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Abstract—Conventional remote sensing data analysistechniques
have a significant bottleneck of operating on a selectively chosen
small-scale dataset. Availability of an enormous volume of data
demands handling large-scale, diverse data, which have been made
possible with neural network-based architectures. This article ex-
ploits the contextual information capturing ability of deep neural
networks, particularly investigating multispectral band properties
from Sentinel-2 image patches. Besides, an increase in the spatial
resolution often leads to nonlinear mixing of land-cover types
within a target resolution cell. We recognize this fact and group
the bands according to their spatial resolutions, and propose a
classification and retrieval framework. We design a representation
learning framework for classifying the multispectral data by first
utilizing all the bands and then using the grouped bands according
to their spatial resolutions. We also propose a novel triplet-loss
function for multilabeled images and use it to design an inter-
band group retrieval framework. We demonstrate its effectiveness
over the conventional triplet-loss function. Finally, we present a
comprehensive discussion of the obtained results. We thoroughly
analyze the performance of the band groups on various land-cover
and land-use areas from agro-forestry regions, water bodies, and
human-made structures. Experimental results for the classification
and retrieval framework on the benchmarked BigEarthNet dataset
exhibit marked improvements over existing studies.

Index Terms—Interband retrieval, multilabel classification,
multilabel cross triplet loss, multimodal classification, Sentinel-2,
land-cover classification.

I. INTRODUCTION

MAGES from multispectral and hyperspectral sensors have

found wide applications, ranging from mining [1], oceanog-
raphy [2], agriculture [3], meteorological studies [4], geological
observations [5], to name a few. Multispectral satellites consist
of several spectral bands, which image the land surface with mul-
tiple spatial resolutions. Each spectral band essentially captures
specific physical information from these distinctive land surface
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covers. This information essentially depends on the interaction
of the electromagnetic waves of particular wavelengths with the
physical and geochemical characteristics of the land cover sur-
face within a sensor resolution cell. Therefore, this information
helps in efficiently characterizing different land cover classes,
such as vegetation and water-bodies.

Understanding the data has become crucial using neural net-
works, followed by advances in various deep learning frame-
works. While using a conventional dense network, we usually
neglect the information about the neighborhood pixel. This
information holds vital information about the change of pixel
characteristics [6]. For example, let us consider an image that
consists of a water body and a beach. A conventional dense net-
work might not focus on the boundary of these two land features.
However, a convolutional neural networks (CNNs) considers
the spatial heterogeneity in terms of their spatial distribution
and neighborhood pixel information. Hence, CNNs will be able
to differentiate these various land cover types along with their
corresponding boundaries. Moreover, the main advantage of
CNNs is that it automatically detects essential features from
contexts [7].

Several studies aim to bridge the gap between the feature em-
beddings of multisensor imagery. However, as different sensors
acquire images over a different time, a particular region in the
acquired data may suffer from changes in the local weather or
land cover (during a harvest season or post a natural disaster). In
such a case, these multisensor acquired images are more fit for
a change detection task rather than a fusion or cross/multimodal
retrieval task. Drawing motivation from this, we aim to look into
multimodal data classification and retrieval wherein there has
been no change within the acquisitions. We choose to consider
imageries acquired by a single satellite for this objective and
propose using different bands grouped based on their spatial
resolution as different data modalities. This article primarily
aims to study classification and retrieval among interband groups
with precisely the same region data without any externally
induced change.

To utilize all the bands together, we either downsize, in-
terpolate, or super resolve a few bands to bring them to a
common spatial resolution. However, a significant drawback
in multilabeled data is that we often get a nonlinear mixing
of end-members within a target land-cover region with in-
creased spatial resolution. Therefore, if we downsize the im-
ages, we end up missing a considerable amount of information.
Hence, in this study, we group the bands according to the band
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Fig. 1. Block diagram of the complete framework.

spatial resolutions and propose a classification and retrieval
framework.

Several studies recommended using handcrafted feature ex-
tractors to develop a robust multilabel classification model.
The normalized difference vegetation index (NDVI) is the most
widely used descriptor for green vegetation region detector [8].
Likewise, there are several such conventional handcrafted in-
dices used for detecting various land-cover regions. With the
onset of CNN-based feature extracting procedures, the com-
plexity of different classes exploded with deep neural networks
predominantly handling the classification task [9], [10]. Several
classification studies have been reported using multispectral
satellite data [9], [11]-[13].

While classification has remained a classical problem descrip-
tion in remote sensing (RS), retrieval tasks have found more
attention recently with extensive data acquisition by various
satellite missions using different sensor technologies. Therefore,
this challenges having an interband group retrievable frame-
work [14]. Since each band provides distinct land-cover re-
flectance properties, it is imperative to have an interband group
retrieval framework. Recently, we have seen a lot of focus
on cross-sensor/cross-modal retrieval techniques in RS using
various learning techniques [15], [16]. Some of the notable
works in this domain are presented in [17]-[20]. Several literary
works in this domain have tried to exploit the conventional triplet
loss or the Siamese loss function to discriminate classes within
a fine-grained dataset. One major shortcoming in using this for
a multilabeled dataset ignores the presence of common classes
between a positive class image and a negative class image to
the anchor image. This condition leads to the learning up of
scattered clusters for each class in the embedding space. To
overcome this concern, we propose a modified triplet loss for
multilabeled images.

Once we establish an interband group retrieval framework, it
is easier to group certain bands based on their spatial resolution
and consequently study the band properties of those modalities.
To better understanding channel properties in SAR RS appli-
cations, various works have been proposed (e.g., [21], [22]).
However, to the best of authors knowledge, no such work has
been carried out on multispectral sensors, which uncovers many
more widespread applications. We elaborate on the classification

and retrieval performance of our framework on various band
groups and comprehend the overall band group properties. We
show an overview of the problem statement in Fig. 1.

How are we different? In this work, we perform a comprehen-
sive study of the band properties of the Sentinel-2 multispectral
data. First, we design a multilabel classification network for clas-
sifying the BigEarthNet dataset. The proposed network is better
than the state-of-the-art (SOTA) and yields a good performance.

We then split the data into three groups based on the spatial
resolution of each band. For each of these groups of bands,
we test the interband multilabel classification performance. We
utilize the same model, which outperforms the SOTA in clas-
sification with all the bands combined for this purpose. While
keeping the network architecture intact, we vary the number of
convolution kernel channels depending on the number of bands
in the corresponding modality. The proposed method produces
good discriminative features to describe the multilabeled land
cover classes with lower dimensions.

Furthermore, we propose an interband multilabel retrieval
architecture using a novel triplet loss function. We demonstrate
that this function is better than the conventional triplet loss
function for multilabeled images. This study provides an as-
sessment of bands that effectively contribute toward better land
cover retrieval tasks. Finally, we also study the properties of
each band and explore their contribution in classifying each
land use/land cover class. None of the literary works using
multispectral satellites have studied its band properties to the
best of our knowledge.

We summarize the main contributions of this article as fol-
lows.

1) We propose a multilabel classification network using rep-
resentation learning using all the bands of the Sentinel-2
that performs comparably to the SOTA performance on
the large-scale benchmarked BigEarthNet dataset [23].
Using the abovementioned framework, we analyze the
multilabel classification performance of the band group-
wise (bands clubbed together by their spatial resolution).
We also find class-wise identification of each land-cover
class in different band groups.

We propose a novel modified cross-triplet loss-based met-
ric learning technique for retrieving multilabeled images

2)

3)
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and demonstrate its efficacy over the conventional triplet
loss in the experimental section.

4) Using the proposed modified cross-triplet loss, we de-
sign an interband group retrieval framework among these
modalities.

II. RELATED WORKS

With the onset of deep learning technologies, the past decade
has successfully handled various heterogeneous applications in
RS. The deep learning-based approach primarily has demon-
strated its superiority in feature extraction in several types of
satellite images. This strategy has opened up a new research
extent in RS for data classification and retrieval. The following
sections discuss current relevant work using deep learning in:

1) classification;

2) retrieval;

3) understanding band properties, respectively.

A. Classification in RS

In RS, deep learning techniques have been successively and
successfully utilized in classifying images acquired from dif-
ferent sensors. Different sensors capture different information,
which necessitates having robust classifiers compatible with
various forms of RS data. For multispectral satellite data clas-
sification, various studies have been conducted [9], [11]-[13].
Chaib et al. [9] proposed a simple framework by exploiting
the features constructed by a VGG pretrained network [24].
They perform a discriminant correlation analysis using these
features for refining the original features using information
fusion, enabling them to obtain a good scene classification
framework. Xia et al. [11] proposed a benchmarked dataset for
aerial scene classification. In [12], the authors reported a similar
very-high resolution land cover classification by augmenting the
RS data and using a standard transfer learning from a pretrained
network. Cheng et al. [13] reviewed the important literature
in RS for scene classification while also proposing another
benchmarked dataset. Similarly, quite a few studies have also
reported hyperspectral image classification [25]-[28], synthetic
aperture radar (SAR) classification [29], [30], polarimetric SAR
(PolSAR) classification [21], [31], RS object detection [16], etc.

Xu et al. [32] classified land cover types using the features
derived from a CNN architecture. They utilized the derived
features directly into the support vector machine classifier for
the classification purpose. According to their study, these de-
rived features enhanced the classification accuracy by 2.65% as
compared to other traditional methods. In another study, Runyu
et al. [33] proposed a semisupervised multi-CNN ensemble
learning method to classify different land cover types. Their
proposed method outperforms other existing methods by 3% to
4% overall accuracy score. Therefore, these extracted features
are essential in classifying several land cover classes within a
study area [34]-[39]. Moreover, CNN has gained importance
in land cover classification due to its flexibility and adaptation
capability in several land cover scenarios for different sensing
platforms.
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B. Retrieval in RS

There exists a plethora of work in the literature on image
retrieval in RS [40]-[43]. Most retrieval frameworks create a
hashed feature space, as it is much faster to search for the
nearest neighbor using a hamming distance measure. In [41],
the authors proposed a kernel-based nonlinear hashing tech-
nique for retrieving large-scale RS archives. They leverage the
semantic similarity of the annotated images in the dataset to
construct the hashed space. Xia et al. [44] provide a detailed
review of all the important literary works in RS unimodal data
retrieval.

While most of the literary work is on unimodal data re-
trieval, exploiting the robust feature extraction capability of
CNNss, new studies are appearing that address cross-modal data
retrieval. The need for multimodal approaches is particularly
more evident in the area of RS data analysis due to the avail-
ability of a large number of satellite missions with various
sensors and complementary information obtained by multiple
cross-sensor acquisitions [14], [19]. A similar study [15] has
addressed this strategy using SAR and multispectral images and
thereby has proposed the SEN12MS dataset, which consists of
Sentinel-1 and Sentinel-2 images over the same patch across
various geographical locations. SAR images provide backscatter
information of a target at microwave wavelength that penetrates
the atmospheric layer and often provides added information
than multispectral data. These cross-sensor retrieval techniques
also extend to retrieving unseen class images upon deployment,
commonly called zero-shot cross-modal retrieval [45]. As one
of the major bottlenecks of solving RS problems using deep
learning is the lack of annotated samples for training, these
cross-sensor zero-shot retrieval has received a lot of attention
recently [18].

C. Physical Parameter Estimation or Understanding Band
Properties

Various studies have been proposed using multiple sensors
to interpret physical parameters from RS data. For example,
one uses the double-bounce scattering mechanism to clas-
sify urban areas and city blocks. In contrast, volume scat-
tering helps detect forests and dense vegetation areas from
PolSAR data. Similarly, surface scattering characterizes flat
terrains and ocean covers. Zhao et al. [21] used a contrastive-
regulated CNN to learn the physical parameters from Pol-
SAR images. In [22], the authors utilized SAR images to
learn the spatial texture and backscattering patterns from target
areas.

Several studies have proposed classification by exploiting the
physical properties of each spectral band and the corresponding
target behaviors using multispectral data [46]. However, most
of these studies directly utilize these bands for specific tasks
of classification and retrieval. For example, one uses thermal
infrared bands to measure the land surface temperature changes.
Similarly, bands three, five, and seven from Landsat-8 are used
for snow cover detection [47]. Likewise, each band has its unique
physical characteristics, which are suitably exploited for various
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TABLE I
EXAMPLES OF FEW TYPICAL APPLICATIONS OF EACH SPECTRAL BAND OF SENTINEL 2

Band Res. (m) Imagery Utility

Band 1 60 Coastal aerosol Coastal and aerosol studies.

Band 2 10 Blue Bathymetric mapping, distinguishing soil from vegetation and deciduous from coniferous vegetation.
Band 3 10 Green Emphasizes peak vegetation, helps in assessing plant vigor.

Band 4 10 Red Discriminates vegetation slopes.

Band 5 20 Vegetation Red Edge  Useful estimator of green Leaf Area Index [8], Emphasizes biomass content and shorelines.

Band 6 20 Vegetation Red Edge  Useful for estimating canopy chlorophyll [8]. Discriminates moisture content of soil and vegetation.
Band 7 20 Vegetation Red Edge  Applications similar to Band 5 and 6.

Band 8 10 Near Infra Red Detect healthy/unhealthy vegetation and discriminates dense canopy from urban and water bodies.
Band 8A 20 Vegetation Red Edge Detects bare soil and built-up areas, and along with Band B12, helps in calculating moisture indexes.
Band 9 60 Water Vapour Primarily used for water vapour detection.

Band 10 60 Short Wave IR Detection of Cirrus clouds

Band 11 20 Short Wave IR Discriminates moisture content of soil and vegetation, monitor health of crops, thermal mapping.
Band 12 20 Short Wave IR Discriminates soil and vegetation moisture, geological faults, features and formations, and lithology.

(® (h) ®

Fig. 2. Sample instances of TCC and FCC of a few multilabeled image patches. FCC constructed using band 8, 4, and 3 as RGB, while TCC images are
synthesized by using the bands 4, 3, and 2 as RGB. (a) Coniferous forest, mixed forest, sea and ocean, (b) Discontinuous urban fabric, industrial or commercial
units, nonirrigated arable land, (c) Nonirrigated arable land, Pastures, complex cultivation patterns, (d) Coniferous forest, transitional woodland/shrub, Peatbogs,
(e) Discontinuous urban fabric, nonirrigated arable land, broad-leaved forest, (f) Bare rock, sea and ocean, (g) Fruit trees and berry plantations, Sclerophyllous
vegetation, transitional woodland/shrub, (h) Continuous urban fabric, (i) Nonirrigated arable land, agriculture and natural vegetation, mixed forest, inland marshes,
water bodies.

applications. We tabulate specific critical applications using each III. DATA PREPARATION AND GROUND TRUTH GENERATION
spectral band of Sentinel-2 as reported in the literature in Table I.

. . . . A. Data P 1
Robinson et al. [48] proposed a multiresolution data fusion ata Freparation

method for high-resolution land cover mapping. They identify
the challenges of deep learning-based land cover mapping and
propose techniques to overcome these challenges. They pri-
marily tackle a multimodal/multiresolution data fusion task to
develop an efficient land cover mapping framework. To this end,
the authors use a large-scale database comprising over eight
trillion pixels to train the model.

The Sentinel-2 satellite has 13 bands with different spatial
resolutions and different sizes of images. Sumbul er al. [23]
reported the BigEarthNet dataset that was created using the
Sentinel-2 images. Here, we demonstrate our work on this
BigEarthNet dataset. Fig. 2 shows the true color composites
(TCCs) and false-color composites (FCCs) of a few sample
images from the BigEarthNet dataset over a diverse subset of
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Fig. 3.

land-cover classes. The FCCs are made using bands 8, 4, and 3,
while the TCCs are made using bands 4, 3, and 2.

In the literature, the spatial resolution is shown to be one
of the critical parameters for the classification of diverse land
cover types [49], [50]. The effectiveness of any classification or
retrieval problem primarily depends on the texture information
in the data and the existence of pure end-member within a pixel.
With an increase in the spatial resolution, the possibility of
detecting a pure end-member in a pixel reduces due to the high
chance of nonlinear mixing of several other end-members within
the resolution cell. This characteristic becomes especially more
crucial and challenging for multilabeled RS datasets.

It is noteworthy to say that, due to the tradeoff between
spectral and spatial resolutions, lower frequency, and high spec-
tral resolution bands require coarser spatial resolution. The
BigEarthNet multilabeled data obtained from the Sentinel-2
sensor have three different spatial resolutions of bands at our
disposition depending on their bandwidth and central frequen-
cies. Therefore, we have considered grouping the bands based
on their spatial resolution from the available bands in Sentinel-2
data in this study. We split the bands according to their spatial
resolutions (viz., 10 m, 20 m, and 60 m), and analyze their con-
tributions to segregate different land-cover classes. The database
contains image patches of size:

1) 120 x 120 pixels in the 10 m bands;

2) 60 x 60 pixels in the 20 m bands;

3) 20 x 20 pixels in the 60 m bands.

The band number 10 (out of 13 bans) was excluded from
the dataset due to the lack of surface information. Therefore, we
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Land-cover classes versus the number of image patches of each of these categories. Plot distribution highlights heavy data imbalance.

have two bands with 60 m resolution, i.e., band number 1 (coastal
aerosol) and 9 (water vapor), which we refer to as M1. There
are six 20 m bands, i.e., band number 5 (vegetation red edge), 6
(vegetation red edge), 7 (vegetation red edge), 8 A (vegetation
red edge), 11 (short wave infrared), and 12 (short wave infrared),
which we refer to as M2. There are four 10 m resolution, i.e.,
band 2 (blue), 3 (green), 4 (red), and 8 (near-infrared), which
we refer to as M3.

For the initial classification, we combined band groups (i.e.,
M1, M2, and M3). We simultaneously obtain the three groups of
data from the same satellite (i.e., same sensor). In this work, we
also use these different groups, i.e., M1, M2, and M3, separately
to analyze their contribution to each land-use/land-cover class.
Further investigations involve group-wise classification and in-
terband group retrieval along with band properties interpretation.

The BigEarthNet is a multilabel dataset with labels from 43
different land cover categories. These labels were used from the
Corine land cover database. The dataset consists of a total of
590 326 image patches generated from 125 Sentinel-2 image
tiles. These tiles were selected from data acquired from June
2017 to May 2018.

B. Training Data Imbalance

Fig. 3 shows the bar graph of the number of image instances
corresponding to each land-cover class. One can see that the
difference between the most and the least frequently occurring
classes varies in the range of approximately more than 200000
samples. This disparity causes a large bias on the network to
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learn the more commonly occurring classes. The less frequently
occurring classes are seldom learned. So in the training se-
quence, we need to carefully take care of this fact by either
using the weighted average of the number of samples in each
class distribution or cleverly select the batches while training
the network.

Some of the commonly used strategies for handling data im-
balance in the literature are based on rebalancing the dataset and
cost-sensitive learning of classifier [S1]. Naive-over and under-
sampling [52], selective decontamination [53], SMOTE [54],
GAN-based augmentation [55] are some of the commonly used
rebalancing techniques. The cons-sensitive learning approach
involves adding focal loss [56] and diversity regularizers [51].

IV. METHODOLOGY

Preliminaries: The idea behind the multilabel classification
task is to find a mapping function that can help get the labels
given an input image. We conduct our studies through the
following steps.

1) Multilabel image classification by individual band groups
(M1, M2, and M3) and studying the importance of each
band group for each class.

2) Designed an interband group, multilabel image retrieval
network.

3) Understanding the band properties and their analysis.

We explain these steps in the following sections in detail.

A. Interband Classification

Multilabel image classification is a more challenging problem
than single-label image classification algorithms. This is mainly
due to preserving the accountability of every minute detail
from different categories of images. For a dataset consisting of
Y =1{1,2,..., L} distinct land-cover classes, we get Y; C 2
corresponding combinations of possible land-cover multilabels.
Here, 2% is the power set of the set of all labels. This shows
how the challenge of classifying multilabel images increases in
many folds.

Ideally, we use a softmax function after the last layer of
the neural network for a single-label classification problem.
After the last layer, we use a sigmoid activation function for
a multilabel classification framework to get the class labels.
Whether a class is present or not is given by an indicator function,
which we set high only when the probability of getting a class
is higher than some preset threshold. Formally we define this as
given in equation 1. Here, A,, is the indicator function for class
n, py, 18 the probability for nth class, and threshold «

Ap = I[pr > al. 1)

We try to keep the precision to recall ratio as close to one as
possible. If the ratio is less than one, we increase the threshold
constant . Similarly, if the ratio is greater than one, we reduce
the value of the threshold constant. We tune the threshold value
in this way by a grid-search-based method.

We use the three spatial resolution-wise compiled groups of
the data (M1, M2, and M3) from the same satellite for this set
of experiments. Since we consider all the three modalities from
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the same satellite, all the groups capture the image simultane-
ously. There is no time delay between them. Here, we train
the previously designed network for a group-wise multilabel
classification to identify the land-cover classes of the image
patches.

Training: We design a representation learning network for
tackling the problem of multilabel classification. We apply a
cubic-interpolation to the 20 m and the 60 m bands of each
image to bring them to the same image dimension as the 120-
pixel images. We choose to interpolate the data to be consistent
with the other state-of-the-art architectures [23], [57], [58] while
preserving comparison fairness among them.

We use four sets of convolution—pooling—nonlinearity
blocks with the filter sizes as (3 x 3 x channels x 32), (3 x 3 x
32 x 64), (3 x 3 x 64 x 128), and (3 x 3 x 128 x 256). The
size of the initial convolution kernel depends on the group that
we are using. For M1, we use four channels, six channels for M2,
and two channels for M3. We use the leaky_ReL.U(.) function to
inject nonlinearity into the designed model. We also use batch
normalization after every convolution and dropouts after every
pooling layer. Instead of using only the max-pooling layer, we
perform max-pooling on half the channels and average pooling
on another half of the channel.

This is then followed by adding deconvolution layers and
up-sampling. The middle layer that gets created acts as the
bottleneck layer that consists of most of the propagated in-
formation at a much smaller dimension. We add an auxiliary
classifier at this bottleneck layer as used in InceptionNet [59].
The auxiliary classifier is attached to intermediate layers of the
network, and it helps in improved convergence during training by
combating the vanishing gradient problem. The auxiliary clas-
sifier prevents the bottleneck weights from dying out. Besides,
two layers of deconvolution layers of the dimensions are similar
to the convolution layers. We perform up-sampling before each
deconvolution layer. The final layer is followed by two fully
connected layers of dimensions 256 and 128. Finally, this is
followed by a sigmoid activation function after the last layer to
get the multiclass labels. The final loss is a sum of the auxiliary
classifier and the final layer multilabel classification loss.

We split the dataset into a 70:30 train:test ratio. To account
for the considerable class imbalance and ensure proper training,
we made training batches comprising of at least one instance of
each class in every batch. This ensures that all the classes have
the same contribution to the model in the training process. We
initiate the model using Xavier weights. Since we do not have
much information about the data, Xavier assigns weights from a
Gaussian distribution with zero mean and some finite variance.
Xavier weights keep the variance the same in each passing layer,
preventing vanishing, or exploding gradients problems. We train
the network using the standard back-propagation algorithm us-
ing a mini-batch stochastic gradient approach and minimizing a
momentum optimizer.

B. Interband Group Retrieval

This section aims to learn a shared latent space equivalently
representing all three band groups, M1, M2, and M3. The main
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Fig. 4. Overall pipeline of the proposed interband retrieval framework using
the modified-triplet function and cross-entropy loss. The inference phase from
the synthesized shared latent space is shown in the right.

idea behind designing this unified latent space is to bring the
similar class instances of different band groups nearby while
pushing diverse class instances of different band groups far apart
from each other. This effectively implies that we reduce the
intergroup distance and increase the intragroup distances within
each class.

To synthesize this common shared space, we design a pipeline,
as shown in Fig. 4. We extract the 128-d features from the
previously trained network for multilabel, band group-wise clas-
sification. We save this final layer feature weights corresponding
to each image instance from the corresponding trained classifier.
We add a series of fully connected neural network layers from
the three pretrained band groups. For this part, we stack three
fully connected layers of dimensions 128, 128, and 64.

Modified-cross-triplets loss: The conventional triplet loss is a
type of similarity learning loss function. This work uses the basic
idea of training a multilabeled triplet loss in conjunction with
satellite images from different band groups. We aim to design
a domain-agnostic latent space for an interband group retrieval
setup. To achieve this, we employ three branches of fully con-
nected networks from the input data stream. Each of these data is
derived from the pretrained weights of each instance. We use the
proposed modified cross-triplet loss-based network to train this
network with learnable parameters represented by 6. We train
the network until it reaches a very low loss value of e.

For this purpose, we sample the positive exemplars, by con-
sidering image samples from different band groups comprising
the same classes. For an image m} € M; comprising of NV
multilabels ¢y, co,...,c, € C, any image from my € My or
mpy € My, having either the same ground-truth labels or any
subset of the ground-truth labels ¢y, ca, . . .c,, is considered as
a positive exemplar. An instance which has labels apart from
c1,Ca, . ..cy along with a subset of these labels are also consid-
ered as a valid positive exemplar.

Conversely, to select the negative examples, an instance from
aseparate band group, having any labels apartfromcy, co, . . . ,cj,
is considered a negative example for thatimage. Therefore, while
selecting the negative exemplar for a given training sample, we
ensure that y? Ny = @. The standard triplet loss is defined as
(2), where A denotes the anchor image, P represents the positive
exemplar, and /N denotes a negative example

triplet
Lap

= max(||f(4) = f(P)II* = |£(A) = f(N)|* + @,0). ()

If the distance between the anchor and the positive pair is
more than the distance between the anchor and its negative pair,
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we update the weights by minimizing the loss function. We try
to bring the positive sample close to the anchor and push the
negative sample farther from the anchor beyond a margin «. In
this case, we do not consider the distance between the positive
and the negative pairs. Since the data has multiple labels, we
modify the loss function to make the learning more robust. The
proposed similarity loss is given in (3). Here, the first loss term
is similar to the conventional triplet loss function. However,
we use the anchor, positive, and negative data instances from
three different band groups, contrary to the conventional triplet
loss. This term pushes the negative data instance away from the
positive and the anchor data beyond a margin of «. The second
term is added to push the positive and the negative exemplars
apart from each other. This is conditional because only if the
classes of the positive and negative exemplars are completely
nonoverlapping, this part of the loss is to be considered. To
make this conditional, we use an indicator function K

Lia,pny = max(|| f(A4) - f(P)||*
—I£(A) = F(N)* + @, 0)
+ K(P, N) max(—[|f(P) = f(N)|[ +5,0) ()

where K = 1,if PN N # {@}, and « and §3 are the two margin
values. To extend this to a interband setup, we choose A, P,
and N from different band groups. We train the network with
all six combination of triads. The distribution gap between the
two band groups are further moved apart by using a decoder
network. An illustration of the proposed modified-cross-triplet
metric learning is provided in Fig. 5

La,pny =max(||f(A)™ — f(P)™ &
— [I£(A)™ = f(N)™|* + a,0)

+ K(P, N) max(— [[f(P)™ — f(N)™[| + 5,(()‘)‘-)

Selection of positive and negative pairs: We need to feed the
network with triads, with inputs from different band groups to
train the network. For a multilabeled dataset, it is evident that
the number of possible combinations of negative pairs is far
more than the number of possible positive pairs. This could
lead the network to learn the embedding features with a large
intraclass distance in different band groups. To avoid this, it is
crucial how we choose the triads during the training process.
For this purpose, we feed the network with a similar number of
all the six combinations of triads in each mini-batch. The higher
euclidean distance classes between their embedding features are
farther apart from each other in the shared-embedding space.
For example, classes comprising vegetation covers would be
farther from classes containing water. Similarly, a few classes
are closer to each other in the embedding space, as their mutual
euclidean distance is also much smaller. These are classes such
as sea, ocean, water bodies, and water courses. These classes
are required to fine-tune the boundaries of the representation of
instances from each class in the embedding space.

Objective function: In the experiments, we noticed that solely
minimizing the triplet loss is insufficient to train the network



CHAUDHURI et al.: INTERBAND RETRIEVAL AND CLASSIFICATION USING THE MULTI-LABELED SENTINEL-2 BIGEARTHNET ARCHIVE 9891

Anchor Input

1
e
Positive Class
it
i

Negative Class

Inference phase

Hai—

\,

@ CNN + Drop out layer Iﬂ CNN + [Max-poocl Average-pool] H FCN of n-dim.

Fig. 5. Modified cross-triplet metric learning.

Algorithm 1: Inter-band data retrieval using the pro-
posed modified cross triplet loss.
Data: {M, Mo, M3}
Randomly initialize 6.
m? € My, mg € M>, and mg € M;
Construct sets of A, P, and N separately.
while £>¢ do
T, +— {afni,pfnj,n‘;;k}; acA peP,neN,;
min{La,pn) + Ler};
end
Result: Learnt weights 6;

for such a fine-grained multilabeled dataset. While pushing
two different class samples apart, we also need to ensure that
the class, which is driven away does get cluttered with some
other class. For this purpose, we also add a sigmoid layer to
minimize the cross-entropy loss in the network to encode the
class information (5). The cross-entropy loss helps maintain
differentiating attributes among each class within a group, while
the cross-triplet loss aids in bridging the domain gap between the
different groups. Algorithm 1 demonstrates the overall working
framework

3

Lce =Y CE(m;). (5)

i=1

The overall loss function is the sum of the cross-triplet loss
and the cross-entropy loss functions. We refer to the cumulative
loss as £ and define it as (6)

L= Lapny+ LcE- (6)

C. Band Group Properties

It is universally acknowledged in RS that different bands of
a multispectral sensor are essential in capturing diverse land-
use/land-cover regions owing to their absorption characteristics
in that band. However, to the best of authors’ knowledge, no
study has hitherto shown the essential contribution of each of
these bands in capturing their band properties. This article uses
a modified pairwise-triplet similarity loss-based architecture
for interband retrieval while a representation learning network-
based architecture for classifying the different groups.

To study the contribution of each band group in the detection
of each land-use/land-cover class, we examine the class-wise
precision of each land-cover category from the multilabel net-
work trained using each group individually. Finding the accuracy
of recognizing each land-cover class using the three band groups
would provide us an insight into the properties of the bands in
that group. We throw more light to this in the discussion results
and discussion Section V.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

1) Evaluation Metrics: To evaluate the performance of the
multilabel classification for both group-wise and cumulative
framework, we use the conventional precision and recall mea-
sures. Precision is defined as the proportion of the truly positive
to the predicted positives (true positive + false positives). Like-
wise, recall is defined as the proportion of actual positives that
are correctly classified (true positive + false negatives). Conven-
tionally, there is a tradeoff between achieving high precision and
a high recall.

2) Parameter Settings: While training the multilabel classi-
fication network, we choose the threshold o = 0.5. Since there
are many classes, we did not intend to set a very high threshold
value. For the interband retrieval network, we again chose a value
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TABLE II
MULTILABEL CLASSIFICATION PERFORMANCE OF THE PROPOSED FRAMEWORK

K Band group BigEarthNet BigEarthNet-S2
E P@10 Recall P@10 Recall
T S-ONN-Al [23] 6993 7710 - -
VGGNet-All 72.76 68.65 74.32 73.78
i Weakly-supervised [64] 36.77 31.51 - -
K-Branch CNN [17] - - 71.61 78.96
DenseNet-121 [65] - - 79.00 74.60
Inception-v2 [59] 48.23 56.79 54.38 62.07
ResNet50-All 74.54 72.20 76.08 77.60
Regularized ResNet [66] 85 77 - -
Proposed - All 75.65 77.98 79.32 80.54
VGGNet-RGB [24] 47.87 49.85 52.54 55.73
A ResNet50-RGB [60] 51.74 50.28 54.50 52.09
$  S-CNN-RGB [23] 6505 7557 - -
Proposed — RGB 58.23 64.95 60.38 67.43
. ResNet50-Ml1 15.32 14.90 15.42 16.00
S  VGGNet-Ml 14.04 9.65 13.65 12.54
Proposed — 60 m 14.26 16.30 14.83 17.11
o ResNet50-M2 58.54 59.85 58.11 61.78
S VGGNet-M2 55.76 61.86 57.99 64.63
Proposed — 20 m 57.54 62.57 58.43 64.51
«, ResNet50-M3 71.21 72.87 71.30 71.38
S  VGGNet-M3 70.00 65.87 71.07 69.72
Proposed - 10 m 71.34 69.13 73.49 72.75

The bold signifies the best performance.

of 0.5 for both the margins « and /3. Too high value often leads
to dispersed clusters, while too low value does not sufficiently
separate two classes.

3) Implementation Details: Following the experimental pro-
tocol of [23], we split the entire dataset into 60:20:20
train:val:test split. For all the subproblems, we choose a batch
size of 50 for training the network. We select the batches to
have at least one image instance of each of the 43 labels in
each batch. For training the classification networks, we used
a momentum optimizer with a small learning rate of 0.001.
We trained the network for about 1000 epochs until the losses
converged. We saved the model after every 20 epochs and loaded
the best-trained model for the final test. We chose an even
lower learning rate of 0.0001 on stochastic gradient descent
optimizer for the interband retrieval network. We trained it for
about 2000 epochs before saving the best model. We constructed
the triplets as mentioned in Section I'V-B and ensured that each
batch contained at least one anchor image from one of the 43
distinct land-cover classes.

Some of the Sentinel-2 image patches contain a considerable
amount of seasonal snow. Also, while most of the images in this
dataset are selected from regions with less than 1% could cover,
the cloud cover is localized within some patches in some cases.
This includes a substantial number of patches (13%). We con-
ducted another set of experiments by eliminating these patches
from the dataset and refer to this data as BigEarthNet—subset
(S2) subsequently.

Table II shows the comparison of various existing works in
the literature on the BigEarthNet dataset and the BigEarthNet—
subset datasets. Sumbul et al. [57] report their results on two
variants of their model, where they train the network using the
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RGB channels and using all the channels. For our experiments as
well, we have reported the performance of both variants. There is
a tradeoff between precision and recall values, and maximizing
one can lead to a fall in the other. Hence, it is important to
maximize precision and recall optimally to attain ahigh F7 score.
In addition to this, we also compare our results with [23], [24],
[59], [60]. Although the work in [23] attains a high recall value,
its corresponding precision value falls considerable, taking a toll
on their F} score. Some existing literary works like [17], [58],
[61]-[63] utilize variants/subsets of the BigEarthNet dataset
with either different experimental protocol or different aim
than classification/retrieval tasks (e.g., colorization, noisy label
detection, interband retrieval). Hence, to maintain fairness in
comparison, we do not directly compare with their results.

B. Band Group Classification Results

We chose the train-test samples randomly to avoid training
bias. Typically for classification problems, it is more common
to report the results in terms of accuracy. However, in multilabel
classification, there comes ambiguity in categorizing a subset of
labels or detecting all the labels and a few more incorrect ones. To
avoid this, precision, recall, and mean average precision (mAP)
values are considered for multilabel classification. We report
the performance of the network in Table II in terms of preci-
sion at top-10 (P@10) and recall values. Since the all-channel
multilabel classification model outperforms the literary works
on this data, we can state that the current network is suitable for
group-wise classification without loss of generality. Some of the
experiments from the literature have reported their performance
on only one of the variants of the BigEarthNet dataset; hence,
the alternate variant results are unavailable.

Furthermore, from Table II, we see that the classification
performance using just the 20 x 20 pixel (60 m) band group
yields inferior results. This is primarily because there are too
few bands in this group. Moreover, the spatial resolution of the
bands is very low. This also majorly affects the classification
performance of the images. Finally, and most importantly, this
group comprises the coastal aerosol and the water vapor band.
If we study the land-cover classes in this dataset carefully from
Fig. 3, there are a few land-cover categories that we can distinctly
recognize using this band group. The classes that gave the
highest precision using this band group are burnt areas and
continuous/discontinuous urban fabrics.

The classification performance using just the 60 x 60 pixels/
20 m spatial resolution band group yields slightly inferior results
to the 120 x 120 pixels/10 m band group. Even though this
group has the most number of bands, i.e., six, the quantity of
information contained in these bands seems lesser than 10 m
bands. This band group comprises the four vegetation red edge
bands and two short wave IR bands. From Fig. 3, it can be
seen that there are plenty of vegetation and forest cover classes
in the dataset. The M2 band group can classify within these
classes much more robustly than the other groups. However,
when it comes to the other nonvegetation cover classes, such as
airports, salines, burnt areas, to name a few, the classification
performance is drastically affected. The classes that gave this
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Fig. 6.  Model performance with 10%, 50%, and 100% of the training data,

reported in terms of precision values.

group the highest precision are coniferous forests, nonirrigated
arable lands, and mixed forests. Typically, mixed forests are a
combination of coniferous and broad-leaved deciduous forests.

Likewise, M3 was seen to classify the best among the other
two. One obvious contributing factor is its high spatial resolution
of 10 m (120 x 120 pixel images). Although this group has
fewer bands (four) than M2 (six bands), the effective information
content spanning different classes is higher. The intuition is that
the overall interclass distance between the broad classes in the
embedding space is much higher than the other groups. However,
the distinction between the finer classes, such as broad-leaved
forests, mixed forests, and coniferous forests, is not high and
seems cluttered. This group mainly comprises the RGB and the
infrared bands. We can see from Table II that this band group
alone can yield more or less comparable performance to that of
the full data model. The classes that gave the highest precision
using this band group are again coniferous forests and mixed
forests. The road and rail networks are also detected well using
this band group, which provides crisp, sharp, and detailed images
due to its high spatial resolution. Water courses are also detected
very well using this group.

Fig. 6 illustrates the model performance with 10%, 50%,
and 100% of the training data, obtained by stratified random
sampling. We plot the precision values along the vertical axis
and plot the model performance with all the RGB channels, M1,
M2, and M3 band groups.

C. Cross/Interband Retrieval

In this set of experiments, we aim to realize a shared em-
bedding space for the instances of all three band groups. The
shared features are designed to be discriminative while reducing
the intergroup domain gap. We do so by minimizing the overall
objective function 6. Given a query image from any three groups,
we can find the k-nearest neighbours to that query feature
from the target band group. Table III reports the results of this
interband retrieval in terms of P@10 and mAP values on the

TABLE III
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INTERBAND RETRIEVAL PERFORMANCE OF THE PROPOSED FRAMEWORK

Method triplet cross-triplet modified cross-triplet

P@10 mAP P@10 mAP P@10 mAP
M1-20 to M2-60 00.05 00.07 04.88 0502 07.04 07.91
MI1-20 to M3-120  00.07  00.08 08.10 07.73  09.83 14.54
M2-60 to M1-20 03.64 0472 1142 0998 1292 08.43
M2-60 to M3-120  12.86  14.32 4598 56.87  63.54 62.90
M3-120 to M1-20 03.87 06.80 12.34 16.72 15.06 21.58
M3-120 to M2-60 1523 1849  59.51  63.79 62.88 69.19

BigEarthNet-subset dataset. Table III shows the ablation along
with each of these three losses and highlights the advantage of the
proposed modified cross-triplet loss for interband data retrieval
for multilabeled images.

One can see from Table III that the conventional triplet loss
is not able to bridge the domain gap between the two band
groups. In contrast, the cross-triplet loss can handle retrieval
among different bands by bridging the band groups. However,
for this multilabeled dataset, the proposed modified cross-triplet
loss outperforms the other losses by a margin of almost 2% in
most of the results. This helps to highlight the efficacy of the
proposed loss.

We observe that the interband retrieval performances between
the M2 and M3 band groups are the highest. Intuitively, this is
due to the high spatial resolution and information content of
the two groups. It is also an important observation that when
the query has higher information content (M3), the retrieved
instances from a lower information content group (M2) are better
than the other way round.

D. Understanding Band Properties

As mentioned in Section IV-C that to study the contribution
of each band group for the categorization of each land-use/land-
cover class, we examine the class-wise precision of each cat-
egory. The experiments were conducted on the BigEarthNet-
subset dataset devoid of cloud, shadow, and snow cover. The
class-wise precision values obtained on the subset data is pro-
vided in terms of bar plots in Figs. 7-9. We can see that M3 yields
better a class-wise classification performance than M2 and M3.
This section briefly discusses the observations by classifying
the classes into three categories: agro-forestry, water bodies,
and human-made areas. In addition, it can also be seen from
the above plots that we have successfully addressed the training
data imbalance characteristics. Moreover, the lower number of
instance classes perform adequately. Agro-forestry regions: We
identified 20 classes, which are either of the agricultural or forest
type classes. We group them together and thoroughly inspect
them in this section. Fig. 7 shows the bar plot of the class-wise
precision obtained in each group. Theoretically, the vegetation
red edge bands in this group help calculate NDVI and help
indicate chlorophyll and, hence, found helpful to distinguish
between healthy and unhealthy vegetation. Studies have also
shown that the presence of bands 5 and 6 assists in obtaining
the biophysical properties of vegetation, such as leaf area index
(LAI) and biomass [8]. Band 2 (blue) often finds application
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in discriminating between coniferous and deciduous forests.
Experimentally, we observe the following.

)

2)

Certain vegetation classes seem to be better discrimi-
nated in M2 than M1, e.g., coniferous forest, transitional
woodland/shrub, broad-leaved forest, etc. Likewise, cer-
tain forest classes are also better discriminated in M2
than M1, e.g., nonirrigated arable land, significant natural
vegetation, to name a few.

The abovementioned observations strongly indicate that
the finer-grained agro-forestry classes are more dis-
cernible in the feature space of the M2 group than M3. The
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3)

4)

5)

spectral signature along the six bands helps establish the
category of regions, the spatial texture, and geometrical
patterns also play an essential role in classifying these
classes.

It is observed that in M2, most of the vegetated surfaces
are retrieved with a precision > 60%. This observation
also partially confirms that most of these vegetation covers
have proper irrigation and drainage facilities in healthy
conditions.

The relatively lower performance of the agriculture and
natural vegetation class could be because of its confusion
with the complex cultivation pattern class. During the
time of data acquisition, possibly both these regions had
cultivated crops. However, their spatial microtextures and
geometrical patterns help to quite an extent in making them
somewhat discernible.

Mixed and coniferous forests show very high accuracy
in both M2 and M3. While the primary reason behind
this is the significant number of training samples avail-
able for these classes, the unique leaf structure of their
respective categories also makes them discernible. The
coniferous forest predominantly comprises cone-bearing
needle-leaved evergreen trees. Mixed forest, on the other
hand, is a combination of coniferous and broad-leaved
deciduous forests. This property degrades the capacity to
discern broad-leaved forests from mixed forests as there is
ample confusion between the two. Common factors affect
the broad-leaved forest class as it has considerably lower
training samples than the former.

Water bodies: For this category, we select ten classes that
broadly consist of water. We group them together and thoroughly
inspect them in this section. Fig. 8 shows the bar plot of the

class-

wise precision obtained in each band group. Theoreti-

cally, band 2 (categorized under M3) is in the visible blue
region and finds several applications in bathymetric mappings,
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which involve the study of underwater depth of ocean floors or
lake floors [67]. While M3 seems superior in classifying these
classes, a few red edge vegetation bands (under M2) are sensitive
to moisture content and helps in calculation the moisture index.
Experimentally, we observe the following.

1) It is majorly expected that one can detect water bodies
better with the M3 group. This view is supported theo-
retically by the high reflectance of the water body in the
blue wavelength region and near-complete absorption of
the other wavelengths. Although most of the classes follow
this trend, there are a few classes where M2 performs better
than M3.

2) The differences in precision values obtained using M2 in
certain water body classes is assumed to be caused due
to coastal algal bloom [68] and the presence of low to
moderately dense chlorophyll content due to phytoplank-
ton population [69]. The presence of phytoplankton is
responsible for an increase in the reflectance in the red
edge region, making the spectral signature of the class
different from regular water bodies.

3) An interesting sub-class under the water-bodies is coastal
lagoons. The coastal lagoons are essentially transitional
zones between land and sea. They are shallow inland
water bodies that are intermittently connected to oceans,
blocked by land barriers. Therefore, they contain the
spectral signatures of both land and water. The precision
of this class is observed to be relatively lower than the
other classes. This observation is assumed because of its
confusion with the individual irrigated lands and water
bodies. Besides, there also exists the dilemma of turbidity
and eutrophication of water, which is a very common
ecological phenomenon [70].

4) Estuaries, Intertidal flats, and Salines comprise too few
training samples, and hence their performance takes a hit
due to the largely imbalanced data classes.

Man-made regions: For this category, we select 11 classes
that broadly consist of urban areas. We group them together and
carefully inspect them in this section. Fig. 9 shows the bar plot of
the class-wise precision captured in each band group. Human-
made areas are assumed to be captured well by the M3 group as
it has a very high spatial resolution 10 m [71]. Experimentally,
we observe the following.

1) Human-made structures can be captured well by high
spatial resolution bands [71]. This nature helps the M3
band group of spatial resolution 10 m in providing superior
results.

2) Incertain regions like the port areas and construction sites,
the greenness value is close to 0. Hence, its corresponding
reflectance in the red edge bands is also close to 0. Due
to this reason, M2, comprising of red edge bands, cannot
identify these regions successfully.

3) M1 consists of the coastal aerosol and the water vapor
bands. The presence of specific disposed or waste material
causes the aerosol bands to help detect dump sites. Itis also
our assumption that the port areas and construction sites
from which the dataset was obtained consisted of specific
amounts of fly-ashes and aerosols [72], which lead to a
better assessment of these classes in this group.
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4) Surprisingly, continuous and discontinuous urban fabrics
were also captured well by this band group. This could
be because these urban areas were high on particle pollu-
tants [73].

Overall, it is observed that M3 has lesser class-wise precision
variation than M2, which has a high sensitivity to the agricul-
tural and forest areas. It is much lower for urban, road, and
different human-made targets. We can observe from the plots
that the precision mainly falls over nonvegetated areas (in M2).
The literature affirms that the bands B5, B6, B7, B8A are
sensitive to the greenness of vegetation, while B9 and B11
are sensitive to the moisture content, and B12 is excellent at
detecting geological features. Hence, in certain human-made
classes such as industrial, sports, leisure facilities, road, rail
networks, bare rock, mineral extraction sites, construction sites,
airports, dump-sites, port areas, and burnt areas, the amount
of greenness is little to almost negligible. This is because of
their nearly nonexisting vegetation canopy. These areas have
intrinsic sharp patterns and are captured well in the M3 group
with high spatial resolution. Therefore, while M2 classifies the
fine-grained vegetation and forest classes, M3 classifies the over-
all broad spectrum classes more robustly, such as airports, salt
marshes, rail and road networks, bare rock, and coastal lagoons.

There exists a substantial class-wise data imbalance in the
dataset. The class-wise precision subplots are arranged to
decrease the number of samples present from left to right.
It can be noted from Figs. 7-9 that the classes having fewer
samples gradually show decreasing results as one could not
learn them adequately. Also, another critical contributory
factor in the multilabel classification performance is that
certain classes appear in combinations throughout the dataset.
Hence, the classification performance of at least one of the
distinct subclasses of the multilabeled instances often ensures
the classification of the other classes in that instance. This
phenomenon affects the performance of the model immensely
in conventional multilabel classification.

VI. CONCLUSION

We exploit a simplistic yet efficient representation learning
network for multilabel classification that yields superior results
to the existing literature. We then group the bands of Sentinel-2
multispectral data based on their spatial resolutions. The ef-
fectiveness of any classification or retrieval problem primarily
depends on the texture information in the data and the existence
of pure end-member within a pixel. With an increase in the
spatial resolution, the possibility of detecting a pure end-member
in a pixel reduces due to the high chance of nonlinear mixing of
several other end-members within the resolution cell.

From these grouped bands, we demonstrate the identifiability
of each of the land-cover classes in all these band groups.
We further interpret the observations from the abovementioned
framework and study the band properties of this multispectral
RS data. The BigEarthNet dataset was created by exploiting
the labels from the Corine land-use/land-cover classes. This
results in the presence of mixed classes in the patches. Our
experiments have supported this observation and are discussed in
detail by exploiting agriculture and forestry domain knowledge.
In addition, it can also be seen from the abovementioned results
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that we have successfully addressed the training data imbalance
part, and even the lower number of instance classes perform
decently well.

Furthermore, we introduced a novel modified cross-triplet
loss for multilabeled data for metric learning and established its
efficacy over the conventional triplet loss. The standard triplets
do not consider the possibility of having a common subset
of classes between the positive and negative examples of a
multilabeled anchor image and, therefore, can spread apart the
intraclass distances. In the proposed loss, we consider this fact
and observe a distinct improvement in the overall results.

We thoroughly demonstrate our classification and retrieval
results on the large-scale benchmark BigEarthNet data. We show
that the proposed framework outperforms the current literature
in all the evaluation metrics to validate our claim. In the future,
we would like to extend this study to investigate the effect of
a weighted grouping of bands and a learnable band selection
process. We also plan to perform a few case studies using these
specific band groups from forest-fire and snow/cloud detection
problems and study their efficacy.
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