on the approach that we are go-
ing to present (Section 5.1) and then give a formal statement of the Sum-QLS problem that we
solve (Section 5.2). Next, we describe a classical pre-processing step that quadratically reduces
the condition number (Section 5.3) and then present the quantum algorithm solving the pseudo-
inversion problem that originates from the preconditioning (Section 5.4). Finally, we estimate the
gate complexity of the resulting Sum-QLS solver (Section 5.5).
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5.1 General considerations
We present now the general features of any algorithm that solves PD-QLS exploiting a decompo-
sition of the form A = LL†, as already summarised in Section 1.4. Note that such L exists for any
PD matrix A and that it may not be unique, especially if we allow L to be non-square. The key
property is that any L such that A = LL† satisfies κeff(L) =

√
κ(A), hence a system of the form

L†x = b′ (for any b′) is quadratically better conditioned than the original system Ax = b.
The method we introduce is based on finding matrices L ∈ CN×M and Lg ∈ CM×N , with

M > N , such that the decomposition A = LL† holds and Lg satisfies LLg = I, i.e. it is a right
pseudo-inverse; moreover, Lg is rectangular with more rows than columns and thus LgL 6= I, i.e.
Lg cannot be a left pseudo-inverse. We make then the following observations.

1. LgLL†x = Lgb is a linear system equivalent to the original one, having the vector x = A−1b
as the unique solution, but with no guarantee that the condition number of LgLL† is small.

2. L†x = Lgb is a over-constrained linear system that may be inequivalent to the original one
(since LgL 6= I) and typically has no proper solution x.

3. Finding argminx

∣∣∣∣L†x− Lgb ∣∣∣∣ is a problem equivalent to the original system. The unique
solution is x = (L†)+Lgb, therefore using9 (L†)+ = (LL†)−1L = A−1L and LLg = I we get
the required result x = A−1LLgb = A−1b.

The goal is thus to convert the linear system Ax = b into the linear regression problem
argminx

∣∣∣∣L†x− Lgb ∣∣∣∣, having solution x = (L†)+Lgb. This is a non-trivial task, as we need,
given access to A via sparse-matrix oracle or via some succinct description, to construct a suitable
access to L† and, moreover, given access to b, to construct a suitable access to b′ := Lgb. The latter
requirement seems particularly worrisome, since it involves a pseudo-inversion of the exponentially
large matrix L. We show, however, that for the Sum-QLS problem, whereby A is provided as a
sum of local PD terms, one can find a suitable Lg for which a compact classical description can be
efficiently computed.

We also remark that a pseudo-inversion problem can be interpreted as a regular matrix inversion
on the subspace where the matrix L† is full-rank; thus, solving pseudo-inversion entails a larger
runtime compared to solving a standard QLS, since the appropriate subspace has to be selected via
projection or via amplitude amplification. More formally, the operator (L†)+ : CM → CN (with
M > N) has rank equal to N and thus we have the orthogonal decomposition

CM = supp
(
(L†)+)+ ker

(
(L†)+) {

dim supp
(
(L†)+) = N

dim ker
(
(L†)+) = M −N

(63)

where the support is by definition the subspace orthogonal to the kernel. Then, calling Π and
Π⊥ = I − Π the orthogonal projectors on the support and on the kernel of (L†)+, respectively10,
we obtain the identity

(L†)+ ∣∣b′〉 = (L†)+ Π
∣∣b′〉+ (L†)+ Π⊥

∣∣b′〉 = (L†)+ Π
∣∣b′〉 (64)

since by definition we have (L†)+ Π⊥ = 0. It is then evident that only the component Π
∣∣b′〉, which

is in general a sub-normalised quantum state, plays a role in the pseudo-inversion algorithm, while
the orthogonal component Π⊥

∣∣b′〉 can be arbitrary. Therefore, any quantum pseudo-inversion

algorithms implicitly requires the amplification of the Π
∣∣b′〉 component, which therefore entails a

gate complexity in O(1/√γ), for some known lower bound
√
γ ≤

∣∣∣∣Π ∣∣b′〉∣∣∣∣.
5.2 Problem statement
In the Sum-QLS we assume that the coefficient matrix A ∈ CN×N is given by an explicit classical
description, rather than via oracular access. This allows us to evade the lower bounds given in

9By assumption A is invertible, hence L† ∈ CM×N is full-rank, and thus using the SVD L† = WΣ†V † we get
(LL†)−1L = (V ΣΣ†V †)−1V ΣW † = V (Σ†)+W † = (L†)+.

10Using the identity (L†)+ = A−1L we obtain supp((L†)+) = supp(L) and moreover ker((L†)+) = ker(L).
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Proposition 6, since those bounds are formulated for relativising (i.e. oracular) algorithms. We
assume, specifically, that A has the form [16]

A =
J∑
j=1

H(j) ∀j H(j) is positive definite. (65)

Here we impose that each H(j) is strictly positive definite (rather than semi-definite) because of a
technical condition that will become clear later; in essence, the expression in Eq. (91) can diverge
if any H(j) is singular, resulting in an infinite runtime. Each term H(j) is a local Hamiltonian, i.e.
it can be expressed as [see also Eq. (42) in the footnote]

H(j) = h(j) ⊗ I¬Sj (66)

where each h(j) is an operator acting on a subset Sj ⊆ {1, . . . , n} of at most s qubits, corresponding
to a matrix of size at most 2s × 2s. We assume that J , the number of Hamiltonian terms, and s
are “small”, i.e. we take J ∈ O(polyn) and s ∈ O(logn), and that we have a complete classical
description of each operator h(j) and of each subset Sj . The matrix A is fully specified with at
most J22s real parameters and with Jn boolean values (defining the sets Sj), i.e. the number of
parameters is J22s + Jn ∈ O(polyn).

We require moreover that the known-term vector b is sparse, containing at most db non-zero
entries in the computational basis, where db also scales polynomially in n. This implies that
a preparation circuit Ub can be given as an explicit small quantum circuit. This leads to the
following definition for the Sum-QLS problem.

Definition 14 (Sum-of-Hamiltonians Quantum Linear System). A Sum-QLS problem is a PD-
QLS as in Definition 2 with the following restrictions. The coefficient matrix A ∈ CN×N , for
N = 2n, is provided as the sum of PD Hamiltonian terms A =

∑J
j=1H(j), where each H(j) acts

on at most s qubits; each H(j) is fully specified as a PD matrix h(j) of size 2sj × 2sj with sj ≤ s,
together with the set Sj of sj qubits on which H(j) acts upon. The vector b ∈ CN is db-sparse and
the value and position of each of the db non-zero entries is provided.

In Appendix D we show that the Sum-QLS problem is BQP-hard, by adapting a proof given in
HHL [1]. That is, we show that any polynomial-time quantum computation (in the BQP class) can
be re-formulated as a Sum-QLS problem for some artfully constructed coefficient matrix A and
known-term vector b; therefore no polynomial-time classical probabilistic algorithm (in the BPP
class) can solve the Sum-QLS problem11 (unless BPP = BQP).

5.3 Classical pre-processing step
In this section we describe the classical pre-processing step, providing a quadratic improvement of
the condition number. We decompose each matrix h(j) as

h(j) = l(j)l
†
(j) , (67)

which can be accomplished for example via the Cholesky decomposition [31], in which case l(j) is a
lower triangular matrix. Notice that each matrix h(j) is a small matrix of size 2s × 2s ∈ O(polyn)
and thus the Cholesky decomposition can be performed numerically on a classical computer using
O(polyn) operations; specifically, Cholesky factorisation of a m ×m matrix requires m3/3 arith-
metic operations, m3/6 additions and m3/6 multiplications [31]. The total number of Hamiltonian
terms is J ∈ O(polyn), implying that the total runtime for performing the Cholesky decomposition
for all Hamiltonian terms is O(23sJ), which also is polynomial in n under our assumptions.

We save the Cholesky decompositions l(j) in a classical memory, storing O(J22s) = O(polyn)
complex values, for later use. These decompositions implicitly define the operators

L(j) = l(j) ⊗ I¬Sj (68)

11In this context, a classical probabilistic algorithm “solves” a QLS problem if it outputs a value n ∈ {1, . . . , N}
with probability approximately equal to |xn|2, the square of the n-th amplitude of the quantum state |x〉 =

∣∣A−1b
〉

.
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where each L(j) is of size 2n × 2n and where the interpretation of this equation is the same as in
Eq. (66). We now introduce the rectangular matrix L ∈ CN×JN , with N = 2n, given by

L :=
(
L(1)

∣∣∣∣ · · · ∣∣∣∣ L(J)

)
(69)

and thus we have the required decomposition

LL† =
J∑
j=1

L(j)L
†
(j) =

J∑
j=1

H(j) = A . (70)

We can efficiently implement quantum circuits PL (PL†) that provide sparse-matrix access to L
(L†). To this end, it is sufficient to convert the classical random access memory that stores the
positions and values of the entries of L (L†) into a qRAM [35]. The scheme presented in Ref. [48,
Section 6.3.5] implements this qRAM with a gate complexity in O(nJ22s) and a circuit depth in
O
(

log(J22s)
)

= O
(
s+ log J

)
.

Since h(j) is by assumption non-singular, each l(j) is a non-singular lower-triangular matrix

and its inverse l−1
(j) is an upper-triangular matrix which we can efficiently compute and store in a

classical memory using a polynomial amount of space. These matrices implicitly define operators
L−1

(j) = l−1
(j) ⊗ I¬Sj such that L(j)L

−1
(j) = I. We can then define the matrix

Lg := 1
J


L−1

(1)
...

L−1
(J)

 . (71)

which is a generalised right pseudo-inverse of L, i.e. Lg satisfies the equation

LLg = 1
J

J∑
j=1

I = I (72)

and thus using (L†)+ = A−1L we get the required relation (L†)+Lg = A−1LLg = A−1. Using a
qRAM the gate complexity of PLg is equal to that of PL and is thus in O(nJ22s).

We finally introduce the quantum state∣∣b′〉 := |Lg b〉 . (73)

By assumption, b is sparse and has db ∈ O(polyn) non-zero entries, hence the vector b′ has sparsity
db′ ≤ dbJ2s ∈ O(polyn). It is then possible efficiently classically compute the positions and the
values of all the non-zero entries of b′, with a gate complexity in O(ndb′), and thus also compute
the normalisation factor

∣∣∣∣b′∣∣∣∣, with a gate complexity in O(db′). Using the method described

in Ref. [49], we can then efficiently compile a quantum circuit Ub′ that prepares
∣∣b′〉 and has a

gate complexity in O(ndb′) = O(ndbJ2s), assuming that all single qubit rotations are performed
exactly.

Employing the classical pre-processing described up to now, we can efficiently implement quan-
tum circuits PL† and Ub′ that act as a sparse access to L† and state preparation circuit for b′,
respectively; importantly, the gate complexities of these unitaries are independent from κ. We
thus have at hand the necessary tools to implement the quantum pseudo-inversion algorithm that
we present in the upcoming Section 5.4.

5.4 Efficient pseudo-inversion quantum algorithm
In this section we look into a quantum algorithm for the linear regression problem

argmin
x

∣∣∣∣L†x− b′
∣∣∣∣ (74)

having solution |x〉 =
∣∣(L†)+b′

〉
=
∣∣A−1b

〉
. We then employ the quantum pseudo-inversion algo-

rithm of [19, Corollary 31] which we report here for completeness.
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Proposition 15 (Complexity of pseudo-inverse state preparation). Suppose κ̃ ≥ 2, L ∈ CN×N is
a Hermitian matrix whose non-zero eigenvalues are contained in the domain [−1,−1/κ̃]∪ [1/κ̃, 1],
and ε is the target precision. Assume that we have access to UL, an (α, a, δ)-matrix-block-encoding
of L with δ ∈ o

(
ε/(κ̃2 log3 κ̃

ε )
)

and a ∈ Ω(logN), and to a state preparation oracle Uv for a vector
v such that ||ΠL |v〉|| ≥

√
γ, where ΠL is the orthogonal projector onto the support of L+ and γ

is a known positive parameter. Then, there is a (VTAA-based) quantum algorithm that produces a
state ε-close to |L+v〉 and has:

Q [UL] ∈ O
(
α
√
γ
κ̃ log3(κ̃) log2(1/ε)

)
(75)

Q [Uv] ∈ O
(

1
√
γ
κ̃ log(κ̃)

)
(76)

where Q[UL] and Q[Ub] are the query complexity in terms of access to UL and Ub. The algorithm
is gate-efficient, only requiring O

(
aQ [UL]

)
extra elementary gates.

We will apply Proposition 15 using as coefficient matrix L the Hermitian extension of L† and
κ̃ ≡
√
κ. That is, we consider the Hermitian matrix L ∈ C(J+1)N×(J+1)N and vector v ∈ C(J+1)N

L =
(

0 L†

L 0

)
v =

(
b′

0

)
(77)

which, after pseudo-inversion, results in the vector

x = L+v =
(

0 L+

(L†)+ 0

)(
b′

0

)
=
(

0
(L†)+ b′

)
(78)

which encodes the quantum state |J〉 ⊗
∣∣(L†)+ b′

〉
and the solution is obtained discarding the

(J + 1)-level ancilla system in the state |J〉.

5.5 Runtime estimation
In this section we look into methods for estimating of the parameters α, κ and γ (i.e., the normal-
isation of the block-encoding of L†, condition number, and overlap with the support space) that
determine the runtime of the pseudo-inversion algorithm of Proposition 15, and thus determine
the overall complexity of the Sum-QLS solver.

First, we can implement sparse-matrix-accesses PL and PL† using the information stored in a
qRAM, as previously explained. Childs’ walk operator [5] then allows to realise a block-encoding UL
of L using O(1) accesses to PL and PL† . Note that UL is also a block-encoding of L† (after a swap of
the position of the block). The normalisation factor of this block-encoding is α = J2s ∈ O(polyn),
equal to the sparsity of L.

Second, we can explicitly bound the condition number of A as follows. Positive-definiteness
of the Hamiltonian terms H(j) implies positive-definiteness of A and, moreover, the smallest and

largest eigenvalues of A satisfy λmin(A) ≥
∑J
j=1 λmin(h(j)) and λmax(A) ≤

∑J
j=1 λmax(h(j)). Since

each h(j) can be efficiently diagonalised, this means that it is possible to classically compute these
values, which then yield the explicit upper bound

κ(A) ≤
∑J
j=1 λmax(h(j))∑J
j=1 λmin(h(j))

≡ κ . (79)

Tighter bounds to κ(A) could also be obtained via more computationally intensive numerical
methods, e.g. by first summing together groups of Hamiltonian terms and then diagonalizing each
sum of Hamiltonians.

We now move on to lower-bounding the value of the overlap parameter∣∣∣∣ΠL |v〉 ∣∣∣∣ =
∣∣∣∣ΠL

∣∣b′〉 ∣∣∣∣, (80)
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where ΠL are the projectors on the supports of L+ and of (L†)+, respectively, and note that the
supports of L and (L†)+ are equal. Using the identity ΠL = L+L we thus obtain

ΠL = L†A−1L =
J∑

i,j=1
|i〉〈j| ⊗ L†(i)A

−1L(j) . (81)

Moreover, we have:

∣∣b′〉 = |Lg b〉 = 1√
N

J∑
j=1
|j〉 ⊗ L−1

(j) |b〉 (82)

where the normalisation factor N is given by

N =
J∑
j=1

∣∣∣∣∣∣L−1
(j) |b〉

∣∣∣∣∣∣2 =
J∑
j=1
〈b|H−1

(j) |b〉 . (83)

Then we can compute

ΠL

∣∣b′〉 = 1√
N

J∑
i,j=1

|i〉 ⊗ L†(i)A
−1L(j)L

−1
(j) |b〉 (84)

= J√
N

J∑
i=1
|i〉 ⊗ L†(i)A

−1 |b〉 (85)

and finally we obtain

∣∣∣∣ΠL

∣∣b′〉∣∣∣∣−1 =
√
N
J

[
〈b|A−1∑J

i=1
(
L(i)L

†
(i)
)
A−1 |b〉

]−1/2
(86)

= 1
J

√√√√∑J
j=1 〈b|H

−1
(j) |b〉

〈b|A−1 |b〉
. (87)

We now suppose that a value γ > 0 such that ||ΠL |v〉|| ≥
√
γ is known and we remind that the

quantum psuedo-inversion algorithm has a runtime quasi-linear in 1/√γ. We extensively comment
on the values that γ can take in order to understand in which cases the Sum-QLS solver yields an
advantage over competing methods.

1. We have
∣∣∣∣ΠL

∣∣b′〉∣∣∣∣ ≤ 1, and the inequality is saturated when H(j) = A/J for all j.

2. The bound
∑J
j=1 〈b|H

−1
(j) |b〉 ≤ J λ−1

∗ holds, where λ∗ := minj λmin(H(j)). Assuming that

λ∗ ∈ Ω
(
λmin(A)/J

)
, i.e. there is no Hamiltonian term having a minimum eigenvalue signifi-

cantly smaller than the average minimum eigenvalue, we obtain:

∣∣∣∣ΠL

∣∣b′〉∣∣∣∣−1 ∈ O
(

1
J

√
Jλ−1
∗√

〈b|A−1 |b〉

)
= O

( √
κ(A)√

〈b|A−1 |b〉

)
. (88)

3. The numerator in Eq. (87) can be explicitly calculated, while the denominator is in general
difficult to compute12. However, assuming ||A|| ≤ 1, we have the bounds√

〈b|A−1 |b〉 =
∣∣∣∣∣∣A−1/2 |b〉

∣∣∣∣∣∣ ∈ [ 1,
√
κ
]

(89)

4. Importantly, the expression 〈b|A−1 |b〉 appears at the denominator, so that a more “ill-
conditioned” vector b results in a larger overlap and thus in a faster Sum-QLS solver.

12One could use techniques related to amplitude estimation to bound
∣∣∣∣A−1/2 |b〉

∣∣∣∣, but this operation could be
as difficult as solving the QLS in the first place.
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5. As in the analysis of Section 4.4 we can study the runtime in an average-case scenario.
For randomly chosen A and b (sampled according to suitable probability distributions) we
have

∣∣∣∣A−1 |b〉
∣∣∣∣ ∈ Θ(

√
κ(A)) almost surely; under the same assumptions, we also have∣∣∣∣A−1/2 |b〉

∣∣∣∣ ∈ Θ(κ(A)1/4) almost surely. Inserting this estimation in Eq. (88) we have that∣∣∣∣ΠL

∣∣b′〉∣∣∣∣−1 ∈ Θ
(
κ(A)1/4

)
(90)

holds almost surely. We conclude that for an average-case Sum-QLS problem the runtime is
in Õ(

√
κ/γ) = Õ(κ3/4), if

√
γ is a tight lower bound for

∣∣∣∣ΠL

∣∣b′〉∣∣∣∣.
Summarising, we have the following result.

Proposition 16 (Complexity of the Sum-QLS solver). Consider the Sum-QLS problem with pa-
rameters N, J, s, κ and db as in Definition 14. There is a classical-quantum algorithm A solving
the Sum-QLS that has the following features.

The first part of A consists of an efficient classical pre-processing algorithm, which outputs a
description of the quantum circuits implementing UL† and Ub′ ; here UL† is a (2sJ, 1, 0)-matrix-
block-encoding of L† [as given in Eq. (69)] with gate complexity in O(nJ22s) and circuit depth
in O

(
s + log J

)
; while Ub′ is a state preparation unitary for b′ [as given in Eq. (71)] with gate

complexity in O(ndb J2s). By definition, L† and b′ satisfy (L†)+b′ = A−1b.
The second part of A consists of using the quantum pseudo-inversion algorithm given in Propo-

sition 15, using the unitaries UL† and Ub′ as sub-routines, in order to produce a ε-close approxi-
mation of the ideal output |x〉 =

∣∣A−1b
〉
. This algorithm requires the knowledge of a value √γ that

satisfies √γ ≤
∣∣∣∣ΠLb′

∣∣∣∣, where ΠL is the projector onto the support of L, equivalently:

1
J2

∑J
j=1 〈b|H

−1
(j) |b〉

〈b|A−1 |b〉
≤ 1
γ
. (91)

Inserting the previously given expressions for the relevant parameters in Eqs. (75-76) results in

gate complexity ∈ O
((
nJ22s) J2s

√
γ
κ log3(κ) log2(1/ε) +

(
ndbJ2s

) 1
√
γ
κ log(κ)

)
(92)

= O
(√

κ

γ
poly

(
n, log(κ/ε)

))
(93)

assuming that J, 2s and db have polynomial dependence on n = log2N . A quadratic speed-up in κ
(up to polylogarithmic factors) is achieved over general QLS solvers when γ ∈ Ω(1).

We remark that the family of Sum-QLS instances where all the parameters in Proposition 16
scale polynomially (with the promise, in particular, that Eq. (91) holds for some γ ∈ O(polyn)),
can be solved in polynomial time on a quantum computer, as was already shown in Ref. [16]. This
means that the subset of problems having a polynomial scaling of the parameters, which we denote
Sum-QLSpoly, is contained in BQP. Moreover, the reduction in Appendix D can map polynomial-
sized quantum circuits onto an instance of Sum-QLSpoly, thus showing that Sum-QLSpoly is also
BQP-hard. These two inclusion then show that Sum-QLSpoly is BQP-complete13.

6 Discussion and outlook
In this work we have presented two algorithms aiming at solving QLS problems in the case where
the coefficient matrix is positive definite and having (for certain problem instances) a runtime in
O(
√
κ), a quadratic improvement compared to what can be obtained using general QLS solvers.

This improvement has the potential of greatly expanding the classes of problems where quantum
computation can provide a quantum speed-up. For instance, the discretization of partial differential

13While the original QLS problem was proven to be BQP-complete already in Ref. [1], our contribution is to show
that adding the constraint that A is the sum of positive-definite local Hamiltonians does not change the complexity
class of the problem.
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equations in D dimensions results in PD linear system with κ ∈ O(N2/D) [14] and thus having a
runtime improvement from O(κ) to O(

√
κ) is crucial to yield a quantum speed-up in the physically

relevant cases D = 2 and D = 3. As a second example, it is possible estimate the hitting time of
a Markov chain solving a QLS for the matrix A = I − S, where S is related to the discriminant
matrix of the Markov chain [16]; since A is positive definite and decomposable as a sum of PD local
Hamiltonian terms [16, Appendix A] our second algorithm could be applicable to this problem.

In the spirit of finding in the near future real-world applications of quantum algorithms, we note
that there is considerable interest in the possibility of realising QLS solvers in Noisy Intermediate-
scale Quantum (NISQ) devices [10, 11] and we argue that some of our results might be imple-
mentable in NISQ devices too. In particular, the crux of our first algorithm is to find a good
polynomial approximation for A−1 with a degree in O(

√
κ) and then implement it with the quan-

tum signal processing method [28, 25]. The quadratic reduction in the degree of the polynomials
renders their realisation more easily compatible with the next generation of quantum processors.

We note that many further improvements and extensions to our algorithms may be possible.
Regarding the first algorithm (Section 4), it would be important to extend the classes of matrices for
which a normalised matrix-block-encoding of B = I − η A can be efficiently implemented to make
the method more generally applicable. Regarding the second algorithm (Section 5) we note that
the specific choice of the generalised pseudo-inverse Lg in the classical step results in a O(1/√γ)
multiplicative overhead in the runtime, where γ is given in Eq. (91). An open question is whether a
different choice of the pseudo-inverse could improve, or eliminate altogether, this overhead. We also
mention the possibility that the decomposition of A as a sum of local PD Hamiltonians could be
computed on-the-fly by the solver, instead of being given as an external input. We note that if the
sparsity pattern satisfies certain conditions (it is a chordal graph) a decomposition A = LL† that
does not increase the sparsity of A exists, and the characterisation given in Ref. [50, Theorem 2.6]
could be employed to compute it.

We finally mention an open research idea that may be worth investigating. The eigenpath
transversal method has been used in some new algorithms to solve the QLS problem with time
complexity in Õ(κ) [7, 8, 10, 11, 12]; this method is simpler than the Variable-Time Amplitude
Amplification (VTAA) method and also results in (marginally) improved runtimes, however, it is
not directly applicable to solve a pseudo-inversion problem. It would be interesting to find a way
to adapt the eigenpath transversal method to make it work also in the case where the coefficient
matrix is singular. As a by-product, it could replace the algorithm given in Ref. [19] as the sub-
routine used in our second algorithm to solve the pseudo-inversion problem, therefore making it
more practical.
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Appendices

A Proof of the query complexity lower bound
In this Appendix we give the proof of the query complexity lower bound presented in Section 3,
which we present here in a more extended form.

Proposition 17 (Query complexity lower bound). Consider oracular quantum algorithms that
solve the PD-QLS problem as presented in Definition 2 for different access models to A and b.
Namely, access to b is given via a state preparation oracle Ub (Definition 3), while access to A
is given either via a sparse-matrix oracle PA (Definition 4) or via a matrix-block-encoding UA
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(Definition 5). Then, PD-QLS solving algorithms reaching a constant precision ε ∈ O(1) have
query complexities Q[Ub], Q[UA], Q[PA] all in Ω

(
min(κ,N)

)
. More precisely, we have:

1. Q[Ub] ∈ Ω
(

min(κ,N)
)
, independently from the access model for A;

2. Q[UA] ∈ Ω
(

min(κ,N)
)
, independently from the access model for b, when UA is a normalised

matrix-block-encoding;
3. Q[PA] ∈ Ω

(
min(κ,N)

)
, independently from the access model for b, when A is a matrix with

constant sparsity.

In the main text we prove a weaker result using a reduction to the quantum search problem,
which has a query complexity in Ω(

√
N/M), where M ∈ [N ] := {1, . . . , N} is the number of

marked elements; here, we use instead a reduction to a “promise majority” problem, which has a
query complexity in Ω(N/M), where M ∈ [N ] is the margin of the majority. As a result, we can
prove that solving a PD-QLS has linear scaling of the query complexity in the condition number
for all κ ∈ O(N). To prove Proposition 17, we first introduce the PromiseMajorityM problem
as follows.

Definition 18 (PromiseMajorityM ). Given a vector y ∈ {0, 1}N , a value M ∈ [N ] (we assume
for simplicity that N +M is even) and given the promise that we either have

(Case 0) yi = 0 for N/2 +M/2 of the entries
(Case 1) yi = 1 for N/2 +M/2 of the entries

the PromiseMajorityM problem consists in determining which of the two is the case.

We assume that we have access to y via a quantum oracle Py that acts as Py |i, z〉 = |i, z ⊕ yi〉
for all i ∈ [N ] and for z ∈ {0, 1}. We also remind that the two-sided bounded-error quantum query
complexity Q2 of a boolean function is defined as the minimum number of accesses to the input
of the function (i.e., to Py) that are necessary to correctly output the value of the function with
probability at least 2/3, both for the positive and for the negative instances. Then we have the
following Lemma:

Lemma 19. The two-sided bounded-error quantum query complexity Q2 of PromiseMajorityM ,
in terms of accesses to Py, is Q2(PromiseMajorityM ) ∈ Ω(N/M).

Proof. This follows immediately from Ref. [51, Corollary 1.2].

We now show that (relativising) PD-QLS solving algorithms can be used to compute Promise-
MajorityM ; the lower bound on the query complexity of PromiseMajorityM directly translates
into a lower bound on the query complexity of the PD-QLS solvers. We will prove separately the
three cases of Proposition 17, with each proof building upon the previous ones.

Proof. Case 1.
We assume that y ∈ {0, 1}N is in the domain of PromiseMajorityM , i.e. y either contains

exactly N/2 +M/2 zeros or N/2 +M/2 ones, and we define b ∈ CN+1:{
bi = (−1)yi for i ∈ [N ]

bN+1 =
√
N +M

(A.1)

where the value bN+1 is fixed to provide a “phase reference” and avoid ambiguity on the global sign.
We have |b〉 = b/

√
2N +M and |b〉 can be implemented by first preparing a state proportional

to (1, . . . , 1,
√
N +M) and then applying the correct phases; this can be done with one oracle call

to each of Py and P†y , via the transformations

|i〉 ancilla7→ |i, 0〉 Py7→ |i, yi〉
I⊗Z7→ (−1)yi |i, yi〉

P†y7→ (−1)yi |i, 0〉 discard7→ (−1)yi |i〉 (A.2)

and extended by linearity to superpositions. Next, we introduce the vector 1N := (1, . . . , 1)T
containing N ones and then define

K ′ ≡ K ⊕ 0 := 1
N

1N1TN ⊕ 0 (A.3)
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as a matrix of size (N + 1)× (N + 1), so that K ′ 2 = K ′, and finally

A := I − (1− ε)K ′ (A.4)

where ε is a small parameter that we will define shortly. The matrix A can be used as a coefficient
matrix for a PD-QLS solver since A is positive definite and ||A|| = 1. Moreover, the condition
number of A is exactly κ(A) = 1/ε.

Next we have:

A−1 = I +
∞∑
t=1

(
(1− ε)K ′

)t (A.5)

= I + 1− ε
ε

K ′, (A.6)

where the summation converges since ||(1− ε)K|| < 1. Let’s apply A−1 to b:

A−1b =
{

b + 1−ε
ε

M
N 1′N if y has a majority of 0

b− 1−ε
ε

M
N 1′N if y has a majority of 1

(A.7)

=
{

b + 1′N if y has a majority of 0
b− 1′N if y has a majority of 1

(A.8)

where we have introduced 1′N := (1, . . . , 1, 0)T and we have chosen ε so that 1−ε
ε

M
N = 1, giving

κ(A) = 1
ε = N+M

M . Introducing a boolean value f = PromiseMajorityM (y), i.e. f ∈ {0, 1} is
equal to the majority of y, we can rewrite the vector A−1b entry-wise as

[A−1b]i = (−1)f · 2 if i is such that yi = f
[A−1b]i = 0 if i is such that yi 6= f
[A−1b]N+1 =

√
N +M

(A.9)

Then we have
∣∣A−1b

〉
= A−1b/

∣∣∣∣A−1b
∣∣∣∣, with

∣∣∣∣A−1b
∣∣∣∣2 = 22 N +M

2 +
√
N +M

2 = 3(N +M) (A.10)

so that we get

∣∣A−1b
〉

=
√

1
3 |N + 1〉 + (−1)f

√
2
3
∑
i:yi=f

√
2

N +M
|i〉 . (A.11)

We then perform a projective measurement where one of the possible measurement outcomes is

|“ + ”〉 :=
√

1
2 |N + 1〉 +

√
1
2

N∑
i=1

1√
N
|i〉 . (A.12)

The cases f = 0 and f = 1 in Eq. (A.11) can be distinguished with constant advantage, since:

〈“ + ”|A−1b〉 =
√

1
6 + (−1)f N +M

2

√
1
3

√
2

N(N +M) (A.13)

= 1√
6

(
1 + (−1)f

√
1 +M/N

)
. (A.14)

Note that the two cases can still be distinguished with constant probability if we replace |x〉 =∣∣A−1b
〉

with any approximation ρx which is sufficiently close to it.
To summarise, suppose we have to solve a PromiseMajorityM problem and that we can

exploit as a subroutine an oracular quantum algorithmA that, given access to Ub, prepares the state∣∣A−1b
〉

with sufficiently high precision; suppose moreover that A has a query complexity Q[Ub] =

Accepted in Quantum 2021-10-29, click title to verify. Published under CC-BY 4.0. 29



g(κ), for some function g : R+ → N. Then, A can be used to prepare the state in Eq. (A.11) and
solve PromiseMajorityM with constant distinguishing advantage. The Py-query complexity of
A is Q[Py] = 2Q[Ub] = 2 g

(
κ(A)

)
= 2 g

(
N+M
M

)
. The lower bound Q2(PromiseMajorityM ) ∈

Ω(N/M) then directly implies g(κ) ∈ Ω
(

min(κ,N)
)
.

Proof. Case 2.
We modify the construction given in the previous proof and encode the input y in the entries

of the coefficient matrix, with the goal of showing that Q[UA] ∈ Ω
(

min(κ,N)
)
. To this end, we

define the vector u ∈ RN+1 and a diagonal matrix D ∈ R(N+1)×(N+1){
ui = 1 for i ∈ [N ]

uN+1 =
√
N +M

{
Di,i = (−1)yi for i ∈ [N ]

DN+1,N+1 = 1
(A.15)

and notice the vector b in Eq. (A.1) satisfies b = Du. We also define the coefficient matrix A′

A′ := DAD (A.16)

where A is given in Eq. (A.4). Note that D is unitary and self-inverse, hence A′ is positive definite,
κ(A′) = κ(A), and moreover A′−1 = D−1A−1D−1 = DA−1D.

It is possible to implement exactly (i.e., ideally with zero error) a normalised matrix block
of A′ using at most 4 calls to Py. First, we consider the unitary Had′ that prepares the state
|1′〉 =

∣∣(1, 1, . . . , 1, 0)T
〉
, that is Had |0〉 = |1′〉. Then, the matrix

UA :=
(

Had 0
0 Had

)(
I − (1− ε) |0〉〈0| −

√
1− (1− ε)2 |0〉〈0|√

1− (1− ε)2 |0〉〈0| I − (1− ε) |0〉〈0|

)(
Had† 0

0 Had†
)

(A.17)

is a normalised matrix-block-encoding of A = I − (1 − ε)K ′. Note that the matrix in the centre
can be interpreted as the |0〉〈0|-controlled version of the Pauli-X rotation eiθX (with cos θ =
−(1 − ε)) and is thus efficiently implementable. The operations in Eq. (A.2) correspond to a
unitary quantum circuit that can be written as D ⊕ U , for some unitary U , and finally we obtain
that UA′ := (D ⊕ U)UA (D ⊕ U†) is a matrix-block-encoding of A′.

We now consider the linear system A′x = u and a quantum algorithm that prepares the
corresponding solution state ∣∣A′−1 u

〉
=
∣∣DA−1D u

〉
= D

∣∣A−1 b
〉
. (A.18)

The state D
∣∣A−1 b

〉
can be transformed into

∣∣A−1 b
〉

using the steps given in Eq. (A.2), which
only requires two extra accesses to Py. This state allows to solve PromiseMajorityM with
constant probability and thus the same considerations made in the preceding proof yield the result
Q[UA] ∈ Ω

(
min(κ,N)

)
.

Proof. Case 3.
We start proving again a lower bound on the query complexity Q[Ub], as in Case 1., but for

a PD-QLS where the coefficient matrix A is sparse; then, we use the method used in the proof of
Case 2. to convert it into a lower bound on Q[PA].

Given y ∈ {0, 1}N satisfying the PromiseMajorityM condition, we introduce the known term
vector b ∈ RN+1 {

bi = (−1)yi for i ∈ [N ]

bN+1 =
√
N c0

(A.19)

where c0 is a positive constant that we will fix later, and we have |b〉 = b
/√

N(1 + c20).
Next, we define B′ ∈ R(N+1)×(N+1) as

B′ = B ⊕ 0 (A.20)
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where B ∈ RN×N is a symmetric sparse matrix, having d non-zero entries in each row and column
which are all equal to 1

d , for some constant d. Since each row and column of B sums to one, B
can be interpreted as the adjacency matrix of a Markov chain on a d-sparse graph. We require
that the graph corresponding to B is not bipartite and that the spectral gap of B is large (i.e.,
the Markov chain is ergodic and rapidly mixing). These properties guarantee that Bt quickly
converges to K = 1

N 1N1TN for t→∞. Since B is symmetric, its spectrum is real and, because of
the Perron-Froebenius theorem [52], the spectrum is contained in the interval [−1,+1] and includes
an eigenvalue λ = 1 with multiplicity one; the fact that Bt converges to 1

N 1N1TN implies that −1
cannot be an eigenvalue of B. We then define the spectral gap δ(B) as the positive parameter
δ(B) := minλ6=1{1− |λ|}, where the minimum is taken over the eigenvalues of B.

There are families of so-called expander graphs such that both the sparsity and the spectral gap
are constant, see [53, Chapter 21]. We assume that B belongs to one of these expander families
and thus, in particular, there is a (known) positive constant c1 such that

1
δ(B) ≤ c1 (A.21)

for all sizes N ∈ N. Moreover, 1N is the unique +1 eigenvector and hence, from the spectral
decomposition of B, we can write

B = 1
N

1N1TN +
∑
λ6=1

λvλv †λ = K +R . (A.22)

Here K = 1
N 1N1TN , vλ are normalised eigenvectors of B, and thus R ∈ RN×N is a matrix of rank

N − 1 with ||R|| = 1− δ(B) and KR = RK = 0. Then we define:
A := I − (1− ε)B′ (A.23)

for some ε > 0 that we will define shortly. The matrix A can be used as a coefficient matrix in a
PD-QLS solver since it is positive definite and with norm one. Moreover, A is (d+1)-sparse (where
d is the sparsity of B, which is constant) and the condition number of A is exactly κ(A) = 1/ε.

Next we have

A−1 = I +
∞∑
t=1

(
(1− ε)B′

)t ≡ I + B (A.24)

and then defining K :=
∑∞
t=1
(
(1− ε)K ′

)t = 1−ε
ε K ′ we get

||B − K|| ≤
∞∑
t=1

∣∣∣∣∣∣[(1− ε)B]t − [(1− ε)K]t∣∣∣∣∣∣ (A.25)

=
∞∑
t=1

(1− ε)t
∣∣∣∣(K +R)t −Kt

∣∣∣∣ (A.26)

=
∞∑
t=1

(1− ε)t
∣∣∣∣(K +Rt)−K

∣∣∣∣ (A.27)

≤
∞∑
t=1

(1− δ(B))t (A.28)

≤ 1
δ(B) ≤ c1 (A.29)

where we have used ||R|| = 1− δ(B), K2 = K and KR = RK = 0.
Applying A−1 = I + B to b we thus obtain:

A−1b =
[
(I + B − K) +K

]
b (A.30)

= (I + B − K)b′ +
{
bN+1eN+1 + 1−ε

ε
M
N 1′N if y has a majority of 0

bN+1eN+1 − 1−ε
ε

M
N 1′N if y has a majority of 1

(A.31)

= (I + B − K)b′ +
{
bN+1eN+1 + c01′N if y has a majority of 0
bN+1eN+1 − c01′N if y has a majority of 1

(A.32)
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where b′ is a vector equal to the first N entries of b (and b′N+1 = 0), 1′N := (1, . . . , 1, 0)T while
eN+1 is the vector having a one in position N + 1; moreover, we choose ε such that 1−ε

ε
M
N = c0,

where c0 was introduced in the definition of b in Eq. (A.19). Then, fixing the constant c0 as
c0 = 100c1 and using the triangle inequality, we obtain the following upper bound

√
N =

∣∣∣∣A−1b
∣∣∣∣ ≤ (

|bN+1|2︷︸︸︷
c20N +

||c01′N ||2︷︸︸︷
c20N

)1/2
+

≥ ||(I+B−K)b′||︷ ︸︸ ︷√
N [1 + c1] (A.33)

≤
(√

c20 + c20 + 2 c1
)√

N =
(

100
√

2 + 2
)
c1
√
N (A.34)

≤ 144 c1
√
N, (A.35)

where we have assumed c1 ≥ 1. We also have the lower bound

√
N =

∣∣∣∣A−1b
∣∣∣∣ ≥ (

|bN+1|2︷︸︸︷
c20N +

||c01′N ||2︷︸︸︷
c20N

)1/2
−

≥ ||(I+B−K)b′||︷ ︸︸ ︷√
N [1 + c1] (A.36)

≥
(

100
√

2− 2
)
c1
√
N (A.37)

≥ 139 c1
√
N. (A.38)

Then we have, using f = PromiseMajorityM (y),

∣∣A−1b
〉

= A−1b
||A−1b|| = c0

√
N√
N
|N + 1〉 + (−1)f c0

√
N√
N

N∑
i=1

1√
N
|i〉+ |ψ〉 (A.39)

= 100
144 |N + 1〉 + (−1)f 100

144

N∑
i=1

1√
N
|i〉+ |ψ′〉 , (A.40)

where |ψ〉 := (B−K+ I)b′/
√
N is a sub-normalised perturbation vector with

∣∣∣∣ |ψ〉 ∣∣∣∣ ≤ 2
139 , while

subtracting line (A.40) from line (A.39) one obtains∣∣∣∣∣∣ |ψ′〉 − |ψ〉 ∣∣∣∣∣∣ ≤ √2
(

100
139 −

100
144

)
≤ 0.04 (A.41)

and then we have: ∣∣∣∣∣∣ |ψ′〉 ∣∣∣∣∣∣ ≤ 0.04 + 2
139 ≤ 0.06 . (A.42)

The cases f = 0 and f = 1 in Eq. (A.40) can be distinguished with constant advantage using
the swap test with the state |“ + ”〉 defined in Eq. (A.12), since we have:

〈“ + ”|A−1b〉 = 1√
2

100
144 + (−1)f 1√

2
100
144 + 〈“ + ”|ψ′ 〉 (A.43)

⇐⇒

{∣∣ 〈“ + ”|A−1b〉
∣∣ ≥ 0.92 if y has a majority of 0∣∣ 〈“ + ”|A−1b〉
∣∣ ≤ 0.06 if y has a majority of 1 .

(A.44)

Next, we proceed as in the proof of Case 2. and define an equivalent PD-QLS where the vector
y is encoded in the entries of the coefficient matrix. We thus define the vector u ∈ RN+1 and the
diagonal matrix D ∈ R(N+1)×(N+1){

ui = 1 for i ∈ [N ]

uN+1 =
√
N c0

{
Di,i = (−1)yi for i ∈ [N ]

DN+1,N+1 = 1
(A.45)

and thus the identity b = Du holds. We then introduce A′, given by

A′ := DAD (A.46)
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where A is as in Eq. (A.23). The matrix D is unitary and self-inverse, hence κ(A′) = κ(A), and
A′−1 = D−1A−1D−1 = DA−1D.

Notice that the position of the non-zero entries of A′ are the same as in A and thus independent
from y, while the sign of a non-zero entry A′i,j = (−1)yi+yj can be obtained querying Py once with
input |i〉 and once with input |j〉. These queries can be performed in quantum superposition and
thus two accesses to Py are sufficient to implement a quantum sparse-matrix-access P ′A. Therefore
it is possible to prepare, with the same Py-complexity as discussed previously, the state∣∣A′−1 u

〉
=
∣∣DA−1D u

〉
= D

∣∣A−1 b
〉
. (A.47)

Finally, we can obtain
∣∣A−1 b

〉
using two extra accesses to Py by applying the transformations

given in Eq. (A.2). This proves that a quantum algorithm that solves the PD-QLS having access
to P ′A necessarily has a query complexity Q[PA′ ] ∈ Ω

(
min(κ,N)

)
.

B Scaling of the normalisation factor of the matrix-block-encoding
In this Appendix, we consider the polynomial

P2`−1,κ(x) := 1
1− x

[
1− T̂`,κ(x)

]2
(B.1)

as was defined in Eq. (26) and where we have

T̂`,κ(x) :=
T`
(
x+ 1

2κ
1− 1

2κ

)
T`
(

1+ 1
2κ

1− 1
2κ

) . (B.2)

We prove that the normalisation factor K := 2 maxx∈[−1,+1] P2`−1,κ(x) satisfies K ∈ Θ(κ), pro-
vided that ` ≥ c

√
κ for some constant c that we will determine later.

Notice that by construction P2`−1,κ(1) = 0 and the polynomial is positive for x ∈ [−1,+1).
To study the properties of the local maxima of P2`−1,κ(x) in the interval [−1,+1] we compute the
derivative of P (x) using the property ∂

∂xT`(x) = `U`−1(x), where U`(x) ∈ R`[x] is a Chebyshev
polynomial of the second kind. We have:

∂P2`−1,κ(x)
∂x

=

[
1− T̂`,κ(x)

]2
(1− x)2 − 2` 1− T̂`,κ(x)

1− x

U`−1

(
x+ 1

2κ
1− 1

2κ

)
(
1− 1

2κ
)
T`
(

1+ 1
2κ

1− 1
2κ

) . (B.3)

We set the derivative equal to 0 and simplify the expression assuming 1−x 6= 0 and 1−T̂`,κ(x) 6= 0:(
1− 1

2κ

)[
T`
(1 + 1

2κ
1− 1

2κ

)
− T`

(
x+ 1

2κ
1− 1

2κ

)]
− 2` (1− x)U`−1

(
x+ 1

2κ
1− 1

2κ

)
= 0 (B.4)

Then we use the change of variables y(x) and δ(κ) given in Eqs. (22) and their inverses κ(δ) = 1
δ+ 1

2 ,

x(y) = y−δ/2
1+δ/2 to rewrite the previous equation as(

1
1 + δ/2

)[
T`(1 + δ)− T`(y)

]
− 2`

(
1 + δ − y
1 + δ/2

)
U`−1(y) = 0 (B.5)

which is equivalent to:

T`(1 + δ)− T`(y) = 2` (1 + δ − y)U`−1(y) (B.6)

for x ∈ [−1,+1] or, equivalently, y ∈ [−1, 1 + δ].
The polynomial P2`−1,κ(x) is by construction non-negative on the domain x ∈ [−1,+1] and

its derivative in x = 1 − 1
κ (corresponding to y = 1) is positive, provided that ` ∈ Ω(1/

√
δ). In
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fact, the derivative of P2`−1,κ(x) is positive if and only if the left hand side of Eq. (B.6) is larger

than the right hand side; using T`(1 + δ) ≥ 1
2e
`
√
δ for 0 ≤ δ ≤ 3 − 2

√
2, T`(1) = 1, U`−1(1) = `

we obtain from (B.6) the inequality 1
2e
`
√
δ − 1

!
> 2 `2δ, which is satisfied for ` ≥ 4.36/

√
δ. Since

we have, moreover, P2`−1,κ(1) = 0, the function P2`−1,κ(x) does not have any local maximum in[
−1, 1− 1

κ ,
]

and must have one or more local maxima x∗ ∈
(

1− 1
κ ,+1

]
; equivalently, Eq. (B.6)

must have at least one solution y∗ ∈ (1, 1 + δ].
Any local maximum y∗ = y(x∗) satisfies:

T`(y∗) = T`(1 + δ)− 2` (1 + δ − y∗)U`−1(y∗) (B.7)

and substituting T`(y∗) in the definition (B.1) gives

P2`−1,κ(x∗) = 1 + δ/2
1 + δ − y∗

[
1− T`(y∗)
T`(1 + δ)

]2
(B.8)

= 4`2(1 + δ/2)(1 + δ − y∗)
U`−1(y∗)2

T`(1 + δ)2 . (B.9)

From Eq. (B.6) we directly have

U`−1(y∗) ≤
T`(1 + δ)

2`(1 + δ − y∗)
(B.10)

and inserting this inequality in Eq. (B.9) we have that any local maximum x∗ satisfies

P2`−1,κ(x∗) ≤
1 + δ/2

1 + δ − y∗
(B.11)

≤ 3/2
1 + δ − y∗

. (B.12)

In summary, it will be sufficient to show 1 + δ − y∗ ∈ Ω(δ) to prove that the normalisation
constant satisfies K = 2 max{x∗} |P2`−1,κ(x∗)| ∈ O(κ), where the maximisation is over the set of

(potentially multiple) local maxima x∗ ∈
[

1− 1
κ ,+1

]
.

To this end, we rewrite Eq. (B.6) as:

T`(1 + δ)− T`(y∗)
(1 + δ)− y∗

= 2 ∂T`
∂y

(y∗) . (B.13)

Since both the first and the second derivative of T`(y) are positive for y ≥ 1 (i.e., the derivative of
T`(y) is monotonically increasing), this equation can be satisfied only if14

2∂T`
∂y

(y∗)
!
≤ ∂T`

∂y
(1 + δ) (B.14)

or equivalently, defining 1 + δ∗ := y∗

2U`−1(1 + δ∗)
!
≤ U`−1(1 + δ) . (B.15)

A Chebyshev polynomial of the second kind can be written as

U`−1(y) = (y +
√
y2 − 1)` − (y +

√
y2 − 1)−`

2
√
y2 − 1

(B.16)

hence we have

U`−1(1 + δ∗) ≤
(1 + δ∗ +

√
2δ∗ + δ2

∗)`

2
√

2δ∗ + δ2
∗

(B.17)

≤ (1 + 1.1
√

2 δ∗)`

2
√

2δ∗
(B.18)

14In this appendix we employ the notation
!
≤ to mark inequalities that we still need to prove and with ≤ an

inequality that has already been proven.
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for sufficiently small δ∗ (the constant 1.1 is somewhat arbitrary), while we have

U`−1(1 + δ) =
(1 + δ +

√
2δ + δ2)`

[
1− (1 + δ +

√
2δ + δ2)−2`]

2
√

2δ + δ2
(B.19)

≥ (1 +
√

2δ)` × 0.8
2.4
√

2δ
(B.20)

= 2
3

(1 +
√

2δ)`

2
√

2δ
(B.21)

≥ 2
3

(1 +
√

2δ)`

2
√

3δ∗
(B.22)

which holds for ` ≥ 1/
√

2δ and in the last step we have assumed δ∗ ≥ 2
3δ (notice that in the

opposite case δ∗ <
2
3δ we would already have 1 + δ − y∗ = δ − δ∗ > 1

3δ). Thus, the inequality
in (B.15) is implied by

2 (1 + 1.1
√

2 δ∗)`

2
√

2δ∗

!
≤ 2

3
(1 +

√
2δ)`

2
√

3δ∗
(B.23)

⇐⇒ (1 + 1.1
√

2 δ∗)`
!
≤
√

2
3
√

3
(1 +

√
2δ)` (B.24)

⇐⇒ 1 + 1.1
√

2 δ∗
!
≤ e−

1
` log(3

√
3/2) (1 +

√
2δ) . (B.25)

From the inequality e−x ≥ 1− x for x ≥ 0 we see that the inequality above is implied by

1.1
√

2 δ∗
!
≤
(
1− 1.31/`

)
(1 +

√
2δ)− 1 (B.26)

=
√

2δ − 1
`

1.31 (1 +
√

2δ) (B.27)

with 1.31 ≥ log(3
√

3/2). We now make the assumption that 1
` 1.31 (1 +

√
2δ) ≤ 1

10
√

2δ, which is

implied by ` ≥ 13.1 + 9.27/
√
δ and is compatible with the requirement ` ∈ Ω(δ−1/2). Thus it is

sufficient to impose:

1.1
√

2 δ∗
!
≤ 9

10
√

2δ (B.28)

⇐⇒ δ∗
!
≤
(

9
11

)2
δ . (B.29)

We also remark that (9/11)2 ≥ 2/3, so that this last inequality is compatible with the assumption
δ∗ ≥ 2

3δ we made earlier.
Plugging the bound in Eq. (B.29) into (B.11), together with the definition of δ(κ), results in the

explicit bound K ≤ 6.05κ, i.e. K ∈ O(κ), provided that ` ≥ 13.1 + 9.27
√
κ− 1/2, i.e. ` ∈ Ω(

√
κ).

C VTAA optimization improving the runtime values of the first algorithm
In this Appendix we use VTAA to speed-up the asymptotic runtime of the algorithm based on
polynomial approximations of 1/(1 − x). Preliminarily, we introduce a Lemma showing that this
VTAA algorithm, as summarised in Proposition 13, does provide an asymptotic query complexity
improvement (compared to general QLS solvers) for most values of ΓA,b, see the right plot in
Figure 3.

Lemma 20. Defining ΓA,b :=
√
κ
||A−1/2|b〉||
||A−1|b〉|| we have ΓA,b ∈ [1,

√
κ ], under the usual assumption

that the spectrum of A is contained in [1/κ, 1].
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Proof. We expand |b〉 in a basis of eigenvectors of A, that is |b〉 =
∑
λ βλ |λ〉 with A |λ〉 = λ |λ〉,

〈λ|λ′〉 = δλ,λ′ , and
∑
λ |βλ|2 = 1. Then, we can write∣∣∣∣A−1/2 |b〉
∣∣∣∣2

||A−1 |b〉||2
=
∑
λ |βλ|2fλ∑
λ |βλ|2gλ

∈
[

min
λ
{fλ/gλ} , max

λ
{fλ/gλ}

]
⊆
[
κ−1, 1

]
(C.1)

for fλ = λ−1, gλ = λ−2 and thus fλ/gλ = λ ∈ [κ−1, 1]. We take the square root of both extrema
and multiply by

√
κ to conclude.

C.1 Variable-time amplitude amplification review
In this Section we review the general VTAA method, mainly following Ref. [19, Section 3].

Definition 21 (Variable-stopping-time quantum algorithm). A variable-stopping-time quantum
algorithm A = Am · . . . ·A1 ·A0 is given by the application of m+ 1 sub-algorithms Aj in sequence,
acting on the Hilbert space H = HC ⊗HF ⊗HS where S is a “system register” of arbitrary size, F
is a “flag qubit” that heralds success and HC =

⊗m
j=0HCj is a “clock register” containing m + 1

qubits C0, C1, . . . , Cm. H is initially prepared in the all-zero state |0〉all = |0, 0, 0〉C,F,S. Each Aj
acts on HCj ⊗HF ⊗HS and |1〉Cj indicates that the algorithm stops after the application of Aj;
i.e., each Aj is a controlled algorithm that acts if and only if the previous j qubits in the clock
register are in the state |0〉⊗j ∈

⊗j−1
i=0 HCi . We assume that all branches of the computation end

by step m. The successful branches of the algorithm are those where the flag is in the state |1〉F
and thus we define

psucc :=
∣∣∣∣ΠXA |0〉all

∣∣∣∣2 and |ψsucc〉 :=
ΠXA |0〉all∣∣∣∣ΠXA |0〉all

∣∣∣∣ (C.2)

where ΠX := IC ⊗ |1〉〈1|F ⊗ IS.

By construction, a variable-stopping-time quantum algorithm produces a quantum state of the
form A |0〉all =

∑m
j=0 αj |1j〉C |Ψj〉F,S , where

|1j〉C := |0〉⊗m−j |1〉 |0〉⊗j (C.3)

is a state having the qubit Cj in |1〉 and the other clock qubits in |0〉, while |Ψj〉F,S are normalised

quantum states in HF ⊗HS with
∑m
j=0 |αj |2 = 1.

Definition 22 (Stopping times). We introduce a sequence of stopping times tmin ≡ t0 < t1 < t2 <
. . . < tm ≡ tmax, where each tj ∈ N is the complexity of the sub-algorithm A≤j := Aj · . . . ·A0. The
probability pj of stopping at time tj (i.e., after the execution of algorithm A≤j) and the `2-average
stopping time are defined as

pj :=
∣∣∣∣ΠCjA≤j |0〉all

∣∣∣∣2 tavg :=

√√√√ m∑
j=0

pj t2j (C.4)

with ΠCj := |1j〉〈1j |C ⊗ IF ⊗ IS. We define Πstop≤j :=
∑j
i=0 ΠCi and

Πj
bad := Πstop≤j ·

(
IC ⊗ |0〉〈0|F ⊗ IS

)
(C.5)

Πj
mg := I −Πj

bad (C.6)

which project onto “bad” and “maybe good” subspaces after the application of A≤j. The “maybe
good” subspace at step j+1 is contained in the “maybe good” subspace at step j and, by construction,
Πm

mgA |0〉all = ΠXA |0〉all.

In the definition above the tj can represent any complexity measure (e.g., query complexity,
gate complexity, circuit depth). In this Appendix we only compute the query complexity Q of the
sub-algorithm A≤j , but we remark that all the algorithms we consider here are gate-efficient, i.e.,
the gate complexity is in O

(
Qpoly(logQ, logN)

)
.
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Definition 23 (Variable-Time Amplitude Amplification). Given a variable-stopping-time algo-
rithm A = Am · . . . · A0 as in Definition 21 and given a sequence of m + 1 non-negative integers
(k0, k1, . . . , km), we recursively define a variable-time amplification A′ = A′m · . . . · A′0 as follows.
Setting A−1 := I, each A′j implements a standard kj-step amplitude amplification that uses AjA′j−1
and its inverse a total of 2kj +1 times, where the input state is |ψjin〉 = AjA′j−1 |0〉all and the target
state is Πj

mg|ψ
j
in〉. That is, A′j begins preparing the input state

|ψjin〉 = AjA′j−1 |0〉all = sin(θj) |ψjmg〉+ cos(θj) |ψjbad〉 (C.7)

with
{
|ψjmg〉 ∝ Πj

mg|ψ
j
in〉

|ψjbad〉 ∝ Πj
bad|ψ

j
in〉

θj := arcsin
( ∣∣∣∣Πj

mgAjA′j−1 |0〉all
∣∣∣∣ ) ∈ [0, π/2] (C.8)

and then uses kj accesses to the reflections Rjout := I − 2 Πj
mg and Rjin := 2 |ψjin〉〈ψ

j
in| − I, where

Rjin is implemented using AjA′j−1 and (AjA′j−1)† once, to obtain the output state

|ψjout〉 = A′j |0〉all = sin
[
(2kj + 1)θj

]
|ψjmg〉+ cos

[
(2kj + 1)θj

]
|ψjbad〉 . (C.9)

Note that if we set k0 = . . . = km = 0 we have A′ ≡ A. Also, by the recursive structure
of VTAA the first sub-algorithm A1 is used a total of

∏m
j=0(2kj + 1) times in A′, which grows

exponentially in m if kj ≥ 1. Nonetheless, VTAA can provide a speed-up when the amplification
parameters (k0, k1, . . . , km) are chosen appropriately. More precisely, the following result can be
derived from Ref. [19, Lemma 22].

Proposition 24 (Result of VTAA). Using the notation of the previous definitions, let A′ be a
variable-time amplification such that each A′j uses kj steps of amplitude amplification, where

π

8 θj
− 1

2 ≤ kj ≤
π

4 θj
− 1

2 (C.10)

Then, with the definitions in Eq. (C.2), A′ outputs the state

A′ |0〉all =
√
p′succ |ψsucc〉C,F,S +

√
1− p′succ |ψ⊥〉C,F,S (C.11)

where success is heralded by |1〉F , the success probability satisfies p′succ ∈ Θ(1), and the global query
complexity is

Q′ ∈ O
(
tmax
√
m+ tavg√

psucc

√
m log(tmax/tmin)

)
. (C.12)

We can compare Eq. (C.12) with standard amplitude amplification, which has a query com-
plexity Q ∈ O(tmax/

√
psucc). In our algorithm, m will scale logarithmically in tmax, so the total

runtime is Õ(tmax + tavg/
√
psucc). Hence, VTAA can provide a speed-up when the average runtime

is much shorter than the maximum runtime.
We remark that a sequence of good values (k0, . . . , km) such that conditions in Eq. (C.10)

are satisfied can be obtained efficiently by means of an iterative classical-quantum pre-processing
algorithm. Specifically, suppose that some values (k0, . . . , kj) satisfying (C.10) have been already
found; then, one can compile the corresponding VTAA algorithm A′j and use phase estimation on

the state |ψj+1
in 〉 = Aj+1A′j |0〉all to obtain an estimate of sin(θj+1) up to constant multiplicative

precision; this allows to find a value kj+1 which satisfies (C.10) with probability 1−pfail with a cost
O
( 1
θj+1

log(1/pfail)
)

[30], which is asymptotically equal to the query complexity of A′j+1, apart from

a multiplicative log(1/pfail) overhead. Once kj+1 has been precomputed one can directly compile
A′j+1, without the need of performing phase estimation “online”. The total failure probability is
ptot

fail ≤ mpfail and the query cost of the hybrid classical-quantum pre-processing algorithm has only
a O

(
log(1/pfail)

)
multiplicative overhead compared to the expression in Eq. (C.12).
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C.2 Efficient implementation of windowing polynomials
In this Section we introduce the “windowing functions” that we use to replace the Gapped Phase
Estimation (GPE) subroutine, introduced in Ref. [5]. Using GPE gives an additive O(κ) runtime
overhead, which is too costly for our purposes.

Lemma 25 (Efficient windowing polynomials). Given ε, δ ∈ (0, 1/2], there exists an even poly-
nomial Wε,δ(x) = Wε,δ(−x) of degree ` ∈ O

(
1√
δ

polylog(δ−1, ε−1)
)

, where polylog(δ−1, ε−1) ≡
log1/4(ε−1)

[
log(ε−1) + log(δ−1)

]
, satisfying the inequalities

Wε,δ(x) ∈


[1− ε, 1] if x ∈ [0, 1− 2δ]
[−1,+1] if x ∈ (1− 2δ, 1− δ)
[−ε,+ε] if x ∈ [1− δ, 1] .

(C.13)

The windowing function Wε,δ(x) can be computed efficiently with classical algorithms.

A family of polynomials satisfying the inequalities in (C.13) is already given in Ref. [25, Lemma

29], but they have a degree ` ∈ Õ(δ−1). We seek to achieve the same result with a quadratically

smaller degree, ` ∈ Õ(δ−1/2). Also, it is crucial that the polynomial approximation has even parity:
using QSP one can implement matrix polynomials when the polynomial P satisfies |P (x)| ≤ 1 for
|x| ≤ 1 and P has definite parity, while for a polynomial P ′ without definite parity the more
restrictive constraint |P ′(x)| ≤ 1/2 has to be satisfied (see Theorem 8).

Proof. The proof proceeds in two steps: first, we find an analytic function f(x) that satisfies the
inequalities in (C.13) within error ε/2, and then show that the Chebyschev expansion converges
very quickly to it, so that choosing a degree ` ∈ Õ

(
δ−1/2) is sufficient to be within ε/2-distance

from f(x) for all x.

First part: We introduce the normal distribution cumulative function

Φ(x) := 1√
2π

∫ x

−∞
e−

t2
2 dt x ∈ R (C.14)

normalised so that 0 ≤ Φ(x) ≤ 1. We then define

Wσ,δ(x) := Φ
(
x+ 1− 1.5 δ

σ

)
Φ
(
−x+ 1− 1.5 δ

σ

)
(C.15)

where σ > 0 has to be chosen so that Wσ,δ(1 − 2δ) ≥ 1 − ε/2 and Wσ,δ(1 − δ) ≤ ε/2. Using
Φ(−x) = 1 − Φ(x) and the monotonicity of Φ, both inequalities are implied by Φ

(
− 0.5 δ

σ

)
≤ ε/4.

Using the bound Φ(−x) ≤ 1√
2π

∫ −x
−∞

−t
x e
−t2/2 dt = e−x

2/2
√

2πx ≤
e−x

2/2
√

2π for x ≥ 1, it is sufficient to
choose σ ∈ Θ

(
δ/
√

log(ε−1)
)

to obtain the desired result.

Second part: We consider the Chebyschev series associated to Wσ,δ(x). Note that the function
Wσ,δ(x) has even parity, hence also the associated Chebyschev series has even parity [54]. Trun-
cating the Chebyschev series at degree `, we get a sequence of polynomials [S`Wσ,δ](x) converging
uniformly to Wσ,δ(x) for `→∞. More precisely, we have the following result [54, Theorem 5.16].

Lemma 26. Suppose f(x) can be extended to an analytic function on the ellipse Er ⊆ C

Er =
{
a cos θ + i b sin θ

∣∣∣ a = 1
2 (r + r−1), b = 1

2 (r − r−1), θ ∈ [0, 2π)
}

(C.16)

for some r > 1; then, the `-th degree truncation of the Chebyschev series is a polynomial [S`f ](x)
that satisfies for all x ∈ [−1,+1]∣∣∣f(x)− [S`f ](x)

∣∣∣ ≤ M

r`(r − 1) with M = sup
{
|f(z)| : z ∈ Er

}
. (C.17)
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We apply this theorem to f(x) =Wσ,δ(x), which is analytic in the whole complex plane. The
main technical hurdle is to upper bound M . We choose r = 1+

√
σ

1−
√
σ
≥ 1 + 2

√
σ, so that we have

a = 1+σ
1−σ and b = 2

√
σ

1−σ , where a and b are the semi-axis of the ellipse Er along the real and
imaginary axis, respectively. We have, for x, y ∈ R:

|Φ(x+ iy)| = 1√
2π

∣∣∣ ∫ x

−∞
e−

t2
2 dt+

∫ x+iy

x

e−
t2
2 dt
∣∣∣ (C.18)

≤ 1 + 1√
2π

∣∣∣ ∫ iy

0
e−

(x+iτ)2
2 dτ

∣∣∣ (C.19)

≤ 1 + 1√
2π e

−x2/2
∫ |y|

0
e
τ2
2 dτ (C.20)

≤ 1 + 1√
2π e

−x2/2 ey
2/2 |y| (C.21)

≤ 1 + 1√
2π e

(−x2+y2)/2 (C.22)

where the last inequality holds for |y| ≤ 1. We now upper bound

Mhalf := sup
{∣∣∣Φ( z+1−1.5 δ)

σ

)∣∣∣ : z ∈ Er
}

(C.23)

so that we will have M = supEr |Wσ,δ(z)| ≤ M2
half . From (C.22) we only need to maximize the

expression 1 + 1√
2π e

(−x2+y2)/2 for

x = a

σ
cos θ + 1− 1.5δ

σ
y = b

σ
sin θ . (C.24)

Equivalently, we can maximize −x2 + y2. Substituting cos θ = u and sin2 θ = 1− u2 we get

−x2 + y2 = 1
σ2

[
− (au+ 1− 1.5δ)2 + b2(1− u2)

]
(C.25)

≤ b2

2σ2

[
1− (1− 1.5δ)2

a2 + b2

]
. (C.26)

We now have b ∈ O(
√
σ), 1

a2+b2 = 1−2σ+σ2

1+6σ+σ2 = 1−O(σ) and thus

sup {−x2 + y2} ∈ O
( σ
σ2

)(
1− [1−O(δ)][1−O(σ)]

)
(C.27)

= O
(
σ−1)O(δ + σ

)
= O

(√
log ε−1

)
(C.28)

where we have used δ ∈ Θ
(
σ
√

log ε−1
)
. We therefore have Mhalf ∈ eO(

√
log ε−1 ) ⊂ O

(
ε−1) and

thus also M ≤M2
half ∈ O(ε−2 ). We thus set ` ∈ Θ

( 1√
σ

log(ε−3σ−1/2)
)

and compute∣∣∣Wσ,δ(x)− [S`Wσ,δ](x)
∣∣∣ ≤ M

r`+1(r − 1) (C.29)

≤ C ε−2

(1 + 2
√
σ)

D√
σ

log(ε−3σ−1/2) 2
√
σ

(C.30)

≤ C ε−2

elog(ε−3σ−1/2) 2
√
σ

= (ε3 σ1/2) C ε
−2

2
√
σ

(C.31)

≤ ε/5 (C.32)

where C and D are positive constants. We recall that σ ∈ Θ
(
δ/
√

log(ε−1)
)

and thus

` ∈ Θ
( 1√

σ

[
3 log(ε−1) + 1

2 log(σ−1)
])

(C.33)

= Θ
( 1√

δ
log1/4(ε−1)

[
log(ε−1) + log(δ−1)

])
(C.34)
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is sufficient to guarantee that [S`Wσ,δ](x) is within ε/5 distance from Wσ,δ(x).
Finally, we renormalise [S`Wσ,δ](x) dividing it by the maximum value attained for x ∈ [−1, 1];

by construction, this value is smaller than 1 + ε/5, thus the maximum distance from Wσ,δ after
normalisation is bounded by 1− 1−ε/5

1+ε/5 < ε/2.

C.3 Polynomial approximations on increasingly larger domains
Now we explain how the windowing functions can be used to select domain where a polynomial of
low degree can be a good approximation of the function 1/(1 − x), if it is applied to eigenvalues
contained in such domain.

As usual, the spectrum of A is contained in DA =
[ 1
κ , 1

]
and, correspondingly, the spectrum

of B = I − η A is contained in DB =
[
1− η, 1− η

κ

]
⊆
[
0, 1− η

κ

]
. We set m := dlog2 κe + 1,

δj := η 2−j for j = {1, . . . ,m} and fix ε̃ > 0, a parameter related to the target precision ε.
According to Eq. (25) and Eq. (C.13) we can find polynomials Pε̃,δj (x) and Wε̃,δj (x) such that∣∣∣Pε̃,δj (x)− 1

1− x

∣∣∣ ≤ ε̃ ∀x ∈ [−1, 1− δj ] (C.35)

Wε̃,δj (x) satisfies Eq. (C.13) for each δj (C.36)

with degrees in O
(
δ−1/2 log(ε̃−1δ−1)

)
and O

(
δ−1/2 log1/4(ε̃−1) log(ε̃−1δ−1)

)
, respectively. We also

define a normalisation factor

K := 2 max
j

max
x∈[−1,1]

|Pε̃,δj (x)| (C.37)

which can be set to coincide with the factor K defined in Eq. (26) and introduce the shorthands

Pj(x) := Pε̃,δj (x)/K and Wj(x) := Wε̃,δj (x). (C.38)

The windowing function Wj(x) is used to select an interval [−1 + 2δj , 1 − 2δj ] where Pj(x) is
a good approximation of the inverse. For any eigenvalue λ of B we have Pj(λ) ≈ 1

K
1

1−λ when
λ ≤ 1− δj and Wj(λ) ≈ 0 when λ ≥ 1− δj . More precisely, we have

Wj(B)Pj(B) = Wj(B) 1
K

1
I −B

+ ∆ε̃
j (C.39)

= Wj(B) A
−1

η K
+ ∆ε̃

j (C.40)

where ∆ε̃
j are arbitrary matrices having operator norm smaller or equal to ε̃. Note that Wj(B)

and Pj(B) commute, since they are both polynomial functions of B. Moreover, we can set without
loss of generality Wm(B) ≡ I, since we already have Pm(B) ≈ A−1/(η K) on the entire domain of
A. Finally, we have K ∈ Θ(κ/η), as derived in the main text.

C.4 Variable-stopping-time PD-QLS solver: definition
We now proceed to reformulate our PD-QLS solver as a variable-stopping-time algorithm. For
notation convenience, from now on we often drop the dependency of a polynomial from its variable
and simply write P instead of P (x).

Algorithm 27 (Variable-stopping-time linear system solving). We preliminarily define two variable-
stopping-time algorithms A and B. A is the core PD-QLS solving function and B is used to
un-compute the clock registers at the end of the process.

The algorithm A = Am · . . . · A1 · A0, with m := dlog2 κe + 1, acts on the Hilbert space
H = HC ⊗HF ⊗HS (respectively clock register, flag qubit, system register with dimHS = N), plus
ancillary registers if needed. We set A0 = IC ⊗ IF ⊗ Ub (i.e., A0 prepares |b〉 in register S) while
the other sub-algorithms Aj use oracular access only to UB. Each Aj, for j ≥ 1, consists of the
following two steps:
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1. Conditioned on the qubits C1, . . . , Cj−1 being in |0〉⊗j−1, use QSP and a single Pauli X gate
to implement the unitary

U ′j :=

 √
1−W 2

j −Wj

Wj

√
1−W 2

j

 acting on HCj ⊗HS , (C.41)

with the window function Wj(B) given in Eq. (C.38).

2. Conditioned on Cj being in |1〉Cj , use QSP and a single Pauli X gate to implement the
unitary

U ′′j :=

 √
I − P 2

j −Pj
Pj

√
I − P 2

j

 acting on HF ⊗HS , (C.42)

with the polynomial approximations Pj(B) given in Eq. (C.38).

The algorithm B = Bm · . . . · B1 · B0 acts on the same Hilbert space as A. The initialisation step
is skipped, i.e., we set B0 = I, and ∀j ≥ 1 we define Bj as the application of the unitary U ′j given
in Eq. (C.41) controlled on C1, . . . , Cj−1 being in |0〉⊗j−1. The unitaries U ′′j are not applied.

The complete PD-QLS solving algorithm is then defined as follows.

1. In a initial pre-processing step (that needs to be run only once), a sequence of integers
(k0, k1, . . . , km) that satisfy Eq. (C.10) is determined using a phase estimation algorithm.

2. The main part of the algorithm consists in running A′, which is a VTAA version of A where
each A′j implements a kj-step amplification of AjA′j−1.

3. The final post-processing consists in applying B† to the output of A′ in order to un-compute
the clock register. We then measure the flag qubit and when the result is |1〉F (which happens
with constant probability) we output the S register (which contains a state close to

∣∣A−1b
〉
).

C.5 Variable-stopping-time PD-QLS solver: correctness
We will now analyse the correctness of Algorithm 27 and we begin introducing a Lemma.

Lemma 28. The state after the application of Ak defined in Algorithm 27 is given by

A≤k |0〉all =
k∑
j=1
|1j〉C

(
|0〉F Mj−1Wj

√
I − P 2

j |b〉S + |1〉F Mj−1WjPj |b〉S
)

(C.43)

+Mk |0, 0, b〉C,F,S (C.44)

with M0 := I, Mj :=
∏j
i=1
√
I −W 2

i and, using Wm = I, at the last step we have Mm = 0.
Moreover, the algorithm B defined in Algorithm 27 acts as

B |0, f, φ〉C,F,S =
k∑
j=1
|1j〉C |f〉F Mj−1Wj |φ〉S (C.45)

for any input state |φ〉S and f ∈ {0, 1}.

Proof. We proceed by induction over k. For k = 0 we have A≤0 |0〉all = A0 |0〉all = |0, 0,b〉C,F,S .
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Using that Pj ,Mj ,Wj are functions of B and thus commute, we have at step k + 1

(C.44)
U ′k+17→

k∑
j=1
|1j〉C

(
|0〉F Mj−1Wj

√
I − P 2

j |b〉S + |1〉F Mj−1WjPj |b〉S
)

(C.46)

+ |1k+1〉C |0〉F MkWk+1 |b〉F + |0, 0〉C,F Mk

√
1−W 2

k+1 |b〉C,F,S (C.47)

(C.47)
U ′′k+17→

k∑
j=1
|1j〉C

(
|0〉F Mj−1Wj

√
I − P 2

j |b〉S + |1〉F Mj−1WjPj |b〉S
)

(C.48)

+ |1k+1〉C
(
|0〉F MkWk+1

√
I − P 2

k+1 |b〉S + |1〉F MkWk+1Pk+1 |b〉S
)

(C.49)

+Mk+1 |0, 0,b〉C,F,S . (C.50)

Equation (C.45) can be verified similarly.

Next, we consider the output state of A′, the VTAA version of A, which features an amplifica-
tion of the amplitude of the |1〉F component, i.e., it is a state of of the form

A′ |0〉all =
√
p′succ |1〉F |ψsucc〉C,S +

√
1− p′succ |0〉F |ψfail〉C,S (C.51)

where the success probability is constant, p′succ ∈ Θ(1), and where we have

|ψsucc〉C,S = 1√
N

m∑
j=1
|1j〉CMj−1WjPj |b〉S (C.52)

N =
m∑
j=1

∣∣∣∣Mj−1WjPj |b〉
∣∣∣∣2 . (C.53)

We now claim that, for an appropriate choice of the algorithm parameters, the error in |ψsucc〉C,S
is upper bounded by O(ε), and we will prove this claim in the next section. Thus we have:

|ψsucc〉C,S =
m∑
j=1
|1j〉CMj−1Wj

∣∣A−1b
〉
S

+O(ε) (C.54)

where O(x) here denotes an arbitrary vector with 2-norm bounded by O(x). Note that Eq. (C.45)
for |φ〉S =

∣∣A−1b
〉
S

implies that
∑
j |1j〉CMj−1Wj

∣∣A−1b
〉
S

is a normalised state.

The final step of the PD-QLS algorithm consists in applying B† to the state in Eq. (C.51).
Using again Eq. (C.45) we obtain:

B†A′ |0〉all =
√
p′succ

∣∣0, 1, A−1b
〉
C,F,S

+
√

1− p′succ |0, 0, ψ′〉C,F,S +O(ε) . (C.55)

Measuring the flag in |1〉F then results with constant success probability in a vector that has O(ε̃)
distance from the ideal output

∣∣A−1b
〉
.

C.6 Variable-stopping-time PD-QLS solver: error bound
In order to derive Eq. (C.54) we use Eq. (C.40) and write

|ψsucc〉C,S = 1√
N

m∑
j=1
|1j〉CMj−1Wj

A−1

η K
|b〉S + 1√

N

m∑
j=1
|1j〉C ∆ε̃

j |b〉S (C.56)

=

√
Ñ√
N

m∑
j=1
|1j〉CMj−1Wj

∣∣A−1b
〉
S

+O(ε̃
√
m/N ) (C.57)

=
m∑
j=1
|1j〉CMj−1Wj

∣∣A−1b
〉
S

+O(ε̃
√
m/N ) (C.58)
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and Ñ is defined below. To prove the last step, recall that
∑
j |1j〉CMj−1Wj

∣∣A−1b
〉
S

is a nor-

malised state, hence Eq. (C.57) implies
∣∣√Ñ/N −1

∣∣ ∈ O(ε̃
√
m/N ). Now we estimate N by using∣∣√Ñ − √N ∣∣ ∈ O(ε̃

√
m) and computing

Ñ :=
m∑
j=1

∣∣∣∣∣∣∣∣Mj−1Wj
A−1

η K
|b〉
∣∣∣∣∣∣∣∣2 (C.59)

= ||A
−1 |b〉 ||2

η2K2

m∑
j=1

∣∣∣∣Mj−1Wj

∣∣A−1b
〉∣∣∣∣2 (C.60)

= ||A
−1 |b〉 ||2

η2K2 . (C.61)

As proven in the main text, K ∈ O(κ/η). Thus we have Ñ ∈ Ω(1/κ2) and choosing

ε̃ ∈ O
(

ε

κ
√

log κ

)
(C.62)

we also have N ∈ Ω(1/κ2) and ε̃
√
m/N ∈ O(ε). This condition is sufficient to guarantee that the

output state |ψsucc〉 is within ε-distance from the ideal output.

C.7 Variable-stopping-time PD-QLS solver: query complexity
We can now provide a upper bounds the query complexity of the VTAA algorithm using Eq. (C.12):

Q′ ∈ O
(
tmax
√
m+ tavg√

psucc

√
m log(tmax/tmin)

)
.

We first compute the Ub-complexity. Since the non-amplified algorithm A accesses Ub only in
the first step, we have tmin = tmax = tavg = 1. Using m ε̃2 ∈ O

(
ε2/κ2) we get

psucc = N ∈ O
(
Ñ +m ε̃2

)
= O

(
||A−1 |b〉 ||2

κ2

)
(C.63)

and the using m = dlog2 κe+ 1 we have

Q[Ub] ∈ O
(√

log(κ) + κ

||A−1 |b〉||

)
. (C.64)

We now compute the UB-complexity. We have:

tj =
j∑
i=1

[deg(Pi) + deg(Wi)] ∈ O
(
δ
−1/2
j log1/4(ε̃−1) log(ε̃−1δ−1

j )
)

(C.65)

tmax =
m∑
i=1

[deg(Pi) + deg(Wi)] ∈ O
(√

κ/η log1/4(ε̃−1) log(ε̃−1κ/η)
)

(C.66)

tmin = deg(P1) + deg(W1) ∈ O
(√

1/η log1/4(ε̃−1) log(ε̃−1/η)
)
. (C.67)

Writing |b〉 ≡
∑
λ βλ |λ〉, where |λ〉 denotes an eigenvector of B relative to the eigenvalue λ and∑

λ |βλ|2 = 1, the probability of stopping at time tj is

pj =
∣∣∣∣ΠCjA≤j |0〉all

∣∣∣∣2 =
∣∣∣∣Mj−1Wj |b〉

∣∣∣∣2 (C.68)

=
∑
λ

|Mj−1(λ)Wj(λ)|2 |βλ|2 (C.69)

∈ O
(
ε̃+

∑
λ∈(1−4δj ,1−δj ]

|βλ|2
)
. (C.70)
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Here, we have used Wj(λ) ≤ ε̃ for λ ≥ 1− δj , while for λ < 1− 2δj−1 = 1− 4δj we have

Mj−1(λ) ≤
√

1−W 2
j−1(λ) ≤

√
1− (1− ε̃)2 ≤

√
2ε̃ , (C.71)

i.e., the expression |Mj−1(λ)Wj(λ)|2 is non-negligible only for λ ∈ (1−4δj , 1−δj ]. Now we estimate

the `2-average runtime tavg =
√∑m

j=1 pjt
2
j with

t2avg ∈ O

 m∑
j=1

[
ε̃+

∑
λ∈(1−4δj ,1−δj ]

|βλ|2
][
δ
−1/2
j log1/4(ε̃−1) log(ε̃−1δ−1

j )
]2 (C.72)

⊆ O
(
ε̃ t2max +

∑
λ

|βλ|2

1− λ log1/2(ε̃−1) log2(ε̃−1κ/η)
)

(C.73)

where we have used that for any positive function f(λ)
m∑
j=1

∑
λ∈(1−4δj ,1−δj ]

f(λ) 1
δj
∈ Θ

(∑
λ

f(λ) 1
1− λ

)
. (C.74)

We then write
∑
λ
|βλ|2
1−λ =

∣∣∣∣∣∣∑λ
βλ√
I−B |λ〉

∣∣∣∣∣∣2 =
∣∣∣∣(η A)−1/2 |b〉

∣∣∣∣2 and obtain

tavg ∈ O
(

1
√
η

∣∣∣∣A−1/2 |b〉
∣∣∣∣ log1/4(ε̃−1) log(ε̃−1κ/η)

)
(C.75)

where we used
∣∣∣∣A−1/2 |b〉

∣∣∣∣ ≥ 1 and thus
√
ε̃ tmax ∈ O

(
1√

η log1/4 κ
log1/4(ε̃−1) log(ε̃−1κ/η)

)
is a

sub-leading contribution to tavg. Then, using 1/√psucc ∈ O
(
κ/
∣∣∣∣A−1 |b〉

∣∣∣∣ ) and

log(tmax/tmin) ∈ O
(

log(κ) + log log(ε̃−1κ/η)
)
⊆ O

(
log(ε̃−1κ/η)

)
(C.76)

we finally obtain

Q[UB ] ∈ O
(√

κ

η

√
κ

∣∣∣∣A−1/2 |b〉
∣∣∣∣∣∣∣∣A−1 |b〉
∣∣∣∣︸ ︷︷ ︸

:=ΓA,b

log1/4(ε̃−1) log(ε̃−1κ/η)
√

log(κ) log(ε̃−1κ/η)︸ ︷︷ ︸
polylog(κ,ε̃−1,η−1)

)
. (C.77)

D Proof that the Sum-QLS problem is BQP-hard
In this Appendix we prove that the Sum-QLS problem is BQP-hard, therefore no efficient classical
algorithm can solve the problem (unless BPP = BQP). The initial part of the proof is equal to the
reduction presented by HHL: it is possible to construct a QLS problem Mx = e1 (where e1 is a
canonical vector with a one in the first position) which is BQP-hard for a class of sparse indefinite
matrices M that are easily constructible. This can be converted to the equivalent QLS problem
Mx = M†e1, where the matrix A = M†M is by construction PD and

∣∣M†e1
〉

is easy to prepare.
What remains to be proven is that A admits an explicit Sum-QLS structure, i.e. that one can
construct a decomposition as a sum of PD local Hamiltonian terms and that the overlap with the
support (bounded by the parameter γ) scales polynomially.

Preliminarily, we introduce a couple of useful definitions: the specific quantum circuit model
(universal for quantum computation) that we aim to “simulate” as a Sum-QLS, and the Feynman-
Kitaev clock construction.

Quantum circuit model: We describe an arbitrary quantum computation C on n qubits as the
application of T elementary gates {U0, U1 . . . , UT−1} to an initial state |0〉⊗n and the output of
the computation is the quantum state UT−1 · · ·U1U0 |0〉⊗n. We assume that the elementary gate
set consists of gates acting either on one or two qubits, e.g. arbitrary single-qubit rotations and
control-nots. Hence, the t-th elementary gate is described by a unitary Ut ∈ CN×N with N = 2n
which can be written as Ut = ut ⊗ I¬St , where ut acts on a subset St of the qubits and is either a
2× 2 (|St| = 1) or a 4× 4 (|St| = 2) unitary matrix.
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Feynman-Kitaev clock: We introduce the following unitary matrix acting on C3T ⊗Cn, which
is based on the Feynman-Kitaev clock construction (see e.g. [55] and references therein):

U :=
3T−1∑
t=0
|t+1〉〈t|c ⊗ Ut (D.1)

=
T−1∑
t=0
|t+1〉〈t|c ⊗ Ut + |T+t+1〉〈T+t|c ⊗ I + |2T+t+1〉〈2T+t|c ⊗ U

†
T−t−1 (D.2)

where we have defined Ut = I for T ≤ t ≤ 2T − 1 and Ut = U†3T−t−1 for 2T ≤ t ≤ 3T − 1 and the
sums in the clock register (denoted by the subscript c) are taken modulo 3T .

Proposition 29 (Sum-QLS is BQP-hard). Let C be a given n-qubit T -gate quantum circuit. Then,
there is a Sum-QLS problem (as in Definition 14) with

1. n′ ∈ O(n+ log T ) [N ′ ∈ O(2n′) is the size of A]
2. κ ∈ O(T 2) [condition number]
3. J ∈ O(T ) [number of PD Hamiltonian terms]
4. s ∈ O(log T ) [locality of the Hamiltonian terms]
5. db ∈ O(1) [sparsity of the known-term vector b]
6. γ ∈ Ω(T−2) [overlap with the support, Eq. (91)]

that is equivalent to C, i.e., solving this Sum-QLS problem (up to a small constant error ε) al-
lows to obtain the output state of C with constant probability and constant precision. According
to Eq. (92), the algorithm presented in Section 5 can solve this Sum-QLS problem with a gate
complexity in O

(
poly(n, T )

)
. When T ∈ O(polyn), the gate complexity of the Sum-QLS solver

is also in O(polyn), i.e., Sum-QLS problem is BQP-hard. Moreover, the Sum-QLSpoly, defined
as the subclass of problems where the six parameters listed above all scale polynomially in n, is
BQP-complete.
Proof. Starting from the Feynman-Kitaev unitary U encoding a quantum circuit C as in Eq. (D.1),
we introduce the matrix

M := I − U e−1/T (D.3)

which can be written in block form (where each block has size 2n × 2n) as

M =



. . . . . . 0

. . . I −Ute−1/T 0
0 I −Ut+1e

−1/T

0 I
. . .

−U3T−1e
−1/T . . . . . .


(D.4)

and moreover we introduce:

A := M†M = (1 + e−2/T )I − e−1/T (U + U†) (D.5)

where A is by construction Hermitian positive definite and the singular values of M are the square
root of the eigenvalues of A. From the eigenvalue inequality −2 ≤ λ(U + U†) ≤ 2 we obtain{

λmax(A) ≤ 4
λmin(A) ≥

(
1− e−1/T )2 ≥ (1−e−1)2

T 2

=⇒ κ(A) ≤ 4
(1− e−1)2 T

2 (D.6)

hence κ(M) =
√
κ(A) ∈ O(T ). Using the identity U3T = I, the inverse of M can be expanded as

M−1 =
∞∑
t′=0

U t
′
e−t

′/T = e3

e3 − 1

3T−1∑
t=0

U t
′
e−t

′/T (D.7)

= e3

e3 − 1

3T−1∑
t′=0

e−t
′/T

3T−1∑
t=0
|t+t′〉〈t| ⊗ U[t:t+t′] (D.8)
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where the notation U[a:b] indicates the ordered product of unitary operators from a to b − 1,
U[a:b] := Ub−1Ub−2 · · ·Ua, with U[t:t] = I.

As done already by HHL in Ref. [1] step, we consider the QLS problem

Mx = e1 (D.9)

where e1 ∈ C3T2n is the unit vector with a one in the first position (i.e., it is the vector represen-
tation of the state |0〉c |0〉

⊗n). Using the state |x〉 =
∣∣M−1e1

〉
the output state of the quantum

computation is obtained whenever upon measurement of the clock register a time t ∈ [T : 2T − 1]
is returned, which happens with probability e−2/(1 + e−2 + e−4) ≥ 0.11. Therefore, any quantum
circuit C having T gates can be restated as a QLS and solved (using e.g. the HHL algorithm) with
a gate complexity scaling as poly(n, T ). If the circuit C has T ∈ O(polyn), then also the QLS
solver has gate complexity in O(polyn), showing that the QLS problem is BQP-hard.

We now consider the PD linear system

Ax = b for A = M†M , b = M†e1 (D.10)

which is equivalent to the system in Eq. (D.9) and can be cast as a Sum-QLS problem.
Notice, first, that b is a sparse vector, with db ≤ 3: if the elementary gate set consists of

control-nots and single-qubit rotations, then the first row of M has at most 3 non-zero entries.
The matrix A has size 3T2n × 3T2n and can be written as

A =
3T−1∑
t=0

H(t) . (D.11)

where each Hamiltonian terms H(t) is positive definite and only acts on the clock register plus either
one or two extra qubits (i.e., the same number of qubits on which the gates from the elementary
set act). We start writing A in block form

A =



. . . . . . 0

. . . I(1 + e−2/T ) −Ute−1/T 0
0 −U†t e−1/T I(1 + e−2/T ) −Ut+1e

−1/T 0

0 −U†t+1e
−1/T I(1 + e−2/T )

. . .

0
. . . . . .


(D.12)

and then introduce, for each t ∈ {0, . . . , 3T − 1}, the Hamiltonian term

H(t) = I δ + e−1/T


0 0 0 0
0 I −Ut 0
0 −U†t I 0
0 0 0 0


} size t · 2n}

size 2 · 2n

} size (3T − t− 2) · 2n
(D.13)

where we have defined

δ := 1
3T
(
1 + e−2/T − 2e−1/T ) ≥ (1− e−1)2

3T 3 ≥ 1
7.51T 3 , (D.14)

and thus the decomposition in Eq. (D.12) holds. Note that the matrix
(

I −Ut
−U†t I

)
has eigenvalues

λ = 0 and λ = 2, hence is positive semi-definite, while each H(t) has the smallest eigenvalue equal
to δ. Moreover, each H(t) is a local Hamiltonian. Specifically, we have H(t) = h(t) ⊗ I¬St , where
h(t) acts on a set St consisting of s = dlog2 3T e + q qubits, where q = 1 if Ut corresponds to a
single qubit gate and q = 2 if it corresponds to a two-qubit gate. Explicitly, we have

h(t) =


I δ 0 0 0
0 I(e−1/T +δ) −ute−1/T 0
0 −u†te−1/T I(e−1/T +δ) 0
0 0 0 I δ


} size t · 2q}

size 2 · 2q

} size (3T − t− 2) · 2q
(D.15)
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where each ut is a matrix specifying the t-th elementary quantum gate, with Ut = ut ⊗ I¬St .
We now need to estimate a lower bound γ for the overlap parameter as in Eq. (91). We have

〈b|A−1 |b〉 =
〈
M†e1

∣∣M−1M−†
∣∣M†e1

〉
(D.16)

= 〈e1|MM−1M−†M† |e1〉
||M† |e1〉||2

(D.17)

= 1
||M† |e1〉||2

= 1
1 + e−2/T ≥ 1/2 (D.18)

while from (D.13) and (D.14) we obtain

〈b|H−1
(j) |b〉 ≤ δ−1 ≤ 7.51T 3 . (D.19)

Using J = 3T we finally get

1
J2

∑J
j=1 〈b|H

−1
(j) |b〉

〈b|A−1 |b〉 ≤ 1
(3T )2

3T × 7.51T 3

1/2 ≤ 5.01T 2 =: 1
γ
. (D.20)

In conclusion, given the sequence of gates ut and the set of qubits St to which they are applied
in the quantum circuit C, we can efficiently compute the values and the positions of the non-zero
entries of H(t), as given in Eq. (D.13). This then explicitly describes A as a sum of PD local
Hamiltonian terms, as required by the definition of the Sum-QLS problem. Going through the
derivation, we see that the relevant parameters scale as stated in points (1) to (6) in the statement
of the Proposition. Using Eq. (92), it follows that the algorithm presented in Section 5 solves
this problem with a gate complexity in O

(
poly(n, T )

)
= O(polyn), in the case where the original

circuit is itself a polynomial time quantum circuit (i.e. T ∈ O(polyn)). Finally, note that the ε-
error in precision of Sum-QLS solver is amplified at most by a constant factor when post-selecting
the clock register to show a time t ∈ [T : 2T −1]. Thus, it is possible to obtain the output of C with
an error that is bounded by a constant, as required per the definition of the BQP class. This finally
proves that the Sum-QLS problem is BQP-hard; at the same time, it proves that Sum-QLSpoly, the
sub-class of problems having polynomially scaling parameters, is solvable in quantum polynomial
time and is thus BQP-complete.
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