Isolated Sublattices and their Application to Counting Closure Operators

Roland Glück

roland.glueck@dlr.de Deutsches Zentrum für Luft- und Raumfahrt Marseille/Luminy, 3rd November 2021

dlr.de · Slide 1 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021 Motivation for Counting

- [BonzioPrabaldiValota2018] count bisemilattices
- [AlpayJipsen2020] count doubly idempotent semirings
- [QuinteroRamírezRuedaValencia2020] count join-endomorphisms
- [BerghammerBörmWinter2021] count topological spaces
- [AlpayJipsenSugimoto2021] count dℓ-structures

1000

$dlr.de \cdot Slide \ 2 \ of \ 25 > lsolated \ Sublattices \ and \ Closures > Roland \ Gl\"uck > Marseille/Luminy, \ 3rd \ November \ 2021$

Motivation for Closures

- transitive closure of relations or graphs
- Kleene closure in language theory
- connected components in [Glück2017]
- most work deals with powerset lattices (Moore families)
- number of closure operators on $(\mathcal{P}(S), \subseteq)$ known only up to |S| = 7 [ColombirlandeRaynaud2010]
- shown to be 14.087.648.235.707.352.472 [ColomblrlandeRaynaud2010]

1900

Closures

Definition

Given an ordered set *S* an endofunction *c* on *S* is called a *closure operator* if it fulfills the following properties for all $x, y \in S$:

• $x \leq c(x)$	(extensitivity)
• $x \le y \Rightarrow c(x) \le c(y)$	(isotony)
• $c(c(x)) = c(x)$	(idempotence)

Closures

Definition

Given an ordered set *S* an endofunction *c* on *S* is called a *closure operator* if it fulfills the following properties for all $x, y \in S$:

• $x \le c(x)$ (extensitivity) • $x \le y \Rightarrow c(x) \le c(y)$ (isotony) • c(c(x)) = c(x) (idempotence)

Definition

Given a lattice (S, \leq) a subset $S' \subseteq S$ is called a *closure system* if it fulfills the following properties:

- $x, y \in S' \Rightarrow x \sqcap y \in S'$
- for every $s \in S$ there is a smallest $x \in S'$ such that $s \leq x$ holds.

The set of all closure systems of S is denoted by C(S).

Remark: The second condition implies the first one.

Closures

Definition

Given an ordered set *S* an endofunction *c* on *S* is called a *closure operator* if it fulfills the following properties for all $x, y \in S$:

• $x \le c(x)$ (extensitivity) • $x \le y \Rightarrow c(x) \le c(y)$ (isotony) • c(c(x)) = c(x) (idempotence)

Definition

Given a lattice (S, \leq) a subset $S' \subseteq S$ is called a *closure system* if it fulfills the following properties:

- $x, y \in S' \Rightarrow x \sqcap y \in S'$
- for every $s \in S$ there is a smallest $x \in S'$ such that $s \leq x$ holds.

The set of all closure systems of S is denoted by C(S).

Remark: The second condition implies the first one. These two definitions are cryptomorphic.

dlr.de - Slide 4 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021 **Example Lattice**

< < A

dlr.de - Slide 5 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

No Closure Example

< < A

dlr.de - Slide 6 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

Closure Example

< 同

dlr.de - Slide 7 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

Counting Closures

- In general, counting closures is difficult:
- $|C(P(\{1, 2, 3, 4, 5, 6, 7\}), \subseteq)| = 14.087.648.235.707.352.472$ known since 2010.
- \top (if exists) is element of every closure system
- Easy special cases:
- $|C(\{1, n\}, \leq)| = 2^{n-1}$
- $|C(\operatorname{diam}(n))| = 2 + 2n + (2^n n 1)$

dlr.de - Slide 8 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

Finding Substructures

dlr.de · Slide 9 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021
Isolated Sublattices and Congruences

Definition

Let (S, \leq) be a lattice. A subset $S' \subseteq S$ is called an *isolated sublattice* if it fulfills the following properties:

- S' is a sublattice with greatest element $\top_{S'}$ and least element $\perp_{S'}$.
- $\forall x \notin S' \forall y' \in S' : y' \leq x \Rightarrow \top_{S'} \leq x$
- $\forall x \notin S' \forall y' \in S' : x \leq y' \Rightarrow x \leq \bot_{S'}$

Remark: S and $\{s\}$ for $s \in S$ are isolated sublattices.

Lemma

Let S' be an isolated sublattice and define $\equiv_{S'}$ by $x \equiv_{S'} y \Leftrightarrow_{def} x = y \lor (x \in S' \land y \in S')$. Then $\equiv_{S'}$ is a congruence relation on (S, \leq) .

Reminder: An equivalence relation \equiv is a congruence if the following holds:

- $x_0 \equiv y_0 \land x_1 \equiv y_1 \Rightarrow x_0 \sqcap x_1 \equiv y_0 \sqcap y_1$ and
- $x_0 \equiv y_0 \land x_1 \equiv y_1 \Rightarrow x_0 \sqcup x_1 \equiv y_0 \sqcup y_1$

=> •) < (~

• A congruence \equiv on a lattice (S, \leq) induces a quotient lattice (S/ \equiv , \leq / \equiv)

- A congruence \equiv on a lattice (S, \leq) induces a quotient lattice (S/ \equiv , \leq / \equiv)
- S/\equiv is a homomorphic image of S

- A congruence \equiv on a lattice (S, \leq) induces a quotient lattice (S/ \equiv , \leq / \equiv)
- S/\equiv is a homomorphic image of S
- Are there relations between closure systems of S and closure systems of $S/\equiv_{S'}$?

> nac

- A congruence \equiv on a lattice (S, \leq) induces a quotient lattice (S/ \equiv , \leq / \equiv)
- S/\equiv is a homomorphic image of S
- Are there relations between closure systems of S and closure systems of S = S'?
- Yes, there are!

=> •) < (~

dir.de \cdot Slide 11 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021 Various Kinds of Isolated Sublattices

Let (S, \leq) be a lattice with greatest element \top .

Definition

An isolated sublattice S' of S is called a *summit isolated sublattice* if $\top_{S'} = \top$ holds.

Definition

An isolated sublattice S' of S is called an *isolated sublattice with bottleneck* if \top'_{S} is meet-irreducible.

Definition

A subset $\hat{S} \subseteq S$ is called a *preclosure system* if $\hat{S} \cup \{\top\}$ is a closure system. The set of all preclosure systems is denoted by $\mathcal{PC}(S)$.

Remark: Note that $|\mathcal{PC}(S)| = 2 \cdot |\mathcal{C}(S)|$ holds.

dlr.de - Slide 12 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

Examples

 $dlr.de \cdot Slide \ 13 \ of \ 25 > Isolated \ Sublattices \ and \ Closures > Roland \ Glück \ > Marseille/Luminy, \ 3rd \ November \ 2021$

Closure Systems and Isolated Sublattices

Notation: $C^{\{\}} =_{def} \{\{c\} \mid c \in C\}$

Lemma

Let (S, \leq) be a lattice, S' an isolated sublattice of (S, \leq) and consider a closure system C of (S, \leq) .

- If $C \cap S' = \emptyset$ then $C^{\{\}}$ is a closure system of $S / \equiv_{S'}$.
- If $C \cap S' \neq \emptyset$ then $(C \setminus S')^{\{\}} \cup \{S'\}$ is a closure system of $S / \equiv_{S'}$.

 $dlr.de \cdot Slide \ 13 \ of \ 25 > Isolated \ Sublattices \ and \ Closures > Roland \ Glück \ > Marseille/Luminy, \ 3rd \ November \ 2021$

Closure Systems and Isolated Sublattices

Notation: $C^{\{\}} =_{def} \{\{c\} \mid c \in C\}$

Lemma

Let (S, \leq) be a lattice, S' an isolated sublattice of (S, \leq) and consider a closure system C of (S, \leq) .

- If $C \cap S' = \emptyset$ then $C^{\{\}}$ is a closure system of $S / \equiv_{S'}$.
- If $C \cap S' \neq \emptyset$ then $(C \setminus S')^{\{\}} \cup \{S'\}$ is a closure system of $S / \equiv_{S'}$.

Lemma

Let (S, \leq) be a lattice and S' an isolated sublattice with bottleneck. Assume that $C_{S'}$ is a preclosure system of S' and let C' be a closure system of $S/\equiv_{S'}$ with $S' \in C'$. Then $C =_{def} \bigcup (C' \setminus \{S'\}) \cup C_{S'}$ is a closure system of (S, \leq) .

 $dlr.de \cdot Slide \ 13 \ of \ 25 > Isolated \ Sublattices \ and \ Closures > Roland \ Glück \ > Marseille/Luminy, \ 3rd \ November \ 2021$

Closure Systems and Isolated Sublattices

Notation: $C^{\{\}} =_{def} \{\{c\} \mid c \in C\}$

Lemma

Let (S, \leq) be a lattice, S' an isolated sublattice of (S, \leq) and consider a closure system C of (S, \leq) .

- If $C \cap S' = \emptyset$ then $C^{\{\}}$ is a closure system of $S/\equiv_{S'}$.
- If $C \cap S' \neq \emptyset$ then $(C \setminus S')^{\{\}} \cup \{S'\}$ is a closure system of $S / \equiv_{S'}$.

Lemma

Let (S, \leq) be a lattice and S' an isolated sublattice with bottleneck. Assume that $C_{S'}$ is a preclosure system of S' and let C' be a closure system of $S/\equiv_{S'}$ with $S' \in C'$. Then $C =_{def} \bigcup (C' \setminus \{S'\}) \cup C_{S'}$ is a closure system of (S, \leq) .

Lemma

Let (S, \leq) be a lattice and S' a summit isolated sublattice of S. Assume that $C_{S'}$ is a closure system of S' and let C' be a closure system of $S/\equiv_{S'}$. Then $C =_{def} \bigcup C' \setminus S' \cup C_{S'}$ is a closure system of (S, \leq) .

Remark: Note that $\top_{S/\equiv_{S'}} \in C'$ and $\top_S \in C_{S'}$ hold.

 $dlr.de \cdot Slide \ 14 \ of \ 25 > Isolated \ Sublattices \ and \ Closures > Roland \ Glück > Marseille/Luminy, \ 3rd \ November \ 2021$

Illustration

DLF □> < @> < \bar{a} > < \$> \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

dlr.de - Slide 15 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

DLF □> < @> < \bar{a} > < \$> \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

dlr.de - Slide 16 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

DLF □> < @> < \bar{a} > < \$> \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

dlr.de - Slide 17 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

DLF □> < @> < \bar{a} > < \$> \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$

dlr.de - Slide 18 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021

Necessity of Bottlenecks

ロ><目><目><目><<
 <
 <

Lemma

Let *S* be a lattice and *S'* an isolated sublattice with bottleneck of *S* and assume that *C'* is a closure system on $S/\equiv_{S'}$ with $S' \notin C'$. Then $\bigcup C'$ is a closure system on *S*.

Lemma

Let *S* be a lattice and *S'* an isolated sublattice with bottleneck of *S* and assume that *C'* is a closure system on $S/\equiv_{S'}$ with $S' \notin C'$. Then $\bigcup C'$ is a closure system on *S*.

Theorem

Let S' be an isolated sublattice with bottleneck of (S, \leq), and consider a set C \subseteq S.

• Assume that $C' =_{def} C \cap S' \neq \emptyset$ holds. Then C is a closure system of S iff C' is a nonempty preclosure system of S' and $(C \setminus S')^{\{i\}} \cup \{S'\}$ is a closure system of $S \neq_{\Xi S'}$.

• Assume that $C \cap S' = \emptyset$ holds. Then C is a closure system of S iff $C^{\{\}}$ is a closure system of $S/\equiv_{S'}$.

Lemma

Let *S* be a lattice and *S'* an isolated sublattice with bottleneck of *S* and assume that *C'* is a closure system on $S/\equiv_{S'}$ with $S' \notin C'$. Then $\bigcup C'$ is a closure system on *S*.

Theorem

Let S' be an isolated sublattice with bottleneck of (S, \leq), and consider a set C \subseteq S.

• Assume that $C' =_{def} C \cap S' \neq \emptyset$ holds. Then C is a closure system of S iff C' is a nonempty preclosure system of S' and $(C \setminus S')^{\{\}} \cup \{S'\}$ is a closure system of $S \neq_{\Xi_S'}$.

• Assume that $C \cap S' = \emptyset$ holds. Then C is a closure system of S iff $C^{\{\}}$ is a closure system of $S/\equiv_{S'}$.

Theorem

Let S' be a summit isolated sublattice of a lattice (S, \leq) , and consider a set $C \subseteq S$. Then C is a closure system of S iff $C \cap S'$ is a closure system of S' and $(C \setminus S')^{\{\}} \cup \{S'\}$ is a closure system of $S \mid_{\Xi_{S'}}$.

dlr.de · Slide 20 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021 Towards a Recursive Counting Algorithm

Let S', $T \subseteq S$ be subsets of a lattice S and $x \in S$. Then we define:

$$\begin{aligned} \bullet \ \mathcal{C}(S)_T &=_{def} \{ C \in \mathcal{C}(S) \mid T \subseteq C \} \\ \bullet \ \mathcal{C}(S)_{-x,T} &=_{def} \{ C \in \mathcal{C}(S)_T \mid x \notin C \} \\ \bullet \ \mathcal{C}(S)_T^S &=_{def} \{ C \in \mathcal{C}(S)_T \mid C \cap S' \neq \emptyset \} \\ \bullet \ \mathcal{C}(S)_T^{-S'} &=_{def} \{ C \in \mathcal{C}(S)_T \mid C \cap S' = \emptyset \end{aligned}$$

This implies:

•
$$\mathcal{C}(S) = \mathcal{C}(S)_{\emptyset}$$

•
$$\mathcal{C}(S)_T = \mathcal{C}(S)_{T \setminus \{T_S\}} = \mathcal{C}(S)_{T \cup \{T_S\}}$$

•
$$\mathcal{C}(S)_T = \mathcal{C}(S)_{T \cup \{x\}} \cup \mathcal{C}(S)_{-x,T}$$
, hence

•
$$|C(S)_T| = |C(S)_{T \cup \{x\}}| + |C(S)_{-x,T}|$$

• analogously $|\mathcal{C}(S)_T| = |\mathcal{C}(S)_T^S| + |\mathcal{C}(S)_T^{-S'}|$

Formulae for the cardinalities in the case of chains or diamonds can easily be obtained.

dir.de - Slide 21 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021 Recursion for Isolated Sublattices with Bottleneck

Let S' be an isolated sublattice with bottleneck and consider an arbitrary set $T \subseteq S$ with $T \cap S' = \emptyset$. Then:

$$\begin{array}{l} (1) |\mathcal{C}(S)_{T}^{S'}| = |\mathcal{C}(S/\equiv_{S'})_{T\{\}\cup\{S'\}\}}| \cdot (|\mathcal{PC}(S')| - 1) \\ \text{ (discard the empty preclosure)} \\ (2) |\mathcal{C}(S)_{T}^{-S'}| = |\mathcal{C}(S/\equiv_{S'})_{-\{S'\},T^{\{\}}}| \\ (3) |\mathcal{C}(S/\equiv_{S'})_{T\{\}}| = |\mathcal{C}(S/\equiv_{S'})_{T\{\}\cup\{S'\}}| + |\mathcal{C}(S/\equiv_{S'})_{-\{S'\},T^{\{\}}}| \\ (4) |\mathcal{PC}(S')| = 2 \cdot |\mathcal{C}(S')| \\ (5) |\mathcal{C}(S)_{T}| = |\mathcal{C}(S)_{T}^{S'}| + |\mathcal{C}(S)_{T}^{-S'}|, \text{ hence:} \\ (6) |\mathcal{C}(S)_{T}| = |\mathcal{C}(S/\equiv_{S'})_{T\{\}\cup\{S'\}}| \cdot 2(|\mathcal{C}(S')| - 1) + |\mathcal{C}(S/\equiv_{S'})_{T\{\}}| \\ \text{ (insert (1), (2), (3) and (4) into (5) and simplify)} \end{array}$$

Analogously for a summit isolated sublattice with $T \cap S' = \emptyset$:

• $|\mathcal{C}(S)_T| = |\mathcal{C}(S/\equiv_{S'})_{T^{\{\}}}| \cdot |\mathcal{C}(S')|$

- $|\mathcal{C}(S)_T| = |\mathcal{C}(S/\equiv_{S'})_{T^{\{\}}}| \cdot |\mathcal{C}(S')|$
- For a recursive algorithm we have to ensure that $T \cap S' = \emptyset$ holds.

- $|\mathcal{C}(S)_T| = |\mathcal{C}(S/\equiv_{S'})_{T^{\{\}}}| \cdot |\mathcal{C}(S')|$
- For a recursive algorithm we have to ensure that $T \cap S' = \emptyset$ holds.
- This can be achieved by using inclusion-maximal nontrivial isolated sublattices.

= nar

- $|\mathcal{C}(S)_T| = |\mathcal{C}(S/\equiv_{S'})_{T^{\{\}}}| \cdot |\mathcal{C}(S')|$
- For a recursive algorithm we have to ensure that $T \cap S' = \emptyset$ holds.
- This can be achieved by using inclusion-maximal nontrivial isolated sublattices.
- Inclusion-maximal isolated sublattices are disjoint and can not contain quotients from earlier isolated sublattices (if only inclusion-maximal isolated sublattices are used).

- $|\mathcal{C}(S)_T| = |\mathcal{C}(S/\equiv_{S'})_{T^{\{\}}}| \cdot |\mathcal{C}(S')|$
- For a recursive algorithm we have to ensure that $T \cap S' = \emptyset$ holds.
- This can be achieved by using inclusion-maximal nontrivial isolated sublattices.
- Inclusion-maximal isolated sublattices are disjoint and can not contain quotients from earlier isolated sublattices (if only inclusion-maximal isolated sublattices are used).
- If possible, use a summit isolated sublattice.

dlr.de · Slide 23 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021
Recursive Algorithm

```
function #CLOSURES(lattice S, set T)
    if S is a special case (chain, diamond) then
        return the respective number
    end if
    if S has a nontrivial useful summit isolated sublattice then
        S' \leftarrow the inclusion maximal summit sublattice
        return #CLOSURES(S / \equiv_{S'}, T^{\{\}})·#CLOSURES(S', \emptyset)
   end if
    if S has a useful isolated sublattice with bottleneck then
       S' \leftarrow an inclusion maximal useful isolated sublattice with bottleneck
        return
\#CLOSURES(S \ge S', T^{\{\}} \cup \{S'^{\{\}}\}) \cdot 2(\#CLOSURES(S', \emptyset) - 1) + \#CLOSURES(S \ge S', T^{\{\}})
   end if
    compute and return |C(S)_T| by some brute force algorithm
end function
```


$\label{eq:solution} dlr.de \cdot Slide 24 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021 \\ Running Time Considerations$

- In general, there are exponenially many closure systems
- Brute force algorithms may take also exponential time
- Speed-up expectable if computation of isolated sublattices can be done in polynomial time
- See short talk on Friday

dlr.de \cdot Slide 25 of 25 > Isolated Sublattices and Closures > Roland Glück > Marseille/Luminy, 3rd November 2021 Future Work

Open issues:

- Identify other special lattices S with simple formulae for the cardinality of C(S)
- More general structures than isolated sublattices with similar suitable properties?
- Implementation and evaluation
- Similar ideas for general orders?
- Applicable to counting monads on categories?

= nar

