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Abstract: Ceramic Matrix Composites (CMC) are promising materials for high-temperature appli-
cations where damage tolerant failure behavior is required. Non-destructive testing is essential for
process development, monitoring, and quality assessment of CMC parts. Air-coupled ultrasound
(ACU) is a fast and cost-efficient tool for non-destructive inspections of large components with respect
to the detection of material inhomogeneities. Even though ACU inspection is usually used for visual
inspection, the interpretation of C-scan images is often ambiguous with regard to critical defects and
their impact on local material properties. This paper reports on a new approach to link the local
acoustic damping of an oxide CMC plate obtained from ACU analysis with subsequent destructive
mechanical testing and microstructural analyses. Local damping values of bending bars are extracted
from ACU maps and compared with the results of subsequent resonant frequency damping analysis
and 3-point bending tests. To support data interpretation, the homogeneous and inhomogeneous
CMC areas detected in the ACU map are further analyzed by X-ray computed tomography and scan-
ning electron microscopy. The results provide strong evidence that specific material properties such
as Young’s modulus are not predictable from ACU damping maps. However, ACU shows a high,
beneficial sensitivity for narrow but large area matrix cracks or delaminations, i.e., local damping is
significantly correlated with specific properties such as shear moduli and bending strengths.

Keywords: non-destructive testing; air-coupled ultrasound testing; mechanical testing; ceramic-
matrix composites

1. Introduction

Oxide Ceramic Matrix Composites (Ox-CMC) with porous matrices have been de-
veloped since the mid-1990s and have been commercially available since the early 2000s.
Porous Ox-CMC provide a unique combination of properties, e.g., high thermal resistance,
damage tolerant failure behavior, and good corrosion resistance, which makes them promis-
ing materials for light weight, high-temperature structural applications for aerospace such
as ducts, nozzles, or mixers for exhaust gases of turbine engines [1,2]. State-of-the-art
Ox-CMC typically consist of continuous alumina (α-Al2O3, corundum) or aluminosilicate
(Al6Si2O13, mullite) fibers and porous matrices of micro- to nanoscaled α-Al2O3, Al6Si2O13,
and mixtures thereof. Some Ox-CMC also include additional zirconia (ZrO2) to prevent ex-
cessive grain growth and densification of the porous matrices. Typical matrix porosities are
in the range of 30 to 50 vol%. With typical fiber volume contents between 30 and 50 vol%,
total porosities of Ox-CMC range between 15 to 35 vol%. A high matrix porosity inevitably
results in relative low strength and toughness. Consequently, this class of materials is
commonly referred to as “Weak Matrix Composites”. Fracture is substantially governed
by microcracking and disintegration of the porous, low toughness ceramic matrix prior to
fiber rupture. This results in the typical ‘failure-tolerant’ behavior of porous Ox-CMC.
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Ox-CMC are manufactured, similar to other fiber reinforced materials, by lamination
of woven fabrics or filament winding, frequently supported by vacuum assisted infiltration
or consolidation in vacuum bags or autoclaves [3,4]. A distinct feature of most Ox-CMC is
the use of particulate matrix precursors, i.e., fine ceramic particles dispersed in a liquid
with a high solid content (‘slurries’). Most of the routes reported in the literature rely on
water-based slurries [5]. Unlike polymers, consolidation of these matrix precursors requires
the removal of the liquid by evaporation. The associated volume loss can cause excessive
shrinkage and trigger the formation of matrix cracks (‘mud cracks’), particularly in areas
where only a few fibers are able to bridge such cracks. Subsequent consolidation of the
CMC by sintering at temperatures up to 1300 ◦C can cause additional matrix shrinkage, i.e.,
existing drying cracks can expand and additional sintering-induced cracks are generated.
The fact that most porous Ox-CMC exhibit a laminar fiber architecture implies that matrix-
dominated interlaminar areas are predominantly prone to shrinkage-related cracking, i.e.,
the already low interlaminar (matrix) strength may be further reduced, thereby increasing
the risk of shear failure. Comprehensive review articles on manufacturing, properties, and
application of Ox-CMC can be found, e.g., in references [6–8].

Detection and interpretation of these kinds of manufacturing-related flaws are essen-
tial for quality assurance of porous Ox-CMC. As the location and size of these critical flaws
are considered to be distributed randomly, large area inspection of CMC parts is manda-
tory [9]. A common non-destructive method is X-ray computed tomography (XCT). XCT is
the method of choice if detailed information of the composite mesostructure, e.g., position
and orientation of large voids, matrix enrichments, etc. is required. However, as the voxel
resolution of XCT is inversely proportional to the sample volume high fidelity imaging of
microsized features is mostly limited to small sample volumes. On the other hand, optically
excited lock-in thermography, 3D terahertz inspection, or air-coupled ultrasound (ACU)
inspection provide less resolution compared to XCT, but allow a much faster and relatively
straightforward measurement and analysis of large CMC components [10–12]. In particular,
the method of air-coupled ultrasonic testing shows great potential in the investigation
of composites and has been the subject of many publications in recent years, e.g., in the
automated testing of large components [13], the use of Lamb waves [14], assessment of
impact damage [15,16], detection of internal flaws or delamination [17–21] and bonding
quality evaluation [22].

The scope of this work was to find and quantify possible correlation between features
detected by ACU mapping and local material properties of an Ox-CMC plate. For this
purpose, acoustic damping data of individual bending bars was collected and quanti-
fied from ACU maps. The data from homogeneous and inhomogeneous sample areas
were compared and correlated with results from resonant frequency damping analysis
(frequently referred to as ‘impulse excitation technique’) and destructive bending tests.

2. Methodology
2.1. Material

An Ox-CMC plate with a size of 480 × 305 × 3 mm3 manufactured by Schunk
Kohlenstofftechnik GmbH (Heuchelheim, Germany) was used for the purpose of this
investigation. The plate was made of 8 layers of NextelTM 610 3000 den satin fabric (8HSS)
with a fiber orientation of 0/90◦ and a porous Al2O3 and ZrO2 matrix. The CMC was
manufactured by a prepreg layup with subsequent autoclave process and sintering. The as
received CMC panel had a density of 3.0 g/cm3, a porosity of 26.2%, and a fiber volume
fraction of 44.6%. The Ox-CMC plate was tested in the as sintered state, i.e., without
machined surfaces.

2.2. Air-Coupled Ultrasound Inspection (ACU)

Non-destructive mapping of the CMC plate was performed by air-coupled ultra-
sound inspection (FlatScan 1000 AirTech with USPC 4000 AirTech module, Hillger-NDT,
Braunschweig, Germany) with AirTech 200 transducers in transmission mode. The testing
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frequency was 200 kHz and horizontal and vertical step size during measurement was
0.6 mm, respectively. From selected CMC areas appearing ‘homogeneous’ and ‘inhomo-
geneous’ in the amplitude-based C-scan image, 90 × 10 mm2 bending bars were cut by a
diamond saw. Two principal cutting directions were defined in order to obtain samples
with ±45◦ and 0/90◦ fiber orientation. Quantitative damping values for each bending bar
were extracted from the ACU raw data by a self-developed Python-based script.

2.3. Resonant Frequency Damping Analysis (RFDA)

Elastic properties of bending bars were measured by resonant frequency and damping
analysis (RFDA Professional, IMCE NV, Genk, Belgium) using a 3 mm metal projectile, a
node-distance of 49.9 mm, and an impulse power of 52%. The automatic excitation unit
and the microphone were positioned at diagonally opposite corners to test the sample
simultaneously in torsional and flexural vibration mode. The measured frequencies were
in the range of F(flexural) 1976–2049 Hz and F(torsional) 7513–7883 Hz for the 0/90◦ fiber
orientation and F(flexural) 1657–1727 Hz and F(torsional) 9183–10,055 Hz for the ±45◦ fiber
orientation.

2.4. X-ray Computed Tomography

Non-destructive analyses of selected bending bars were performed by micro-focus
computed tomography (µCT, v|tome|x L, GE Sensing & Inspection Technologies GmbH,
Wunstorf, Germany). A small volume of 20 × 10 × 3 mm3 from the specimen’s central
part (i.e., estimated loading/failure zone during bending test) was scanned. The minimum
voxel size of CT-scans was 12 µm3.

2.5. Mechanical and Microstructural Analysis

Three-point bending tests were performed in a universal testing system (UTS 10,
Zwick-Roell, Ulm, Germany) at a support span of 80 mm and a cross head speed of 2
mm/min. Force was measured with a 2.5 kN load cell A.S.T. KAF-TC. Displacement of
the specimen was measured inductively with a Millitron 1310 system in the center of the
bending specimen, and additionally at −15 mm and +15 mm from the center to determine
only the specimen deformation without any deformation of the fixtures or loading system.
The bending modulus was determined using a linear fit for a defined stress interval (±45◦:
15–35 MPa and 0/90◦: 20–50 MPa) in the linear elastic region of the stress–strain curve.
Microstructural analyses were performed by scanning electron microscopy (Ultra 55, Carl
Zeiss Microscopy, Oberkochen, Germany).

A schematic overview of sample selection and experimental methodology is presented
in Figure 1.
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Figure 1. Schematic of the experimental methodology.

3. Results and Discussion
3.1. Air-Coupled Ultrasound Inspection of the Ox-CMC Plate

The amplitude-based C-scan image depicted in Figure 2a shows the left part of the
Ox-CMC plate with a view field of 305 × 305 mm2. The local attenuation of the ultrasound
signal is given as a heatmap in dB (logarithmic scale). Based on the attenuation level
of the signals, a distinction can be made between undisturbed material of good quality,
delaminations, and material gaps (e.g., matrix cracks or pore accumulations) [23]. The
majority of the C-scan shows an undisturbed, homogeneous image of the material with
an average attenuation of the ultrasound signal of about −17 dB and a narrow signal
distribution, i.e., low variation in the attenuation. Two distinctly inhomogeneous areas with
significant scattering and lower attenuation are visible in the upper left and lower center
areas of the C-scan heatmap. A lower attenuation of the ultrasonic signal compared to the
undisturbed material is typically linked to material gaps, whereas large area delaminations
are typically characterized by a high attenuation of the ultrasound signal. On the basis of
the C-scan map, two sample classes were defined with fiber orientation ±45◦ and 0/90◦,
which are commonly employed to assess the fiber- and matrix-dominated failure of CMC,
respectively. From all areas of interest, bending bars were cut according to the cutting
scheme overlaid in Figure 2b. Samples 1 to 10 of each class are located in the plate area
with significantly scattering attenuation. Samples 11 to 15 of each class are located in areas
of undisturbed material and act as the benchmark for subsequent analyses.
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Figure 2. (a) C-image of the ACU-inspection with two distinct inhomogeneous plate regions;
(b) C-image with overlaid cutting scheme for samples with fiber orientation ±45◦ and 0/90◦.

3.2. Characterization of Bending Bars
3.2.1. Resonant Frequency Damping Analysis

The first characterization method for the prepared samples was the resonant frequency
damping analysis (RFDA), frequently referred to as impulse excitation technique (IET).
The samples were measured in out-of-plane flexure and torsional vibration mode to de-
termine the Young’s and G-Modulus. The measurement accuracy of the IET device is
±1.0 GPa for the Young’s modulus and ±0.3 GPa for the G-modulus for given sample
dimensions. Figure 3 displays data of the ten bending bars cut from inhomogeneous CMC
areas (left columns), together with the five reference samples (right columns). Evidently,
the inhomogeneous areas show significant variations, in particular the E- and G-Moduli
of ±45◦ samples (matrix dominated properties, cf. Table 1). Samples with 0/90◦ fiber
orientation generally show a much lower scattering with the Young’s moduli within the
measurement accuracy of ±1.0 GPa and a slight difference in the G-Moduli of 2 GPa (fiber
dominated properties). Both datasets, in particular the ±45◦ direction, reflect well the
visual observation from the ACU heatmap. Based on the IET results, a preselection was
made for a subsequent CT examination. From both datasets, two characteristic samples
with high and low E- and G-moduli were selected and marked with diamonds (±45◦) and
squares (0/90◦), respectively. The color of filling is representative for high (green) and low
(red) values. For example, sample #1 of the ±45◦ set shows highest values and sample #3
of the 0/90◦ set shows the lowest values. All further analyses were performed with special
focus on these samples.
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Figure 3. Young’s and shear modulus of bending bars determined using the impulse excitation
technique. Marked samples were selected for further examination in XCT and SEM. (a,c) Samples
from inhomogeneous areas of the C-scan. (b,d) Reference samples from homogeneous areas of
the C-scan.

Table 1. Summary of experimental properties determined using impulse excitation technique and three-point bending test.

Specimen
No.

Geom.
Density
(g/cm3)

Impulse Excitation
Technique 3-Point Bending Test

Young’s
Modulus

(GPa)

Shear
Modulus

(GPa)

Flexural
Strength

(MPa)

Strain at
Flexural Strength

%

Bending
Modulus

(GPa)

Fiber Orientation ± 45◦ Samples

1 3.03 74 45 165 0.487 71
2 3.03 74 44 164 0.506 64
3 3.03 71 42 155 0.501 73
4 3.01 70 39 151 0.502 67
5 2.98 69 35 147 0.448 69
6 2.97 66 34 143 0.459 68
7 2.99 68 39 144 0.472 68
8 3.00 68 41 145 0.469 69
9 2.99 69 41 155 0.462 74
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Table 1. Cont.

Specimen
No.

Geom.
Density
(g/cm3)

Impulse Excitation
Technique 3-Point Bending Test

Young’s
Modulus

(GPa)

Shear
Modulus

(GPa)

Flexural
Strength

(MPa)

Strain at
Flexural Strength

%

Bending
Modulus

(GPa)

Fiber Orientation ± 45◦ Samples

10 2.97 67 40 152 0.449 75
Mean ± SD 3.00 ± 0.03 70 ± 3 40 ± 3.4 152 ± 8 0.476 ± 0.022 70 ± 3

11 2.98 69 42 155 0.516 62
12 2.97 69 42 156 0.511 67
13 2.97 69 42 156 0.524 65
14 2.98 69 43 151 0.487 65
15 2.96 68 42 153 0.508 67

Mean ± SD 2.97 ± 0.01 69 ± 1 42 ± 0.3 154 ± 2 0.509 ± 0.014 65 ± 2

Fiber Orientation 0/90◦ Samples

1 3.00 98 26 390 0.498 100
2 3.00 97 24 302 0.379 97
3 2.99 97 24 282 0.337 95
4 2.99 97 24 311 0.369 102
5 3.00 98 25 340 0.387 100
6 3.00 97 25 336 0.391 96
7 3.00 98 25 335 0.381 97
8 2.99 98 26 406 0.540 101
9 2.99 99 26 391 0.538 100

10 3.00 98 26 396 0.568 96
Mean ± SD 3.00 ± 0.01 97 ± 1 25 ± 0.9 349 ± 44 0.439 ± 0.087 98 ± 3

11 2.98 96 26 398 0.590 94
12 2.96 94 25 387 0.548 94
13 2.96 94 25 386 0.596 90
14 2.98 96 26 354 0.504 92
15 2.97 95 26 382 0.545 97

Mean ± SD 2.97 ± 0.01 95 ± 1 25 ± 0.4 381 ± 16 0.557 ± 0.038 93 ± 3

3.2.2. X-ray Computed Tomography Analysis

The microstructures of bending bars from homogenous and inhomogeneous areas
according to the ACU-inspection were extracted and analyzed by µCT. Figure 4 shows the
reconstructed 3-dimensional pore volume within specimens with fiber orientation of ±45◦.
Sample #1 and #2 were both cut from homogenous areas, #5 and #6 from inhomogeneous
areas according to the ACU image in Figure 2. The pores between the fiber bundles
are visible as elongated and tubular-like cavities throughout the laminate microstructure.
Although few accumulations of pores (dark-red) can be detected, no significant difference
between the four samples can be observed. The four bending specimens with orientation
of 0/90◦ from homogenous (sample #9 and #10) and inhomogeneous (sample #3 and #4)
areas were analyzed accordingly. The results are shown in Figure 5. Compared to the
results of ±45◦, the calculated pore volume of sample #9 and #10 is noticeably lower than
the one of the samples from inhomogeneous area (sample #3), which is consistent with the
observations of the ACU inspection.
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Figure 5. µCT analysis of calculated local pore volume and its distribution in the center area of
bending specimen with fiber orientation of 0/90◦, sample #9 and #10 from homogeneous area, sample
#3 and #4 from inhomogeneous area.
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The 3-dimensional pore volume was calculated based on detected pores at a voxel
size of 12 µm3 divided by the investigated volume (see Table 2).

Table 2. Pore volume calculated from XCT data.

Fiber Orientation ± 45◦ Samples Fiber Orientation 0/90◦ Samples

Specimen No. Calc. Pore Volume, % Specimen No. Calc. Pore Volume, %

1 0.23 9 0.07
2 0.39 10 0.17
5 0.28 3 0.38
6 0.25 4 0.08

Specimen No. 1, 2, 9, 10 from homogeneous and 3, 4, 5, 6 from inhomogeneous area of the C-scan.

It is noteworthy that the reconstructed 3-dimensional pore volume is far off the 26.2%
porosity measured by the Archimedes method for the investigated CMC-plate (cf. Table 2).
Due to the voxel size of 12 µm3, smaller pores and especially the microporosity of the
matrix phase are not detected in XCT.

3.2.3. Three-Point Flexural Tests

Figure 6 shows the flexural strength determined in three-point bending tests compared
to the C-scan. In order to put the strength values of the individual samples (inhomogeneous
area) in relation, the mean value of the reference dataset (homogeneous area) is plotted
as a white dashed line with associated standard deviation (thin white lines). The samples
from the inhomogeneous area clearly show a decrease in flexural strength. For both fiber
orientations, the strength values of the individual samples with inhomogeneities are below
the scatter band of the reference dataset. For ±45◦ fiber orientation, sample #6 has the
lowest flexural strength at 143 MPa, which is 93% of the mean value of the reference
samples. However, the effect is more evident for fiber orientation 0/90◦. Sample #3 with
0/90◦ fiber orientation shows a flexural strength of 282 MPa which is 74% of the mean
value of the reference samples. These observations are also reflected in the strain at flexural
strength, again more dominant for fiber orientation 0/90◦ (see Table 1). Comparing the
samples from inhomogeneous areas, no significant differences can be identified with regard
to the flexural modulus. The reason for this might be that the flexural modulus is mainly
influenced by the fiber reinforcement and only to a small amount by the porous matrix and
the defects herein [24,25].
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Figure 6. Flexural strength determined in three-point bending test in comparison to the C-scan
image. The flexural strength mean value (dashed white line) of the reference samples with associated
standard deviation (thin white line). Samples with variation in local damping show a decrease in
flexural strength.
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3.3. Correlation of ACU Heatmaps and Local Mechanical Properties
3.3.1. Data Extraction and Analyses

The employed ACU system yields 2D distribution maps of the acoustic damping
of the current material as heatmap plots. A low scattering damping is considered as
representative for ‘good’ or ‘strong’ and ‘homogeneous’ material. In the present case, ‘good’
material shows damping values of approximately −17 dB, see Figure 7b,d. For deeper
analyses and understanding, however, meaningful damping values representing local
effects are mandatory. Therefore, a routine was developed to extract comparable damping
values for individual samples, i.e., bending bars. For this purpose, a Python-based script
was developed to calculate line-data from the corresponding map areas. The concept is
illustrated in Figure 7: for each bending bar, five parallel linescans were extracted (see
thin grey lines and inset) and averaged (thick lines). In order to obtain a single damping
value for the bending bars, damping data was averaged over the entire sample length
(dashed lines). Figure 7a,b shows a comparison between ‘inhomogeneous’ sample #6 and
‘homogenous’ sample #3 selected from the ±45◦ set. An averaged damping of −13.04 dB
was calculated for sample #6, i.e., about 23% less than the ‘homogenous’ sample #3. Similar
values were extracted for bending bars #3 and #10 representing the 0/90◦ fiber orientation
(see Figure 7c,d).
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Figure 7. Damping curves extracted from the ACU raw data using the Python-based script. Inset
displays the sample C-scan with linescan positions (yellow lines). Damping curves are shown as grey
lines in the diagram and in averaged form as red/green line. The dashed line shows the average
value over the entire sample length. Samples with fiber orientation ±45◦ (upper row) and 0/90◦

(lower row) from inhomogeneous (a,c) and homogenous region (b,d) of the C-scan.
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The objective was to identify quantifiable correlations between ACU results and CMC
properties to obtain localized data for material quality at high 2D resolution. As a first
step, the acquired data was analyzed for ‘homogeneous’ and ‘inhomogeneous’ regions in
‘bending bar resolution’. Assuming that homogenous regions in the ACU map are rep-
resentative for good mechanical properties, the measured values and extracted damping
data of the five samples for each ±45◦ and 0/90◦ fiber orientation were averaged and act
as reference data. Data obtained from samples located in inhomogeneous areas are treated
individually. All values were normalized and plotted against their corresponding reference
values. As a hypothesis, a simple linear correlation between elastic/mechanical properties
and ACU damping was assumed, and datapoints were fitted accordingly. In the following
viewgraphs, the specific samples with low and high values as detected by RFDA (also
analyzed by XCT) are highlighted by green or red filled marks, respectively (Note that each
sample is marked by distinct symbols/indexes). First, relative elastic and shear moduli as
derived from RFDA measurements are plotted against their relative damping. Evidently,
both ±45◦ and 0/90◦ E-moduli derived from RFDA show little to no correlation to damp-
ing, as indicated by very low slopes of both linear fits (Figure 8a). On the other hand,
irrespective of fiber orientation G-moduli show significant linear correlation to damping,
but more pronounced in the case of ±45◦ fiber orientation (Figure 8b). With respect to
bending strength, there is a linear correlation to damping in both fiber orientations, the fit
curves also exhibit similar slopes (Figure 9a). With respect to strain at flexural strength,
there is some ambiguity—while the 0/90◦ fiber orientation shows clearly distinguishable
data following a linear trend, the datapoints of the orientation can be fitted linearly but
with a relative low slope. In order to assess the quality of all linear fits, the parameters R2
along with an ANOVA-type analysis (confidence level > 95%) was calculated and compiled
in Table 3. It tuns out that, besides both E-moduli linear fits, the strain at flexural strength
linear fit for ±45◦ is also not significant, i.e., does not exhibit slopes sufficiently different
from zero. The strongest linear correlation is found between sample damping and shear
moduli, whereas bending strengths show significant, but generally weaker correlation. It
must be emphasized, that ‘strong’ as well as ‘weak’ samples indexed by green/red filled
symbols follow trends quite closely. Moreover, clustering into ‘good’ and ‘bad’ samples is
seemingly possible, independent of the statistical evidence of linear approximations.
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Figure 8. Correlation of E- (a) and G-moduli (b) and average ACU damping of bending bars
(relative to reference samples). No significant correlation is found for E-moduli irrespective of sample
orientation (a) whereas G-moduli are correlated to ACU damping only for ±45◦samples (b).
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Figure 9. Correlation of flexural stresses (a) and strains (b) to average ACU damping of bending bars
(relative values). A significant correlation is found irrespective of sample orientation (a), whereas
strains are correlated to ACU damping only for 0/90◦samples (b).

Table 3. ANOVA-type analysis with R2 parameters.

Linear Regression
R2/ANOVA F-Values E-Modulus G-Modulus Flexural Strength Strain at Flexural

Strength

±45◦ Samples 0.363/4.557 * 0.853/46.252 0.423/5.873 0.257/2.773 *
0/90◦ Samples 0.108/0.969 * 0.650/14.853 0.501/8.063 0.733/21.947

* Slope of linear fit NOT significantly different from ZERO (95% confidence level).

3.3.2. Supporting Microstructural Analysis

The observed inhomogeneities in the ACU maps are evidently correlated to local
CMC material properties. The 2D resolution of ACU, however, is low, and microstructural
features responsible for damping effects are presumably not detectable. Previous XCT
analyses suggest that defects require high resolution imaging only provided by electron
microscopy. In order to distinguish ‘strong’ and ‘weak’ samples, two cross sections were
prepared for each fiber orientation with observation plane perpendicular to the long sample
axes, respectively. The SEM images in Figure 10 prove that stronger samples 1 and 9 (upper
row) exhibit much fewer small cracks than both ‘weak’ samples #5 and #3 in the lower row.
Cracks are mainly aligned horizontally and are located at boundaries of fiber laminates or
at matrix-rich regions. From this, it can be concluded that the main damage occurring in
the investigated CMC plate is horizontal microcracking.
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Figure 10. SEM-cross sections of characteristic samples show the quasi crack-free microstructures of
‘stronger’ samples #1 (±45◦ cut) and #9 (0/90◦ cut) (upper row) compared to ‘weaker’ samples #5
and #3 which display small microcracks mostly aligned parallel to fiber fabric laminates.

3.4. General View on the Employed Methodology

A synopsis of the analyses reveals significant as well as weak correlations of specific
testing methods and material properties. XCT and the derived porosities did not reflect
mechanical properties, i.e., higher measured porosity was not associated with lower flexural
strength. ACU damping correlated well to RFDA analyses in case of Young’s and shear
moduli for ±45◦, i.e., matrix-dominated sample directions. On the other hand, in the fiber-
dominated 0/90◦ direction, only a correlation of RFDA shear moduli and ACU damping
could be found. Between ACU and 3-point bending tests, various significant correlations
could be found: in particular flexural strengths were closely linked to measured local
ACU damping. On the other hand, bending moduli could not be linked to local ACU
damping. Combing these findings with SEM analyses of cross-sections, it can be stated that
ACU mapping is highly sensitive to locally reduced flexural strengths and shear moduli of
the investigated Ox-CMC samples caused by large-area (mm2) but thin (sub-µm) laminar
matrix cracks. A great advantage of ACU could be the non-destructive detection of such
flaws in large-scale specimen.

4. Conclusions

Air-coupled ultrasound mapping can be used to detect inhomogeneities in large
Ox-CMC plates which are not easily detected by other NDT methods such as standard
resolution XCT. Data retrieved from an Ox-CMC plate revealed significant correlations
between local signal damping and specific mechanical properties. It appears that ACU is
very sensitive to sub-micron horizontal microcracks and associated interlaminar properties,
in particular shear moduli measured by resonant frequency damping analysis.

As the present findings were obtained from a single Ox-CMC plate only, i.e., a very
limited sample count, further investigations are required to strengthen our database. In
particular similar experiments regarding interlaminar shear strengths will be helpful for the
validation of the concept. However, some uncertainty will inevitably remain as samples cut
from ACU regions of interest can only be destructively tested once, i.e., either “in-plane” or
“out-of-plane”. As the present study was performed with a planar Ox-CMC fabricated from
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woven fiber fabrics, the question remains still open if other processing methods and/or
more complex geometries, such as filament-wound Ox-CMC tubes, can be accessed in a
similar manner. In particular, the determination of site-specific mechanical properties from
non-planar samples will presumably be challenging. In any case, the results obtained in this
study appear to be a promising pathway to develop relatively straightforward, cost- and
time-efficient quality assurance methods for Ox-CMC components. There is also a prospect
for using ACU maps and corresponding mechanical properties as training datasets for
automated quality assessment of CMC parts, as results indicate clear separation in ‘weak’
and ‘strong’ which can be very helpful for data clustering.

Author Contributions: Conceptualization and Methodology, J.R., P.M., Y.S. and R.J.; Investigation,
J.R., F.F. and R.J.; Visualization, J.R., R.J. and P.M.; Writing—Original Draft Preparation, J.R., P.M. and
Y.S.; Writing—Review and Editing, J.R., P.M., Y.S., R.J. and F.F. All authors have read and agreed to
the published version of the manuscript.

Funding: This project has received funding from the Clean Sky 2 Joint Undertaking under the
European Union’s Horizon 2020 research and innovation program and under grant agreement
No. 686707.

Acknowledgments: Authors would like to thank E. Breitbarth (DLR Institute of Materials Research)
for advice in software development, helpful discussion and feedback, and M. Welter (DLR Institute
of Materials Research) for proofreading.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Schmücker, M.; Mechnich, P. All-oxide ceramic matrix composites with porous matrices. In Ceramic Matrix Composites: Fiber

Reinforced Ceramics and Their Applications; Krenkel, W., Ed.; Wiley-VCH: Weinheim, Germany, 2008; pp. 205–229.
2. Newman, B.; Schäfer, W. Processing and Properties of Oxide/Oxide Composites for Industrial Applications. In High Temperature

Ceramic Matrix Composites; Krenkel, W., Naslain, R., Schneider, H., Eds.; Wiley-VCH: Weinheim, Germany, 2001; pp. 600–609.
3. Shi, Y.; Hönig, S.; Frieß, M.; Rüdinger, A.; Pritzkow, W.; Koch, D. Manufacture and characterization of oxide ceramic matrix

composites out of commercial pre-impregnated fabrics. Ceram. Int. 2018, 44, 2320–2327. [CrossRef]
4. Pritzkow, W.E.; Wehner, F.; Koch, D. Oxide Fiber Reinforced Oxide Ceramic Matrix Composite—An Alternative to Metallic Alloys

at High Temperature. In Encyclopedia of Materials: Metals and Allloys; Caballero, F.G., Ed.; Elsevier: Oxford, UK, 2020; pp. 425–441.
5. Pritzkow, W.E.; Almeida, R.S.; Mateus, L.B.; Tushtev, K.; Rezwan, K. All-oxide ceramic matrix composites (OCMC) based on low

cost 3M Nextel™ 610 fabrics. J. Eur. Ceram. Soc. 2021, 41, 3177–3187. [CrossRef]
6. Tushtev, K.; Martin Almeida, R.S. 5.5 Oxide/Ox-CMCs—Porous Matrix Composite Systems; Composites with Interface Coatings.

In Comprehensive Composite Materials II; Beaumont, P.W., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 130–157.
7. Keller, K.A.; Jefferson, G.; Kerans, R.J. Oxide-Oxide Composites. In Ceramic Matrix Composites: Materials, Modeling and Technology;

Bansal, N.P., Lamon, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 236–272.
8. Mechnich, P.; Welter, M. Porous Oxide Ceramic Matrix Composites—Properties, Manufacturing, and Applications. In Encyclopedia

of Materials: Composites; Brabazon, D., Ed.; Elsevier: Oxford, UK, 2021; pp. 48–54.
9. Ullmann, T.; Shi, Y.; Rahner, N.; Schmücker, M. Quality assurance for the manufacturing of oxide fiber reinforced ceramic

composites for aerospace applications. In Proceedings of the 4th International Symposium on NDT in Aerospace, Augsburg,
Germany, 13–15 November 2012; pp. 1–11.

10. Ullmann, T.; Shi, Y.; Aoki, R. Capabilities of Lock-in Thermography for Non-destructive Inspection of Fibre Reinforced Composites.
In Proceedings of the 11th International Conference on Quantitative InfraRed Thermography, Naples, Italy, 11–14 June 2012.
[CrossRef]
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