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Abstract
In order to solve real-world combinatorial optimization problems with a D-Wave
quantum annealer, it is necessary to embed the problem at hand into the D-Wave
hardware graph, namely Chimera or Pegasus. Most hard real-world problems exhibit
a strong connectivity. For the worst-case scenario of a complete graph, there exists an
efficient solution for the embedding into the ideal Chimera graph. However, since real
machines almost always have broken qubits, it is necessary to find an embedding into
the broken hardware graph. We present a new approach to the problem of embedding
complete graphs into broken Chimera graphs. This problem can be formulated as an
optimization problem, more precisely as a matching problem with additional linear
constraints. Although being NP-hard in general, it is fixed-parameter tractable in the
number of inaccessible vertices in the Chimera graph. We tested our exact approach
on various instances of broken hardware graphs, both related to real hardware and
randomly generated. For fixed runtime, we were able to embed larger complete graphs
compared to previous, heuristic approaches. As an extension, we developed a fast
heuristic algorithm which enables us to solve even larger instances. We compared the
performance of our heuristic and exact approaches.
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1 Introduction

1.1 Background

Quantum annealing is a promising new technology which gained attention in recent
years due to the development of commercial quantum annealing devices by the com-
pany D-Wave Systems. These machines sample from the low-energy distribution of
a tunable system of interacting quantum bits (qubits) [6]. The energy of the system
can be described by an Ising model including local energy fields for single qubits and
certain pairwise interactions between the qubits. However, not every qubit interacts
with all other qubits. The available couplings can be represented as edges in a graph
where every qubit corresponds to a vertex. For currently operating D-Wave hardware,
these graphs are the so-called Chimera and Pegasus graph [1].

In practice, no ideal Chimera or Pegasus graphs can be realized. Usually, there are
some qubits or rarely couplings which are taken offline because they do not behave
as expected after calibration. In the following, we refer to the corresponding vertices
as broken vertices and to graphs containing them as broken graphs. Since calibrations
are repeated in the order of months or years, a broken hardware graph is of practical
relevance for the same amount of time.

Typical applications, however, needmuchmore couplings than the hardware graphs
provide [16,19,20,22]. Thus, before the user even can calculate on the annealing
machines this problem needs to be mitigated by a so-called embedding: one vertex
of the original graph, also referred to as logical vertex, is mapped to several qubits,
also called physical vertices, of the hardware graph such that the induced subgraph
is connected. For each edge in the original graph, there needs to exist at least one
edge connecting the corresponding subgraphs of the two concerned logical vertices.
See, e.g. [4] for more details. Each set of physical qubits representing a single logical
vertex is grouped together by coupling them strongly.

In general, given two arbitrary graphsG and H , to decide whetherG can be embed-
ded into H is NP-hard. It is unclear but assumed that this still holds if we fix H to the
broken Chimera graph. This means the embedding problem is as hard as the actual
problem we want to solve on the D-Wave machine.

Due to the physical limitations, we cannot expect the production of a hardware
architecture with a fully connected graph structure in the close future. Additionally,
with the ongoing scaling of the annealing devices it is very unlikely that the problem
of broken qubits will be eradicated completely. Nevertheless, we assume to see a
decreasing ratio of brokenqubits.All in all the embeddingproblemwill remain relevant
when dealing with quantum annealing devices in the long term.

For a few well-structured graphs, like the complete or the complete bipartite graph,
the embedding problem is trivial if H is an ideal Chimera graph, due to its regular
lattice structure. Although it is the worst-case scenario having a complete graph to be
embedded, it allows the efficient embedding of all subgraphs of the complete graph.
However, if there exist just a few inconveniently placed broken vertices, the scheme
for the ideal Chimera cannot be applied. An important question of practical relevance
is therefore: given a broken Chimera graph, what is the largest complete graph that
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can be embedded? This is an optimization problem we refer to in the following as
largest complete graph embedding (LCGE) problem.

If a graph is embeddable into another, it is a so-called minor of the second graph.
Therefore, the LCGE problem is equivalent to the search for the largest clique minor
[2], as the complete graph can be supplemented by the vertices which are not used for
the embedding of the complete graph, forming a larger graph. The largest clique of
this minor corresponds to the maximal embeddable complete graph.

In this work, we focus on the Chimera graph and leave the extension to the Pegasus
graph, which has a larger connectivity for the same number of vertices [1], to future
research. As Pegasus is derived from the Chimera we are confident that our results are
transferable.

1.2 Related work

Graph minors have been a research topic of high interest even before the D-Wave
machine was released. Particularly, the work of Robertson and Seymour has mainly
influenced the developments in this area. For instance, in [17] they show among others
that for every fixed graph G, there is a polynomial algorithm to decide whether graph
G is a minor of H for some input graph H . For the reverse case, as we deal with here,
there are no comparable results known, even for such a well-structured graph as the
Chimera. Nevertheless, as the embedding is the first step to be able to run experiments
on the D-Wave quantum annealing machine it is studied broadly in this context.

Apart from problem specific approaches, as e.g. in [16], current research mainly
splits up into two directions: on the one hand, the goal is to develop an efficient generic
heuristic that can embed as many graphs as possible. The first polynomial algorithm
was shown by Cai et al. in [3] and is based on finding shortest paths in the hardware
graph H . As it considers both, G and H , to be arbitrary input graphs, broken vertices
in a non-ideal Chimera are already taken into account. It is still the standard algorithm
the package minorminor of the D-Wave API is based on [7]. An improvement of
this algorithm is suggested in [15] and just recently compared to two new algorithms
of Zbinden et al. [24], which show even better performance.

Those heuristic approachesworkwell in practice, especially for sparse input graphs.
However, they have a drawback: if the heuristic fails to embed a graph, it remains
unclear whether an embedding is not possible at all or the heuristic just could not find
it. There is no guarantee that an embedding can be found or how often the heuristic
needs to be repeated untilwefind one if it exists.As the problem ismost likelyNP-hard,
we will always have to deal with the tradeoff between quality and runtime.

Thus, the second strategy is to insert an intermediate step in the embedding process
by using a template with a precomputed fixed embedding acting as a ‘virtual hardware’
graph. This template has a much simpler structure than the Chimera graph. Thus,
on the one hand the computational resources needed to calculate an embedding are
decreased, and once it is found, it can be reused for the whole operational period of
the machine. On the other hand, simple certificates can be formulated whether a graph
is embeddable or not.
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(c)(b)(a)

Fig. 1 Different versions of complete graph embeddings in ideal Chimera graph. Each colour represents a
single logical vertex (Color figure online)

A universal template is the complete graph enabling to embed all graphs with the
same or a smaller number of vertices or edges. It completely circumvents the necessity
of calculating an embedding for each individual instance but rather provides it straight-
forwardly. Due to physical restrictions, the Chimera graph of D-Wave was designed to
be sparse but nevertheless yield an efficient embedding of the complete graph [4]. The
TRIAD layout, presented in [4], forms the basis for the triangle embedding structure
of the complete graph in the (ideal) Chimera graph as shown in Fig. 1a for K12. There
the set of qubits representing single logical vertex forms a so-called chain.

By extending the triangle structure, each of the chains becomes cross-shaped; there-
fore, we call them crosses in the following. Additionally, each pair of crosses is now
connected by two edges. Due to this redundancy, the embedding can be extended by
splitting one of the crosses into its vertical and horizontal part. Thus, we gained one
additional logical vertex, as shown in Fig. 1b. According to [2], this scheme yields an
embedding for the complete graph with the largest possible number of vertices.

Unfortunately, due to broken physical vertices the shown templates are not appli-
cable in real hardware. Thus, in [13] an algorithm was proposed trying to extract a
subgraph of the broken Chimera where the extended triangle embedding can still be
applied and has as many chains as possible. In [2], this approach is generalized by
breaking up the triangle structure and placing L-shaped blocks such that all of them
overlap pairwise. The principle is illustrated in Fig. 1c. As K. Boothby is one of the
main contributors of the D-Wave API, we assume this algorithm is implemented in
the package minorminor to find complete graphs.

Due to the very limited size of the maximal complete graph, there are various other
graphs with less connectivity but a larger number of vertices considered, too. Another
good template candidate is the complete bipartite graph, whose embedding is closely
related to the one of the complete graph. The idea of [9] is to find the smallest number
of vertices that have to be split up into the two partitions such that the resulting graph
is bipartite and thus can be embedded using this template. In [18], this approach is
elaborated and generalized to related partitioned graph structures.

Knownminors can then be collected in a lookup table. The authors of [10] suggest to
precompute all ‘maximal minors’ of the complete bipartite graph. This means an input
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(c)(b)(a)

Fig. 2 By permuting the crossroads, we can find complete graph embeddings in a broken Chimera graph

graph is embeddable if it is a subgraphof oneof the containedminors.Another template
family are, for instance, theCartesian products of complete graphs as discussed in [23].

1.3 Our approach

The approach of Boothby et al. [2] to solve the LCGE problem shows a significant
advantage over [13] regarding graph sizes. In this work, we further generalize both
approaches to still allow for crosses of qubits representing a single logical vertex but
also open up the triangle structure.

Figure 2a shows a variant of a complete graph embedding in the ideal Chimera
graph. In this construction, every row of qubits is connected to a column of qubits
like in the extended triangular embedding in Fig. 1b. But in contrast to Fig. 1b, the
edges connecting the horizontal and vertical cross parts do not lie on the diagonal of
the Chimera but are distributed over the graph. We call those edges crossroads in the
following. As each of the crosses occupies the full horizontal, respectively, vertical
part, every row, respectively, every column of qubits belongs to a specific cross. For
each row and column combination, there is a unique crossroad connecting them. Thus,
such an embedding is defined by amatching of rows to columns. In turn, eachmatching
of rows to columns defines a complete graph embedding in the ideal Chimera graph.
This means there are a factorial number of possibilities to embed the complete graph.

The redundant edges connecting two crosseswould again allow for onemore logical
vertex by spitting one of the crosses at the crossroad. However, we disregard this, as
the redundancy offers another opportunity: the ends of the crosses could be cut off to
make room for broken qubits as shown in Fig. 2b. There the remaining, shorter crosses
still have an edge to every other cross and thus form a complete graph embedding. But
given an arbitrary broken Chimera graph, how do we place the crosses such that this
is fulfilled?

By choosing a certain edge connecting a row and a column to locate a crossroad
there, the corresponding cross is well defined: both the horizontal and the vertical part
are extended until we reach the boundary of the Chimera graph or a broken qubit.
To place two crossroads, we need to ensure the resulting crosses ‘meet’ each other,
meaning there is at least one edge connecting both. Thus, the LCGE problem can
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be reformulated as: how do we match rows with columns to form crossroads, like in
Fig. 2c, such that all resulting crosses meet each other?

Clearly, the more restricted the graph the smaller is the number of suitable match-
ings. While just a few broken vertices might still yield a variety of complete graph
embeddings, in particular, if the Chimera graph is very broken, none of the originally
large number of possibilities might be valid anymore. Hence, we will not be able to
embed the same number of vertices as in the ideal case. Leading to the question,
which matching results in the largest possible complete graph? This question is an
optimization problem, whose construction we show in the following sections.

For simplification of the notation, we show the construction for the standard sym-
metric form of the Chimera graph, like in current hardware. But this approach can
be extended to arbitrary dimensions. We will further concentrate on finding just a
single solution rather than enumerating all possibilities of the same, optimal size as
one embedding is sufficient to start calculating on the annealing machine.

The next step after the pure graph embedding in the process of obtaining an embed-
ded Ising model is the distribution of the original problems weights over the various
physical vertices. The final weight distribution does depend not only on the original
Ising model but also on parameters of the embedding and might influence the perfor-
mance of the annealing process significantly. For instance, one of the factors that is
assumed to have a relevant influence is the so-called chain length, here more precise
the cross size, thus the number of vertices in the crosses.

As we aim for plain embeddability, no further parameters apart from the complete
graph size are part of the optimization. To get the final embedding, the crosses are
extended until the boundary of the Chimera whether this introduces redundancy in
the connecting edges or not. However, exploiting this redundancy might lead to better
solutions in terms of the embedding parameters: by cutting off unnecessary vertices
from the end of the crosses, the cross size can be reduced.Another option is to select the
embedding from the full set of equivalent optimal solutions, where, for example, the
cross size is minimal. Both of the mentioned options introduce a second optimization
level which would lead far beyond the scope of this article. We keep this for future
work.

In Sect. 2, we start with introducing a certain indexing of the Chimera graph,
followed by the actual derivation of the optimization problem formulation in Sect. 3.
At the end of this section, the complete ILP is summarized. Afterwards, the problem
is analysed theoretically in Sect. 4. The results of the experiments explained in Sect. 6
are evaluated in Sect. 7. Finally, in Sect. 8 we present our conclusion.

2 Description of the hardware graph

In this section, we present the Chimera hardware graph with a specific indexing of
the graph vertices, being suitable for the formulation of the LCGE problem, and the
variable input parameters.
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2.1 Chimera graph indexing

First, we introduce some general notations used throughout thiswork. For some n,m ∈
N, let [m; n] := {m,m + 1, . . . , n} be the enumeration from m to n, where we have
[m; n] = ∅, if n < m. For shortness, we use [n] := [1, n] for enumerating from 1,
where we say [0] = ∅. If a set S is the disjoint union of two sets S1 and S2, that means
S1 ∪ S2 = S and S1 ∩ S2 = ∅, we use S = S1 ·∪ S2.

A Chimera graph is defined by a lattice structure of complete bipartite subgraphs,
so called unit cells, where the number of rows or columns can vary as well as the
amount of vertices in the subgraph partitions. We refer to the latter as the depth
of the Chimera graph. Based on current hardware, the reference is always the ideal
symmetric Chimera graph with the number of rows and columns of unit cells given
by size s ∈ N and a depth of 4, which we denote by Cs,s,4. Due to the lattice structure,
each vertex is represented as a tuple of indices referring to its row and column. For
Cs,s,4 = (Vhori ·∪Vvert, Ecell ·∪ Einter), using the index sets S := [s] and N := [n] with
n := 4s, we define

– the horizontally connected vertices

Vhori := N × S

with n rows and s columns, which are in the vertically arranged partitions of the
unit cells as illustrated in green in Fig. 3a,

– the vertically connected vertices

Vvert := S × N

with s rows and n columns, the horizontal partition illustrated in blue in Fig. 3b,
– the inter unit cell edges Einter ⊂ V 2

hori ∪ V 2
vert connecting vertices of different

unit cells, which are not needed explicitly in the following and therefore are not
specified here, and

– the edges inside of the single unit cells

Ecell := {
(h, v) = (

(rh, ch), (rv, cv)
) ∈ Vhori × Vvert : rv = u(rh), ch = u(cv)

}
.

In the latter, we use the function u : N → S with u(x) = ⌈ x
4

⌉
, being the mapping

from the inner row/column to the unit cell row/column index, in the equality constraints
to ensure that the paired vertices lie in the same unit cell. Since by this the unit cell
rows and columns are given implicitly, we can use the congruent representation

Ecell ∼= {
(rh, cv) : rh, cv ∈ N

}

= {
rc : r , c ∈ N

}

= N 2

in the following. In general, we use
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(a) (b) (c)

Fig. 3 Specific indexing in Chimera graph (Color figure online)

r(.) : (x1, x2) 	→ x1,

c(.) : (x1, x2) 	→ x2

for providing the row, respectively, column for a given vertex, whereas r and c (without
further index) always refer to some inner row, respectively, column indices without
specifying a certain corresponding vertex. Further, we identify the tuple (r , c) with
the non-commutative product rc for shortness to describe an inner unit cell edge. An
example for the indexing of edges is shown in Fig. 3c.

2.2 Broken vertices

With regard to real hardware, we consider some vertices to be unavailable. For the
symmetric Chimera graph Cs,s,4 with s ∈ N as described in the previous section, let
Bhori ⊂ Vhori and Bvert ⊂ Vvert be the sets of different broken vertices and B :=
Bhori ·∪ Bvert. In our experiments, we vary the ratio of broken vertices to the total
number of vertices in an ideal Chimera graph, that is,

b := |B|
|Vhori| + |Vvert| = |B|

8s2
.

While for an ideal Chimera graph the set of possible crossroads defining the crosses
in the embedding is just Ecell, the available combinations in a broken Chimera graph
are restricted to those inner unit cell edges which do not contain a broken vertex:

A := {
(h, v) ∈ Ecell : h ∈ Vhori \ Bhori, v ∈ Vvert \ Bvert

}

∼= {
rc ∈ N 2 : (

(r , u(c)), (u(r), c)
) ∈ Ecell ∩ ((Vhori \ Bhori) × (Vvert \ Bvert))

}
.

3 ILP formulation

In this section,we construct an integer linear optimization program (ILP) for the LCGE
problem over arbitrary input parameters s, Bhori, and Bvert as described in the previous
section.
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3.1 Bipartite matching problem

In general, the LGCE as we consider it here is a matching problem: Which row can be
matched with which column to form a crossroad in an optimal embedding following
our construction rules?

The decision which of the available combinations is taken can be encoded in binary
problem variables x ∈ {0, 1}A with

xrc =
{
1, if row r is matched to column c,

0, otherwise.

We say a crossroad rc is activated if its corresponding binary variable xrc is activated
in an optimal solution meaning it is set to 1. For simplification, we use x ∈ {0, 1}N×N

in the following with disabling all unavailable row column pairs by presetting xrc = 0
for all rc ∈ N 2 \ A, although this extends the model with additional variables.

As the goal is to match as much as possible we want to maximize the number of
activated binary variables, the objective is

∑

rc∈A

xrc =
∑

rc∈N2

xrc.

Our construction is based on crossroads joining full rows and columns. Therefore,
only one crossroad per row and column is allowed. This can be enforced by the
matching constraints

∑

r c̃∈A

xrc̃ =
∑

r∈N
xrc̃ ≤ 1 ∀c̃ ∈ N ,

∑

r̃ c∈A

xr̃c =
∑

c∈N
xr̃c ≤ 1 ∀r̃ ∈ N .

(1)

Those types of constraints are also called cardinality constraints as they enforce choos-
ing a certain number ofmembers, here just one, out of a given set. By these restrictions,
the optimal value of the objective function corresponds to the size, meaning the num-
ber of vertices, of the largest embeddable complete graph. Additionally, they confirm
the upper bound on the objective function of n = 4s, which is the maximal size of a
complete graph in Cs,s,4 using our construction as explained in Sect. 1.3.

Until now, the constructed problem is just a simple maximum bipartite matching
problem. In the following, we show further constraints that need to be added.

3.2 Mutually exclusive sets constraints

If a horizontal vertex is broken, it interrupts the horizontal path from the left to the
right. This prevents a cross occupying this row to be extended to the boundaries of
the Chimera graph. It is analogous for a broken vertical vertex and a cross using
the corresponding column. This needs to be taken into account when considering

123



234 Page 10 of 27 E. Lobe et al.

Fig. 4 Examples of crosses that
do not meet due to broken
vertices (gray, dashed)

(a)

(b)

possible crossroad candidates for the embedding. Figure 4 depicts an example of such
a situation. Due to the broken vertices, the corresponding crosses for certain pairs
of crossroads might not meet. This means there do not exist any edges between the
different vertices of the crosses, even if they reach the same unit cell like in Fig. 4b.
But at least one edge is needed to provide a valid embedding of two vertices of the
complete graph. Therefore, those crossroads cannot be activated together and we need
to introduce further constraints enforcing the activation of only one of them.

We will see that there are not only isolated pairs but clusters of crossroads all being
pairwise forbidden, which means only one of all of them can be activated. We call
those clusters mutually exclusive sets (MES). The construction of those sets differs
for certain pairs of broken vertices. We have the following cases, which are handled
separately in the next paragraphs:

1. two broken horizontal vertices,
2. two broken vertical vertices,
3. two different broken vertices, one horizontal and one vertical.

1. Let h = (rh, ch) �= k = (rk, ck) ∈ Bhori be two broken horizontal vertices, as
illustrated in Fig. 5a, b. Due to the horizontal interruption, the crossroads on the left and
the right of the two vertices are affected. In Fig. 5b, both broken vertices lie in the same
inner row. As the matching constraints already permit only one crossroad per row, no
further constraints are necessary in this case andwecan restrict to verticeswith rh �= rk ,
which is the case shown in Fig. 5a. There we have two MES, which are highlighted
in different colours. Each of the blue crossroads in the right top corner cannot be
activated together with the others in this corner due to the matching constraints, and
they cannot be activated together with the blue in the left bottom corner because their
corresponding crosses would not meet. The same holds for the green crossroads in the
opposite corners.

For the definition of the MES, we need all crossroads from the left boundary until
the leftmost broken vertex and all crossroads from the rightmost broken vertex until the
right boundary in the two corresponding inner rows. The incident edges (light green)
to the broken vertices are excluded by definition of A, respectively, set to 0, but again
are included in the definition of the two sets for simplicity. Let for example h be the
top left broken vertex in Fig. 5a and Ileft ⊆ N describe the interval of columns on the
left and Iright ⊆ N on the right. The set of blue crossroads in the left top corner is then
given by combining the row rh with each of the columns in Ileft. The remaining blue
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Fig. 5 Sets of mutually
exclusive crossroads caused by
two broken horizontal vertices
(Color figure online)

(a)

(b)

crossroads combine rk with Iright. This results in theMES
({rh}× Ileft

)∪({rk}× Iright
)
.

For the green crossroads, we get symmetrically
({rk} × Ileft

) ∪ ({rh} × Iright
)
.

The intervals of columns, Ileft and Iright, can be derived from the broken vertices’
columns depending on the relational position of the vertices. To describe this more
formally, for the fixed size n let

I (s1, s2) :=
{

[4s1], if s1 ≤ s2,

[4(s1 − 1) + 1; n] = [4s1 − 3; n], otherwise

be the interval to or from s1 depending on the relation to s2 for s1, s2 ∈ S. Themultipli-
cation with 4 is needed for the conversion of unit cell to inner columns. The behaviour
of this function is illustrated in Fig. 6 for different relations. By the subtraction of
1
2 , we can circumvent the fact that I only returns the left interval for identical inputs
when we need the right one. The resulting sets of mutually exclusive crossroads can
then be defined for each combination of h and k with

X1(h, k) := ({rh} × I (ch, ck)
) ∪ ({rk} × I (ck, ch − 1

2 )
)
,

X2(h, k) := ({rk} × I (ch, ck)
) ∪ ({rh} × I (ck, ch − 1

2 )
)
. (2)

Therefore, we get the cardinality constraints for i = 1, 2

∑

rc∈Xi (h,k)

xrc ≤ 1,

where the sum, e.g. for i = 1, can also be written as

∑

c∈I (ch ,ck )
xrhc +

∑

c∈I (ck ,ch− 1
2 )

xrkc.

2. Two vertical broken vertices, with v = (rv, cv) �= w = (rw, cw) ∈ Bvert, can be
handled analogously to the case before by exchanging row and column:We can restrict
on cv �= cw. Taking all rows from the upper boundary to the uppermost broken vertex
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Fig. 6 Representation of interval function

and all from the bottom to the lowest broken vertex results in the sets of mutually
exclusive crossroads

X1(v,w) := (
I (rv, rw) × {cv}

) ∪ (
I (rw, rv − 1

2 ) × {cw}),
X2(v,w) := (

I (rv, rw) × {cw}) ∪ (
I (rw, rv − 1

2 ) × {cv}
)
. (3)

Therefore, we get exemplary the constraint for i = 1

∑

rc∈X1(v,w)

xrc =
∑

r∈I (rv,rw)
xrcv +

∑

r∈I (rw,rv− 1
2 )

xrcw ≤ 1.

Let us combine the MES for all combinations in

Xhori :=
⋃ {{

X1(h, k), X2(h, k)
} : h, k ∈ Bhori, rh �= rk

}
,

Xvert :=
⋃ {{

X1(v,w), X2(v,w)
} : v,w ∈ Bvert, cv �= cw

}
.

3. The case with two different broken vertices h = (rh, ch) ∈ Bhori and v =
(rv, cv) ∈ Bvert is different to the ones above. As shown in Fig. 7a, we have four
different cases depending on the relational position of the two vertices, whether the
vertical is above or below,

I) rv < u(rh) or
II) rv > u(rh),

and left or right,

a) ch > u(cv) or
b) ch < u(cv),

of the horizontal broken vertex.
Figure 7b shows the combination Ia) exemplary. The other cases Ib), IIa) and IIb)

can be derived analogously but mirrored to different corners. This is covered by the
definition of I , which we use again in the following construction; therefore, this holds
for all cases. Further, we can see in Fig. 7c that no additional constraints are provided
if both vertices lie in the same unit cell row or column, respectively. Therefore, we
can restrict on cases with u(rh) �= rv and u(cv) �= ch .
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(a)

(c)

(b)

Fig. 7 Mutually exclusive crossroads caused by two different broken vertices (Color figure online)

Due to the path interruption by the broken vertices, we get exactly one crossroad,
rhcv ∼= (

rh, u(cv), u(rh), cv
)
, in the lower left corner of Fig. 7b illustrated in green,

which is pairwise forbidden with all the crossroads in a rectangle, which are shown
in blue. In the following, we refer to rhcv as the common crossroad. In the case
shown in Ia), the rectangle includes all rows from the upper boundary until the unit
cell of the broken horizontal vertex v and all columns starting at the unit cell of
the broken vertical vertex v until the right boundary, which are the combinations in
[4rv] × [4(ch − 1) + 1; n]. More generally, the rectangle is described by

I (rv, u(rh)) × I (ch, u(cv)).

The pairwise constraints

xrhcv + xrc ≤ 1 ∀rc ∈ I (rv, u(rh)) × I (ch, u(cv))

would therefore be sufficient to describe our problem. But taking advantage of the
matching constraints (1) again, we can aggregate the crossroads in the rectangle:
either all in one inner row or all in one inner column. To keep the optimization problem
description as small as possible, we take the smallest amount of resulting MES. This
is given by the minimum of the dimensions of the rectangle, hence the number of rows
|I (rv, u(rh))| or the number of columns |I (ch, u(cv))|. With

Xr (h, v) := {rhcv} ∪ ({r} × I (ch, u(cv))
)
,

describing the aggregated MES for a row r ∈ I (rv, u(rh)), and analogously

Xc(h, v) := {rhcv} ∪ (
I (rv, u(rh)) × {c}),
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for a column c ∈ I (ch, u(cv)), we can define

Xmix(h, v) :=
{{

Xr (h, v) : r ∈ I (rv, u(rh))
}
, if |I (rv, u(rh))| ≤ |I (ch, u(cv))| ,{

Xc(h, v) : c ∈ I (ch, u(cv))
}
, otherwise,

choosing the set of MES with the smallest cardinality for a certain pair of broken
vertices v and h. With

Xmix :=
⋃ {

Xmix(h, v) : (h, v) ∈ Bhori × Bvert, rv �= u(rh), ch �= u(cv)
}
,

we can finally summarize all cardinality constraints to

∑

rc∈X
xrc ≤ 1 ∀X ∈ Xhori ∪ Xvert ∪ Xmix. (4)

3.3 Embedding ILP in a nutshell

With the definitions of the section before we can summarize the complete embedding
problem in the following ILP formulation. If we find an optimal solution to this ILP,
its objective value corresponds to the size of the largest embeddable complete graph
and the activated variables define the crossroads for a corresponding embedding.

max
∑

rc∈N2

xrc (E)

s.t.
∑

r∈N
xrc̃ ≤ 1 ∀c̃ ∈ N

∑

c∈N
xr̃c ≤ 1 ∀r̃ ∈ N

∑

rc∈X
xrc ≤ 1 ∀X ∈ Xhori ∪ Xvert ∪ Xmix

xrc = 0 ∀rc ∈ N 2 \ A

x ∈ {0, 1}N×N

3.4 Embedding extraction

Once a solution x∗ ∈ {0, 1}N×N for the ILP shown in the previous section is found,
we can construct the actual embedding from the activated crossroads. For this, we
extend the crossroad in the corresponding row to the left and the right and in the
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corresponding column to the top and the bottom until we meet a broken vertex or the
boundary of the Chimera to obtain the corresponding cross.

For a crossroad rc ∈ N 2 with x∗
rc = 1, the vertices to the left of the crossroad are

located in the same row r , while the column index ranges from 1 to u(c) − 1. More
formally, this means the set {r} × [1; u(c) − 1]. Remember u(c) defines the unit cell
column index corresponding to the inner column index. If there is at least one broken
vertex, we need to find the rightmost one among all of them as we cannot extend the
cross to left beyond it. The rightmost broken vertex has the largest column index and
thus can be found with

max{c̃ ∈ [1; u(c) − 1] : (r , c̃) ∈ Bhori}.

Since the cross does not include the broken vertex, we need to introduce a shift of one
and therefore can obtain the vertices in the left part of the cross with

Pleft(r , c) = max{c̃ ∈ [1; u(c)] : c̃ = 1 ∨ (r , c̃ − 1) ∈ Bhori},

where the disjunction with c̃ = 1 is needed to default to the start value 1 of the index
range in case the set of broken vertices is empty. Analogously, we can construct the
parts to the right, top and bottom with

Pright(r , c) = min{c̃ ∈ [u(c); s] : c̃ = s ∨ (r , c̃ + 1) ∈ Bhori}
Ptop(r , c) = max{r̃ ∈ [1; u(r)] : r̃ = 1 ∨ (r̃ − 1, c) ∈ Bvert}
Pbot(r , c) = min{r̃ ∈ [u(r); s] : r̃ = s ∨ (r̃ + 1, c) ∈ Bvert}.

All in all, we obtain the plus-shaped vertex set with

({r} × [Pleft(r , c); Pright(r , c)]
) ∪ ([Ptop(r , c); Pbot(r , c)] × {c}),

for all rc ∈ N 2 with x∗
rc = 1.

As an equivalent to the chain length, an important parameter in the further pro-
cessing of the Ising model as described in Sect. 1.3, we can observe the cross size.
The maximum number of vertices in a cross in a Chimera of size s is 2s, which
is only the case when the cross can be extended fully to all boundaries, meaning
Pleft(r , c) = Ptop(r , c) = 1 and Pright(r , c) = Pbot(r , c) = s.

Clearly, by this construction we obtain embeddings with a larger number of vertices
than presented in [2], where the maximum chain length is s + 1. However, this allows
for larger graph sizes as we will see in the following section.

4 Analysis

In this section,we investigate the structure of the ILPembeddingproblembydiscussing
its size, complexity and variations. The solvability of the problem can be estimated
by different parameters. The size of the ILP, more precisely the number of variables
and constraints, is of interest when directly passing the constructed ILP to ILP solvers
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and using them without any further specifications. However, the specific structure of
the constraints allows for a deeper complexity analysis of the problem showing fixed-
parameter tractability. At the end of this section, we give a short outlook on how the
ILP can be extended to more general Chimera graphs.

4.1 Size of the ILP

We estimate the size of the ILP with regard to the input parameters s, Bhori and Bvert.
The number of variables is n2 = 16s2 if we also take the unavailable combinations in
A into account. By removing them, we get n2 − |A| ≥ n2 − |Bhori| − |Bvert|, where
the lower bound is achieved only if no two broken vertices meet in one edge.

Apart from the 2nmatching constraints in (1),we show that the number of additional
constraints is also polynomial in the number of broken vertices. We need to count the
number ofMES that are constructed in the former section for the different combinations
of vertices. Taking two unequal vertices out of the broken horizontal vertices Bhori,
we get

(|Bhori|
2

)
= 1

2 |Bhori| (|Bhori| − 1) = 1
2 |Bhori|2 − 1

2 |Bhori|

combinations. Analogously, for two broken vertical vertices out of Bvert we have

(|Bvert|
2

)
= 1

2 |Bvert|2 − 1
2 |Bvert|

combinations. On the other hand, the number of combinations for two different broken
vertices is |Bhori| |Bvert|. Those numbers could be slightly but not significantly reduced
when taking pairs into account that lie in the same rows, respectively, columns.

For each combination of two broken vertices of the same type we have two con-
straints. Thus we have

|Xhori| ≤ |Bhori|2 − |Bhori|
|Xvert| ≤ |Bvert|2 − |Bvert| .

For the different broken vertices, the number of constraints depends on the size of the
corresponding rectangles. Here, we can only estimate the worst-case scenario which
is n − 1 constraints, hence

|Xmix| ≤ (n − 1) |Bhori| |Bvert| .

Therefore, in total we get

|Xhori| + |Xvert| + |Xmix| ≤ |Bhori|2 − |Bhori| + |Bvert|2 − |Bvert|
+ (n − 1) |Bhori| |Bvert|

additional cardinality constraints in (4).
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4.2 Problem complexity

The described problem is amatching problem on a bipartite graph. The simple version,
without additional constraints, can be solved in polynomial time, e.g. with the algo-
rithm of Hopcroft and Karp in O

(
n2.5

)
[11]. Due to the constraints (4), introduced in

Sect. 3.2, our ILP corresponds to a so-called restricted maximum matching problem.
Those problems are NP-hard in general, and this even holds for cardinality constraints
with a cardinality of just one like ours [21]. But exploiting the specific structure of
those constraints, we can derive that the runtime is mainly dominated by the broken
vertices compared to the size of the Chimera graph. More formally, this means the
problem is fixed-parameter tractable with the number of the broken vertices |B| as
the parameter. We show the fixed-parameter tractability by enumerating the decisions
that have to be made for removing constraints until the problem is a simple maximum
bipartite matching problem.

Considering the constraint for two broken vertices of the same type, we have two
MES, (2), respectively, (3). As it is shown in Sect. 3.2, both MES consist of a left
and a right part lying in different rows for broken horizontal vertices, respectively,
an upper and a lower part in different columns for broken vertical vertices. Since we
can only take one of the crossroads in an MES into a solution, this crossroad is either
in the left or in the right, respectively, upper or lower, part. Imagine we decide in
advance for one part of the MES. Considering, for instance, some X ∈ Xhori, with
X =: X left ∪ Xright for simplicity, we could choose the crossroad to be in X left. Thus,
none of the crossroads in Xright can be activated in the solution, meaning we have to
set xrc = 0 for all rc ∈ Xright. The corresponding cardinality constraint reduces to

∑

rc∈X
xrc =

∑

rc∈X left

xrc ≤ 1.

As X left only consists of crossroads in a certain row, this constraint is weaker than
the matching constraint of (1) covering that row fully. Thus, we can remove it and the
resulting optimization problem, having less variables and less constraints, is easier to
solve.

By considering both exclusive options, disregarding Xright or X left, and choosing
the best solution, we get the global optimum. This procedure can be applied for every
MES in Xhori and Xvert, especially this can be done iteratively to already simplified
versions. With two parts for each MES, this results in total in

2|Xhori| · 2|Xvert| ≤ 2|Bhori|2−|Bhori|+|Bvert|2−|Bvert|

different simplified problems.
For different broken vertices, we have much more constraints, but they all have

one crossroad in common that cannot be matched together with the other concerned
crossroads in the rectangle. Therefore, we can proceed similarly to above. One option
is just taking the single common crossroad into the solution and rejecting all of the
rectangle. This means the binary variable corresponding to this crossroad is set to 1,
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while those for the rectangle are set to 0. By this not only the constraints are removed
but the size of the ILP is appreciably reduced, persisting for all problems resulting
from subsequent decisions. However, for an increasing size of the rectangle it gets
more unlikely that the common crossroad is part of an optimal solution. Hence, the
second option is rejecting this single crossroad. This again results in weaker remaining
constraints than the matching constraints for the whole rectangle, and they can be
dropped. These two possibilities per broken vertex pair result in total in further

2|Bhori||Bvert|

options.
Finally, we get at maximum

2|Bhori||Bvert|+|Bhori|2−|Bhori|+|Bvert|2−|Bvert|

different simplified versions of our original problem. As we removed all of the addi-
tional constraints along the decision tree, they are now simple maximum bipartite
matching problems and can be solved efficiently. With

|Bhori|2 − |Bhori| + |Bvert|2 − |Bvert| + |Bhori| |Bvert|
≤ |Bhori|2 + |Bvert|2 + 2 |Bhori| |Bvert|
= ( |Bhori| + |Bvert|

)2

= |B|2

we get a worst-case runtime in

O
(
2|B|2 n2.5

)

and the problem is fixed-parameter tractable in the choice of the broken vertices.
According to current hardware development, we can reasonably assume that |B| is

small compared to n. Therefore, considering |B| to be fixed, the problem is efficiently
solvable for increasing size n. However, this means at the same time the ratio of
broken vertices R is decreasing as it is inversely proportional to n2. Thus, considering
the ongoing development of the annealing machines, the exponential dependency of
the runtime on the number of broken qubits will be negligible in contrast to the just
polynomial dependency on the size of the Chimera.

Just keeping R fixed, like we did in our experiments for comparison with [2], still
provides an exponential runtime. This aspect demands for heuristic solving approaches
like presented in the following section. However, once the embedding is computed for
a hardware graph, it can be reused during the whole operating period. This justifies a
larger runtime than in the operational approach calculating a new embedding for each
Ising instance.
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4.3 Generalization

In Sect. 3, we show the construction of the ILP for the LCGE problem exemplary
for the symmetric Chimera graph with a depth of 4. But the whole setup can also
be generalized for arbitrary Chimera graphs CSR ,SC , d, hence which are rectangular
meaning sC �= sR orwhich have a different depth d. In the following,we brieflymention
the adjustments that need to be applied.

If d is different than 4, the unit cell index function changes to u : x 	→ ⌈ x
d

⌉
. In case

of sR �= sC we need to split N 2 up in R × C with the row, respectively, column sets
R = [dsR] and C = [dsC ]. Of course, in this case the maximal number of vertices in
an embeddable complete graph, even if it is an ideal Chimera, is just d min{sR, sC}. As
the amount of rows and columns is not equal anymore, we have to adjust the interval
function to be able to differ between maximal row or column with

IR/C(s1, s2) :=
{

[4s1], if s1 ≤ s2,

[4s1 − 3; dsR/C ], otherwise.

With thesemodifications, it is possible to construct the analogousmatching constraints
as well as the MES for the cardinality constraints. Analogously, the extraction of the
embedding from a found solution can be adjusted.

One might also consider to extend the model by adding broken edges, which could
possibly be handled in an analogue case differentiation as for the broken vertices.
But in contrast to the restriction to broken vertices the implications on the model
construction and therefore the size and complexity are not trivial. Further, a broken
edge adjoining non-broken vertices is very rare and thus can be handled by marking
one of the concerned vertices as broken. Therefore we do not discuss this in more
detail here.

4.4 Delineation

In our construction, the embedding corresponding to a single logical vertex is formed
by a cross. In the case ofmany broken vertices, this assumptionmight be too restrictive.
This is shown, for example, in Fig. 8 where the solution to the ILP is not as good as the
optimal solution to the LCGE problem. We believe, however, that such corner cases
are of less practical relevance since they just seem to occur for a very large ratio of
broken vertices.

5 Heuristic ILP

The complexity analysis in Sect. 4.2 has shown a certain structure of the additional
constraints. Especially for the case of two broken vertices of different types, there is a
strong imbalance: activating the single common crossroad excludes all the crossroad
in the corresponding rectangle. Thus, it is very unlikely that this crossroad is part of
the optimal solution in particular for growing size of the rectangle. In this section,
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(a) (b)

Fig. 8 Very restricted Chimera graph containing larger complete graph than can be found with our ILP

we show the derivation of a simpler ILP whose solution is assumed to be close to the
optimal one.

5.1 Reducing size

We decided to test a heuristic approach based on excluding such unlikely common
crossroads in advance. This reduces the number of variables and more importantly
the number of constraints. Thus, we solve only a certain part of the decision tree
constructed in Sect. 4.2, and therefore, it is not clear whether the optimal value can be
achieved.

We introduce a parameter defining which common crossroads shall be removed,
respectively, kept: the so-called maximum rectangle ratio, denoted here by m with
0 ≤ m ≤ 1, gives a boundary on the size of the rectangle relative to the Chimera graph
size s below which the common crossroad is kept. If the number of unit cell rows
times the number of columns of the rectangle exceeds ms2, the crossroad is excluded.
More formally, this means for two different broken vertices h = (rh, ch) ∈ Bhori and
v = (rv, cv) ∈ Bvert, that we do not use the crossroad rhcv , hence set xrhcv = 0 in
advance, if we have M(h, v) ≥ ms2 with

M(h, v) := |I (rv, u(rh))| · |I (ch, u(cv))|.

Thus, a ratio of 1 means all common crossroads are kept, while a ratio of 0 means
none of them remain in the resulting optimization problem.

Given m, let the set of unused crossroads be

Um :=
{
rhcv : (h, v) ∈ Bhori × Bvert, M(h, v) ≥ ms2

}

and further let

X m
mix :=

⋃ {
Xmix(h, v) :(h, v) ∈ Bhori × Bvert, rv �= u(rh), ch �= u(cv),

M(h, v) < ms2
}
.
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be the reduced set of MES. With this, the corresponding constraints can be simpli-
fied by replacing Xmix with X m

mix in (E). This can be seen in the following section
summarizing the heuristic ILP.

5.2 Heuristic Embedding ILP in a nutshell

With the same definitions as before and a certain choice of m, we can now summarize
the heuristically reduced embedding problem in the ILP formulation:

max
∑

rc∈N2

xrc (H)

s.t.
∑

r∈N
xrc̃ ≤ 1 ∀c̃ ∈ N

∑

c∈N
xr̃c ≤ 1 ∀r̃ ∈ N

∑

rc∈X
xrc ≤ 1 ∀X ∈ Xhori ∪ Xvert ∪ X m

mix

xrc = 0 ∀rc ∈ N 2 \ A ∪Um

x ∈ {0, 1}N×N

6 Experimental setup

6.1 Random instances

To be able to compare our approach to current state-of-the-art methods, we consider
different ratios of broken vertices for growing hardware sizes. We have generated ten
instances for each combination of the following values:

– sizes of Chimera graph: s ∈ {4, 6, 8, . . . 32, 34},
– ratios of broken vertices: b ∈ {0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2}.

The ratio of the broken vertices times the total number of vertices in the ideal Chimera
graph results in the number of broken vertices for a certain size. For each of the
ten instances, we randomly chose this number out of all vertices and marked them
as being broken. Due to rounding to whole vertices, the resulting exact ratios differ
slightly from the aimed ones above, especially for smaller graph sizes.

As a reference, we like to remark the parameters of two real D-Wave 2000Q sys-
tems. First, the solver DW_2000Q_6, which we accessed though the Jülich UNified
Infrastructure for Quantum computing (JUNIQ), has a size of 16 and 7 broken vertices.
This corresponds to a ratio of about 0.0034. Second, the older USRA/NASA chip with
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the same size had 17 broken vertices, resulting in a ratio of about 0.0083 [12]. Thus,
our experiments are much more exhaustive than current hardware demands.

For the heuristic approach, we use m = 0 and m = 0.25 for our experiments as
reference points to evaluate the impact of removing a significant number of crossroads.

6.2 Solving strategy

This paper focuses on the presentation of the embedding problem as an ILP. We did
not implement an algorithm, yet, which exploits the branching procedure as described
in Sect. 4.2. It is not straightforward how the decision tree could be reduced at certain
stages. As we do not consider the ratio of broken vertices to be fixed here, there is
still an exponential overhead in the number of final simplified problems. Even the
simplified heuristic version is still a hard optimization problem.

Thus, using an ILP solver, already taking advantage of implemented branch-and-
bound techniques, is a good starting point to evaluate the capabilities of the model.
We decided to pass the models (E) and (H) directly to the solver SCIP [8] without
further adjustments. It is currently one of the fastest non-commercial solvers for mixed
integer programming, which includes ILP.

6.3 Specifications

The experiments were run on a Dell Precision 5820 Tower workstation with a Intel
Xeon(R)W-2175 CPU@2.50GHz 28, 128 RAM and operating systemUbuntu Linux
18.04.5 LTS. We implemented our code in python and used the python interface
package pyscipopt [14] to connect to the solver SCIP with version 6.0.1 [8]. As
this interface does not support parallel mode, we could just use one core. We set a
timeout of 1 hour for solving each instance with SCIP. Building up the model was
not included in there. As we first want to evaluate the capabilities of the model and
the derived heuristic version themselves, we did not optimize our code regarding
performance. Apart from the timeout, we used the default SCIP parameters.

7 Results

A good reference to estimate the quality of a solution is to compare its objective
value, the found graph size, to the largest possible size of a complete graph in the
ideal Chimera graph. As stated in Sect. 1.3 with our construction using crosses, the
largest complete graph in a Chimera graph of size s is K4s . LetGs,b,i be the graph size
returned by SCIP within one hour for the i th instance with Chimera size s and ratio of
broken vertices b. As we consider ten instances for each parameter combination, the
found graph sizes are averaged and we introduce the averaged solution ratio

Rs,b :=
1
10

∑9
i=0 Gs,b,i

4s
=

9∑

i=0

Gs,b,i

40s
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Table 1 Averaged solution ratio Rs,b for each combination of size s and ratio of broken vertices b

[for exact model (E)]

b
s 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.005 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.91 0.82 0.85
0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 0.77 0.68 0.70 0.63 0.60 0.60
0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.63 0.59 0.59 0.58 0.51 0.51 0.52 0.44
0.04 1.00 1.00 1.00 0.99 0.99 0.99 0.88 0.60 0.61 0.56 0.50 0.52 0.43 0.44 0.43 0.39
0.05 0.99 0.99 0.98 0.99 0.98 0.94 0.65 0.59 0.43 0.51 0.44 0.43 0.38 0.37 0.35 0.38
0.1 0.95 0.93 0.86 0.81 0.69 0.52 0.37 0.35 0.30 0.29 0.25 0.25 0.24 0.22 0.21 0.17
0.2 0.72 0.60 0.53 0.48 0.39 0.22 0.20 0.16 0.17 0.17 0.12 0.14 0.11 0.10 – –

[for heuristic model (H) with m= 0.25]

b
s 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.005 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.88 0.87 0.86
0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.83 0.75 0.76 0.77 0.73 0.69
0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.78 0.70 0.67 0.67 0.62 0.62 0.61 0.59
0.04 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.74 0.70 0.63 0.61 0.60 0.56 0.53 0.49 0.48
0.05 0.99 0.99 0.98 0.99 0.98 0.95 0.72 0.67 0.60 0.57 0.52 0.50 0.49 0.45 0.42 0.41
0.1 0.95 0.93 0.86 0.81 0.71 0.59 0.43 0.41 0.36 0.32 0.31 0.29 0.28 0.23 0.24 0.21
0.2 0.72 0.60 0.52 0.48 0.42 0.36 0.31 0.22 0.17 0.16 0.13 0.12 0.11 0.09 0.09 0.08

[for heuristic model (H) with m= 0.0]

b
s 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.005 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.92
0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 0.94 0.89 0.86 0.81 0.79 0.74 0.69
0.04 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.90 0.84 0.79 0.75 0.68 0.62 0.58 0.53 0.49
0.05 0.99 0.99 0.98 0.99 0.96 0.91 0.82 0.78 0.68 0.63 0.57 0.50 0.45 0.39 0.37 0.35
0.1 0.95 0.90 0.77 0.67 0.51 0.43 0.37 0.29 0.26 0.19 0.15 0.14 0.11 0.08 0.06 0.06
0.2 0.66 0.43 0.28 0.22 0.13 0.09 0.06 0.03 0.02 0.01 0.01 0.01 0.00 0.01 0.00 0.00

Colours indicate the number of instances that where solved to optimality (white: all 10, yellow: 1 to 9, red:
none)

as a measure for the solution quality. Table 1 shows the resulting ratios for each of the
models.

In Table 1a, we can see a clear boundary between the instances which can be solved
in one hour and which cannot. The former are either instances with a small Chimera
size or with a small ratio of broken vertices. Here, we already see a slight advantage
in the achieved graph sizes over [2].

Besides, we also solved the exact model for both versions of the aforementioned
D-Wave 2000Q chips with 7 and 17 broken vertices, respectively. Not surprisingly in
accordance with the results of Table 1a, we were able to find an embedding for the
complete graph with 64 vertices in both cases.

For the unsolved instances, we use the current best solution SCIP provides at the
timeout, being a proven lower bound on the actual optimum. As SCIP is a MIP solver,
it tries to solve a given model to proven optimality and thus is not made for calculating
fast approximate solutions. Therefore, the found solution values for instances with
increasing Chimera sizes and ratios decrease significantly, due to the sizes of the
models. The instance combinations (32, 0.2) and (34, 0.2) could not be solved at all
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Table 2 Difference of rounded averaged solution ratios from heuristic models

b
s 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.005 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00−0.01−0.12−0.13−0.14
0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00−0.06−0.17−0.25−0.23−0.21−0.24−0.23
0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00−0.18−0.24−0.22−0.19−0.19−0.17−0.08−0.10
0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.01−0.16−0.14−0.16−0.14−0.08−0.06−0.05−0.04−0.01
0.05 0.00 0.00 0.00 0.00 0.02 0.04−0.10−0.11−0.08−0.06−0.05 0.00 0.04 0.06 0.05 0.06
0.1 0.00 0.03 0.09 0.14 0.20 0.16 0.06 0.12 0.10 0.13 0.16 0.15 0.17 0.15 0.18 0.15
0.2 0.06 0.17 0.24 0.25 0.29 0.27 0.25 0.19 0.15 0.15 0.12 0.11 0.11 0.08 0.09 0.08

Colours indicate advantage of a certain model (green: m = 0.25, blue: m = 0.0)

with the exact model because SCIP ran out of memory. Nevertheless, the remaining
instances provide values comparable to those of [2].

Evaluating the heuristic approach, we can see that Table 1b for m = 0.25 does not
differ significantly from the one for the exact model according to solvability. Having
a closer look at the values, we see no decrease for the solved instances. However,
there is a slight improvement for the unsolved instances. Thus, the model has a slight
advantage regarding runtime but still seems to yield close to optimal values.

Regarding the heuristic approach with m = 0, shown in Table 1c, we have a much
stronger difference to the exact model. A lot more instances could be solved within
one hour of computation time, especially those with larger ratios of broken vertices.
For the combination of sizes above 18 and ratios between about 0.02 and 0.05, we
see a clear improvement through the heuristic, although a few instances could not be
solved, too. This region of parameters, where it is reasonable to use this heuristic, is
also clearly recognizable in Table 2, where we show the advantage of the heuristics
with either m = 0 or m = 0.25.

However, in Table 1c we observe that the proportions of graph sizes are much
smaller for ratios above 0.1 than for m = 0.25. Thus, this heuristic model seems to
get easier again with an increasing ratio of broken vertices. We assume a significant
number of crossroads is excluded in advance, because of the large number of broken
vertices, such that the resulting model has only very few solutions left. In these cases,
the heuristic with m = 0 is much too restrictive and m = 0.25 is advantageous.

In order to compare our approach to previous work by Boothby et al. [2], we
similarly plot the found graph sizes for selected ratios of broken vertices in Fig. 9. For
larger ratios of broken vertices, e.g. b = 0.1 and b = 0.05, the maximum over the
found graph sizes is comparable to [2] for bothm = 0.0 andm = 0.25. In contrast, for
smaller ratios of broken vertices, e.g. b = 0.01 and b = 0.02 our heuristic approach
withm = 0.0 is able to embed larger complete graphs than it was reported in [2]. Note
that the diagonal corresponds to representing the largest possible complete graph size.

All in all, for a ratio of 0.05 or smaller we observe that the proportions from the
solved instances with small size and ratio have a value very close to 1.0, meaning most
of them yield a maximal or close to maximal complete graph despite the presence of
broken vertices. Due to the heuristic results, we expect just a very small decline in the
proportions for the exact model for larger Chimera sizes, if we could solve them to the
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Fig. 9 Complete graph sizes against Chimera sizes s for selected ratios of broken vertices b for our heuristic
approach (H). The median of Gs,b,i over i ∈ [10] is depicted by the solid lines for m = 0.0 and dashed
lines for m = 0.25; the shaped regions illustrate the quartiles

end. This is based on the fact that the heuristics provide a lower bound on the actual
optimum of the exact model. Thus, despite the shortcomings presented in Sect. 4.4,
our model is indeed very powerful.

8 Conclusion

We introduced a novel approach for the problem of embedding a complete graph
into a faulty Chimera hardware architecture. It is based on a formulation as a bipar-
tite matching optimization problem with additional constraints. We could show by
a detailed analysis that the problem is fixed parameter tractable, where the decisive
parameter is the number of broken vertices. The formulated optimization problem (E)
can be solved to optimality using state-of-the-art MIP solvers for small Chimera sizes
or a small ratio of broken vertices. Especially in these parameter settings, the optimal
value of the heuristic version (H) does not differ significantly from the original one. For
larger Chimera graphs with a ratio of broken vertices in a certain range, the heuristic
performs even better within the given time constraint of one hour, due to the removal
of unlikely crossroads and thus several constraints. However, if the ratio is too large,
here above 0.1, the heuristic is too restrictive and the solution quality decreases again.
Nevertheless, the complete graph sizes we have found exceed the ones from previous
approaches [2,13].

Further, regarding the current developments in the area of quantum annealers, larger
graphs with less broken vertices, and operational times of over 1 year we can produce
reusable templates for complete graphs with a reasonable computational power. Nev-
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ertheless, there is some space for improvements. By exploiting the full potential of the
branching strategy shown in Sect. 4.2 using dedicated bounding techniques, we could
develop a more customized, exact or heuristic, solver.

Another step is to transfer the approach to the just recently released new hardware
graph Pegasus. It yields a larger connectivity for the same number of vertices, but at the
same time this makes the Pegasus graph less approachable. The shown constructions
for the Chimera graph provide a deeper insight into the structure of such lattice-like
graphs and the problems dealing with them. Observing the physical realization by
specifically arranged overlapping loops, one can see that the Pegasus graph is closely
related to the Chimera [5]. Thus, we are confident that our model construction for the
Chimera can be transferred to the Pegasus topology. Due to the larger vertex degree we
even expect less constraints resulting from broken vertex pairs than for the Chimera.
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