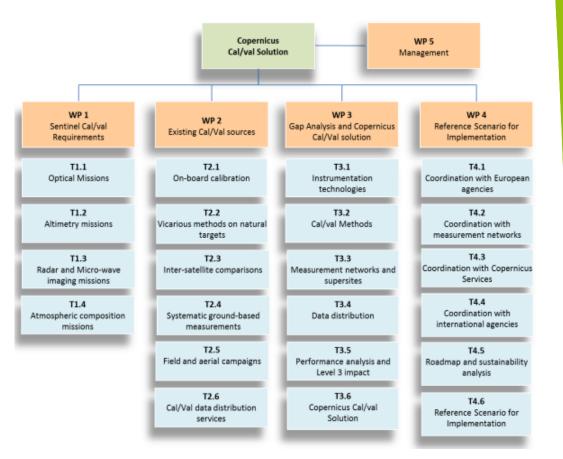


A Holistic Perspective on the Calibration and Validation of Sentinel-2 L2A products: Contribution From the CCVS Project

B. Alhammoud, L. Bourg, <u>S. Clerc</u>, S. Holzwarth, Ch. Lanconelli, Ch. Lerebourg, M. Ligi, A. Meygret, B. Pflug


CCVS

CCVS Project Overview

CCVS

- H2020 Coordination and Support Action
- Objective: "To define a holistic solution for all Copernicus Sentinel missions (either operational or planned) to overcome current limitations of Calibration and Validation (Cal/Val) activities."
- ✤ Kick-Off 02/12/2020
- 2-year project
 - Phase 1 06/2021: Analysis and state of the art
 - Phase 2 : Elaboration of a new Cal/Val Solution
- Today's presentation is focused on S2 L2A validation sources, but CCVS will also address L1C validation

CCVS partners

Koninklijk Nederlands Meteorologisch Instituut Ministerie van Infrastructuur en Waterstaat

BIRA•IASB

ARGANS

EUROPEAN COMMISSION

Universiteit

Preliminary considerations on Sentinel-2 Level 2A validation

Parameters to be validated

- SCL: accuracy assessment, with specific focus on cloud mask
- ✤ AOD

CCVS

- ✤ WV
- Directional Surface Reflectance VIS/SWIR

Performance requirements

- Mission requirement S2-MP-200: 5% relative accuracy for SDR (goal)
- Performance targets set by MPC team:
 - ✓ Uncertainty(SDR) < 0.05 * SDR + 0.005</p>
 - ✓ Uncertainty(WV) < 0.1 * WV + 0.2 [kg.m⁻²]
 - ✓ Uncertainty(AOD) < 0.1*AOD + 0.03</p>
- Classification accuracy: no performance target defined yet

Preliminary considerations on Sentinel-2 Level 2A validation

Validation scope and influence factors

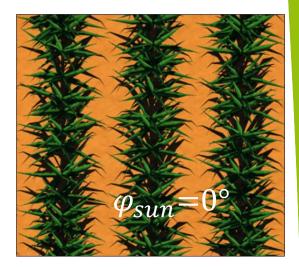
- Surfaces with various biomes and land cover types
- Temporal sampling
 - ✓ Compatible with phenology for vegetated sites
 - $\checkmark\,$ Dense and long time series to assess surface reflectance smoothness
- In-land waters

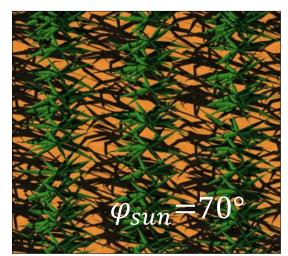
CCVS

- Various atmospheric conditions and cloud cover
- Various altitudes and topography
- Sensibility to adjacency effects and inhomogeneity to be investigated
- ✤ Various latitudes (but with SZA < 70°)</p>

CCVS

Inter-satellite validation


- Comparisons with LANDSAT, MODIS, Sentinel-3 SYN L2
 - ✓ Require Simultaneous Nadir Observations and/or correction with BRDF models
 - ✓ Spectral Band adjustment


Algorithm comparisons

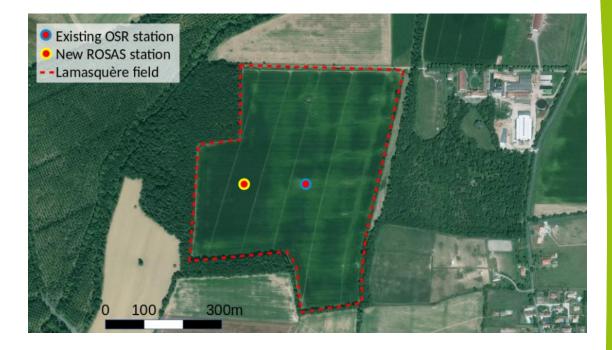
ACIX exercise

Models / Natural sites

- Comparison with PICS models is possible but probably not very useful
- 3D modelling of validation sites (DART, E-Radiate...) could be useful for BRDF assessment

DART simulation Courtesy CESBIO

CCVS


In-situ: radiometers

RadCalNet sites

 ✓ Not ideally suited for L2 validation (bright soil and clear atmosphere)

New ROSAS site

- ✓ Planned site at Lamasquère (CESBIO)
- ✓ 24-hectare field, rotating cereal crops
- ✓ Homogeneity of the surface around measurement point is critical

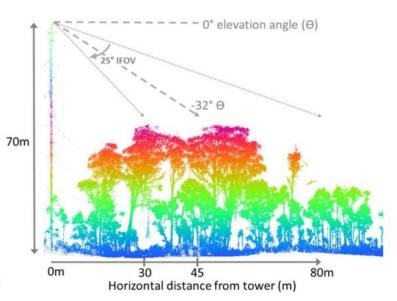
Lamasquère site, CESBIO

CCVS

In-situ: radiometers

- Hypernets
 - ✓ HYPSTAR sensor: hyperspectral radiometer
 - ✓ Multi-sensor validation
 - ✓ Tests planned at Whytham woods site, PI NPL
 - ✓ Homogeneity is again a critical point
- Synergies with existing networks (e.g. BSRN, ICOS...) to be investigated

Whytham woods site

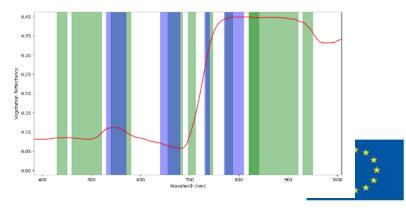


CCVS

In-situ: hyperspectral camera

- Hyperspectral camera on pan/tilt mechanism
 - ✓ Example: THEMS instrument (Woodgate et al. 2020)
 - Provides information about homogeneity and BRDF effects
 - But methodology for comparison with satellite data needs to be defined

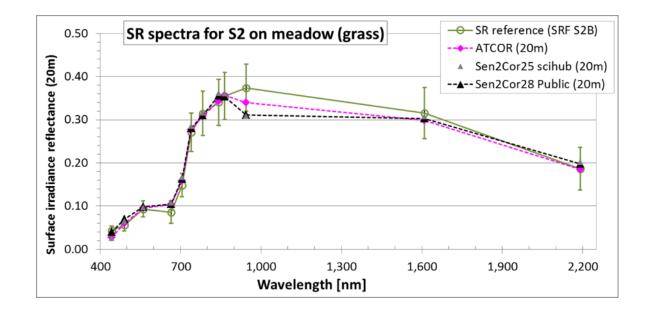
Woodgate et al., 2020


CCVS

Aerial campaigns

- ✤ UAV:
 - ✓ Example: off-the-shelf BlueGrass drone
 - ✓ 4 bands in the red-edge good match with S2 bands, less good with S3
- Manned aerial campaigns:
 - ✓ e.g. DLR, ONERA, NEON
- Homogeneity and BRDF effects can be assessed
- Operation cost is higher
- Potential for cross-mission campaigns ? e.g. LANDSAT, FLEX ?

Dahra orthoimage courtesy CIRAD/IRD



S2 bands BlueGrass Bands

CCVS

In-situ: field campaigns

- Example: DLR Lake Stechlin campaigns
- Very valuable source of reference measurements
- Assessment of inhomogeneity / adjacency effects
- Various surfaces (grass, water)

AOD / WV Validation sources

CCVS

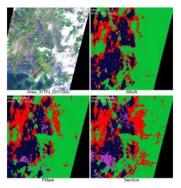
Well-established in-situ data sources

- Various networks: TCCON, AERONET, GRUAN....
- Methodology is mature
- Goal: establish synergies with other Copernicus missions
 - ✓ Data collection and processing: e.g. LAW project for S3
 - ✓ Triple Collocations ?

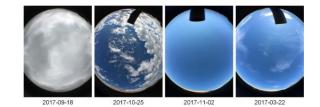
Scene Classification Validation sources

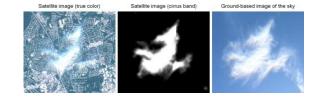
CCVS

Manual photo-interpretation


- State-of-the-art" method
- Human resource-intensive classification validation tools help (e.g. Active Learning for Cloud Detection)

In-situ


- Zenith-looking DHP camera: e.g. Skakun et al. 2021
- Cloud altitude from stereo or ceilometer


***** Other approaches

- Algorithm inter-comparisons (CMIX)
- Statistical (e.g. % of unclassified pixels)

Baetens et al. 2019

Skakun et al. 2021

(Preliminary) Conclusions and Perspectives

CCVS

Perspectives for the validation of S2 L2A products

- Combination of high-quality "FRM"-type measurements and more systematic "low quality" measurements
- Efforts on methodology and instrumentation are needed (e.g. surface reflectance, cloud masks)

Getting involved

- CCVS is looking for contributions to build the future Copernicus Cal/Val Solution
 - ✓ New ideas (methods, technologies, approaches...)
 - ✓ Contributions and available facilities (sites, networks, infrastructures...)
- Public virtual Workshop planned for October 2021 (TBC)
- Check the CCVS website for news ccvs.eu
- Contact us at contact@ccvs.org

