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ABSTRACT

In remote sensing, distributional mismatch between the train-
ing and test data may arise due to several reasons, including
unseen classes in the test data, differences in the geographic
area, and multi-sensor differences. Deep learning based mod-
els may behave in unexpected manners when subjected to test
data that has such distributional shifts from the training data,
also called out-of-distribution (OOD) examples. Vulnerabil-
ity to OOD data severely reduces the reliability of deep learn-
ing based models. In this work, we address this issue by
proposing a model to quantify distributional uncertainty of
deep learning based remote sensing models. In particular, we
adopt a Dirichlet Prior Network for remote sensing data. The
approach seeks to maximize the representation gap between
the in-domain and OOD examples for a better identification
of unknown examples at test time. Experimental results on
three exemplary test scenarios show that the proposed model
can detect OOD images in remote sensing.

Index Terms— Out-of- distribution, open set recognition,
robustness, remote sensing

1. INTRODUCTION

Following the trend in computer vision and other fields, deep
learning has revolutionized the field of remote sensing in the
last few years. Deep learning based approaches have been
successfully applied in various remote sensing tasks, includ-
ing classification [1], change detection [2], and image fusion
[3]. Most of these approaches assume that test data is sim-
ilarly distributed as the training data on which the model is
trained. These similarities contain for example geographical
characteristics, identical sets of classes, and the types of sen-
sors used.

Remote sensing deals with a large number of sensors, op-
erating across a variety of different geographies, and often
distinguishes between a large number of classes. Consider-
ing this variation, the above assumptions often do not hold.
There are a few works related to domain adaptation that try
to align the target distribution with the source distribution [4].
However, such methods are only effective when the domain
shift between the source and target is small [4]. Moreover,

they do not consider the presence of unseen and open-set
classes. Deep learning models are likely to fail or behave in
an unexpected way when faced with open-set classes. A deep
model trained on images from a forest area will for example
fail when asked to predict urban images consisting of residen-
tial complexes and parking lots. Similarly, deep models be-
have in unexpected way when fed with data from seen classes
but with a considerable geographic variation. For example,
a model trained on European urban area (where skyscrapers
are rare) will fail when asked to predict for images from most
Asian urban areas. When deep learning based systems fail,
they do not provide sufficient clue to the user and can give a
wrong prediction, yet with high confidence. To address this
issue, predictive uncertainty estimation has recently emerged
as a research topic in the machine learning community [5].
Uncertainty estimation informs users about the confidence on
a prediction, thus gives a hint on the reliability of such sys-
tems and possible weaknesses.

Deep learning based classification models are prone to
predictive uncertainties from three different sources [5]:
model or epistemic uncertainty, data or aleatoric uncertainty,
and distributional uncertainty. Epistemic uncertainty is uncer-
tainty caused by the model parameters while aleatoric uncer-
tainty arises from complexities related to the data distribution,
e.g. class overlap in the data. Distributional uncertainty can
be also seen as a special case of epistemic uncertainty and
stems from a distributional mismatch between the training
and the test data. In remote sensing distributional uncertainty
may arise due to various reasons, as unseen classes, geo-
graphic differences, and sensor differences. Considering its
high relevance in remote sensing, our work focuses on the
distributional uncertainty [6].

Our work is based on a Dirichlet Prior Network (DPN)
that separately models different aforementioned uncertainty
types. The Dirichlet distribution is a distribution over the
categorical distribution, i.e. it can model uncertainty on a
soft-max output of a classification model. DPNs separate in-
distribution and OOD examples by producing sharp Dirich-
let distributions for in-domain examples (low deviation in the
soft-max output) while producing flat Dirichlet distributions
for OOD ones (high deviation in the soft-max output) [5].
In particular, we base our work on an extension of the DPN



classifier [7] that focuses on increasing the representation gap
between in-domain and OOD examples. We experimentally
show that the proposed approach is able to detect OOD exam-
ples in remote sensing images, thus improving the reliability
and robustness of deep learning based models in remote sens-
ing. To the best of our knowledge this is the first work that
specifically addresses out-of-distribution detection in remote
sensing.

2. PROPOSED METHOD

In remote sensing image classification, images x and their
corresponding labels y can be characterized using their dis-
tribution p(x,y). In practice, we only have a finite dataset
D = {z;,y; }?;1 corresponding to the distribution p(x, y).
Since the training data is a random subset and the training
process is also affected by randomness, Bayesian neural net-
works model the parameters 6 of a neural network as a ran-
dom variable. For a classifier with parameters 6, the predic-
tive uncertainty on a prediction w is then given by p(y =
wlz*, D) = [ p(y = w|z*,0)p(0| D)do.

The sources of predictive uncertainty [5] can be broadly cate-
gorized into the following three categories:

1. Epistemic or model uncertainty characterizes the uncer-
tainty caused by the network parameters and structure,
trained on a finite training dataset. Additional training
data can reduce epistemic uncertainty.

2. Aleatoric or data uncertainty arises from the complex-
ity in the data distribution, e.g. class overlap and label
noise, as data having different values of y may have
very similar representations in x.

3. Distributional uncertainty arises from a mismatch be-
tween the training and the test data distribution. In this
case, the test data is distributed by p’(z, y) # p(z,y).

Approaches as Bayesian Neural Networks and deep ensem-
bles consider the distributional uncertainty as part of the epis-
temic uncertainty. These approaches seek to explicit predict
the aleatoric uncertainty and to quantify the epistemic uncer-
tainty by performing several predictions with different model
parameters [8].

2.1. Dirichlet Prior Network

Dirichlet distributions are popularly used as a prior distribu-
tion in Bayesian learning [9]. Motivated by this, Malinin and
Gales [5] proposed Dirichlet Prior Networks (DPNs). DPNs
are deterministic neural networks that efficiently mimic the
behavior of Bayesian Neural Networks by parameterizing a
Dirichlet distribution over the categorical distribution given
by a soft-max classification output. Convenient to remote
sensing applications, any neural network with a soft-max ac-
tivation can be considered as a DPN. A Dirichlet distribution

over K classes is characterized by concentration parameters
{a1,...,ax} > 0. For a DPN, the concentration is given by
the exponentials of the network’s logit values z,

a = exp(zk(z™)) . (1

The sum of the concentrations oy = a1 + ... + a g is called
the precision of the distribution. The larger the precision, the
sharper is the Dirichlet distribution.
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Fig. 1. Different desired predictive uncertainties shown over
the unit simplex (cf. [7]): (a) In-domain confident, (b) In-
domain aleatoric uncertainty, (c) OOD (with DPN [5]), (d)
OOD (with DPN™ [7]).

For in-domain samples where the classifier is confident,
DPNs aim to produce an uni-modal distribution at the corner
of the solution simplex with the correct class (Figure 1(a)) [5].
For in-domain samples with high data uncertainty DPNs aim
to produce a sharp distribution at the center (Figure 1(b)) and
for OOD data a flat distribution (Figure 1(c)). However, for
in-domain examples with high aleatoric uncertainty among
multiple classes, DPNs could also produce flat Dirichlet dis-
tributions [7], what often leads to representations which are
indistinguishable from OOD examples. To overcome this,
Nandy et al. [7] proposed the DPN~ approach. DPN™ aims
at learning a sharp multi-modal distribution (g << 1) in-
stead of a flat uni-modal distribution for OOD examples.
Additional, Nandy et al. chose the DPN parameters in a way,
that the loss simplifies to the cross-entropy plus a precision
regularization term.

The precision regularization is achieved by introducing a
bounded regularization term

K
1
/o . .
a = 3¢ ,}_1 sigmoid(zx(x))

as a regularizer along with the cross-entropy loss. This gives
the following two loss formulations for in-domain and OOD
examples:

Lin(0;Ain) :=Ep,, (2 [~ logp(ylz,0) — Ainag]  (2)
and
Acout (97 )\out) = EPout(z,y) [H(‘e(uyp(y|m7 9)) - Aoutaé):l . (3)

U denotes the uniform distribution over all classes, H.. de-
notes the cross-entropy function, and the precision is con-
trolled by two hyper-parameters \;,, > 0 and A\, < 0. The
combined loss-function is given by

[*(0, Ys )\'L'ru >\out) = £1n(07 >\'m,) + 'Vl:out(e; )\out), (4)
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Fig. 2. A visualization of the training procedure for the con-
sidered DPN ™ approach.

where the in-domain and OOD samples are balanced by a fac-
tor vy > 0.

For in-domain examples which are confidently predicted,
the cross-entropy loss maximizes the logit value of the correct
class. However, for in-domain samples with aleatoric uncer-
tainty, the optimizer maximizes sigmoid(z (x)) for all classes
k, thus yielding a sharp but centered distribution. By choos-
ing Aoyt < 0, DPN™ produces uniform negative values for
2 (z*) for an OOD example z*. This leads to ap, << 1 for all
k =1,..., K, and thus an OOD sample yields a sharp multi-
modal Dirichlet distribution with uniform weights at each cor-
ner of the simplex (Fig 1(d)). Figures 1(b) and 1(d) are more
distinct over the simplex, making the OOD samples easier to
distinguish from the in-domain ones. In Figure 2, a visualiza-
tion of the training process of DPN™ is given.

3. EXPERIMENT AND RESULTS

We want to test the performance of DPN™ for OOD detection
on remote sensing data. In order to evaluate the gap between
in-domain and OOD samples we use the same measures as in
[7], namely mutual information, maximum probability, and
the precision cg. The general performance is characterized
by area under the receiver operating characteristic (AUROC)
scores based on these three measures.

Test dataset: We use the So2Sat LCZ42 dataset [10] for

Table 1. Resulting AUROC scores (times 100) of the pro-
posed DPN™ and the compared DPNy,, and ENN classifiers.
The scores are based on maximum probability, mutual infor-
mation, and precision for the DPN™ . The results are given as
mean and standard deviation of five runs.

Max. Prob. Mutual Info. ag
DPN™ 98.58 +£0.89 | 99.35+0.29 | 99.34 +0.29
Test Case 1 DPNforw | 95.87 £2.28 | 54.74 +9.97 | 50.59 + 10.48
ENN 75.64 +5.70 | 75.33 £4.46 | 76.75+2.84
DPN™ 78.65 +0.61 | 89.53 £0.53 | 89.67 +0.54
Test Case 2 DPNgorw | 44.65 +£5.09 | 34.21 £7.84 | 33.09 &+ 7.47
ENN 71.76 £0.90 | 71.75£0.35 | 68.80 £ 2.23
DPN™ 91.79 £0.20 | 95.52+0.29 | 95.52 +0.38
Test Case 3 DPN¢orw | 71.89 +4.53 | 12.26 + 3.10 11.80 £ 2.71
ENN 58.89+0.70 | 58.17£1.23 | 56.83 +£2.02
MP: 0.97 MP: 0.77 MP: 0.246
MI: 0.00002 MI: 0.0 MI: 1.537
ag: &~ 107 ap: = 1016 ap: 0.692
Class 2 Class 2 Class 5
MP: 0.105 MP: 0.125 MP: 0.333
MI: 2.118 MI: 1.686 MI: 0.272
ap: 0.138 ap: 0.602 ap: 11.43

Class G

Class G Class G

Fig. 3. A visualization of six example samples from the left
out 30% of the training set of the So2Sat LCZ42 data set.
The results are based on the DPN ™ network trained on urban
(in-distribution) and vegetation (out-of-distribution) samples.
One can clearly see the differences in the metrics. The two
examples on the right side do not fit well into our assump-
tions, possibly caused by the clear edge in the water image
and the blur in the urban image.

evaluating the OOD detection performance. The dataset con-
sists of local climate zone (LCZ) labels of approximately half
a million Sentinel-1 and Sentinel-2 patches. The local cli-
mate zones are described by 17 classes, 1-10 corresponding
to urban areas, A-F corresponding to non-urban areas, and G
corresponding to water body. We perform our experiments on
the Sentinel-2 data and consider the following three combina-
tions:

1. Urban classes as in-domain data, non-urban ones as
OOD data during training, and water body as OOD data
during testing.

2. Urban classes as in-domain data, water body as OOD
data during training, and non-urban classes as OOD
data during testing.

3. Red channels (corresponding to all 17 classes) as in-
domain, green channels as OOD during training, and
blue channels as OOD during testing.



Deep architecture: For all experiments, we use the base-
line approach for the LCZ42 dataset as proposed in [11], how-
ever without the multilevel feature fusion.

Comparison methods: We compare the proposed method
to the DPN with a forward KL-divergence loss [S] (DPNsory).
This method uses OOD samples during training, similar to the
proposed approach. We also compare to the Evidential Neu-
ral Network (ENN) with expected KL-divergence as loss and
a precision regularization as proposed in [12]. This method
does not need OOD samples during training. We evaluate the
performance on a left-out 30% subset of the training set (eval-
uation on seen regions) in order to avoid OOD effects caused
by a region shift.

Results: In Table 1 the results based on five runs for each
setting are presented and in Figure 3 six examples are shown.
The DPN™ clearly outperforms the other methods in sepa-
rating in-domain and OOD examples and yields significantly
more homogeneous results. On the contrary, optimizing to-
wards a specific target concentration as done for DPNiyy,
shows unstable performance. The usage of the mutual infor-
mation or the precision value « contributes to the increment
of the AUROC scores for the DPN™ approach for all test
instances. For the other approaches, which do not aim at min-
imizing ag for OOD samples, this is not the case. Among the
different test cases, separating urban and water classes with
vegetation classes as OOD samples during training is clearly
the easiest task, while separating urban and vegetation classes
with only water as OOD training samples is more difficult.

4. CONCLUSION

In this paper, we proposed a method for distributional uncer-
tainty quantification in deep learning models for remote sens-
ing. The method ingests in-domain and OOD images during
the training process and is subsequently used for OOD detec-
tion in the test images. It adopts a Prior Network to estimate
different types of uncertainty by producing sharp Dirichlet
distributions for in-domain examples and multi-modal Dirich-
let distributions for OOD examples. The need of OOD exam-
ples at training time represents the largest restriction of the
method. We tested the method on the So2Sat LCZ42 dataset
considering open set classes and selected bands as OOD. In
the future, we will perform extensive experiments on differ-
ent geographic areas, considering one geographic area as in-
domain while treating the other as OOD. In such settings, the
effect of classes like water as in-domain and OOD examples
at the same time is an open but relevant question. Further-
more, we plan to extend the proposed method to multi-sensor
domain and multi-sensor data fusion.
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