
Collecting Data for Urban Building Energy Modelling
by Remote Sensing and Machine Learning

Philip Gorzalka, Oana M. Garbasevschi, Jacob Estevam Schmiedt, Ariane Droin
Magdalena Linkiewicz, Michael Wurm, Bernhard Hoffschmidt

German Aerospace Center (DLR), Jülich/Oberpfaffenhofen/St. Augustin/Berlin, Germany

Abstract
High-quality data on the investigated area is crucial
for modelling urban building energy demands, but
its availability is often insufficient. We present an ap-
proach to acquire (i) building geometries, (ii) their
ages, and (iii) their retrofit states. It consists of
creating a 3D model from aerial imagery, determin-
ing building ages through machine learning, generat-
ing a simulation model based on open-source tools,
and assessing retrofit states by comparing simulated
temperatures with infrared thermography (IRT) mea-
surements.
The demonstration on a case study quarter in Berlin
shows that heat demand results are comparable to
other tools. Using machine learning is already well-
suited to close knowledge gaps regarding building
ages. However, retrofit state assessment using IRT
was unsatisfactory due to insufficient measurement
accuracy and is envisaged for improvement in future
research, along with a validation of the approach.

Key Innovations
• Combined workflow using remote sensing, ma-

chine learning, and data enrichment tools to col-
lect building stock data

• Application of an additional, Modelica-based
simulation method to the case study quarter used
by Dochev et al. (2020) who compare two urban
building energy modelling approaches

Practical Implications
High-quality urban building energy models may be
generated even in case of limited input data availabil-
ity prior to the study, but some open issues exists.

Introduction
Since carbon emissions resulting from heat use in
buildings significantly contribute to climate change
(IPCC (2015)), public bodies at national, regional
and municipal levels have set ambitious goals for re-
ducing heat demand. For newly constructed build-
ings, regulations often require or incentivise their con-
ceptualisation as low-energy houses or even net zero

energy buildings. For existing buildings, current poli-
cies are less effective, and have resulted in a current
weighted annual renovation rate of about 1 % in Eu-
rope (European Commission (2020)), which is far be-
low the rate required for a pathway consistent to the
goal of restricting global warming to 1.5 ◦C compared
to pre-industrial levels (Kuramochi et al. (2018)).
Urban building energy modelling (UBEM) tools help
public bodies to model the existing state of the build-
ing stock and the impact of possible future develop-
ments. They can contribute to a better understand-
ing of the current situation and to the design of effec-
tive policies. Several UBEM tools have been recently
developed. The review papers of e.g. Reinhart and
Cerezo Davila (2016), Li et al. (2017), and Sola et al.
(2020) give an overview of the field.
Data on the investigated area is a crucial input for
modelling. Although the amount of available datasets
is quickly growing around the world, their content
varies and the required effort for collecting data re-
mains an open challenge (Hong et al. (2020); Sola
et al. (2020)). In Germany, a full dataset of CityGML
3D models for the whole country has the level of
detail (LoD) 2, meaning it contains exterior wall,
ground, and roof polygons, but the geometries of the
latter are “simplified” (BKG (2020)). The digital
cadastre ALKIS provides building footprints for the
whole country (AdV (2015)). The years of construc-
tion, information allowing to estimate thermal prop-
erties by consulting building typologies like TABULA
(Loga et al. (2016)), are only included for some re-
gions. For the entire country, the Census 2011 (Fed-
eral Statistical Office (2011)) is the central statistical
database of the residential building stock containing
attributes such as building type and age, ownership,
heating type and number of dwellings. For privacy
reasons, the public data published consists in sum-
maries of these characteristics at municipality level
or in a 100 m or 1 km grid.
Our proposed approach is close to the bottom-up
physics-based or engineering UBEM methods as de-
fined by Reinhart and Cerezo Davila (2016), Li et al.
(2017) and others. We tackle the problem of limited
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Figure 1: Overview of the proposed workflow.
data availability by a combination of measurement,
machine learning (ML), and data enrichment. As a
result, the only prerequisites are the geometries of
individual buildings and streets, building types and
uses (as available from ALKIS in Germany), a build-
ing typology (like TABULA), and age classes of the
buildings or an appropriate set of training data. In
contrast to Wurm et al. (2021) who apply similar
tools, we use ML only for building age determination
to maximise the share of deterministic calculations.
The thereby increased computational effort currently
restricts our approach to district rather than city
scale. However, the primary aim, shared by both
their and our approach, is to provide a highly au-
tomatable method to generate UBEM-ready datasets
for residential buildings.
As a first step of the procedure, we process aerial im-
agery to obtain more elaborate 3D geometries. Sec-
ond, a ML workflow provides building ages. Finally,
we make use of aerial infrared thermography (IRT) to
assess retrofit states of the residential building stock.

Methods
This section elaborates our approach and the meth-
ods it consists of. The steps are also illustrated in the
overview of the workflow in Figure 1.
Case Study Quarter
The case study is located in the urban neighbour-
hood of Berlin-Moabit. The area is a good exam-
ple of a district for which fuel consumption data is
unavailable. This is caused by the heterogeneity of
heating energy sources as well as by data protection
regulations and is a strong motivation for applying
UBEM. In a previous study on the quarter, Dochev
et al. (2020) created a dataset to compare different
UBEM methods. From the 387 buildings and build-
ing parts in the investigated area, 279 are classified as

“residential” in the cadastre. We focus on this subset
of the building stock in this paper. Regarding years
of construction, a large share of the quarter was built
before 1900. Figure 2 shows the distribution into age
classes according to Berlin’s “Geoportal” (Senatsver-
waltung für Stadtentwicklung und Wohnen (1993))
for buildings built before 1993 and to historic aerial
imagery for the rest. To achieve correspondence with
the TABULA typology age classes, relevant for heat
demand estimation, the middle of each age class in
the Geoportal was chosen as the building year of con-
struction as in Dochev et al. (2020).

1870–1899: 42 %
1900–1918: 39 %
1946–1961: 7 %
1962–1974: 6 %
1975–1992: 3 %
1993–2000: 2 %

Figure 2: Distribution of the residential buildings in
the investigated quarter into age classes.
3D Geometry Generation
Our approach relies on high-quality 3D models of the
investigated quarter. In this case, aerial RGB im-
agery served for creating them. From an airplane, the
area was recorded with three RGB cameras in both
nadir and oblique orientation and a near-infrared
(NIR) camera. On the resulting imagery, featuring
a ground resolution of 8–14 cm, we applied the pho-
togrammetric approach of Frommholz et al. (2017)
with its six main steps:

1. Generation of a 3D point cloud, a digital surface
model (DSM) and a digital terrain model (DTM)
from the RGB images after having filtered out



vegetation using the NIR orthoimage
2. Projection of the point cloud to the ground plane,

enabling the extraction of walls by local linear
regression

3. Roof reconstruction by performing plane local lin-
ear regression within the building footprints de-
fined by the walls

4. Intersection of the DTM (as ground plane),
the walls (assumed vertical) and the roof plane
patches to create polygons in 3D space

5. Texturing of wall and roof polygons from the orig-
inal RGB imagery, avoiding occlusions

6. Window recognition on the textured wall poly-
gons, leading to a separation of walls and windows

It must be noted that the original method is designed
to use cadastral building footprints in case of incom-
plete wall shapes in step 2. In our case, difficulties in
receiving the flight permission due to the proximity to
the government district delayed the image recording
until July. Since many façades were covered by veg-
etation by then, wall shapes were often incomplete.
Therefore, we inverted the method, refining cadastral
footprints using the point cloud data. The success
of step 6 was also affected by tree coverage: many
windows could not be detected. Still, the recognised
windows fit well to reality on many façades and the re-
sults outmatch usual window-wall ratio assumptions
(Dochev et al. (2020)). The outcome of the process
is the CityGML model visualised in Figure 3.

Figure 3: Partial view of the CityGML model visu-
alised in FZKViewer.

Building Age Determination
Building age and construction type are two essen-
tial attributes for estimating buiding energy demand
(Reinhart and Cerezo Davila (2016)), and a growing
number of recent studies have dealt with the predic-
tion of these attributes in countries where the infor-
mation is not publicly available (Tooke et al. (2014);
Wurm et al. (2016); Rosser et al. (2019); Droin et al.
(2020)). Relying on modern machine learning mod-
els and spatial data sources that include topographic
data as well as aerial and satellite images, these stud-
ies aim at rendering available information that should

support energy-efficiency policies and decision mak-
ing.
We apply a Random Forest classification method
(Breiman (2001)) for labelling the residential build-
ings in our study with age information, by using
morphological features of the building and its sur-
roundings (Garbasevschi et al. (2021)). The build-
ing attributes determined relevant for age prediction
include shape properties of the 3D building model
and of the 2D building footprint, attributes describ-
ing the position of the building with respect to neigh-
bouring buildings, and attributes of the surrounding
streets and urban block. These features are extracted
exclusively from open data sources, like municipal-
ity (Berlin Business Location Center (2015)) or state
open data repositories (Open.NRW (2019)) or Open-
StreetMap.
Statistical learning models require labelled instances
as training classes. The building age classification
model was trained using two separated datasets of
buildings with associated construction year or age
class, extracted from two locations, Wuppertal and
Berlin. For Wuppertal, residential buildings’ con-
struction years are available on the open data portal
of the state of North Rhine-Westphalia (Open.NRW
(2019)). Ages in the Berlin dataset were extracted
from Census 2011 (Federal Statistical Office (2011)).
With this method of extraction, a fraction of the res-
idential building stock of a city can be assigned one
of ten Census age classes. The years of construction
of the Berlin-Moabit and Wuppertal buildings were
mapped to Census age classes, to allow comparison
and have full correspondence between training and
validation datasets.
Buildings newer than 1978 are under-represented in
our sample. Problems of statistical learning with
imbalanced label classes in the training lead to bi-
ased results, favouring the identification of the ma-
jority class. One technique proven successful in
minimizing this effect is minority oversampling, or
artificially adding new samples from the minority
classes. We applied the Synthetic Minority Over-
sampling (SMOTE) method on the samples of build-
ings newer than 1978, in varying proportions (Chawla
et al. (2002)). Table 1 shows the numbers of avail-
able samples and their distribution into age classes,
originally and after resampling.
Simulation
To interface our 3D model with a building simulation
environment, we make use of the open-source software
tools TEASER (Remmen et al. (2018)) and AixLib
(Müller et al. (2016)). TEASER allows the enrich-
ment of the 3D geometry with essential input data:
default use conditions, interior thermal masses, and
common building part materials as collected by the
German TABULA typology (Loga et al. (2016)) for
different age and size classes. Loga et al. (2015) men-



Table 1: Residential building samples per age class
in the training data from Wuppertal (W) and Berlin
(B), originally acquired and after resampling.

Age class
Training data distribution [%]

Original After res.
W B W B

Pre-1919 19.3 23.3 16.0 16.8
1919–1948 13.2 31.8 11.0 22.9
1949–1978 33.6 30.6 28.0 22.1
1979–1986 10.2 4.0 8.5 8.6
1987–1990 7.0 1.5 8.8 5.4
1991–1995 6.9 1.3 8.6 4.6
1996–2000 4.2 5.4 7.0 11.6
2001–2004 4.4 1.1 7.4 3.8
2005–2008 0.8 1.0 3.4 3.6
Post-2019 0.2 0.1 1.3 0.5
No. of
samples 47,361 77,227 56,981 107,021

tion that representative buildings are classified into
the different size classes mainly based on the num-
ber of apartments. As our model does not contain
this parameter, we use a threshold building volume
based on assumptions for the apartment size and the
floor-to-floor height. Since the TABULA archetype
buildings have either flat or tilted roofs, we replace
the archetype roofs by those from other types in the
same age class if necessary. For an improved compa-
rability of the results with Dochev et al. (2020), we
change the default heating setpoint temperatures to
20 °C with a night setback of 4 K, both according to
the German standard DIN V 18599 (DIN (2016)).
We export the TEASER data to a Modelica simula-
tion model using the interface to the AixLib “Redu-
cedOrder” package. To make the simulation meet the
requirements of our study, we made several changes
to the code. The original export process lumps
the building parts to at most one single resistance-
capacitance module per building element type (roof,
wall, window, ground floor). We introduced the pos-
sibility to avoid lumping and simulate each model sur-
face individually. Additionally, we adjusted the cal-
culation of the heat exchange with the exterior such
that the specific heat gain from long-wave radiation
qr,lw for a surface is calculated as

qr,lw = εs · Fs,sky ·
(
Esky − σ · T 4

s
)

+ εs · Fs,g ·
(
Eg − σ · T 4

s
)
,

(1)

where εs is the long-wave emissivity of the surface,
Fs,sky and Fs,g are the view factors of the surface to
the sky and the ground respectively, Esky is the sky
long-wave radiation, Eg is the terrestrial long-wave
radiation, σ is the Stefan-Boltzmann constant, and
Ts is the thermodynamic temperature of the surface.
The view factors are derived from the building 3D
model. Regarding their sum, the equality

Fs,sky + Fs,g +
∑
i

Fs,i = 1, (2)

holds. The view factors to other building’s surfaces
Fs,i do not appear in Equation (1) because long-wave
radiative exchange with these surfaces is cancelled out
by the assumption that they have the same temper-
ature and emissivity. Thereby we avoid the comput-
ing effort of linking the individual building simulation
models. Eg is available from the test reference years
provided by DWD and BBSR (2017). These data also
cover local (urban) effects on the ambient tempera-
ture, which is why we added an interface for them to
AixLib.
For each building in the quarter, two Modelica models
are created: using the building parts of the TABULA
archetype buildings first without retrofit and second
in the standard retrofit scenario.
Retrofit State Assessment
Aerial infrared images are a well-known tool to as-
sess the thermal quality of building envelopes. The
dataset we evaluated resulted from recording the in-
vestigated quarter using nadir and oblique IRT in
March 2019 and subsequently texturing the 3D model
with the imagery. The approach applied to derive
surface temperatures (one average temperature for
each surface) is fully described by Dochev et al.
(2020). It largely follows Byrnes and Schott (1986),
adjusts emissivities in case of oblique view according
to Monien et al. (2016) and accounts for radiation
from the surroundings when correcting for reflected
radiation.
By simulating the buildings using actual weather data
for a few days before the recording, we can calcu-
late the surface temperatures Ts,ret and Ts,std that the
building parts should show, given the conditions de-
fined through TEASER and the thermal properties
of the archetype building with and without retrofit
respectively. Comparing them with the surface tem-
perature measured through IRT Ts,meas using

ϑs =
Ts,meas − Ts,ret

Ts,std − Ts,ret
(3)

yields a relative temperature ϑs for each surface in
the quarter. As the influence of small changes in
the U-value on surface temperatures is not significant
enough, we do not compare more than two simulated
envelope qualities. To assess the retrofit state of a
particular building b, we calculate its relative surface
temperature ϑb as the area-weighted average over all
its surfaces with area shares as. If

ϑb =
∑

s
as · ϑs < 0.5 (4)

holds, the building is considered retrofitted. As we
cannot determine the thermal quality of insulation
behind unheated attic spaces, we manually filtered
for buildings with signs of an apartment in the up-
permost storey, like large windows and roof terraces.
Relative roof surface temperatures contributed to ϑb
only in that subset.



By simulating the fitting model (with or without
retrofit) of each building for the time of a full year, we
calculate the annual heat demand for space heating
(without hot water) in the quarter.

Results
In this section, we present the results of applying our
approach, separately for the components of age class
determination, retrofit state assessment, and heat de-
mand estimation. The implications of the findings are
covered in the Discussion.
Building Age Classes
For learning models where training and test instances
are in close spatial vicinity, the spatial autocorre-
lation of features leads to better prediction results
than for instances farther apart (Meyer et al. (2019)).
Street and block attributes are a naturally common
attribute for all buildings that share the same street
or are situated in the same block. Building features
such as height and the area containing a building’s di-
rect neighbors have also been shown to exhibit spatial
autocorrelation (Garbasevschi et al. (2021)). Classi-
fication results confirmed this hypothesis. As shown
in Table 2, the Berlin model has an overall accuracy
of 84.2 % compared with 41.9 % for the Wuppertal
model. In comparison, the sensitivity of both models
is low, with the majority of buildings built after 1948
being classified as belonging to the “Pre-1919” age
class by the Berlin model and vice versa by the Wup-
pertal model. A comparison between the actual and
the predicted age classes of buildings can be observed
in Figure 4 for the Berlin model.

Figure 4: Actual (left) and predicted building age
(right) using the Berlin dataset as training data.

Table 2: Indicators of classification performance, per
training model.

Training model Wuppertal Berlin
Overall accuracy 41.9 % 84.2 %

Se
ns

it
iv

it
y Pre-1919 35.1 % 97.4 %

1949–1978 100 % 35.1 %
1979–1986 0 % 0 %
1996–2000 0 % 0 %

average 33.8 % 33.1 %

Retrofit States
Using the decision criterion of Equation (4), only 4 (or
1.4 %) of the buildings were classified as retrofitted.
When simulating Ts,ret and Ts,std with the models
generated using the Berlin and Wuppertal age clas-
sification models, the number changes to 2 and 1 re-
spectively.
Given their definition (see Equations (3) and (4)), we
expected the values for ϑs and ϑb to be distributed
between 0 and 1 or slightly outside this interval. The
histogram of ϑb for all buildings in Figure 5 illus-
trates that our data does not support that expec-
tation. Measured temperatures are systematically
higher than expected. Furthermore, they are clearly
more widely spread than the difference between sim-
ulated temperatures with and without retrofit, which
was 1.2 K on average when using the actual years of
constructions to obtain archetype building parts.
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Figure 5: Histogram of the average relative surface
temperature of the buildings calculated with actual
years of construction, omitting two outliers at very
low and six at very high relative temperatures.

Annual Heat Demand
We obtained a total heat demand for space heating
of 35.6 GWh/a with the model containing the actual
age class information and retrofit states as detected
through IRT. As the four buildings with detected
retrofit are small and relatively young, the difference
to the quarter’s heat demand without any retrofit is
minimal. Figure 6 shows the influence of the retrofit
states and the source of information on building age
classes. It also contains a comparison to the heat de-
mand calculated by the software SimStadt (Nouvel
et al. (2015)) for the same buildings by Dochev et al.
(2020). It must be noted that the SimStadt retrofit
scenario differs from the TABULA retrofit scenario
that we used for our model.



Retrofits compensate for the differences in thermal
qualities between different years of constructions.
Therefore, the symmetric mean absolute percentage
errors (SMAPE) of individual building heat demands
between the model based on actual age classes and
the models based on age classes sourced from Berlin
and Wuppertal decrease from 4.7 % and 13.6 % re-
spectively without retrofits to 1.7 % and 5.4 % with
full retrofits.

Actual data ML Berlin ML Wuppertal
Source of building age classes
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Figure 6: Simulated total heat demand of residen-
tial buildings in the investigated quarter depending
on different retrofit states and the source of building
age classes (bars), compared to results from SimStadt
(lines, Nouvel et al. (2015); Dochev et al. (2020)).

Discussion
Based on the Results, we discuss the the suitability
of our approach in the following.
Reliability of Heat Demand Results
Our results show that connecting 3D building ge-
ometries generated from aerial images to a Model-
ica building energy simulation gives yearly heating
energy demands comparable to the established Sim-
Stadt software. The difference of about 20 % is in the
same range as for the comparison of SimStadt with
a specific heat demand approach by Dochev et al.
(2020) for the same district. Due to missing data, a
validation with actual energy use is impossible.
Already executed retrofits reduce the heat demand
significantly. Therefore, detecting them is essential
for an accurate representation of the building stock.
Unfortunately, our method of comparing building en-
velope surface temperatures measured by IRT and
simulated in a non-retrofit and a retrofit scenario
did not yield satisfying results. The uncertainty of
measured temperatures was higher than the differ-
ence between simulated temperatures with and with-
out retrofit. Furthermore, the distribution of relative
building surface temperatures in Figure 5 leads to the
conclusion of a systematic error in the measurements.
This goes along with the findings of Dochev et al.
(2020) that a better accuracy of IRT is required, pos-
sibly including the uncertainty of the camera itself as

well as the modelling of atmospheric conditions, the
radiation properties of surface materials, and radi-
ance from surrounding objects and the sky. There are
also relevant factors of uncertainty regarding simu-
lated temperatures, e.g. locally different ambient tem-
peratures and convection coefficients, as well as the
influences of vegetation and differing interior temper-
atures. Most of theses issues are envisaged to be im-
proved by future studies.
Applicability of Machine Learning for Building
Age Determination
Our results show that the Berlin model classifies
buildings built before 1919 correctly, but mislabels
the majority of the buildings built after 1949 as
older. For a study sample including only a compact
neighbourhood comprising a few blocks of buildings,
the rationale behind building age misclassification is
probably not representative for larger samples. In
our study, it can be presumed that newer buildings
have been built in gaps in a predominantly pre-1919
neighbourhood and their appearance is conforming to
the style. For example, a closer examination of the
characteristics of the buildings built after 1979 re-
veals that they share attributes with the neighbour-
ing buildings, such as height, footprint area, and roof
inclination. Additionally, these similar-looking build-
ings are in close vicinity spatially, share the same
street and block, which are all attributes of impor-
tance for the classification model. The impact on
heat demand estimation depends on the extent of
misclassifications. As Figure 6 shows, the Wupper-
tal model classifies many buildings built before 1919
as “1949–1978” and results in a lower heat demand
than the demand estimated using actual age classes.
For the Berlin model, the misclassification of post-
1945 buildings as “Pre-1919” results in higher heat
demand estimates. Nevertheless, we consider both
classification models to be suited for an initial es-
timation of the heat demand, as the differences are
within a 10 % range.
Another important source of uncertainty, for both age
prediction and heat demand estimation, is the map-
ping between the three age class definitions of the
Geoportal, TABULA and the Census. For example, a
building labelled as class “1975 or after” in the Geo-
portal could be of the Census class “1949–1978” or
“1979–1986” or a more recent age class. Similarly, it
could be either of multiple TABULA classes. Ensur-
ing uniformity between the formats, terminology and
resolutions of different public datasets would be an
important step forward for UBEM and, more gener-
ally, for the open urban data science.

Conclusion
We presented an approach to tackle the problem of
limited data availability for UBEM by a combina-
tion of measurement, machine learning, and data



enrichment. For demonstration, we used a dataset
of Berlin-Moabit (Dochev et al. (2020)). The ap-
proach consists of generating a 3D model from aerial
imagery and optionally determining building ages
through a classification model trained on existing
data by machine learning. For generating a simu-
lation model, we applied the complementary UBEM
tools TEASER (Remmen et al. (2018)) and AixLib
(Müller et al. (2016)) with minor custom variations.
Retrofit states were assessed by comparing simulated
and IRT-measured temperatures. Altogether, we
achieved low requirements for previously known data
and a highly automatable process at the same time.
The determination of age classes using a trained
model confirmed other studies regarding the corre-
lation of distance between training and test instance
and prediction accuracy (Meyer et al. (2019)). Al-
though the sensitivity of the models was low, the dif-
ference in the modelled overall heat demand of the
residential buildings in the investigated quarter was
adequate and lower than the difference to the demand
modelled using the alternative UBEM tool SimStadt
(Nouvel et al. (2015)).
Assessing retrofit states using IRT did not yield satis-
fying results. Some starting points for the necessary
improvement of IRT surface temperature measure-
ment were already mentioned by Dochev et al. (2020),
including camera uncertainty, modelling atmospheric
conditions as well as reflected radiance, and the as-
sessment of surface radiation properties.
All in all, we conclude that using machine learning
is already a viable option to close knowledge gaps.
Regarding the other components of our proposed ap-
proach, prospective studies envisage the improvement
of retrofit state assessment through remote sensing
and a validation of the overall approach with actual
energy use or individual building energy certificates.

Acknowledgements
The authors would like to thank Verena Weiler (HFT
Stuttgart) and Ivan Dochev (HCU Hamburg) for pro-
viding intermediate data and final results from their
heat demand calculations in the case study quarter.

References
AdV Working Committee of the Surveying Au-

thorities of the Laender of the Federal Republic
of Germany (2015). Authoritative Real Es-
tate Cadastre Information System (ALKIS).
http://www.adv-online.de/Products/
Real-Estate-Cadastre/ALKIS/. Accessed 15
January 2021.

Berlin Business Location Center (2015).
Berlin 3D - Download Portal. https:
//www.businesslocationcenter.de/en/
economic-atlas/download-portal/. Accessed 8
June 2020.

BKG Bundesamt für Kartographie und Geodäsie
(2020). Dokumentation 3D Gebäudemodell
Deutschland - LoD2 (LoD2-DE). Produktstand
2020. https://sg.geodatenzentrum.de/web_
public/gdz/dokumentation/deu/LoD2-DE.pdf.
Accessed 15 January 2021.

Breiman, L. (2001). Random Forests. Machine Learn-
ing 45(1), 5–32.

Byrnes, A. E. and J. R. Schott (1986). Correction of
thermal imagery for atmospheric effects using air-
craft measurement and atmospheric modeling tech-
niques. Applied optics 25(15), 2563.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer (2002). SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial In-
telligence Research 16, 321–357.

Deutsches Institut für Normung (2016). Energeti-
sche Bewertung von Gebäuden - Berechnung des
Nutz-, End- und Primärenergiebedarfs für Heizung,
Kühlung, Lüftung, Trinkwasser und Beleuchtung
- Teil 10: Nutzungsrandbedingungen, Klimadaten
(DIN V 18599-10).

Dochev, I., P. Gorzalka, V. Weiler, J. Estevam
Schmiedt, M. Linkiewicz, U. Eicker, B. Hoff-
schmidt, I. Peters, and B. Schröter (2020). Cal-
culating urban heat demands: An analysis of two
modelling approaches and remote sensing for input
data and validation. Energy and Buildings 226,
110378.

Droin, A., M. Wurm, and W. Sulzer (2020). Seman-
tic labelling of building types. A comparison of two
approaches using Random Forest and Deep Learn-
ing. In 40. Wissenschaftlich-Technische Jahresta-
gung der DGPF. Stuttgart (Germany), 4-6 March
2020.

DWD and BBSR (2017). Ortsgenaue Testre-
ferenzjahre von Deutschland für mittlere,
extreme und zukünftige Witterungsverhält-
nisse: Handbuch. https://www.bbsr.
bund.de/BBSR/DE/forschung/programme/zb/
Auftragsforschung/5EnergieKlimaBauen/
2013/testreferenzjahre/try-handbuch.pdf.
Accessed 11 January 2021.

European Commission (2020). A Renovation Wave
for Europe - greening our buildings, creating
jobs, improving lives, Volume COM/2020/662 fi-
nal. Brussels (Belgium): Communication from
the Commission to the European Parliament, the
Council, the European Economic and Social Com-
mittee and the Committee of the Regions.

Federal Statistical Office (2011). Zensus2011.
https://www.zensus2011.de/EN/Home/home_
node.html. Accessed 17 October 2019.

http://www.adv-online.de/Products/Real-Estate-Cadastre/ALKIS/
http://www.adv-online.de/Products/Real-Estate-Cadastre/ALKIS/
https://www.businesslocationcenter.de/en/economic-atlas/download-portal/
https://www.businesslocationcenter.de/en/economic-atlas/download-portal/
https://www.businesslocationcenter.de/en/economic-atlas/download-portal/
https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/LoD2-DE.pdf
https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/LoD2-DE.pdf
https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-handbuch.pdf
https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-handbuch.pdf
https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-handbuch.pdf
https://www.bbsr.bund.de/BBSR/DE/forschung/programme/zb/Auftragsforschung/5EnergieKlimaBauen/2013/testreferenzjahre/try-handbuch.pdf
https://www.zensus2011.de/EN/Home/home_node.html
https://www.zensus2011.de/EN/Home/home_node.html


Frommholz, D., M. Linkiewicz, H. Meissner, and
D. Dahlke (2017). Reconstructing Buildings with
Discontinuities and Roof Overhangs from Oblique
Aerial Imagery. ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial
Information Sciences XLII-1/W1, 465–471.

Garbasevschi, O. M., J. Estevam Schmiedt,
T. Verma, I. Lefter, W. K. Korthals Altes,
A. Droin, B. Schiricke, and M. Wurm (2021).
Spatial factors influencing building age prediction
and implications for urban residential energy
modelling. Computers, Environment and Urban
Systems 88, 101637.

Hong, T., Y. Chen, X. Luo, N. Luo, and S. H. Lee
(2020). Ten questions on urban building energy
modeling. Building and Environment 168, 106508.

IPCC (2015). Climate Change 2014: Synthesis Re-
port. Contribution of Working Groups I, II and III
to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change. Geneva (Switzer-
land): IPCC.

Kuramochi, T., N. Höhne, M. Schaeffer, J. Cant-
zler, B. Hare, Y. Deng, S. Sterl, M. Hagemann,
M. Rocha, P. A. Yanguas-Parra, G.-U.-R. Mir,
L. Wong, T. El-Laboudy, K. Wouters, D. Deryng,
and K. Blok (2018). Ten key short-term sectoral
benchmarks to limit warming to 1.5°C. Climate
Policy 18(3), 287–305.

Li, W., Y. Zhou, K. Cetin, J. Eom, Y. Wang, and
G. Chen (2017). Modeling urban building energy
use : A review of modeling approaches and proce-
dures. Energy 141, 2445–2457.

Loga, T., B. Stein, and N. Diefenbach (2016).
TABULA building typologies in 20 European
countries—Making energy-related features of res-
idential building stocks comparable. Energy and
Buildings 132, 4–12.

Loga, T., B. Stein, N. Diefenbach, and R. Born
(2015). Deutsche Wohngebäudetypologie. Darm-
stadt (Germany): IWU.

Meyer, H., C. Reudenbach, S. Wöllauer, and T. Nauss
(2019). Importance of spatial predictor variable se-
lection in machine learning applications – Moving
from data reproduction to spatial prediction. Eco-
logical Modelling 411, 108815.

Monien, D., R. Wilting, E. Casper, M. Brennenstuhl,
and V. Coors (2016). WeBest – Automatisierte Ko-
rrektur und Mapping von Fassadenthermographien
auf 3D-Gebäudemodelle. Photogrammetrie - Fern-
erkundung - Geoinformation 2016(4), 246–257.

Müller, D., M. Lauster, A. Constantin, M. Fuchs,
and P. Remmen (2016). AixLib - An Open-Source

Modelica Library within the IEA-EBC Annex 60
Framework. In BauSIM 2016, pp. 3–9. Dresden
(Germany), 14-16 September 2016.

Nouvel, R., K.-H. Brassel, M. Bruse, E. Duminil,
V. Coors, U. Eicker, and D. Robinson (2015). Sim-
Stadt, a new workflow-driven urban energy simula-
tion platform for CityGML city models. In Proceed-
ings of CISBAT 2015 International Conference, pp.
889–894. Lausanne (Switzerland), 9-11 September
2015.

Open.NRW (2019). Open.NRW – Das Open-
Government-Portal in NRW. https://open.nrw/.
Accessed 17 October 2019.

Reinhart, C. F. and C. Cerezo Davila (2016). Urban
building energy modeling – A review of a nascent
field. Building and Environment 97, 196–202.

Remmen, P., M. Lauster, M. Mans, M. Fuchs, T. Os-
terhage, and D. Müller (2018). TEASER: An open
tool for urban energy modelling of building stocks.
Journal of Building Performance Simulation 11(1),
84–98.

Rosser, J., D. Boyd, G. Long, S. Zakhary, Y. Mao,
and D. Robinson (2019). Predicting residential
building age from map data. Computers, Environ-
ment and Urban Systems 73, 56–67.

Senatsverwaltung für Stadtentwicklung und Wohnen
(1993). Geoportal Berlin / Gebäudealter 1992/93.
https://fbinter.stadt-berlin.de/fb/index.
jsp?loginkey=showMap&mapId=gebaeudealter@
senstadt. Licensed according to dl-de/by-2-0.
Accessed 6 December 2019.

Sola, A., C. Corchero, J. Salom, and M. Sanmarti
(2020). Multi-domain urban-scale energy modelling
tools: A review. Sustainable Cities and Society 54,
101872.

Tooke, T. R., N. C. Coops, and J. Webster (2014).
Predicting building ages from LiDAR data with
random forests for building energy modeling. Sus-
tainable Cities and Society 68, 603–610.

Wurm, M., A. Droin, T. Stark, C. Geiß, W. Sulzer,
and H. Taubenböck (2021). Deep Learning-Based
Generation of Building Stock Data from Remote
Sensing for Urban Heat Demand Modeling. ISPRS
International Journal of Geo-Information 10(1),
23.

Wurm, M., A. Schmitt, and H. Taubenböck (2016).
Building types’ classification using shape-based
features and linear discriminant functions. IEEE
Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing 9, 1901–1912.

https://open.nrw/
https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=gebaeudealter@senstadt
https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=gebaeudealter@senstadt
https://fbinter.stadt-berlin.de/fb/index.jsp?loginkey=showMap&mapId=gebaeudealter@senstadt
http://www.govdata.de/dl-de/by-2-0

