
Master’s Thesis
in

Computational and Data Science

Estimating Uncertainty of Deep Learning
Multi-Label Classifications using Laplace

Approximation

for the attainment of the degree
Master of Science (M.Sc.)

submitted by
Ferdinand Rewicki

*06/04/1986 in Friedrichroda (Germany)
ferdinand.rewicki@uni-jena.de

supervised by
M.Sc. Jakob Gawlikowski
Prof. Dr. Joachim Giesen

written at
Chair for Theoretical Computer Science II

Department of Mathematics and Computer Science
Friedrich-Schiller-Universität Jena

in cooperation with
DLR German Aerospace Center

Institute of Data Science
Machine Learning Group

29/07/2021

Abstract

With the huge successes of deep learning and its application in critical areas such as
medical diagnosis or autonomous driving and in fields with noisy and very varying
data such as remote sensing, the need for reliable confidence statements about such
model’s predictions becomes apparent. Therefore, uncertainty estimation methods
for neural networks have raised rising interest in the machine learning community.
While various methods for regression and multi-class classification tasks have been
published, the field of multi-label classification has hardly been considered yet. In
this work, we derive the Kronecker-factored Laplace approximation in the multi-
label setting, a method to approximate the intractable posterior distribution over
the parameters of neural networks. We employ this method in the remote sensing
domain and estimate the model uncertainty of eight deep neural networks that have
been trained on an aerial scene classification dataset. By comparing the probabilistic
classifiers to their deterministic counterparts, we evaluate the potential for using the
uncertainty estimates to improve the calibration of those classifiers as well as the
out-of-distribution detection. We found that we can improve the calibration for
overconfident classifiers whereas for underconfident ones, this method might not be
beneficial. Furthermore, the ability to improve the separation from in- and out-of-
distribution data seems to be depending on the depth of the neural network within
one model family.

Keywords— Multi-Label Classification, Bayesian Deep Neural Networks, Uncer-
tainty Estimation, Laplace Approximation, Remote Sensing

Contents

Abstract i

Acronyms & Abbreviations v

Nomenclature vii

1 Introduction 1

2 Background 3
2.1 Probability Theory . 3
2.2 Neural Networks . 4

2.2.1 Feed Forward Neural Networks 5
2.2.2 Convolutional Neural Networks 7
2.2.3 Bayesian Neural Networks . 9

2.3 Epistemic & Aleatoric Uncertainty 10
2.4 Multi-Label Classification . 11
2.5 Remote Sensing . 12

3 Related Work 15
3.1 Laplace Approximation . 15
3.2 Bayesian Neural Networks . 16
3.3 Uncertainty for Multi-Label Classification 17

4 Kronecker Factored Laplace Approximation 19
4.1 Laplace Approximation . 19
4.2 Approximating the Hessian . 21

4.2.1 Decomposing the Log Posterior Hessian 22
4.2.2 The Generalised Gauss Newton Matrix 22
4.2.3 The Fisher Information Matrix 23
4.2.4 Exponential Family Loss . 23

4.3 Kronecker Factorisation . 24

iii

4.4 Regularisation . 26

5 Experiments 29
5.1 Implementation . 29
5.2 Evaluation Measures . 30

5.2.1 Multi-Label Measures . 30
5.2.2 Precision . 31
5.2.3 Confidence . 32
5.2.4 Expected Calibration Error (ECE) 32
5.2.5 Area Under ROC-Curve (AUROC) 33

5.3 Synthetic Multi-Label Example . 34
5.3.1 Setup . 34
5.3.2 Uncertainty Visualisation . 37
5.3.3 Calibration . 37
5.3.4 Out-of-Distribution Detection 39

5.4 Earth-Observation Dataset MLRSNet 42
5.4.1 Setup . 42
5.4.2 Calibration . 47
5.4.3 Out-of-Distribution Detection 50

6 Discussion 55

7 Conclusion & Outlook 59

Bibliography 61

List of Figures 67

List of Tables 69

A Appendix 71
A.1 Decomposing the Hessian . 71
A.2 Hypersphere datasets . 72
A.3 Additional Plots . 74

iv

Acronyms

AUROC area under the receiver operating characteristic curve

BNN Bayesian neural network

BO Bayesian optimisation

CNN convolutional neutral network

DNN deep neural network

ECE expected calibration error

FIM Fisher information matrix

FPR false positive rate

GGN generalised Gauss Newton matrix

MAP maximum a posteriori

MLE maximum likelihood estimate

MLP multi-layer perceptron

MLRSNet Multi-Label Remote Sensing Dataset

MND matrix variate normal distribution

NLL negative log likelihood

OOD out-of-distribution

p.s.d. positive semi definite

ROC receiver operating characteristic

TPR true positive rate

v

Nomenclature

D Dimensionality of the data

C Number of classes

xi ∈ RD single observation

yi ∈ {0, 1}C single multi-label

ŷi ∈ {0, 1}C predicted multi-label

p̂i ∈ [0, 1]C class probabilities vector

X ∈ RN×D Observations

Y ∈ {0, 1}N×C Targets / (Multi) Labels

D = {(xi, yi)}Ni=1 Dataset (training data, known by the model)

D∗ = {(x∗i , y∗i)}Ni=1 Dataset (test data, unknown by the model)

fθ A neural network, parametrised by θ

z = fθ(x) The logits of a neural network when presented input x

θ The parameters of a neural network

θ∗ The MAP estimate for the parameters θ

Nθ Number of parameters

L(y, z) Loss function L

Hg(x)(x0) Hessian of function g(x) at x0

Hg same as Hg(x)(x0) if context is clear

T Number of Monte Carlo Samples

vii

1 Introduction

Multi-label classification is the classification task that aims at labelling data with
multiple class labels simultaneously and is a common problem in many real world
applications [Wu and Zhou, 2017]. Being a challenging problem due to the con-
sideration of class overlap in the feature space [Ghoshal et al., 2019], the expo-
nential growing number of possible label combinations and often poorly balanced
data [Alazaidah and Ahmad, 2016] it is attractive to be approached using deep learn-
ing techniques. With the enormous successes of deep learning over the last decade,
deep neural networks (DNNs) have started to be applied in critical areas such as
medical image analysis for disease diagnosis, decision making in autonomous driv-
ing or earth observation for understanding climate change. Due to their black-box
nature and often observed over- or under-confidence [Guo et al., 2017,Ritter et al.,
2018,Gawlikowski et al., 2021], the development of methods for understanding and
quantifying uncertainty of DNNs became a vibrant research field in the machine
learning community.

While regression and multi-class tasks have been addressed by many publications
such as [Gal and Ghahramani, 2015,Blundell et al., 2015,Ritter et al., 2018,Humt,
2019], the field of multi-label classification has rarely been in focus yet. With this
work we aim to reduce this gap and therefore evaluate Bayesian neural networks
(BNNs) based on Laplace approximation for quantifying uncertainties on real-world
multi-label classification problems. The contribution of this thesis consists of:

• the derivation of the Kronecker-factored Laplace approximation in the multi-
label classification setting of neural networks,

• tf-laplace, a Python package for using the Kronecker-factored Laplace ap-
proximation with TensorFlow [Abadi et al., 2015] 2.x compatible models1

which is available on GitHub at https://github.com/ferewi/tf-laplace,

• a synthetic dataset that allows to visualise the uncertainties and their distri-
bution, especially along class-overlap regions and

1The implementation is currently limited to models with dense and convolutional layers.

1

https://github.com/ferewi/tf-laplace

1 Introduction

• the application to the domain of remote sensing by comparing eight modern
DNNs trained on the aerial scene classification dataset MLRSNet.

We start by introducing some fundamental concepts from probability theory and
neural networks as well as giving an overview over different approaches for building
multi-label classifiers in Chapter 2. After presenting related literature in Chapter 3
we derive the Kronecker-factored Laplace approximation in the multi-label classifica-
tion setting in Chapter 4. We describe the approximation of the unknown posterior
distribution while focusing on the characteristics of the multi-label setting. In Chap-
ter 5, we use the derived method to visualise the obtained uncertainties and evaluate
the potential of using the uncertainty estimates to improve (a) the calibration of the
multi-label classifier and (b) the out-of-distribution (OOD) detection for a synthetic
dataset we created and for the large-scale remote sensing dataset MLRSNet. After
discussing the experimental results in Chapter 6 we conclude by giving a summary
as well as an outlook to future work.

For the best of our knowledge, this is the first work applying Laplace approximation
on multi-label classification as well as to the remote sensing domain.

2

2 Background

In this Chapter we will introduce the basic concepts of probability theory and arti-
ficial neural networks that are relevant for this work as well as their application for
multi-label classification in general and remote sensing in particular. As describing
these topics in full depth would by far exceed the scope of this thesis, we will re-
fer to the appropriate sources where needed. We start presenting some probability
theory basics in Section 2.1 and introduce artificial neural networks in Section 2.2.
After describing the different types of uncertainties in Section 2.3 and defining the
multi-label classification problem in Section 2.4, we will describe the remote sensing
domain in Section 2.5 which is the field of application of this work.

2.1 Probability Theory

Probability theory is the mathematical framework to work with in the presence of
uncertainty. Probability theory provides the tools for quantifying uncertainty and
to reason from uncertain statements. In this section we will introduce some basic
concepts which are relevant for this thesis. For a more thorough introduction please
refer to a machine learning textbook such as [Goodfellow et al., 2016], [Bishop, 2006]
or [Murphy, 2021].

The need for dealing with uncertainty in the field of machine learning comes from
(a) the system to be modelled is inherent stochastic (e.g. in quantum mechanics),
(b) the system being modelled can not be fully observed, (c) the model built for
a system being incomplete [Goodfellow et al., 2016, p. 52]. To deal with these
uncertainties we adopt the Bayesian interpretation of probability in which proba-
bility represents a degree of belief and allows us to quantify the certainty about an
event to occur [Murphy, 2021, p.31]; [Goodfellow et al., 2016, p.53]. As opposed to
the Bayesian interpretation of probability, the frequentist sees probabilities as the
relative frequencies with that events occur when repeated multiple times [Murphy,
2021, p.31].

3

2 Background

When training a machine learning model that is parametrised by parameters θ, we
are interested in inferring the posterior distribution ever these parameters. Given
some observed data D and some prior belief p(θ) about the values for θ, we can use
Bayes’ Rule to update that belief in the light of the observations [Barber, 2012, p.18]:

p(θ|D) =
p(D|θ)p(θ)
p(D)

, (2.1)

where p(D|θ) represents the likelihood for D being generated using parameters θ
and p(θ) the prior distribution over θ. p(D) =

∫
θ
p(D|θ)p(θ) is called the evidence

and works as a normalisation constant to ensure p(θ|D) being a valid probability
density [Bishop, 2006, p.22]. Thus, the posterior is proportional to the likelihood
times the prior:

p(θ|D) ∝ p(D|θ)p(θ) . (2.2)

The maximum a posteriori (MAP) estimate θ∗ is given by the set of parameters
that maximises the posterior: θ∗ = arg maxθ p(θ|D). For a uniform prior p(θ) = c,
the MAP is equivalent to the maximum likelihood estimate (MLE) which is the θ
that maximises the likelihood p(D|θ), as the prior in 2.1 is not changing with θ

anymore [Barber, 2012, p.18]. However, the MAP is a point estimate. We obtain
the posterior predictive distribution for predicting the output y∗ on new data inputs
x∗, by marginalising w.r.t. the posterior distribution [Bishop, 2006, p.279]

p(y∗|x∗,D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ , (2.3)

which is known as Full Bayesian Inference. As this integral is intractable in most
cases, we will use a technique called Monte Carlo Approximation for approximating
the posterior predictive distribution in Section 4.1.

2.2 Neural Networks

Feed forward neural networks are the essential machine learning models used in
this work. We are going to introduce their basic structure as well as how neural
networks are trained in Section 2.2.1 and describe a variant that is mainly used in
image analysis called convolutional neutral networks in Section 2.2.2. In Section
2.2.3 we will present Bayesian neural networks, a probabilistic version of neural
networks.

4

2.2 Neural Networks

Figure 2.1: Network diagram of a multi-layer perceptron (MLP) with one hidden
layer. The vertices represent the input, hidden and output variables,
whereas the parameters θ are represented by the edges between the ver-
tices. The arrows denote the direction of information flow from left to
right. The parameters θ(λ)i0 , i ∈ {1, . . . ,max(M,C)}, λ ∈ {1, 2} are called
biases while all other parameters are called weights.

2.2.1 Feed Forward Neural Networks

Feed forward neural networks1, are used to approximate some unknown function f ∗

for mapping an input x to a target y = f ∗(x). The mapping of a neural network is
defined by ŷ = fθ(x) where θ are the parameters of the function f that should be
learned to obtain the best approximation to f ∗. The parameters θ are also called
the weights of the neural network. In a feed-forward network, the function fθ(x) is
composed by a number of functions f (L)(f (L−1)(...(f (1)(x))...)) which are organized
in a chain. f (λ)(x) = fθλ(x) denotes the function at layer λ. [Goodfellow et al.,
2016, p.164]; [Murphy, 2021, p.413]

Figure 2.1 shows a schematic representation of a neural network with on hidden layer
as a network diagram. The middle layer is called hidden as the variables a0, . . . , aM

1We will use the term ”neural network” synonym to ”feed forward neural network” as those are
the only class of neural networks considered in this work.

5

2 Background

are not observed. Each layer λ consists of one or several neurons which are the basic
building blocks of neural networks. Each neuron i in layer λ calculates an activation

a
(λ)
i = φ(λ)(h

(λ)
i), with h(λ)i = (

D∑
j=1

W
(λ)
ij a

(λ−1)
j) + bλi , (2.4)

by applying an activation function φ(λ) to the linear pre-activations h(λ) in layer
λ. The pre-activations are the linear combination of the activations in the previous
layer a(λ−1)i and the weights W (λ)

i of layer λ plus a bias term b
(λ)
i . We can express

this for an entire layer using matrix notation

a(λ) = φ(λ)(θ(λ)a(λ−1)) , (2.5)

with the bias terms being absorbed into the parameter matrix θ(λ) = [W (λ)b(λ)] by
appending a 1 to the vector a(λ−1). θ(λ) are called the parameters of layer λ. The
variables of the first layer xi = a

(0)
i are called inputs while those in the final layer

zi = h
(L)
i are denoted as outputs or logits. The activation functions φ are usually

nonlinear, as neural networks with linear activations reduce to a single neuron2

[Goodfellow et al., 2016, p.168]. Depending on the application, the logits of the
neural network zi are transformed according to the needs of the applications. For
standard regression problems this is done by using the identity ŷi = zi whereas in
multi class classification the softmax function

softmax(z)i =
ezi∑C
j=1 e

zj
(2.6)

is applied to normalize the logits zi to a categorical distribution over the C possible
classes. For binary and multi-label classification problems, the logits3 zi are passed
through the logistic sigmoid function

σ(zi) =
1

1 + e−zi
(2.7)

to obtain a probability for the ith class being present in the input.

When training a neural network on a dataset D, we want to learn the parameters
θ of fθ to obtain the best approximation fθ for f ∗. The data points (x, y) ∈ D are

2Given two linear functions f (1)(x) = W ᵀx and f (2)(h) = hᵀw, the composed function f(x) =
f (2)(f (1)(x)) = f (2)(W ᵀx) = xᵀWw, which we can rewrite as f(x) = xᵀw′ with w′ = Ww.

3In the binary classification case this would be a single logit, thus i = 1.

6

2.2 Neural Networks

noisy, approximate examples y ≈ f ∗(x) of f ∗ evaluated at point x and the goal of
the training process is to minimise the error between fθ(x) and y. For this purpose,
a loss function L is minimised which is depending on the problem to be solved.
A common probabilistic interpretation of this procedure is that by minimising the
error between the true label y and the neural network output fθ(x) for data points
(x, y) of a dataset D, we are maximising the likelihood that the data given in D was
produced using the parameters θ for fθ. This is done by minimising the negative
log likelihood (NLL)

L(θ) = − log p(D|θ) = −
N∑
i=1

log p(yi|xi; θ) . (2.8)

The training is usually done iteratively using first-order optimisation procedures,
e.g. the well-known stochastic gradient descent algorithm. The training examples
are passed through the neural network and the gradient ∇θL of the NLL w.r.t.
the parameters θ is determined and used to update to parameters according to the
learning rule

θ ← θ − ε∇θL , (2.9)

with ε being the learning rate. The gradient of the NLL w.r.t. the parameters θ
can be computed by using the backpropagation algorithm. For further details on
the training process and an in-depth introduction on neural networks, please refer
to a machine learning textbook such as [Goodfellow et al., 2016], [Bishop, 2006]
or [Murphy, 2021]. We will come back to the internals of neural networks and the
relationship between the binary cross entropy loss function and the negative log
likelihood in Chapter 4.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) [LeCun et al., 1999] are a special form of
neural networks that employ a convolution operation instead of the matrix multi-
plication (2.5) in at least one of their layers [Goodfellow et al., 2016, p.326]. They
are used to process data with a grid-like topology like timeseries or images, which
are the number one use case for CNNs.

7

2 Background

The 1-dimensional continuous convolution is defined as an operation between two
real-valued functions f, g : RD → R as [Murphy, 2021, p.454]

[f ∗ g](z) =

∫
RD
f(u)g(z − u)du (2.10)

and can be though of as ”blending” the two functions. In CNN terminology, f
is often called the filter or kernel and g the input of the convolution [Goodfellow
et al., 2016, p.327]; [Murphy, 2021, p.454]. As in the field of image analysis we
usually use images having two spatial dimensions I as inputs, we also want to
use two-dimensional kernels K for the convolution. Furthermore, we are dealing
with a finite set of discrete data so that the integral in (2.10) becomes a finite
sum [Goodfellow et al., 2016, p.328]

[K ∗ I](i, j) =
M−1∑
m=0

N−1∑
n=0

K(i, j)I(i−m, j − n) , (2.11)

with M × N being the dimension of the kernel. The values of the kernel are the
parameters that should be learned from training.

Convolution convey three properties that help to improve machine learning systems:

1. Sparse interactions refers to reducing the number of parameters compared to
the MLP by using kernels that are smaller than the inputs to be processed.

2. Parameter sharing describes that the same parameter is used in multiple mul-
tiplications as opposed to the MLP case, where every parameter is only used
once in the matrix multiplication. This reduces the number or parameters fur-
ther which is beneficial as it improves the memory requirements of the model
as well as its statistical efficiency [Goodfellow et al., 2016, p.330].

3. Equivariance to translations that asrises from the form of parameter sharing,
helps to preserve information about the location of input features [Murphy,
2021, p.461].

CNNs consist of several convolutional layers which are built mostly of three parts.
First the input is convoluted with several kernels that produce a set of linear pre-
activations which are then run through a non-linear activation function such as the
Rectified linear activation function [Goodfellow et al., 2016, p.355]. Finally, these
activation are passed through a pooling function that reduces the size of the output
(often called feature maps) further. The early layers in a deep convolutional neural
network are considered to detect low-level features such as edges and corners while

8

2.2 Neural Networks

more complex features are extracted by later layers. All of the eight DNNs that we
use for our experiments in Chapter 5 are CNNs as we apply multi-label classification
to aerial image data.

2.2.3 Bayesian Neural Networks

BNNs [Buntine and Weigend, 1991] extend classical neural networks by combin-
ing them with the Bayesian learning approach [Gawlikowski et al., 2021] and are a
method for quantifying model uncertainty of neural networks. Instead of training
the neural network in a maximum likelihood manner on a dataset D, a probability
distribution p(θ|D) over the network parameters θ is inferred by assuming a prior
distribution p(θ) and applying Bayes’ Rule (2.1). [Gawlikowski et al., 2021] differ-
entiate between three types of BNNs, depending on how the posterior distribution
is inferred.

Variational Inference [Hinton and Van Camp, 1993,Barber and Bishop, 1998] meth-
ods approximate the posterior distribution p(θ|D) by finding a distribution q(θ) from
a pre-defined parametrised family of distributions that is close to the true poste-
rior distribution. The distance between two distributions p and q is given by the
Kullback-Leibler divergence KL(q||p):

KL(q||p) = Eq
[
log

q(θ)

p(θ|D)

]
, (2.12)

which can not be optimised directly due to the posterior distribution in the denom-
inator of (2.12). Instead, the evidence lower bound

L = Eq
[
log

p(D|θ)
q(θ)

]
(2.13)

is minimised which is equal to the Kullback-Leibler divergence up to a constant:
KL(q||p) = −L+ log p(y|x) [Gawlikowski et al., 2021].

Sampling Approaches, also called Monte Carlo methods, represent uncertainty with-
out a parametric model by yielding a representation of the posterior distribution
from which samples can be drawn [Gawlikowski et al., 2021]. An example for a
sampling method is the Markov Chain Monte Carlo sampling (MCMC) algorithm,
which allows to draw samples from the desired distribution by recording states from
a Markov chain.

9

2 Background

Laplace Approximation [Denker and LeCun, 1990,MacKay, 1992] aims at approxi-
mating the true posterior distribution over the parameters p(θ|D) with a multivariate
Gaussian around a local mode of that distribution. This method has the advantage
that it can be applied post-hoc to already trained neural networks that use an expo-
nential family loss function (e.g. cross entropy or mean squared error) and piece-wise
linear activation functions such as ReLU. We will present this method in-depth in
Chapter 4 and derive a scalable version that can be used with modern DNNs.

2.3 Epistemic & Aleatoric Uncertainty

When speaking about uncertainty in neural networks, we mainly distinguish between
two forms of uncertainty:

1. Epistemic or model uncertainty comes from a lack of domain-specific knowl-
edge about what type of model or parameters suit(s) the underlying problem
best [Gawlikowski et al., 2021].

2. Aleatoric or data uncertainty refers to the intrinsic, irreducible randomness
or partial observability of the data generating process [Murphy, 2021, p.7];
[Depeweg, 2019].

While we mostly can not avoid the latter, we have full influence on how we create
or train our model and can reduce the model uncertainty e.g. by increasing the
amount of data used for training. The predictive uncertainty subsumes both uncer-
tainty types and describes the uncertainty in a prediction. As the model uncertainty
represents what a model is missing in terms of domain-specific knowledge it covers
in-domain uncertainty as well as out-of-domain uncertainty, where the former de-
scribes the uncertainty about inputs drawn from the same distribution as the data
the model was trained on [Gawlikowski et al., 2021]. Out-of-distribution uncertainty
on the other hand refers to inputs being drawn from a distribution far away from
the training distribution4 [Gawlikowski et al., 2021]. We will apply BNNs to model
the epistemic uncertainty of DNNs and employ those among others to separate in-
distribution from out-of-distribution data in Chapter 5.

4We will refer to those inputs as out-of-distribution data.

10

2.4 Multi-Label Classification

2.4 Multi-Label Classification

Multi-label classification is the classification task that, as opposed to the multi-class
or binary classification, aims at labelling input data with multiple labels simultane-
ously [Wu and Zhou, 2017]. The applications include many real-world problems such
as text categorisation where articles should be tagged with a list of topics [Schapire
and Singer, 2000], music information retrieval where a piece of music is associ-
ated with different moods or genres [Turnbull et al., 2008] or image classification
where images are labelled according to their content e.g. with ”beach” and ”sun-
set” [Boutell et al., 2004]. Before we give an overview of different approaches for
building multi-label classification models, we will formulate the general problem.

Given a dataset D ⊆ X × Y with X being a set of examples to be classified and
Y ⊆ {0, 1}C a set of C-dimensional binary vectors with y = (y1, . . . , yc) ∈ Y being
called a multi-label and the components yi micro-label [BakIr et al., 2007, p.107];
[Boutell et al., 2004]. For a pair (x(j), y(j)) ∈ D the micro-label y(j)i = 1 indicates,
that the ith class is assigned to the jth example. Let further M be the set off
classifiers for labelling x ∈ X with multi-labels y ∈ Y . The multi-label classification
task aims at finding that classifier M ∈ M, that minimises a distance (e.g. the
hamming distance) between h(x∗) and y∗ when predicting on an unseen example
(x∗, y∗) [Boutell et al., 2004]. Existing methods for multi-label classification can be
grouped into two main categories.

Problem transformation methods solve the multi-label problem by turning it into
multiple single-class problems. While Binary Relevance breaks down the problem
of assigning k ≤ C labels into solving C independent binary classification problems
[Tomás et al., 2014], the Label Powerset method considers every label combination
as a separate class in a multi-class classification problem with 2C classes [Tsoumakas
and Katakis, 2007].

Adapted Algorithms on the other hand extend or change existing single-class clas-
sification algorithms in a way to solve the multi-label case. For example is the
ML-kNN algorithm [Zhang and Zhou, 2005] a multi-label version of the k-nearest-
neighbours (kNN) algorithm, which uses the kNN for each of the C labels indepen-
dently [Tsoumakas and Katakis, 2007].

The multi-label setup for neural networks also falls into the latter category. In this
setting, the network is trained on a dataset D = (xi, yi)

n
i=1 ⊆ X × Y providing a

multi-label y(i) for each training example x(i). For a multi-label problem with C

11

2 Background

possible classes, the output layer of the neural network consists of C neurons. We
obtain the probabilities for each class c ∈ C by applying the sigmoid function (2.7)
to the output zc of the neural network, also known as the logits:

p̂c = σ(zc) =
1

1 + e−zc
. (2.14)

The network is trained by using the binary cross entropy loss LBCE which is defined
as

LBCE(y, z) =
C∑
c=1

−yc log σ(zc)− (1− yc) log(1− σ(zc)) , (2.15)

where y ∈ {0, 1}C is the true multi-label and z ∈ RC is the logits vector at the
output of the neural network. As the logits zi of the neural network fθ are con-
ditionally independent given the data x and parameters θ [Monteiro et al., 2020],
the model assumes independence between the classes and is therefore comparable
to the setting in Binary Relevance. In this work, we will present the Laplace ap-
proximation Method to estimate the posterior distribution of neural networks in
the multi-label classification setting in Chapter 4 and will apply that method to
synthetic and real-world datasets in Chapter 5. To the best of our knowledge, this
is the first work addressing the uncertainty estimation for multi-label classification
by employing Laplace approximation.

2.5 Remote Sensing

Remote sensing deals with the detection and monitoring of physical characteristics
of the earth using sensors on satellites or aircrafts. Such sensors include optical
sensors (multi- and hyperspectral), Lidar or synthetic aperture radar (SAR) [Zhu
et al., 2017]. Over the past years, deep learning techniques have heavily been adopted
by the remote sensing community for tasks including hyperspectral image analysis,
multi-modal data fusion or 3-D reconstruction [Zhu et al., 2017]. Remote sensing
meets different challenges and specifics such as the combination of multi-modal data
sources including those with differing geometries and content, the importance of the
time component of those measurements as well as those measurements often being
physical or biochemical quantities [Zhu et al., 2017]. Also, remote sensing data
is geo-located, which means that each pixel in an image corresponds to a spatial
coordinate which allows the fusion with other data from other information systems
or sensors [Zhu et al., 2017].

12

2.5 Remote Sensing

In this work, we address the task of aerial scene classification which aims to au-
tomatically label aerial imagery with semantic categories to promote the under-
standing of high resolution remote sensing data [Xia et al., 2017]. We apply the
Laplace approximation method that we present in Chapter 4 to a remote sensing
scene classification problem in Section 5.4. We will use the uncertainty estimates
obtained from applying a BNN to investigate the potential for improving (a) the
calibration of the multi-label classifier and (b) the detection and separation from in-
and out-of-distribution data.

13

3 Related Work

In this section we will present an overview over related research in the field of
Bayesian neural networks as uncertainty estimation methods and multi-label clas-
sification. After introducing some key works on Laplace approximation in Section
3.1 we describe developments in the related areas of variational inference and Monte
Carlo methods in Section 3.2. We conclude this overview by looking at existing
works on uncertainty estimation for multi-label classification in Section 3.3.

3.1 Laplace Approximation

The idea of Laplace’s method to approximate integrals of the form
∫ b
a
f(t)e−λg(t)

was first described in [Laplace, 1774]. In the field of machine learning [Denker and
LeCun, 1990] and [MacKay, 1992] pioneered using Laplace’s method to approximate
the true posterior distribution over the parameters of a neural network. The ba-
sic idea is to approximate the unknown distribution with a multivariate Gaussian
around a known mode of that distribution, which is found by point-wise optimi-
sation. The core of the method is the estimation of the Hessian of the negative
log-likelihood function. While [MacKay, 1992] and [Denker and LeCun, 1990] used
networks with a relatively small number of parameters and could therefore compute
the Hessian for their network directly, this approach fails for modern scale DNNs
due to their huge number of parameters. Several approximations of the Hessian have
been published, such as diagonal approximations (e.g. [Becker and Lecun, 1989]) as
well as those including off-diagonal elements ([Liu and Nocedal, 1989, Roux and
Fitzgibbon, 2010]).

[Martens and Grosse, 2015] and [Botev et al., 2017] proposed a block-wise ap-
proximation of the Hessian by showing that under certain conditions the diago-
nal blocks of the generalised Gauss Newton matrix (GGN) and Fisher information
matrix (FIM) are equal to those of the Hessian. They further showed, that for
a single data point these diagonal blocks are Kronecker factored. [Ritter et al.,

15

3 Related Work

2018] transferred this approach for approximating the Hessian from the second-
order optimisation field to the field of uncertainty estimation in neural networks.
They presented the Kronecker-factored Laplace approximation, a version of the
Laplace approximation that scales to the size of modern deep neural networks and
which is the workhorse of this thesis. [Ritter et al., 2018] applied the method to a
wide-residual network [Zagoruyko and Komodakis, 2016] trained on the CIFAR-100
dataset [Krizhevsky, 2009] and showed that this method can be used to improve the
detection of out-of-distribution examples in multi-class classification.

[Humt, 2019] applied the Kronecker-factored Laplace approximation two nine mod-
ern DNN trained on ImageNet [Russakovsky et al., 2015] and showed that the cali-
bration of the classifier as well as the detection of out-of-distribution examples could
be improved by this method.

3.2 Bayesian Neural Networks

Bayesian neural networks, as described in Section 2.2.3, combine classical, determin-
istic neural networks with Bayesian learning and can be divided into the three main
types Variational Inference, Sampling Methods and Laplace Approximation. While
we already gave an overview about the latter in the previous section, we will now
introduce some related works for the former two.

[Hinton and Van Camp, 1993] pioneered in variational inference methods for BNNs
who approximated the posterior distribution of a small neural network with four
units and one hidden layer by a multivariate Gaussian having a diagonal covariance
matrix. [Barber and Bishop, 1998] extended the idea to full covariance matrices and
demonstrated how the evidence lower bound can be optimised for neural networks.

[Graves, 2011] proposed a stochastic method for variational inference as the first
scalable approach using Gaussian priors. The method is stochastic as the evidence
lower bound is optimised over mini-batches of data. [Blundell et al., 2015] extended
this stochastic approach to non-Gaussian priors with their Bayes by Backprop algo-
rithm. The idea is to learn the shape of variational distributions over the parameters
during the training of the network.

The works of [Gal and Ghahramani, 2016,Gal and Ghahramani, 2015] can be seen
as at the border of variational inference and sampling methods as they cast existing
stochastic elements in neural networks as variational inference. Their Monte Carlo
Dropout method formulates the dropout [Srivastava et al., 2014] layers, used in

16

3.3 Uncertainty for Multi-Label Classification

most modern neural networks for regularisation, as Bernoulli distributed random
variables. Training a neural network with dropout layers means that in each iteration
a randomly selected subset of weights is set to zero, which can be can be linked
to performing variational inference [Gal and Ghahramani, 2016]. The predictive
uncertainty can be obtained during test time by keeping dropout active. As many
modern neural networks are already trained using dropout, this method is highly
attractive for practitioners to obtain uncertainty estimates without the need for
extensive expert knowledge.

In the area of Monte Carlo methods for BNNs, the pioneering work was published
by [Neal, 1992] who proposed the Hybrid Monte Carlo1 (HMC) method which cor-
responds to an instance of the Metropolis-Hastings algorithm and allows to approx-
imate the true posterior distribution arbitrarily close [Humt, 2019]. HMC does
not scale well to large datasets as it requires processing the whole dataset in each
iteration.

3.3 Uncertainty for Multi-Label Classification

The evaluation of uncertainty estimation methods like Bayesian neural networks for
multi-label classification problems is a rather new research field. The works that
have been published so far approach this topic mainly from an application point.

[Chen et al., 2020] use Monte Carlo Dropout to model epistemic uncertainty in their
proposed Uncertainty Quantification for Multilabel Text Classification (UC-MLTC)
framework.

[Ghoshal et al., 2019] apply Monte Carlo Dropweights (or Monte Carlo drop con-
nect), a variant of Monte Carlo dropout where the weights on the incoming acti-
vations are dropped instead the outgoing activation for the following neurons, for
classifying cell types in immunohistochemically stained images. According to the
authors, this is the first work on quantifying uncertainty in multi-label image clas-
sification.

1Also known as Hamiltonian Monte Carlo

17

4 Kronecker Factored Laplace
Approximation

In this section we will derive the Kronecker-factored Laplace approximation, a
method for approximating the intractable posterior distribution over the param-
eters of neural networks. After presenting the general theory behind the Laplace
approximation in Section 4.1, we will have a detailed look on how to approximate
the curvature of neural networks and the compatibility with the binary cross entropy
loss that is used for training the multi-label classifier in Section 4.2. In Section 4.3
we describe the Kronecker factorisation of the curvature factors that allows to scale
that method to the size of modern DNNs and discuss the proposed regularisation
scheme in Section 4.4.

4.1 Laplace Approximation

The goal of Laplace’s method is to approximate the intractable posterior distribution
with a multivariate gaussian around a known mode of that distribution. The Laplace
approximation of the posterior p(θ|D) of a neural network can be obtained by taking
the second order Taylor expansion of the log-posterior over the weights around the
MAP estimate θ∗, which we get from training the network on data D, e.g. by using
gradient based techniques [Ritter et al., 2018,Gawlikowski et al., 2021]:

log p(θ|D) ≈ log p(θ∗|D) + (θ − θ∗)ᵀ∇ log p(θ∗|D) +
1

2
(θ − θ∗)ᵀHlog p(θ|D)(θ

∗)(θ − θ∗)

= log p(θ∗|D) +
1

2
(θ − θ∗)ᵀHlog p(θ|D)(θ

∗)(θ − θ∗) .
(4.1)

As the Taylor series is evaluated at a maximum θ∗ where the gradient is zero, the first
order term can be omitted. Hlog p(θ|D)(θ

∗) is the Hessian of the log posterior which
describes the local curvature around θ∗. As θ∗ is a maximum, Hlog p(θ|D)(θ

∗) is nega-

19

4 Kronecker Factored Laplace Approximation

tive definite. If we use the Hessian of the negative log posterior H = −Hlog p(θ|D)(θ
∗)

instead - which is in turn positive definite - we get

log p(θ|D) ≈ log p(θ∗|D)− 1

2
(θ − θ∗)ᵀH(θ − θ∗) . (4.2)

From now on,H will refer to the Hessian of the negative log posterior = −Hlog p(θ|D)(θ
∗)

if not stated otherwise. Taking the exponential on both sides of (4.2) leads to

p(θ|D) ≈ p(θ∗|D) exp
{
−1

2
(θ − θ∗)ᵀH(θ − θ∗)

}
. (4.3)

The right hand side of (4.3) is the unnormlised probability density function of a gaus-
sian distribution and can be normalised with a normalisation coefficient Z [Bishop,
2006, pp. 215] [Humt, 2019]

1

Z
p(θ|D) ≈ 1

Z
p(θ∗|D) exp

{
−1

2
(θ − θ∗)ᵀH(θ − θ∗)

}
, (4.4)

which can also be written as

1

Z
p(θ|D) ≈ N (θ∗, H−1) . (4.5)

The normalisation coefficient Z should be choosen accordingly to the normalisation

coefficient
√
det(H)

(2π)
Nθ
2

of a multivariate normal distribution with covariance H−1:

1

Z
p(θ∗|D)

!
=

√
det(H)

(2π)
Nθ
2

⇔ 1

Z
=

√
det(H)

(2π)
Nθ
2

1

p(θ∗|D)

⇔Z = p(θ∗|D)
(2π)

Nθ
2√

det(H)
.

(4.6)

However, Z does not need to be evaluated in practice as we are aiming for sam-
pling from that distribution rather then computing densities. Furthermore, fol-
lowing from the central limit theorem, the posterior distribution is asymptotically
normal distributed, making the approximation of the posterior with a Gaussian be-
coming increasingly better as more data points are observed [Bishop, 2006, pp. 215,
216] [Humt, 2019].

20

4.2 Approximating the Hessian

Wrapping this up, after training the neural network on a sufficient amount of data,
we can assume the network’s parameters to be normal distributed

θ ∼ N (θ∗, H−1) , (4.7)

with the MAP estimate θ∗ as mean and the inverse of the Hessian of the negative
log posterior as covariance.

To approximate the posterior mean on unseen data x∗ ∈ X, we use Monte Carlo
integration to approximate the intractable integral in (4.8). We draw T 1 weight
configurations from the posterior distribution and average over T predictions, using
a different set of weights θ(t) on each forward pass [Ritter et al., 2018,Gawlikowski
et al., 2021]:

p(y∗|x∗,D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ ≈ 1

T

T∑
t=1

p(y∗|x∗, θ(t)) . (4.8)

4.2 Approximating the Hessian

Working with the Hessian comes with three problems:

1. The size of the Hessian is quadratic in the number of network parameters
(Nθ ×Nθ) and therefore way too large for probably every real-life-scale neural
network.2

2. Computing the Hessian involves computing second derivatives which is com-
putationally expensive

3. The covariance of the posterior distribution is approximated by the inverse
of the Hessian of the negative log posterior, though the posterior is the un-
known distribution we want to approximate. How can we actually compute
the Hessian of a function we don’t know?

Given those three problems, we need to come up with an alternative to the Hessian
of the log posterior that has reasonable memory requirements and that we actually
know how to compute in an efficient way. Let’s start with the third problem.

1We will use T = 50 Monte Carlo samples throughout this work.
2The storage requirement for the Hessian of a neural network with 10 million parameters would
be more then 2.9 peta byte when using a 32 bit floating point representation.

21

4 Kronecker Factored Laplace Approximation

4.2.1 Decomposing the Log Posterior Hessian

The covariance of the posterior distribution is given as the inverse of the Hessian of
the negative log posterior (see (4.7)). By applying the logarithm to Bayes’ Theorem
and taking the second derivative, we can express the Hessian of the negative log
posterior−Hlog p(θ|D) with the Hessian of the negative log likelihood−Hlogp(D|θ) minus
the Hessian of the prior Hlog p(θ) which is −τI if we assume a Gaussian prior with
precision τ :

−Hlog p(θ|D) = −Hlog p(D|θ) + τI . (4.9)

The full derivation can be found in Appendix A.1. As we will see at the end of this
section, the negative log likelihood is actually the loss function (or objective function)
we are minimising when training the neural network, making the Hessian of the
negative log likelihood identical with the Hessian of the loss w.r.t. the parameters
θ. While we might know how to compute the Hessian of the negative log likelihood,
it still leaves us with first two problems: its size and the cost of computing second
derivatives.

Fortunately we can approximate the Hessian with matrices that are both, smaller
regarding their storage requirements and easier to compute. Under certain condi-
tions, the GGN and the FIM can be used as approximations to the Hessian of the
loss function.

4.2.2 The Generalised Gauss Newton Matrix

The GGN is often used as a positive semi definite (p.s.d.) approximation of the
Hessian of the loss function [Martens and Grosse, 2015] in second order optimisation
and can be defined as

GGN =
1

|D|
∑

(x,y)∈D

JᵀfHLJf , (4.10)

with Jf denoting the Jacobian of the networks outputs z = fθ(x) w.r.t. the param-
eters θ and HL is the Hessian of a convex loss function L(y, z) w.r.t. the network
outputs z = fθ(x) (which should not be confused with the Hessian of the negative
log likelihood that we want to approximate) [Martens, 2020,Botev et al., 2017]. The
GGN needs less storage as it is enough to store the Jacobian Jf , which has size
Nθ×C, where C is the number of outputs of the neural network, and the Hessian of
the loss HL, which is an C×C matrix. Looking at the computational effort, we still
need to compute seconds derivatives for HL, but much less then for the Hessian of

22

4.2 Approximating the Hessian

the negative log likelihood. [Botev et al., 2017] showed, that the layer-wise diagonal
blocks of the Hessian and GGN are equivalent for neural networks with piece-wise
linear activation functions (e.g. ReLU).

4.2.3 The Fisher Information Matrix

The FIM of the model’s distribution PD(θ) w.r.t. the parameters θ is given by the
expectation over the outer vector product of the gradient of the log likelihood w.r.t.
the parameters θ

FIM = E
[
∇θ log p(D|θ)∇θ log p(D|θ)ᵀ

]
. (4.11)

The FIM is modest in its storage requirements as it is enough to store this gradient
which’s size is the number of parameters Nθ and it is easy to compute, as this is the
gradient we use for backpropagation when training the neural network. [Martens,
2020] proved the equivalence of the GGN and the FIM, given that the network’s
predictive distribution is an exponential family model, parametrised by the network
parameters θ.

4.2.4 Exponential Family Loss

To be able to use the FIM as an approximation, we need to verify, that the predictive
distribution of our neural network is an exponential family model, i.e. that the loss
function can be interpreted as an exponential family negative log likelihood [Ritter
et al., 2018]. In the following section we will have a look at the loss function we use
for training neural networks on Multi-Label Classification tasks.

In the multi-label classification setting, we obtain the probabilities for each class
by applying the sigmoid function to the output of the neural network (2.14). The
network is trained by using the binary cross entropy loss (2.15). Additionally to
the logits being conditionally independent given the data and parameters [Monteiro
et al., 2020], the class-wise predictions are just depending on their respective logit.
Under those conditions we can write the joint predictive probability as a product of
class-wise probabilities

p(y|x, θ) =
C∏
c=1

p(yc|zc) =
C∏
c=1

σ(zc)
yc(1− σ(zc))

1−yc , with zc = fθ(x)c . (4.12)

23

4 Kronecker Factored Laplace Approximation

As we want to look at the negative log likelihood, we take the logarithm on both
sides and multiply with −1. Secondly, by applying the product and power rule for
the logarithm, we arrive at the expression for the binary cross entropy loss as in
(2.15):

− log p(y|x, θ) = − log
C∏
c=1

σ(zc)
yc(1− σ(zc))

1−yc

=
C∑
c=1

−yc log σ(zc)− (1− yc) log(1− σ(zc))

(4.13)

with zc = fθ(x)c. Hence, the condition for the equivalence of the GGN and FIM are
met and we can use the FIM as an approximation of the Hessian.

The approximation of the Hessian with the FIM is guaranteed to be p.s.d. as the
FIM is the expectation over an outer product of the gradient3. Though, to use it as
the covariance of the posterior distribution we would need it to be positive definite
as the the covariance is the inverse of the Hessian. As we are using the FIM as an
approximation to the Hessian of the log likelihood, it is enough to have it p.s.d. as
(H + τI) becomes positive definite4 for every τ > 0.

4.3 Kronecker Factorisation

As we have seen in Section 4.2, we can approximate the Hessian of the negative
log posterior by a block-diagonal matrix, where each block corresponds to the pa-
rameters of the respective layer of the neural network and is equivalent to the same
block of the FIM. By employing this approximation, we already assumed the layer-
wise independence of the networks parameters. This assumption is acceptable, as
the block-diagonal approximation preserves enough information about the neural
network’s curvature [Ritter et al., 2018] by considering the covariances within lay-
ers. To further improve computational efficiency we exploit that - for a single data

3Let a ∈ Rn =⇒ xᵀaaᵀx = (xᵀa)2 ≥ 0, ∀x 6= 0 =⇒ A = aaᵀis p.s.d. �
4Let A ∈ Rn×n be p.s.d. and D ∈ Rn×n a positive diagonal matrix. =⇒ ∀v 6= 0 : vᵀ(A+D)v =
vᵀAv + vᵀDv > 0 =⇒ (A+D) is positive definite. �

24

4.3 Kronecker Factorisation

point - we can express each diagonal block λ of the curvature matrix as a Kronecker
Product [Botev et al., 2017,Martens and Grosse, 2015,Ritter et al., 2018]5:

Hλ =
∂2L

∂vec(Wλ)∂vec(Wλ)
= Qλ ⊗Hλ. (4.14)

In (4.14), Hλ denotes the Hessian w.r.t. the parameters in layer λ, L the loss func-
tion, Qλ = aλ−1a

ᵀ
λ−1 the covariance of the incoming activations from the previous

layer λ − 1 and Hλ = ∂2

∂hλ∂hλ
the Hessian of the loss function w.r.t. the linear pre-

activations in layer λ [Ritter et al., 2018]. The Kronecker Product A ⊗ B of two
matrices A and B is defined as {A ⊗ B}ij = aijB and has the property, that the
inverse of a Kronecker Product equals the Kronecker Product of its inverted factors6.
This is fortunate, as we can invert two relatively small matrices for each layer. So far
we gained from the independence assumption, that the per-sample Hessian of our
neural network decomposes into 2L much smaller matrices where L is the number
of layers in the neural network [Martens and Grosse, 2015].

As a second approximation, we’ll assume independence of Qλ andHλ for all layers λ.
By doing this, we keep the Kronecker factorisation in expectation and can express
the expected Hessian for each layer λ as [Ritter et al., 2018]:

E[Hλ] = E[Qλ ⊗Hλ] ≈ E[Qλ]⊗ E[Hλ] . (4.15)

Even though this second approximation is likely to be major, it is considered to be
"fairly accurate in practice" according to [Martens and Grosse, 2015].

Instead of sampling the parameters form a multivariate normal distribution having
the inverted curvature matrix as its covariance (like we saw in Section 4.1), we now
need to migrate to the matrix variate normal distribution (MND) [Gupta and Nagar,
2010] to draw parameters using the Kronecker factors. The MND is defined over a
matrix X : p× n of random variables instead of just a vector. It is parametrised by
a mean matrix M : n × p and covariance matrix U ⊗ V . U : n × n and V : p × p
are both p.s.d. and relate to the covariances of the rows and columns in X [Gupta

5Here we assume a uniform prior to have the Hessian of the log posterior equal the Hessian of the
log likelihood and allow for a more compact way of presentation. In Section 4.2.1, we already
assumed a Gaussian prior and will incorporate this in the following section.

6(A⊗B)−1 = A−1⊗B−1 ⇔ (A⊗B)(A−1⊗B−1) = I : (A⊗B)(A−1⊗B−1) = (AA−1)⊗(BB−1) =
I ⊗ I = I �

25

4 Kronecker Factored Laplace Approximation

and Nagar, 2010,Ritter et al., 2018]. Hence, our resulting posterior for parameters
in layer λ becomes

θ ∼MN (θ∗λ,Q−1λ ,H−1λ). (4.16)

While drawing a vectorized sample fromMN (θ∗λ,Q−1λ ,H−1λ) corresponds to drawing
a sample from the normal distribution N (vec(θ∗λ),Q−1λ ⊗ H

−1
λ), this sampling can

be done in a more efficient way. For QQᵀ = Q−1λ ∈ Rq×q and HHᵀ = H−1λ ∈ Rh×h

being the Cholesky decompositions of the covariance matrices for layer λ and θ∗λ the
MAP estimate for the parameters θ in the same layer, reshaped into shape q × h,
we can obtain a new set of parameters from

θλ = θ∗λ +QSHᵀ , (4.17)

with S being qh samples drawn from a standard normal distribution and reshaped
into a q×h matrix [Humt, 2019,Ritter et al., 2018]. Thereby we spare the evaluation
of the Kronecker product as well as a matrix vector product with a large matrix in
favour of two matrix products of small matrices [Ritter et al., 2018].

4.4 Regularisation

The need for regularising the curvature factors comes from three reasons. First, while
the FIM is always p.s.d. and symmetric in theory, that might not be the case in
practice due to numerical issues [Humt, 2019]. Second, the Laplace approximation
might place probability mass in low probability regions of the true posterior and
third, the approximations made for making the Laplace approximation tractable
(layer- and factor independence) might cause an overestimation of the variance in
certain directions [Ritter et al., 2018]

As we have seen in Section 4.2.1, the Hessian of the negative log posterior decomposes
into the Hessian of the negative log likelihood minus the Hessian of the prior. For a
Gaussian prior, corresponding to the L2 regularisation, the Hessian is −τI where τ
is the precision of the prior and I is the identity matrix. To incorporate that prior
into (4.15) we add a multiple of the identity to each Kronecker factor which results
in following approximation of the expected Hessian for layer λ [Ritter et al., 2018]:

E[Hλ] = NE

[
−∂

2 log p(D|θ)
∂θ2λ

]
+ τI ≈ (

√
NE[Qλ] +

√
τI)⊗ (

√
NE[Hλ] +

√
τI).

(4.18)

26

4.4 Regularisation

Despite τ referring to the precision of the Gaussian prior on the parameters and N
to the size of the dataset, they can also be treated as hyperparameters and optimized
w.r.t. a performance measure. Choosing values for N that exceed the actual dataset
size can be seen as including duplicates of data points as pseudo-observations [Ritter
et al., 2018].

27

5 Experiments

In this chapter we present the experiments that we conducted to evaluate the method
derived in Chapter 4, as well as our results. We examined the calibration and
OOD detection performance in a multi-label setting of the presented method on
(a) a synthetic multi-label dataset we created and (b) a large multi-label remote
sensing dataset called MLRSNet. Due to the motivation of Bayesian methods, one
would expect a better calibration and an improved OOD detection. For the cases
of multi-class classification and regression [Humt, 2019] and [Ritter et al., 2018]
already showed that this holds, but the multi-label setting adds multiple significant
differences:

1. The multi-label classifier returns conditional independent probabilities for each
of the C classes by passing the logits individually through the sigmoid function.

2. We can not differentiate clearly between a correct and an incorrect prediction
anymore.

3. The training optimises a binary cross-entropy loss function instead of mean
squared error or categorical cross-entropy, which we already discussed in Sec-
tion 4.2.4.

Before we describe the experimental setup and results, we will shortly introduce
our implementation in Section 5.1 and define the evaluation measures to be used in
Section 5.2.

5.1 Implementation

We implemented the Kronecker-factored Laplace approximation method in Python
for the TensorFlow [Abadi et al., 2015] framework, version 2.x1. We choose Tensor-
Flow over PyTorch [Paszke et al., 2019] mainly for two reasons: Firstly, because [Qi
et al., 2020] are providing pre-trained TensorFlow models for the Multi-Label Earth

1We used Python v3.6 and TensorFlow v2.4.1

29

5 Experiments

Observation dataset we are using in our experiments. Secondly, [Lee et al., 2020]
have already implemented a PyTorch compatible version2. [Martens and Grosse,
2015] published an implementation of their ”K-FAC” method3, which could have
been used to calculate the curvature matrix, though it does only work with Tensor-
Flow version 1.x.

The tf-laplace package consists mainly of two modules: Curvature and Sampler.
Curvature provides an interface for computing and inverting the curvature matrix
of a neural network, given as a sequential TensorFlow model. Our implementation
contains three different approximations to the real curvature matrix, namely the di-
agonal of the real FIM (DiagFisher), a block diagonal approximation that contains
the layer-wise diagonal blocks of the real FIM (BlockDiagFisher) and finally the
Kronecker-factored approximation described in chapter 4 (KFAC). So far, the curva-
ture is only calculated for dense and convolutional layers, as those are the only layer
types, relevant for the models used in this work (see Sections 5.3.1.2 and 5.4.1.2).

The Sampler module provides an interface for sampling weights from the estimated
posterior distribution and setting them as weights of the provided model. As the
way that weights are sampled depends on the curvature approximation, each of the
three curvature implementations has a corresponding sampler implementation.

As TensorFlow does not provide a mechanism to obtain the pre-activation of neurons,
which we need to calculate the factorsQλ of the Kronecker-factored curvature matrix
(see Section 4.3), we needed to monkey-patch TensorFlow’s Layer class. This patch
can be found in the hooks module.

Our code is available on GitHub at: https://github.com/ferewi/tf-laplace.

5.2 Evaluation Measures

In this section we will introduce the performance measures used to quantify the
quality of the obtained uncertainty estimates in the field of multi-label classification.

5.2.1 Multi-Label Measures

Unlike in binary or multi-class classification where a prediction can either be correct
or false, we need to consider partially correct predictions in the multi-label setting.

2https://github.com/DLR-RM/curvature
3https://github.com/tensorflow/kfac

30

https://github.com/ferewi/tf-laplace
https://github.com/DLR-RM/curvature
https://github.com/tensorflow/kfac

5.2 Evaluation Measures

For dealing with partially correct predictions we distinguish between different forms
of averaging.

For instance-based measures, a score (e.g. Accuracy, Precision, Recall or F1) is
computed for each example. The final score is obtained by aggregating over all
instances.

In the case of class-based evaluation measures, the C binary predictions ŷc for each
class c ∈ {1, . . . , C} are evaluated using a binary measure. The class-wise results
are then averaged over all labels, where either micro- or macro averaging can be
used to compute the global means [Yang, 1999]. Let B(TPc, FPc, TNc, FNc) be a
binary evaluation measure with TPc being the number of true positives for class c,
FPc the number of false positives and TNc and FNc the numbers of true negatives
and false negatives likewise. The macro-averaged score is obtained by computing
the per-class scores Bc and then averaging over all classes [Yang, 1999,Tomás et al.,
2014]

Bmacro =
1

C

C∑
c=1

B(TPc, FPc, TNc, FNc), (5.1)

For the micro-averaged score, the true and false positives and Negatives for each
class are summed up and the binary measure is computed based on these aggregated
values [Yang, 1999,Tomás et al., 2014]:

Bmicro = B(
C∑
c=1

TPc,
C∑
c=1

TNc,
C∑
c=1

FPc,
C∑
c=1

FNc). (5.2)

While micro-averaging assigns equal weight to each class, the macro-averaging method
weights classes according to their relative frequency [Dendamrongvit et al., 2011]
which can be favourable when dealing with imbalanced datasets [Tomás et al., 2014].

5.2.2 Precision

The precision of a binary classifier Mb is the fraction of instances that have been
correctly given the positive class label among all predicted instances:

Prec(Mb) =
TP

TP + FP
. (5.3)

The macro- and micro-averaged versions are defined according to (5.1) and (5.2).

31

5 Experiments

The instance-based precision of a multi-label classifier Mml is defined as:

Prec(Mml,D∗) =
1

N

N∑
i=1

|yi ∩ ŷi|
|ŷi|

, (5.4)

with D∗ being the evaluated dataset of size N . |yi ∩ ŷi| and ŷi denote the number
of correctly predicted and all predicted classes.

5.2.3 Confidence

The confidence of a binary classifier Mb in its prediction is given by the difference of
the predicted value to the threshold4 that is used mapping a returned class proba-
bility to the positive or negative result. Given a threshold t and the predicted class
probability p̂i, the confidence, normalised to the interval [0, 1], is defined as:

Conf(p̂i, t) =
|p̂i − t|

t
. (5.5)

5.2.4 Expected Calibration Error (ECE)

The expected calibration error (ECE) is a measure for the reliability of a classifier. A
binary classifierMb is said to be reliable or well-calibrated if its mean predicted value
matches its relative frequency of positive class predictions [DeGroot and Fienberg,
1983] - also known as precision - on a test set. The ECE of a binary classifier Mb

on a test set D∗ is computed by discretising the predictions of the classifier into
a fixed number of K bins5 and evaluating the average error between each bin’s
mean predicted value and precision, weighted by the bin size [Niculescu-Mizil and
Caruana, 2005,Naeini et al., 2015,Guo et al., 2017]

ECE(Mb,D∗) =
K∑
k=1

|Bk|
N

∣∣∣Prec(Mb,D∗)Bk −
1

|Bk|

|Bk|∑
i=1

1Bk(p̂
(i))p̂(i)

∣∣∣ , (5.6)

with Prec(Mb,D∗)Bk being the precision within bin k and 1Bk(p̂
(i)) the indicator

function for the prediction p̂ of example xi falling into that bin.

4We used a threshold of 0.5 throughout this work.
5We use K = 10 bins throughout our experiments.

32

5.2 Evaluation Measures

This approach can be easily adapted to the multi-label classification context by using
an averaged precision value as described in Section 5.2.2. Thus, the macro-averaged
ECE of a multi-label classifier Mml is given by

ECEmacro(Mml,D∗) =
K∑
k=1

|Bk|
N

∣∣∣Precmacro(Mml,D∗)Bk−
1

C|Bk|

C∑
c=1

|Bk|∑
i=1

1Bk(p̂
(i)
c)p̂(i)c

∣∣∣ .
(5.7)

The micro-averaged and instance-based versions are calculated likewise. We will use
the macro-averaged ECE throughout our experiments to account for the imbalance
of the earth observation dataset which we use in the experiments described in Section
5.4.

The (mis-)calibration of a classifier can be visualised by reliability diagrams [Guo
et al., 2017, Niculescu-Mizil and Caruana, 2005, Naeini et al., 2015]. For a binary
classifier, the mean predicted value is plotted against the relative frequency of pos-
itive class predictions within each bin [Niculescu-Mizil and Caruana, 2005]. A well
calibrated model would have those points near the diagonal, an overconfident model
below and an underconfident model above it. Again, we can adapt this to the multi-
label case by plotting the mean precision against the mean predicted value within
each bin.

5.2.5 Area Under ROC-Curve (AUROC)

The area under the receiver operating characteristic curve (AUROC) is a measure
for the ability of a binary classifier to separate two classes and can be seen as a
single-number summary of a receiver operating characteristic (ROC) plot [Bradley,
1997]. In a ROC plot, the true positive rate (TPR) is plotted against the false
positive rate (FPR) at increasing threshold levels for thresholding the output of the
classifier. The higher the AUROC, the better the classifier can separate both classes
from another. A perfect classifier would have an AUROC score of 1 and ranks all
examples of the positive class higher then all examples of the negative class.

We use the AUROC score to describe, how well a model is able to separate in-
distribution from out-of distribution examples based on either the predicted values
or the predictive standard deviation of the BNN being thresholded.

33

5 Experiments

5.3 Synthetic Multi-Label Example

Before we apply the method described in Chapter 4 to a real-world earth obser-
vation dataset, we will asses it on a synthetic multi-label dataset we created and
called F 3. We chose the creation of a synthetic dataset over using multi-label ex-
tensions of popular classification benchmark datasets (like multi-label MNIST) to
have more control over the dataset’s properties and allow for a better visualisation.
We based our dataset on the toy regression example from [Hernández-Lobato and
Adams, 2015] and [Ritter et al., 2018] and rebuilt it as a multi-label classification
problem. After describing the experimental setup in Section 5.3.1, we will evaluate
the uncertainties obtained from the Kronecker-factored Laplace approximation by
visualising the predictive standard deviation on a test set (5.3.2). In Section 5.4.2
we will analyse the potential of improving the model’s calibration. Finally, we will
use the uncertainty estimates to detect out-of-distribution examples in Section 5.3.4.

5.3.1 Setup

In the following Section we describe our experimental setup. We start by introducing
the multi-label dataset F 3. Afterwards, the neural network that we used is described
in Section 5.3.1.2 before we present our approach for finding good values for the
hyperparameters τ and N in Section 5.3.1.3.

5.3.1.1 Dataset

The training set F 3
train contains 50 points, having their x1 coordinates sampled uni-

formly from the interval [−5.5, 5.5] and their x2 coordinate sampled from normal
distributions N (x31, 9). Figure 5.1 shows an example of a sampled training set.
Each point belongs to at least one of two classes, red and blue, with the red class
containing points having x2 > x31 − 10 while the blue class contains points with
x2 < x31 + 10. Points in the overlapping region around x2 = f(x1) = x31 with
x31 − 10 ≤ x2 ≤ x31 + 10 belong to both classes, indicated by their multi-label
(1, 1). In addition to that 50-points dataset we used for training the neural net-
work, we created a validation set F 3

val for optimising the hyperparameters, a test
set F 3

test to use for the uncertainty visualisation and calibration experiment and an
out-of-distribution set F 3

ood that we used in the out-of-distribution detection exper-
iment. For the validation and test set, we samples 1000 and 2000 points respec-
tively uniformly from [−5.5, 5.5] × [−5.53, 5.53]. For the out-of-distribution set, we

34

5.3 Synthetic Multi-Label Example

Figure 5.1: The training set F 3
train consists of two classes, along the graph from x3

in the interval [−5.5, 5.5], with 50 data points in total.

sampled 1000 points (x1, x2) ∈ [−10, 5.5] × [−400,−167] and another 1000 points
(x1, x2) ∈ [−10, 5.5]× [167, 400].

In addition to the F 3 dataset, we also created another 4 datasets, based on the
idea of the ”Mldatagen” framework presented by [Tomás et al., 2014], though the
F 3 dataset seemed more suitable for the experiments we intended to run. A more
detailed description of those hypersphere based datasets can be found in Appendix
A.2.

5.3.1.2 Network

For the dataset described in Section 5.3.1.1 we trained a MLP with two hidden layers
and 10 neurons in each layer as our baseline model. We used ReLU activations and
L2 regularisation in the hidden layers. On the output neurons we applied Sigmoid
activations to transform the logits into probabilities. We trained the network for
1000 epochs, using binary cross-entropy loss and Adam [Kingma and Ba, 2014] as
optimiser. After training the neural network we approximated its curvature using
our KFAC implementation that we described in Section 5.1.

5.3.1.3 Hyperparameter Tuning

The two hyperparameters τ and N have been optimised w.r.t. the loss function,
i.e. the negative log likelihood. As we had limited initial knowledge about the size
of those parameters, we used a grid search over log-space with log10(τ) ∈ [−10, 10]

and log10(N) ∈ [−10, 10]. Figure 5.2 shows the result for the F 3 dataset. The best

35

5 Experiments

Figure 5.2: Result of the grid search for the two hyperparameters τ and N on the
F 3 dataset, showing the NLL as a function of the two parameters. The
10 best parameter pairs a marked with a colored border. The parameter
pair for the lowest NLL value (τ = 10, N = 100) is shown with a dark
red border.

value pair τ = 10, N = 100 is marked with a red border. The next 9 best pairs
are marked with a light-red border. The color of the squares encodes the value of
the NLL, ranging from dark violet color for low values to to high values shown in
yellow.

As we can see, the choice of τ and N is crucial for obtaining a low NLL. While
low values for τ and N lead to large NLLs, we could increase one and decrease
the other parameter without loosing performance in a certain range. It should
be noted that while choosing a value for N larger than the dataset size can be
interpreted as including pseudo-observations (see Section 4.4), we are lacking this
kind of interpretation for smaller values. As values N < 1 scale down the curvature
factors and therefore increase the covariance in each layer, the uncertainty regarding
the correct value of the model parameters might be overestimated. Choosing very
high values for N on the other hand leads to very small covariances and thus very
low variability in the sampled weights. The parameter pair that yields the lowest
NLL is τ = 10 and N = 100 with N being twice as large as the training set.

36

5.3 Synthetic Multi-Label Example

(a) (b) (c)

Figure 5.3: Model uncertainty on the test set as captured by the Kronecker-factored
Laplace approximation. The plots show: the ground truth labels (5.3a),
the accumulated predictive standard deviation over both classes (5.3b)
and the mean predictions (5.3c) of 50 probabilistic forward passes with
hyperparameters τ = 100 and N = 10.

5.3.2 Uncertainty Visualisation

To visualise the model uncertainty, we ran 50 forward passes of the test set through
the Bayesian version of the neural network, each time with a new set of weights
sampled from the approximated posterior distribution. The results are shown in
Figure 5.3b. Each point of the test set in Figure 5.3b encodes the accumulated
standard deviation of the predictions over both classes by its color. We see a higher
model uncertainty along the area, where both classes overlap, which gets higher and
more spread out near the borders of the training interval, especially where the model
fails to classify correctly. This matches our expectation about model uncertainty as
this area is only covered with very few training points (see Figure 5.1). On the other
hand, the model is very certain in its prediction for the points in the upper left and
lower right corner as the low standard deviation of the predictions indicates. These
results also match those produced by [Ritter et al., 2018] for their toy regression
example, which also shows the model uncertainty as predictive standard deviation
spreading out fan-shaped on the borders of the training interval.

5.3.3 Calibration

To asses the calibration of the multi-label classifier we compare the calibration error
of the deterministic baseline model with that of 50 forward passes through the BNN,
with a new set of weights sampled from the approximated posterior distribution on
each forward pass. A positive effect on the calibration of multi-class classifications
was previously shown by [Humt, 2019].

37

5 Experiments

(a) both classes (b) red class (c) blue class

Figure 5.4: Reliability diagrams for the deterministic and probabilistic multi-label
classifiers trained on the F 3 dataset (5.4a). (5.4b) and (5.4c) show the
reliability diagrams for the red and blue class individually. For the BNNs,
the error bars show the standard deviation of the precision over 100
repetitions, while keeping the baseline model fixed.

To account for random effects - e.g. when approximating the Hessian or when
sampling weights from the posterior distribution - we repeated the experiment 100
times, meaning that we kept the trained model fixed and approximated 100 posterior
distributions and averaged over 100 BNNs.

The results are shown in Figure 5.4a in form of a reliability diagram. It compares the
mean calibration curve of the baseline model to that of the BNNs. The error bars
indicate the standard deviation of the precision within each bin. We extended the
reliability diagrams by adding the probability histograms which show the number
of elements in each probability bin and should help with the interpretation of those
plots. The BNN shows a very slight improvement in the calibration of the overcon-
fident baseline model by reducing the ECE from 2.35% to 2.14%. Additionally to
that aggregated view, we evaluated the calibration of the two classes individually,
by treating the class-wise outputs as binary classification results. Figures 5.4b and
5.4c show the reliability diagrams for the red and blue class, revealing that the (very
little) overall calibration improvement is caused by the improvement in the red class
while the ECE for the blue class increases.

As we can see in the probability histograms, the bins [0.0, 0.1] and (0.90, 1] contain
the vast majority of samples. The baseline model classifies more than 87% of the

38

5.3 Synthetic Multi-Label Example

(a) both classes (b) red class (c) blue class

Figure 5.5: Reliability diagrams comparing the average calibration over 100 models
trained on the F3 dataset to their BNN versions. The error bars show
the standard deviation in the precision.

points with a predicted value of below 0.1 or above 0.9, while the BNN reduce that
number to approximately 86%.

In a second experiment we generalised the setting considering any model trained
on the F 3 dataset instead of a specific one. We did this by executing the full cycle
(approximate Hessian, find hyperparameters, run 50 forward passes through the
BNN), for 100 different models trained on the F3 dataset.

As shown in Figure 5.5a, if we generalise our experiment we can’t observe a cali-
bration improvement anymore. While the calibration for the red class gets slightly
better, the ECE for the blue class is increased. We will come to back to the question
whether the Laplace approximation can improve the calibration of a neural network
multi-label classifier or not by evaluating the calibration of eight deep neural net-
works trained on earth observation image data in Section 5.4.2 and in the discussion
in Chapter 6.

5.3.4 Out-of-Distribution Detection

Another application of the uncertainty estimates produced by the BNN is the de-
tection of out-of-distribution examples. When classifying examples drawn from a
sufficiently different distribution than the training data, the multi-label classifier
should either assign the multi-label ŷi = 0C or raise a high uncertainty about its re-
sult. [Ritter et al., 2018] found, that the uncertainties obtained from the Kronecker-

39

5 Experiments

(a) (b) (c)

Figure 5.6: Model uncertainty on OOD data obtained from running 50 probabilistic
forward passes with hyperparameters τ = 10 and N = 100. Shown are:
The ground truth labels (5.6a), the accumulated standard deviation over
both classes (5.6b) and the mean predictions (5.6c) on the OOD data.
Figure 5.6b also shows the standard deviation on the in-distribution test
set to allow a better comparison.

factored Laplace approximation lead to a higher predictive entropy when passing
notMNIST images through a neural network trained on MNIST compared to a
deterministic multi-class classifier. [Humt, 2019] ran similar experiments on Ima-
geNet [Russakovsky et al., 2015] for different DNN architectures6.

Again, we ran 50 forward passes through the BNN with sampling new weights on
each run from the approximated posterior distribution. The result is shown in Figure
5.6. The predictions on the OOD data show a higher degree of uncertainty than
those on the in-distribution set, with the maximum standard deviation for the OOD
data (̃0.6) being more then twice as high as for the in-distribution points (̃0.26).
Nonetheless, the uncertainties are not equally distributed among the OOD points.
Predictions on points where the model fails to extrapolate correctly show a high
standard deviation. Those in turn that are correctly classified are predicted quite
certain. It is also notable, that the uncertainty is higher in [−10, 0]× [−400,−167]

then in [0, 10]×[167, 400] which is most probably caused by the training set not being
point-symmetric around (0,0) due to the randomised sampling process. Therefore,
the model extrapolates differently on both ends of the training interval which is
also visible in the mean predictions shown in Figure 5.6c. Those differences in the
standard deviations on in-distribution compared to OOD data are promising for
being able to detect those OOD examples that can’t be classified correctly.

6The DNNs used by [Humt, 2019] include those we use in our earth observation experiments
in Section 5.4: DenseNet121, DenseNet169, DenseNet201, InceptionV3, ResNet50, ResNet101,
VGG16 and VGG19

40

5.3 Synthetic Multi-Label Example

Figure 5.7: ROC curves for the deterministic baseline model using the predicted
values and that for the BNN, using the accumulated standard deviations
of the predictions.

To analyse the separability of in- and out-of-distribution data we plotted the ROC
curves (see Section 5.2.5) for the deterministic baseline model and for the BNN
which are shown in Figure 5.7. The ROC curve for the BNN shows the thresholded
minimal predictive standard deviation for positive class predictions as a function of
the TPR and FPR at increasing threshold levels, labelling in-distribution examples
with 0 and OOD examples with 1. We ignore those for the negative class predictions
here, as predicting the multi-label ŷi = (0, 0) on an OOD example i would be a
valid outcome if the prediction can’t be made correctly with certainty. For the
deterministic baseline model we used the negative minimal predicted value7 instead
of the standard deviation as this would be zero. Here, the uncertainties obtained
from the BNN clearly improve the ability to separate in-distribution from OOD
examples. While the performance of the baseline model with an AUROC score of
0.46 is slightly worse than guessing on random, the AUROC score for the BNN
improves by 0.2 to 0.66. We also evaluated the negative minimal predicted value for
the BNNs. As this was not notably different to the deterministic baseline model, we

7The negative predicted value is needed here as positive in-distribution predictions should have a
high probability while that on OOD should be low. For the standard deviation it is the other
way round.

41

5 Experiments

left it out of the plots because it did not add any value and would have decreased
the readability.

5.4 Earth-Observation Dataset MLRSNet

After evaluating the uncertainties estimated by the Laplace approximation and their
potential on improving calibration and OOD detection on a synthetic dataset, we
will now take this one step further an examine the method on a real-world multi-
label classification problem. The semantic annotation of aerial images by assigning
multiple labels that represent the content of the images plays an important role in the
remote sensing field [Hua et al., 2020,Li et al., 2020]. In the following section we will
build on the previous experiments and evaluate whether the Laplace approximation
can be applied to improve (a) the calibration of the classifiers (5.4.2) and/or (b) the
detection of out-of-distribution examples (5.4.3). For this purpose we will compare
eight DNN models that have been trained on MLRSNet, a multi-label remote sensing
dataset.

5.4.1 Setup

Like for the synthetic example, we will start by describing the dataset (5.4.1.1),
introducing the deep neural networks we worked with (5.4.1.2) and how we tuned
the hyperparameters τ and N (5.4.1.3).

5.4.1.1 Dataset

The Multi-Label Remote Sensing Dataset (MLRSNet)8 [Qi et al., 2020] is an earth
observation dataset for multi-label classification. It consists of 109,161 high resolu-
tion remote sensing images with a size of 256× 256 pixels, that have been organized
in 46 categories, describing the main object in the image. Each image is tagged with
1 to 13 labels from 60 different classes, such as "Car" and "Road" depending on the
content of the image [Qi et al., 2020]. The spatial resolution varies from 10 - 0.1
meters. The images have been extracted from Google Earth, which in turn gets its
image data from a number of remote imaging sensors. The dataset covers a large
variety of spatial locations, seasonal and weather conditions or viewpoints [Qi et al.,
2020].

8The dataset is available on this GitHub repository: https://github.com/cugbrs/MLRSNet

42

https://github.com/cugbrs/MLRSNet

5.4 Earth-Observation Dataset MLRSNet

Figure 5.8: Label frequency for the MLRSNet dataset, also showing the training /
validation / test split for each class.

Figure 5.8 shows how often a label is assigned in the ground truth of the dataset, re-
vealing a high class imbalance between more general and very specific classes. While
the ”Tree” class is assigned to more than 70000 images, the smallest class "Football
Field" contains just 1108 instances. Class-imbalance can lead to misleading per-
formance measures, e.g. for accuracy [Buda et al., 2018], as low-frequency classes
achieve high accuracy due to a large number of true negatives. We are addressing
this problem by (a) using precision as performance metric, which does not account
for the negatives and (b) by focusing on the eight best balanced classes (Trees,
Pavement, Grass, Buildings, Bar Soil, Road, Car and Field) when evaluating classes
individually, which we will refer to as the top8-frequency classes.

5.4.1.2 Networks

We will now describe the eight different DNN architectures we used for the earth
observation experiments. We choose those eight architectures as [Qi et al., 2020]
provided pre-trained models for MLRSNet and to be able to compare our results to
those of e.g. [Humt, 2019]. We used the train/validation/test ratio of 0.4/0.1/0.5
that has been used when training the models on MLRSNet [Qi et al., 2020].

VGG16/19 The VGG [Simonyan and Zisserman, 2015] architecture was published
in 2015 and won the ILSVRC-2014 localisation challenge [Simonyan and Zisserman,
2015,Russakovsky et al., 2015]. It aimed at understanding the effect, network depth
has on the performance in large scale image recognition tasks. It consists of 16
(VGG16) or 19 (VGG19) consecutive convolutional layers with very small (3 × 3)

receptive fields followed by max pooling layers. The classifier is build with three

43

5 Experiments

fully connected layers. The models use weight decay and dropout in the first two
fully connected layers for regularisation [Simonyan and Zisserman, 2015]. In our
experiments we use both versions, VGG16 and VGG19, which are by far those with
the most parameters.

ResNet50/101 ResNet [He et al., 2016] was published in 2016 by Microsoft Re-
search and won the ILSVRC-2015 classification task. It increases depth up to 152
layers which is eight times the size of VGG19. At the same time it reduces com-
plexity and eases the training by introducing residual or shortcut connections, that
pass information from previous layers directly to later layers, while skipping those
in between. The resulting residual blocks are then stacked to networks with 50, 101
or 152 layers. The classifier consists of one fully connected layer. Weight decay and
momentum are used for regularisation [He et al., 2016]. In our experiments we use
the versions with 50 (ResNet50) and 101 (ResNet101) layers.

InceptionV3 The Inception [Szegedy et al., 2016] network family has been devel-
oped by Google and builds on top of GoogleLeNet. The main difference to other
architectures is the introduction of the inception module that increases the net-
works width and applies several different kernel sizes to its input in parallel instead
of stacking them sequentially. This approach addresses the problem of great com-
putational overhead of e.g. VGG nets as well as overfitting. The classifier is formed
by an average pooling layer followed by a fully connected layer [Szegedy et al., 2016]
. In this work, we use version InceptionV3.

DenseNet121/169/201 The DenseNet [Huang et al., 2017] architecture adopts
the idea of shortcut connection from ResNet but goes further by connecting each
layer with every other layer within one block in a fully connected manner. The
resulting dense blocks are connected to a network with having convolutional, pooling
and batch normalisation layers between two dense blocks. The classifier is made of an
average pooling and a fully connected layer. DenseNet allows an easier training e.g.
by mitigating the vanishing gradient problem while again improving the performance
compared to the other networks presented before [Huang et al., 2017]. We use the
version with 121 (DenseNet121), 169 (DenseNet169) and 201 (DenseNet201) layers.

An overview over the models we used as a baseline in our experiments and that
we extended to BNNs is shown in Table 5.1. We found that the F1 scores for the

44

5.4 Earth-Observation Dataset MLRSNet

Table 5.1: The eight baseline models DNNs used in this work. The table shows
the instance based F1 and macro averaged precision score as well as the
ECE that we achieved when running the models on the test set. The last
column shows the size of the approximated curvature matrix when stored
on disk.

Model Year # Layers # Parameters F1instance Precisionmarco ECE KFAC Size

DenseNet121 2018 121 8M 0.6857 0.8116 4.28% 2.1 GB
DenseNet169 2018 169 14M 0.6757 0.8282 4.80% 3.8 GB
DenseNet201 2018 201 20M 0.7029 0.8311 4.41% 5,6 GB
InceptionV3 2015 47 23M 0.6348 0.7799 5.38% 2.7 GB
ResNet50 2015 50 25M 0.6673 0.8190 6.41% 2.9 GB
ResNet101 2015 101 44M 0.5780 0.7818 8.25% 5.3 GB
VGG16 2014 16 138M 0.5012 0.5679 4.65% 2.4 GB
VGG19 2014 19 143M 0.4046 0.6448 5.56% 3.3 GB

baseline models are much lower than published in [Qi et al., 2020], e.g. the paper
mentions an F1 score of 0.8538 for DenseNet201 while we got 0.7029 for the same
model.

We have not been able to find out where that discrepancy comes from. But we
noticed that the order of the classes in the ground truth label files of the Multi-Label
Remote Sensing Dataset (MLRSNet) dataset is not consistent across all categories9.
Even though the authors of MLRSNet fixed those errors in the ground truth files,
we can not rule out the possibility, that the pre-trained models we used have been
affected by that problem10. Nonetheless, as this might only affect a few categories
(desert, golf course, intersection, island, parkway, railway station, storage tank and
wetland) we retained using those models.

We ran our experiments on a NVIDIA Tesla V100 GPU with 32GB Memory.

5.4.1.3 Hyperparameters

While it has been possible to conduct a grid search on the hyperparameters τ and
N for the F 3 dataset, we had to take an alternative approach for the large models
used here. The time needed to evaluate the BNN once on the validation set with 50
posterior samples takes from about 22:30 min for VGG16 up more then 50 minutes
for DenseNet201. Bayesian optimisation (BO) has shown to be a useful tool for
hyperparameter tuning, especially when the evaluation of the optimisation objective

9The dataset provides one ground truth label file per category.
10For the conversation about this issue, please refer to the thread on this GitHub repository:

https://github.com/cugbrs/MLRSNet/issues/4

45

https://github.com/cugbrs/MLRSNet/issues/4

5 Experiments

Figure 5.9: Result of multiple rounds of hyperparameter optimisation for τ and N
using Bayesian Optimisation for the DenseNet121 model. The 10 best
parameter pairs are marked by a colored border with the pair we used
in our experiments shown in green. The dashed line marks the training
set size of 43645.

is expensive [Joy et al., 2016,Mockus, 1994]. In BO, the unknown function space
is modeled using a surrogate model which can be e.g. a Gaussian process11. The
expensive objective is optimized using a cheap acquisition function [Joy et al., 2016],
such as ”Expected Improvement” or ”Lower Confidence Bound”. The acquisition
function is used to decide which parameters configuration should be evaluated next,
based on the knowledge gained in previous iterations [Joy et al., 2016].

We used the BO implementation in scikit-optimize [Head et al., 2020], which uses
a Gaussian Process as surrogate model, with the default setting for the acquisition
function argument, which makes the implementation choose randomly between ”Ex-
pected Improvement”, ”Probability of Improvement” and ”Lower Confidence Bound”
as the acquisition function on each iteration. As in the previous experiments, we
optimised the NLL as a function of τ and N . We did several optimisation rounds
for different areas of the parameters. The result for DenseNet121 is shown in Figure
5.9 while all results are available in appendix A.3.

11For a comparison and in-depth discussion of different surrogate models please refer to [Bergstra
et al., 2011]

46

5.4 Earth-Observation Dataset MLRSNet

To explore the parameter space, we included values for N smaller than the dataset
size. For the experiments in Section 5.4.2 and 5.4.3 we used that parameter pair
providing the minimal NLL while having N greater or equal but still close to the
dataset size.

5.4.2 Calibration

We valuated the calibration of the eight deep neural networks in a top-down manner,
meaning that we will first look at the overall calibration and will focus on individual
classes and differences between the architectures afterwards.

Looking at the overall calibration of the multi-label classifiers (Figure 5.10, Table
5.2), we see a slight improvement in all of the eight networks considered, ranging
from 0.41% for ResNet50 up to 1.8% for InceptionV3. All networks appear to be
underconfident in the lower bins (i.e. for negative class predictions) and slightly
overconfident for the towards 1.0. The VGG models do not achieve a precision
higher than 0.8, even in the high probability bins which might be caused by their
overall very poor performance (see Table 5.1).

Figure 5.10: Reliability diagrams for the eight networks comparing the baseline cal-
ibration to that of the BNNs.

Let’s have closer look at individual categories. Figure 5.12 shows the reliability dia-
grams for the classes Water (5.12a) and Buildings (5.12b). Both classes are among
the top8-frequency classes and while we get overconfident predictions for the Water

47

5 Experiments

Table 5.2: Comparing the ECE improvement between the baseline models and the
BNNs.

ECE (in %) DenseNet121 DenseNet169 DenseNet201 InceptionV3 ResNet50 ResNet101 VGG16 VGG19
baseline 4.62 5.23 5.06 5.73 6.95 8.99 4.97 5.88
BNN 3.65 4.59 3.91 3.93 6.54 7.79 4.00 5.28
Improvement 0.97 0.64 1.15 1.8 0.41 1.2 0.97 0.6

Figure 5.11: Average predicted value for the positive class prediction (upward bars)
and negative class prediction (downward bars) for the baseline models
and their respective BNN versions.

class, the predictions for class Buildings are underconfident. This behaviour is con-
sistent across all eight architectures. For the overconfident Water class, the ECE
has been improved in six of eight cases, for the underconfident Buildings class just
in three. Looking at the probability histograms we notice that the baseline mod-
els put more instances in the high-confidence bins ([0.0, 0.1] and (0.9, 1]) whereas
the probabilities for the BNN are shifted towards the lower confidence regions, i.e.
closer to 0.5. This observation persists throughout the other classes. Figure 5.11
summarises this, as it compares the average predicted values for positive and nega-
tive class predictions between the deterministic baseline models and their respective
BNN versions across all eight network architectures. The shift towards 0.5 is more
obvious for the positive class predictions than for the negatives. This raises the
suspicion, that the Laplace approximation might not improve the calibration in all
cases, but reduces the confidence which has an improving effect on overconfident
classifiers, but degrades calibration for underconfident ones. We will present an
explanation for this observation in the discussion.

When focusing on the results for the top-8-frequency classes as presented in Table
5.3, we notice that the only remarkable improvement in the ECE was achieved for

48

5.4 Earth-Observation Dataset MLRSNet

(a) Water

(b) Buildings

Figure 5.12: Calibration diagrams for the two classes Water and Buildings

49

5 Experiments

Table 5.3: Differences in the ECE between the baseline model and the BNN for the
top8-frequency classes. The last row shows the average improvement of
the ece across those 8 classes.

ECE (in %) DenseNet121 DenseNet169 DenseNet201 InceptionV3 ResNet50 ResNet101 VGG16 VGG19
baseline 7.41 7.56 8.12 7.37 10.49 9.12 5.26 5.98Bare Soil BNN 8.38 5.62 10.78 6.32 11.59 6.69 3.68 6.03
baseline 5.94 12.12 10.69 13.87 13.06 18.69 10.62 23.66Buildings BNN 7.86 13.31 10.09 11.99 14.53 18.8 11.03 23.65
baseline 2.51 5.96 3.24 6.28 14.04 11.44 8.80 15.78Cars BNN 2.02 8.02 2.86 4.06 14.21 11.51 8.64 16.56
baseline 6.41 4.72 16.01 11.92 9.42 21.52 11.65 5.30Grass BNN 8.27 5.18 15.63 8.10 10.13 24.04 10.78 4.88
baseline 4.78 3.34 4.47 8.45 7.81 5.83 11.6 19.99Pavement BNN 5.30 3.26 5.63 9.20 7.80 1.46 11.96 22.57
baseline 1.54 4.61 1.76 6.00 10.00 10.63 13.42 14.92Road BNN 2.74 2.30 1.46 4.02 10.75 9.87 13.37 16.91
baseline 7.92 11.51 15.02 5.31 8.09 12.95 3.84 4.04Trees BNN 8.19 11.99 13.41 2.94 7.50 16.67 4.53 3.99
baseline 5.26 6.14 4.17 11.13 9.13 11.18 4.54 8.77Water BNN 2.62 7.21 3.32 10.64 6.17 7.81 3.03 10.13

% Improvement -0.45 -0.26 0.04 1.63 -0.08 0.56 0.34 -0.79

InceptionV3. For this network, the calibration is improved for seven in eight cases.
While DenseNet121, ResNet101 and VGG16 still show a slight improvement, the
ECE for DenseNet121, DenseNet169, ResNet50 and VGG19 increases. Hence for
the latter, the overall improvement is caused by the lower frequency classes. To
summarize the results we state, that using a BNN with the posterior distribution
being approximated using Laplace approximation might not improve the Calibration
of the baseline models in all cases, but reduces the overall confidence which has an
improving effect on overconfident classifiers.

5.4.3 Out-of-Distribution Detection

As the results from the experiments on the F 3 dataset in Section 5.3.4 have been
promising that the Laplace approximation BNN could be useful to separate in-
distribution from OOD examples, we conducted a similar experiment for the eight
DNN models and their Bayesian extensions. As OOD data, we used a 100 images
subset of the VOC2007 [Everingham et al., 2007] scene classification dataset. By
evaluating the predictions the models made on the VOC2007 images we found, that
almost always the top8-frequency classes get predicted, with the baseline models
producing slightly more positive class predictions than the BNNs. Figure A.3a and
A.4a in appendix A.3 illustrate this observation, which might be caused by a strong
bias towards these classes due to their over-presence in the ground-truth. Another
reason could be, that elements or areas in those images are either correctly detected
or misinterpreted by the neural networks.

50

5.4 Earth-Observation Dataset MLRSNet

(a) baseline (b) baseline (c) baseline

(d) BNN (e) BNN (f) BNN

Figure 5.13: Three examples for predictions on the OOD dataset VOC2007 as made
by the DenseNet121 model. The upper row contains the predictions of
the baseline model while those of the BNN are shown below.

Figure 5.13 shows three examples for predictions on the VOC2007 dataset as made
by the DenseNet121 model. While the prediction of grass and base soil in image
5.13a might be reasonable misinterpretations for a model that has been trained to see
the world from bird’s eye perspective, the predictions in image 5.13b appear rather
to be caused by a bias towards the high-frequency classes. In the third picture,
the water the labels Water and Lake seem to be assigned correctly. However, the
BNN reduces the amount of predicted labels in all three cases. This fewer positive
class predictions on VOC2007 made by the BNN compared to the baseline models
is observed for all network architectures (see Figure A.4a in appendix A.3).

Our experiment on the synthetic dataset in Section 5.3.4 intended, that using the
standard deviations in the predictions of the BNN can improve the separability of
in-distribution and OOD data, compared to using the predicted values of the base-
line model. When evaluating the ROC curves shown in Figure 5.14 for separating
MLRSNet from VOC2007 data, we see the majority of BNNs fails to do so. A larger
AUROC score is only observed for the BNN versions of DenseNet201 and ResNet50.
While for DenseNet201 the AUROC improved by 8%, the performance gain of more
than 22% for ResNet50 was notably higher.

We reran the experiment with MNIST being used as the OOD dataset. Regarding
the positive class predictions (see Figure A.3b in appendix A.3), we get a similar
picture as for VOC2007. The predicted labels concentrate on a few classes, though

51

5 Experiments

Figure 5.14: ROC curves describing the ability of the baseline models and their
Bayesian extensions to separate in-distribution earth observation im-
ages from VOC2007 data.

Figure 5.15: ROC curves describing the ability of the baseline models and their
Bayesian extensions to separate in-distribution earth observation im-
ages from MNIST data.

the differences between the networks are greater. For example, almost all pictures
are labelled with Greenhouse, Transmission Tower, Trees and Water by the VGG19
model, while ResNet101 "sees" all the digits as Pavement and Water.

Looking at the ROC curves in Figure 5.15 for separating in-distribution from OOD
images, we see this time an improvement for 5 out of 8 architectures of up to 30%

52

5.4 Earth-Observation Dataset MLRSNet

for InveptionV3. While there could no improvement be obtained for ResNet50, the
Bayesian version of ResNet101 clearly underperforms compared to its deterministic
baseline model. The BNN for VGG19 misclassifies "perfectly" in-distribution images
as OOD and vice versa. For the DenseNets, the intensity of the improvement seems
to be coupled to the network depth - as does it for ResNet and VGG but here in
the opposite direction.

Although the results for VOC2007 as OOD dataset might look rather daunting,
those for MNIST show that in the majority of cases we can improve the detection of
OOD examples by using the standard deviation of the predictions obtained from the
BNNs. Reasons for the underperformance of the BNNs on voc2007 as well as that
for VGG and ResNet101 on MNIST will be addressed in the following discussion.

53

6 Discussion

In the following discussion, we will summarise the results from the experiments we
described in the previous chapter. We ran our experiments with the expectation,
that using a Bayesian neural network based on the posterior distribution over the
parameters being approximated by the Kronecker-factored Laplace approximation
will improve the calibration of our classifier and the separability from in- and out-of-
distribution data. We got that expectations from the findings of [Ritter et al., 2018]
and [Humt, 2019], who showed that the method can improve both for regression and
multi-class classification problems.

In the calibration experiments we saw slight improvements up to 1.8% in the cal-
ibration of the networks when comparing the baseline- and BNN classifiers on a
macro-averaged ECE basis. However, when focusing on individual classes we got
mixed results, depending on whether the classifier is over- or underconfident on the
respective class, which can be summarised as a confidence shift towards the deci-
sion boundary of 0.5, meaning that the BNN produced probabilities closer to 0.5
compared to the deterministic baseline models.

To get an idea where that confidence decline might come from let’s have a closer
look at what happens to the network outputs when we change from determinis-
tic to probabilistic multi-label classification models. The Laplace approximation
approximates the posterior distribution over the parameters θ of a neural network
with a multivariate Gaussian around the point estimates θ∗ which are obtained by
training the model on a dataset D. The class probability outputs of our multi-label
classification are received by applying the sigmoid function σ to the logits z of the
neural network, i.e. the result in the output neurons. Those logits in turn are com-
puted as a linear combination of the parameters of that last layer and the incoming
activations from the previous one, giving the class probability vector as

p̂ = σ(z) = σ(θLaL−1) (6.1)

for a network with L layers.

55

6 Discussion

Figure 6.1: Sampling a parameter from a univariate Gaussian N (3, 0.5). The light
blue curve represents the slope of the sigmoid function shown in dark
blue.

Figure 6.1 illustrates this for the simplistic case of one output neuron with a single
parameter drawn from an univariate normal distribution with mean 3 and standard
deviation 0.5 and an incoming activation of 1. The grey area marks the 95% quantile.
As the slope of the sigmoid function is higher on the left-hand side of the mean than
to the right, the differences in the resulting class probabilities are higher as well.
The average slope of the sigmoid function in the left-hand part of the 95% quantile
in Figure 6.1 is ~0.0718 while it is just ~0.0294 on the right-hand side. This leads to
a decrease in the average value of the sigmoid function when drawing a number of
samples compared to the sigmoid of the mean and could be one reason for the shift
towards 0.5 we saw in our experiments. As the sigmoid function is point symmetric
around (0, 0.5), the same applies for logits lower than zero. So far, we have just
focused on the parameters in the final layer. The influence of that mechanism to the
parameters in earlier layers as well as the interaction with e.g. batch normalisation
or pooling is not considered here yet and could be subject to future work.

In a second series of experiments we investigated the application of the uncertainties
that we get from applying the Laplace approximation to improve the separation from
in- and OOD data. We compared the ability of the baseline model to separate in-
from out-of-distribution to that of the BNN by comparing their receiver operating
characteristics. For the baseline model we used the minimal predicted probabilities
of the positive class predictions as a separator, for the BNN we separated by their
minimal standard deviation. We have been able to increase the AUROC for the BNN

56

on the F 3 dataset by 20% compared to the baseline model. For the DNNs we got
heterogeneous results for the two different OOD sets we used. WithMNIST as OOD
dataset, we have been able to increase the AUROC up to 30% for the majority of
networks, though two of the remaining DNNs - ResNet101 and VGG19 - drastically
underperformed. This is interesting, as the differences in the AUROC compared to
their shallower versions are immense. We can’t explain yet where those differences
come from, but the depth of a network seems to play an important role here. It is
also those two networks, who label almost all OOD examples with the same two or
four labels respectively. While the prediction of Water on black-and-white images
by networks who have been trained on earth observation data seems reasonable, it
might be instructive to understand which features led to the the labelling of almost
all images with Transmission Tower, as done by ResNet50, VGG16 and VGG19. In
general, the predicted labels concentrate only on a few of the 60 available classes but
vary between the different networks, which might be caused by the varying network
specific features extractions.

Besides MNIST, we ran the experiment with using a subset of the VOC2007 dataset
as OOD examples. Here, we also observed the concentration of positive class predic-
tions on just very few classes but it seems to be more evenly distributed among the
different networks. In case of VOC2007 the predicted classes match those with the
highest frequency in the ground truth. While the separability of in- and OOD data
could not have been improved for the majority of networks, the tendency between
the different versions of the neural networks looks comparable to the results we got
with MNIST. For the DenseNets, the separability improves with increasing depth,
while for ResNet the deeper BNN performs much worse than its shallower version.
Altogether, VOC2007 might have been a problematic choice for an OOD dataset
here. While it contains images from scenes and objects taken from a ground-floor
perspective and could therefore be seen as out-of-distribution to aerial images, the
VOC2007 images often contain objects that the networks also have been trained
to detect, like trees or water and might therefore be able to assign the correct la-
bels. Another problem might be caused by the models misinterpreting elements or
structures in the VOC2007 images as something they learned, e.g. trees as grass
or linear structures as roads. This effect might be enforced as [Qi et al., 2020] used
transfer learning in ImageNet [Russakovsky et al., 2015] to train their models. An
alternative to using VOC 2007 as OOD data would have been to train the networks
on just a subset of MLRSNet containing e.g. just pictures of urban areas and use
woodland or water images as the OOD set. As this would have exceeded the scope

57

6 Discussion

of this thesis, it could be an interesting topic for ongoing research as well as under-
standing the predictions the networks made on the OOD datasets we used here, e.g.
by using methods from the explainable AI field.

A third topic which turned out to be unexpectedly difficult was the determination
of suitable values for the two parameters τ and N , which are used to regularise
the curvature and thus the covariances. While τ is the precision of the Gaussian
prior on the parameters and N the size of the dataset, [Ritter et al., 2018] state,
that those values can be treated as hyperparameters and optimised as such. We
took that hyperparameter approach and used Bayesian optimisation or grid search
(where applicable) to find appropriate values, where we had to decide (a) which
criterion to optimise to retrieve good uncertainty estimates and (b) which range
of values to search. We could not optimise directly for calibration or good sepa-
rability without sacrificing predictive performance. Assuming a balanced dataset,
the uniform output of 0.5 would lead to a perfectly calibrated model but with a
probably undesirable predictive performance. Good separability of in- and OOD
data does neither guarantee high quality predictions. We decided to optimise the
negative log likelihood which is the probabilistic interpretation of the binary cross
entropy loss that has already been minimised when training the network. The sec-
ond question and especially that about the range for N appeared to be much harder
to answer. While we noticed that when allowing values N < 1, those often yield
the lowest NLLs, we hesitated to use those small values for three reasons: First,
we could not interpret those values as we could for values for N larger than the
dataset size. Second, choosing N < 1 would downscale the curvature factors and
thus increase the covariances in each layer which bears the risk of overestimating the
uncertainties. And last, we did not find any other work, using values for N smaller
than the dataset or even N < 1. Finally we choose values for N that are larger
but close to the dataset size to retain enough variability when sampling parameters,
even though we included smaller values in the hyperparameter search to develop a
better understanding. For the second parameter τ , which has only an effect on the
diagonal elements of the curvature factors, we considered values between 10−10 and
1010. We found that small values for both parameters yield large NLLs which is not
desirable. When plotting the NLL as a function of the two parameters, the lowest
NLLs are located on a curve around the area of high NLLs. The open question,
whether or not choosing N < 1 would be appropriate, would also be an interesting
topic to investigate further.

58

7 Conclusion & Outlook

In this work we derived and evaluated the estimation of model uncertainty for multi-
label classification tasks. We approximated the posterior distribution over the pa-
rameters of neural networks using Laplace approximation, which does so by placing
a multivariate Gaussian around the MAP estimate obtained from training the net-
work. We thereby focused on the characteristics of the multi-label setting such as
the compatibility of the binary cross entropy loss with the requirements for using
the Fisher information matrix as a block-diagonal approximation to the Hessian of
a neural network. With experiments on a synthetic and a large-scale remote sensing
dataset, we visualised and evaluated the obtained uncertainty estimates. While we
gained slight improvements on the overall calibration of a given multi-label classifier,
we saw mixed outcomes when looking at individual classes. While we expected to
see a general improvement on the calibration from using a probabilistic instead of
a deterministic model, we noticed that this only holds for overconfident classifiers
as the class probabilities shift towards 0.5 for the BNN. We consider that this is
caused by the slope of the sigmoid function being steeper towards 0.5. In a second
experiment we used the uncertainties in form of predictive standard deviation to
separate in-distribution from out-of-distribution data. While we have been able to
improve the separability for most of the considered DNN architectures when using
MNIST [LeCun et al., 2010] as OOD data, this was not achieved when running the
experiment with VOC2007 [Everingham et al., 2007] as OOD examples. Although,
we found that using VOC2007 here might not have been the optimal choice for an
OOD dataset, we still found that the ability to improve the separability seems to be
depending on the network depth.

Finally, the optimisation of the hyperparameters that are used to regularise the
curvature factors has shown to need far more thought then assumed initially. While
the choice is crucial for obtaining high quality uncertainty estimates, the way to come
to that choice is still not totally clear. We used Bayesian optimisation as an approach
to find suitable hyperparameter pairs, but the question about the appropriate range
especially for the parameter N leaves room for further works in this direction.

59

7 Conclusion & Outlook

Besides the question if and how the choice of N < 1 could be justified there are
several more interesting directions to take from here. Extending on the idea why
approximating the posterior distribution for networks using sigmoid activations on
their outputs might lead to a shift of the class probabilities towards 0.5, under-
standing those effects on earlier and different types of layers might eventually lead
to methods for improving calibration in general. Additionally, a further investiga-
tion of the prediction patterns on the OOD datasets might improve understanding
the network specific feature extraction and decision making mechanisms in terms of
explainable results.

60

Bibliography

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Good-
fellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from tensorflow.org.

[Alazaidah and Ahmad, 2016] Alazaidah, R. and Ahmad, F. K. (2016). Trending
challenges in multi label classification. International Journal of Advanced Com-
puter Science and Applications, 7(10):127–131.

[BakIr et al., 2007] BakIr, G., Hofmann, T., Smola, A. J., Schölkopf, B., and Taskar,
B. (2007). Predicting structured data. MIT press.

[Barber, 2012] Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cam-
bridge University Press.

[Barber and Bishop, 1998] Barber, D. and Bishop, C. M. (1998). Ensemble learning
in bayesian neural networks. Nato ASI Series F Computer and Systems Sciences,
168:215–238.

[Becker and Lecun, 1989] Becker, S. and Lecun, Y. (1989). Improving the conver-
gence of back-propagation learning with second-order methods. In Touretzky,
D., Hinton, G., and Sejnowski, T., editors, Proceedings of the 1988 Connectionist
Models Summer School, San Mateo, pages 29–37. Morgan Kaufmann.

[Bergstra et al., 2011] Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).
Algorithms for hyper-parameter optimization. Advances in neural information
processing systems, 24.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning.
springer.

[Blundell et al., 2015] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. (2015). Weight uncertainty in neural network. In International Conference on
Machine Learning, pages 1613–1622. PMLR.

[Botev et al., 2017] Botev, A., Ritter, H., and Barber, D. (2017). Practical Gauss-
Newton optimisation for deep learning. In Precup, D. and Teh, Y. W., editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 557–565, International Con-
vention Centre, Sydney, Australia. PMLR.

61

Bibliography

[Boutell et al., 2004] Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004).
Learning multi-label scene classification. Pattern recognition, 37(9):1757–1771.

[Bradley, 1997] Bradley, A. P. (1997). The use of the area under the roc curve in the
evaluation of machine learning algorithms. Pattern recognition, 30(7):1145–1159.

[Buda et al., 2018] Buda, M., Maki, A., and Mazurowski, M. A. (2018). A sys-
tematic study of the class imbalance problem in convolutional neural networks.
Neural Networks, 106:249–259.

[Buntine and Weigend, 1991] Buntine, W. L. and Weigend, A. (1991). Bayesian
back-propagation. Complex Syst., 5.

[Chen et al., 2020] Chen, W., Zhang, B., and Lu, M. (2020). Uncertainty quantifi-
cation for multilabel text classification. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 10(6):e1384.

[DeGroot and Fienberg, 1983] DeGroot, M. H. and Fienberg, S. E. (1983). The
comparison and evaluation of forecasters. Journal of the Royal Statistical Society:
Series D (The Statistician), 32(1-2):12–22.

[Dendamrongvit et al., 2011] Dendamrongvit, S., Vateekul, P., and Kubat, M.
(2011). Irrelevant attributes and imbalanced classes in multi-label text-
categorization domains. Intelligent Data Analysis, 15(6):843–859.

[Denker and LeCun, 1990] Denker, J. S. and LeCun, Y. (1990). Transforming
neural-net output levels to probability distributions. In Proceedings of the 3rd
International Conference on Neural Information Processing Systems, pages 853–
859.

[Depeweg, 2019] Depeweg, S. (2019). Modeling epistemic and aleatoric uncertainty
with bayesian neural networks and latent variables. PhD thesis, Technische Uni-
versität München.

[Everingham et al., 2007] Everingham, M., Van Gool, L., Williams, C. K. I.,
Winn, J., and Zisserman, A. (2007). The PASCAL Visual Ob-
ject Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[Gal and Ghahramani, 2015] Gal, Y. and Ghahramani, Z. (2015). Bayesian convo-
lutional neural networks with bernoulli approximate variational inference. arXiv
preprint arXiv:1506.02158.

[Gal and Ghahramani, 2016] Gal, Y. and Ghahramani, Z. (2016). Dropout as a
bayesian approximation: Representing model uncertainty in deep learning. In
international conference on machine learning, pages 1050–1059. PMLR.

[Gawlikowski et al., 2021] Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt,
M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., et al. (2021). A
survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342.

62

Bibliography

[Ghoshal et al., 2019] Ghoshal, B., Tucker, A., Sanghera, B., and Wong, W. L.
(2019). Estimating uncertainty in deep learning for reporting confidence to clin-
icians when segmenting nuclei image data. In 2019 IEEE 32nd International
Symposium on Computer-Based Medical Systems (CBMS), pages 318–324.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.org.

[Graves, 2011] Graves, A. (2011). Practical variational inference for neural networks.
In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems, volume 24. Curran
Associates, Inc.

[Guo et al., 2017] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On
calibration of modern neural networks. In International Conference on Machine
Learning, pages 1321–1330. PMLR.

[Gupta and Nagar, 2010] Gupta, A. K. and Nagar, D. K. (2010). Matrix variate
distributions, volume 104. Chapman & Hall/CRC.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778.

[Head et al., 2020] Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., and
Shcherbatyi, I. (2020). scikit-optimize/scikit-optimize.

[Hernández-Lobato and Adams, 2015] Hernández-Lobato, J. M. and Adams, R.
(2015). Probabilistic backpropagation for scalable learning of bayesian neural
networks. In International Conference on Machine Learning, pages 1861–1869.
PMLR.

[Hinton and Van Camp, 1993] Hinton, G. E. and Van Camp, D. (1993). Keeping
the neural networks simple by minimizing the description length of the weights.
In Proceedings of the sixth annual conference on Computational learning theory,
pages 5–13.

[Hua et al., 2020] Hua, Y., Mou, L., and Zhu, X. X. (2020). Relation network
for multilabel aerial image classification. IEEE Transactions on Geoscience and
Remote Sensing, 58(7):4558–4572.

[Huang et al., 2017] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q.
(2017). Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4700–4708.

[Humt, 2019] Humt, M. (2019). Laplace approximation for uncertainty estimation
of deep neural networks. Master’s thesis, TUM.

[Joy et al., 2016] Joy, T. T., Rana, S., Gupta, S., and Venkatesh, S. (2016). Hyper-
parameter tuning for big data using bayesian optimisation. In 2016 23rd Inter-
national Conference on Pattern Recognition (ICPR), pages 2574–2579. IEEE.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

63

http://www.deeplearningbook.org

Bibliography

[Krizhevsky, 2009] Krizhevsky, A. (2009). Learning multiple layers of features from
tiny images. Technical report.

[Laplace, 1774] Laplace, P. S. (1774). Memoire sur la probabilite de causes par les
evenements. Memoire de l’Academie Royale des Sciences, pages 27–65.

[LeCun et al., 2010] LeCun, Y., Cortes, C., and Burges, C. (2010).
Mnist handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2.

[LeCun et al., 1999] LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999).
Object recognition with gradient-based learning. In Shape, contour and grouping
in computer vision, pages 319–345. Springer.

[Lee et al., 2020] Lee, J., Humt, M., Feng, J., and Triebel, R. (2020). Estimating
model uncertainty of neural networks in sparse information form. In International
Conference on Machine Learning (ICML). Proceedings of Machine Learning Re-
search.

[Li et al., 2020] Li, Y., Chen, R., Zhang, Y., Zhang, M., and Chen, L. (2020). Multi-
label remote sensing image scene classification by combining a convolutional neu-
ral network and a graph neural network. Remote Sensing, 12(23):4003.

[Liu and Nocedal, 1989] Liu, D. C. and Nocedal, J. (1989). On the limited memory
bfgs method for large scale optimization. Mathematical programming, 45(1):503–
528.

[MacKay, 1992] MacKay, D. J. (1992). A practical bayesian framework for back-
propagation networks. Neural computation, 4(3):448–472.

[Martens, 2020] Martens, J. (2020). New insights and perspectives on the natural
gradient method. J. Mach. Learn. Res., 21:146:1–146:76.

[Martens and Grosse, 2015] Martens, J. and Grosse, R. (2015). Optimizing neural
networks with kronecker-factored approximate curvature. In International con-
ference on machine learning, pages 2408–2417. PMLR.

[Mockus, 1994] Mockus, J. (1994). Application of bayesian approach to numerical
methods of global and stochastic optimization. Journal of Global Optimization,
4(4):347–365.

[Monteiro et al., 2020] Monteiro, M., Le Folgoc, L., Coelho de Castro, D.,
Pawlowski, N., Marques, B., Kamnitsas, K., van der Wilk, M., and Glocker, B.
(2020). Stochastic segmentation networks: Modelling spatially correlated aleatoric
uncertainty. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin,
H., editors, Advances in Neural Information Processing Systems, volume 33, pages
12756–12767. Curran Associates, Inc.

[Murphy, 2021] Murphy, K. P. (2021). Probabilistic Machine Learning: An intro-
duction. MIT Press.

[Naeini et al., 2015] Naeini, M. P., Cooper, G., and Hauskrecht, M. (2015). Ob-
taining well calibrated probabilities using bayesian binning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29.

64

Bibliography

[Neal, 1992] Neal, R. M. (1992). Bayesian training of backpropagation networks by
the hybrid monte carlo method. Technical report, Citeseer.

[Niculescu-Mizil and Caruana, 2005] Niculescu-Mizil, A. and Caruana, R. (2005).
Predicting good probabilities with supervised learning. In Proceedings of the 22nd
international conference on Machine learning, pages 625–632.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style,
high-performance deep learning library. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

[Qi et al., 2020] Qi, X., Zhu, P., Wang, Y., Zhang, L., Peng, J., Wu, M., Chen,
J., Zhao, X., Zang, N., and Mathiopoulos, P. T. (2020). Mlrsnet: A multi-label
high spatial resolution remote sensing dataset for semantic scene understanding.
ISPRS Journal of Photogrammetry and Remote Sensing, 169:337–350.

[Ritter et al., 2018] Ritter, H., Botev, A., and Barber, D. (2018). A scalable laplace
approximation for neural networks. In International Conference on Learning Rep-
resentations.

[Roux and Fitzgibbon, 2010] Roux, N. L. and Fitzgibbon, A. (2010). A fast natural
newton method. In Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, pages 623–630.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and
Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252.

[Schapire and Singer, 2000] Schapire, R. E. and Singer, Y. (2000). Boostexter: A
boosting-based system for text categorization. Machine learning, 39(2):135–168.

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very deep
convolutional networks for large-scale image recognition. In International Con-
ference on Learning Representations.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–1958.

[Szegedy et al., 2016] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for computer vision. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
2818–2826.

[Tomás et al., 2014] Tomás, J. T., Spolaôr, N., Cherman, E. A., and Monard, M. C.
(2014). A framework to generate synthetic multi-label datasets. Electronic Notes
in Theoretical Computer Science, 302:155â176.

65

Bibliography

[Tsoumakas and Katakis, 2007] Tsoumakas, G. and Katakis, I. (2007). Multi-label
classification: An overview. International Journal of Data Warehousing and Min-
ing (IJDWM), 3(3):1–13.

[Turnbull et al., 2008] Turnbull, D., Barrington, L., Torres, D., and Lanckriet, G.
(2008). Semantic annotation and retrieval of music and sound effects. IEEE
Transactions on Audio, Speech, and Language Processing, 16(2):467–476.

[Wu and Zhou, 2017] Wu, X.-Z. and Zhou, Z.-H. (2017). A unified view of multi-
label performance measures. In International Conference on Machine Learning,
pages 3780–3788. PMLR.

[Xia et al., 2017] Xia, G.-S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang,
L., and Lu, X. (2017). Aid: A benchmark data set for performance evaluation of
aerial scene classification. IEEE Transactions on Geoscience and Remote Sensing,
55(7):3965–3981.

[Yang, 1999] Yang, Y. (1999). An evaluation of statistical approaches to text cate-
gorization. Information retrieval, 1(1):69–90.

[Zagoruyko and Komodakis, 2016] Zagoruyko, S. and Komodakis, N. (2016). Wide
residual networks. In BMVC.

[Zhang and Zhou, 2005] Zhang, M.-L. and Zhou, Z.-H. (2005). A k-nearest neigh-
bor based algorithm for multi-label classification. In 2005 IEEE international
conference on granular computing, volume 2, pages 718–721. IEEE.

[Zhu et al., 2017] Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., and
Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review
and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4):8–36.

66

List of Figures

2.1 Network diagram of a MLP with one hidden layer. The vertices repre-
sent the input, hidden and output variables, whereas the parameters θ
are represented by the edges between the vertices. The arrows denote
the direction of information flow from left to right. The parameters
θ
(λ)
i0 , i ∈ {1, . . . ,max(M,C)}, λ ∈ {1, 2} are called biases while all
other parameters are called weights. 5

5.1 The training set F 3
train consists of two classes, along the graph from

x3 in the interval [−5.5, 5.5], with 50 data points in total. 35
5.2 Result of the grid search for the two hyperparameters τ and N on

the F 3 dataset, showing the NLL as a function of the two parameters.
The 10 best parameter pairs a marked with a colored border. The
parameter pair for the lowest NLL value (τ = 10, N = 100) is shown
with a dark red border. 36

5.3 Model uncertainty on the test set as captured by the Kronecker-
factored Laplace approximation. The plots show: the ground truth
labels (5.3a), the accumulated predictive standard deviation over both
classes (5.3b) and the mean predictions (5.3c) of 50 probabilistic for-
ward passes with hyperparameters τ = 100 and N = 10. 37

5.4 Reliability diagrams for the deterministic and probabilistic multi-
label classifiers trained on the F 3 dataset (5.4a). (5.4b) and (5.4c)
show the reliability diagrams for the red and blue class individually.
For the BNNs, the error bars show the standard deviation of the
precision over 100 repetitions, while keeping the baseline model fixed. 38

5.5 Reliability diagrams comparing the average calibration over 100 mod-
els trained on the F3 dataset to their BNN versions. The error bars
show the standard deviation in the precision. 39

5.6 Model uncertainty on OOD data obtained from running 50 proba-
bilistic forward passes with hyperparameters τ = 10 and N = 100.
Shown are: The ground truth labels (5.6a), the accumulated standard
deviation over both classes (5.6b) and the mean predictions (5.6c) on
the OOD data. Figure 5.6b also shows the standard deviation on the
in-distribution test set to allow a better comparison. 40

5.7 ROC curves for the deterministic baseline model using the predicted
values and that for the BNN, using the accumulated standard devia-
tions of the predictions. 41

5.8 Label frequency for the MLRSNet dataset, also showing the training
/ validation / test split for each class. 43

67

List of Figures

5.9 Result of multiple rounds of hyperparameter optimisation for τ and
N using Bayesian Optimisation for the DenseNet121 model. The 10
best parameter pairs are marked by a colored border with the pair
we used in our experiments shown in green. The dashed line marks
the training set size of 43645. 46

5.10 Reliability diagrams for the eight networks comparing the baseline
calibration to that of the BNNs. 47

5.11 Average predicted value for the positive class prediction (upward bars)
and negative class prediction (downward bars) for the baseline models
and their respective BNN versions. 48

5.12 Calibration diagrams for the two classes Water and Buildings 49
5.13 Three examples for predictions on the OOD dataset VOC2007 as

made by the DenseNet121 model. The upper row contains the pre-
dictions of the baseline model while those of the BNN are shown
below. 51

5.14 ROC curves describing the ability of the baseline models and their
Bayesian extensions to separate in-distribution earth observation im-
ages from VOC2007 data. 52

5.15 ROC curves describing the ability of the baseline models and their
Bayesian extensions to separate in-distribution earth observation im-
ages from MNIST data. 52

6.1 Sampling a parameter from a univariate Gaussian N (3, 0.5). The
light blue curve represents the slope of the sigmoid function shown in
dark blue. 56

A.1 The hypersphere-based datasets. 73
A.2 Results of the hyperparameter search for τ and N using Bayesian

optimization. 74
A.3 Class-wise predictions on the two OOD datasets. 75
A.4 Total number of positive class prediction on the OOD datasets as

made by the baseline models compared to their respective BNNs. . . 76

68

List of Tables

5.1 The eight baseline models DNNs used in this work. The table shows
the instance based F1 and macro averaged precision score as well as
the ECE that we achieved when running the models on the test set.
The last column shows the size of the approximated curvature matrix
when stored on disk. 45

5.2 Comparing the ECE improvement between the baseline models and
the BNNs. 48

5.3 Differences in the ECE between the baseline model and the BNN for
the top8-frequency classes. The last row shows the average improve-
ment of the ece across those 8 classes. 50

69

A Appendix

A.1 Decomposing the Hessian

We want to get an approximation of the posterior distribution p(θ|D) over the
network parameters θ given the data D. Following Bayes’ Theorem, the posterior
distribution is given as the likelihood of the data p(D|θ) times the prior parameter
distribution p(θ) normalized by the evidence p(D):

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (A.1)

If we take the log on Bayes’ Theorem we get:

log p(θ|D) = log p(D|θ) + log p(θ)− log p(D) . (A.2)

Taking the second derivative on both sides w.r.t. θ shows that the Hessian of the
log posterior Hlog p(θ|D) can be expressed by adding the Hessian of the log likelihood
Hlog p(D|θ) and the Hessian of the log prior Hlog p(θ):

Hlog p(θ|D)(θ) = Hlog p(D|θ)(θ) +Hlog p(θ)(θ)− Hlog p(D)(θ)︸ ︷︷ ︸
= 0, as log p(D) is
not depending on θ

(A.3)

The Hessian Hlog p(θ)(θ) of the log prior, with prior mean θ0 and precision matrix
τI = Σ−1 of size n× n is −τI, which can be seen as follows:

log p(θ) = log
(1√

(2π)n|Σ|

)
− 1

2
(θ − θ0)ᵀτI(θ − θ0)

∇ log p(θ) = 0− 2
1

2
τI(θ − θ0) = −τI(θ − θ0)

Hlog p(θ)(θ) = −τI

(A.4)

Thus, we can express the Hessian of the log posterior as:

Hlog p(θ|D)(θ) = Hlog p(D|θ)(θ)− τI (A.5)

where τ is the precision of the gaussian prior.

71

A Appendix

Analogous, we can get the Hessian of the negative log posterior (which is identical
to the negative Hessian of the log posterior) by multiplying A.2 with −1 and taking
the second derivative w.r.t. θ:

− log p(θ|D) = − log p(D|θ)− log p(θ) + log p(D)

−Hlog p(θ|D)(θ) = −Hlog p(D|θ)(θ)−Hlog p(θ)(θ) + Hlog p(D)(θ)︸ ︷︷ ︸
= 0, as log p(D) is

not depending on θ∗

(A.6)

Thus, we can express the Hessian of the negative log posterior with:

−Hlog p(θ|D)(θ) = −Hlog p(D|θ)(θ) + τI (A.7)

where τ is the precision of the gaussian prior. As shown in section 4.2, the negative
log likelihood is just the loss function that we aim to minimize during training.

A.2 Hypersphere datasets

The hypersphere datasets are based on the idea of the ”Mldatagen” framework pre-
sented by [Tomás et al., 2014]. In this framework, multi-label datasets are generated
by sampling points uniformly from intersecting hyperspheres in [−1, 1]D. The di-
mensionD of the hypersphere represents the dimension of the feature space while the
C hyperspheres represent the classes. We adopt this idea, but instead of sampling
the points uniformly from the hyperspheres we draw them from normal distributions
N (ci, r

3
i) where ci denotes the center and ri the radius of the i-th hypersphere. The

hyperspheres, a point j does or does not belong to, define the multi-label yj ∈ 0, 1C

of this point, i.e. if a point j is internal to hypersphere i, the i-th dimension of the
multi-label yj is 1, and 0 otherwise. The radii ri, i = 1 . . . C of the hyperspheres,
with 0 < rmin ≤ r ≤ rmax < 1, are sampled uniformly from the interval between the
minimal and maximal radius which needs to be specified when creating the dataset.
The centers ci, i = 1 . . . C of the hyperspheres are then sampled uniformly from
[−1 + ri, 1− ri]D.
As we want to create a dataset that is easy to visualise we choose d = 2. Figure
A.1a and A.1b show two examples of hypersphere datasets for d = 2 and C ∈ {2, 3}.
The multi-label of each point is encoded by its color. The ”2S” (2 Spheres) dataset
shown in Figure A.1a has a red and a blue class. Points that belong to both classes
have purple color. The ”2S” dataset is the most basic we can create using this
approach. The ”3S” dataset in Figure A.1b has an additional yellow class. Based
on dataset ”S2”, we created the datasets ”S2C” (2 Spheres and Cross) and ”S2L”
(2 Spheres and Line), which are shown in Figures A.1c and A.1d and have two
hypersphere shaped classes and an additional class with a different shape. While
the ”S2C” dataset has a cross shaped yellow class which forms a subclass of the red
hypersphere class, the yellow class in the ”S2L” dataset forms a thick line that spans
across both hypersphere classes.

72

A.2 Hypersphere datasets

(a) ”S2” dataset - the most basic dataset con-
sisting of two hypersphere classes (red
and blue).

(b) ”S3” dataset - three hypersphere classes
(red, blue and yellow)

(c) ”S2C” dataset - S2 with an additional
cross shaped yellow class.

(d) ”S2L” dataset - S2 with an additional
thick yellow line as third class.

Figure A.1: The hypersphere-based datasets.

73

A Appendix

A.3 Additional Plots

(a) DenseNet121 (b) DenseNet169

(c) DenseNet201 (d) InceptionV3

(e) ResNet50 (f) ResNet101

(g) VGG16 (h) VGG19

Figure A.2: Results of the hyperparameter search for τ and N using Bayesian opti-
mization.

74

A.3 Additional Plots

(a) VOC2007

(b) MNIST

Figure A.3: Class-wise predictions on the two OOD datasets. 75

A Appendix

(a) VOC2007

(b) MNIST

Figure A.4: Total number of positive class prediction on the OOD datasets as made
by the baseline models compared to their respective BNNs.

76

Declaration of originality

I hereby declare that this Master’s Thesis is my own work and I have documented
all sources and material used.

As the author, I don’t have any objections against making this work publicly usable
in the archive of the Friedrich-Schiller-Universität Jena.

Jena, 29/07/2021

	Abstract
	Acronyms & Abbreviations
	Nomenclature
	Introduction
	Background
	Probability Theory
	Neural Networks
	Feed Forward Neural Networks
	Convolutional Neural Networks
	Bayesian Neural Networks

	Epistemic & Aleatoric Uncertainty
	Multi-Label Classification
	Remote Sensing

	Related Work
	Laplace Approximation
	Bayesian Neural Networks
	Uncertainty for Multi-Label Classification

	Kronecker Factored Laplace Approximation
	Laplace Approximation
	Approximating the Hessian
	Decomposing the Log Posterior Hessian
	The Generalised Gauss Newton Matrix
	The Fisher Information Matrix
	Exponential Family Loss

	Kronecker Factorisation
	Regularisation

	Experiments
	Implementation
	Evaluation Measures
	Multi-Label Measures
	Precision
	Confidence
	Expected Calibration Error (ECE)
	Area Under ROC-Curve (AUROC)

	Synthetic Multi-Label Example
	Setup
	Uncertainty Visualisation
	Calibration
	Out-of-Distribution Detection

	Earth-Observation Dataset MLRSNet
	Setup
	Calibration
	Out-of-Distribution Detection

	Discussion
	Conclusion & Outlook
	Bibliography
	List of Figures
	List of Tables
	Appendix
	Decomposing the Hessian
	Hypersphere datasets
	Additional Plots

