Embedding and Weight Distribution for Quantum Annealing

Elisabeth Lobe

High Performance Computing Simulation and Software Technology DLR German Aerospace Center

5th September 2019

Knowledge for Tomorrow

dlr.de + Slide 1 of 17 > > Elisabeth Lobe + Embedding and Weight Distribution > 05/09/2019

Outline

1. Embedding

2. Weight Distribution

dlr.de • Slide 2 of 17 > > Elisabeth Lobe • Embedding and Weight Distribution > 05/09/2019

Complete Graph Embedding

< 回 > < 三 > の Q ()

Complete Graph Embedding in Broken Chimera

Embedding ILP

- \neg Symmetric Chimera graph of size $n \in \mathbb{N}$, $N = \{1, ..., n\}$
- \neg Binary variables $x \in \{0, 1\}^{N \times N}$ with

 $x_{rc} = \begin{cases} 1, & \text{if crossroad from row } r \text{ to column } c \text{ is used} \\ 0, & \text{otherwise} \end{cases}$

 $x_{rc} = 0$ if one of the qubits is broken

 \neg At maximum one row is matched to each column and vice versa

$$\sum_{r \in N} x_{rc} \le 1 \quad \forall c \in N$$
$$\sum_{c \in N} x_{rc} \le 1 \quad \forall r \in N$$

 \neg Maximizing matched rows and columns $\sum_{rc \in N^2} x_{rc}$

Embedding ILP – Forbidden Combinations

additional constraints

 $x_{rc} + x_{\tilde{r}\tilde{c}} \le 1$

Embedding ILP – Forbidden Combinations

additional constraints

simplified because of matching constraints

 $rc \in I_{\text{left}}^{\text{above}}$ $rc \in I_{\text{right}}^{\text{below}}$

Embedding ILP – Forbidden Combinations

$$x_{\tilde{r}\tilde{c}} + \sum_{r \in I_{\text{rows}}} x_{rc} \leq 1 \quad \forall c \in I_{\text{cols}}$$
 or

$$x_{\tilde{r}\tilde{c}} + \sum_{c \in I_{\text{cols}}} x_{rc} \le 1 \quad \forall r \in I_{\text{rows}}$$

depending on interval sizes

Analysis

- → Restricted bipartite matching problems are NP-hard
 - → even for cardinality 1 constraints
 - → reusable once computed
- - → for each constraint 2 options to choose
 - → resulting constraint is weaker than matching constraint
 - earrow simple bipartite matching problems with no additional constraints $\mathcal{O}(n^3)$
- → More broken qubits
 - more pairs introducing constraints
 - \neg fixed-parameter tractable in number of broken qubits $\mathcal{O}(n^3 2^{|B|^2})$

Results – Exact Optimization

size ratio	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
0.005	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.89	0.82	0.85
0.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.97	0.75	0.74	0.71	0.61		
0.03	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.68	0.58						
0.04	1.00	1.00	1.00	1.00	1.00	0.89	0.60								
0.05	1.00	1.00	1.00	1.00	0.93	0.66								10/10	1
0.1	0.93	0.86	0.82	0.67	0.51									1/10-	9/10
0.2	0.61	0.53	0.49								sc	lved i	n 1h	0/10	

Average ratio of maximum possible complete graph size (4 · size)

- → Implemented in SCIP
- → Still fast for current hardware graphs
- \neg D-Wave 2000Q: size 16, ratio \approx 0.008 \rightarrow 64 nodes embeddable

Results – Heuristic Approach

size ratio	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
0.005	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.01	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
0.02	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.92
0.03	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.98	0.93	0.89	0.84	0.80	0.80	0.75	
0.04	1.00	1.00	1.00	1.00	1.00	0.96	0.91	0.83	0.79	0.75	0.68	0.62	0.58	0.52	
0.05	1.00	1.00	1.00	0.98	0.90	0.83	0.79	0.70	0.63	0.57	0.50	0.46	0.40		
0.1	0.90	0.77	0.68	0.51	0.44	0.38	0.29	0.27	0.19						
0.2	0.44	0.29	0.24	0.12	0.10	0.06	0.02								

Average ratio of maximum possible complete graph size (4 · size)

- → Removed unlikely crossroads before optimization
- → Reduces amount of constraints significantly
- → Much faster, still close to maximum possible

Next Steps

- Testing how solution quality and time changes when
 - → not all crossroads of different broken qubits are removed
 - → different heuristics are applied
- Investigate whether the construction can be transferred to Pegasus

Embedding of K_{62} in P_5

(Next-Generation Topology of D-Wave Quantum Processors, D-Wave, technical report, figure 5)

Embedded Ising Function

From
$$f(t) = \sum_{v \in V_G} H_v t_v + \sum_{\{v,w\} \in E_G} J_{vw} t_v t_w$$
 with $t \in \{-1,1\}^{V_G}$
get $\overline{f}(s) = \sum_{v \in V_G} \left(\sum_{q \in M(v)} \overline{H}_q s_q + \sum_{\{q,p\} \in E(M(v))} \overline{J}_{qp} s_q s_p \right) + \sum_{\substack{\{v,w\} \in E_G \\ \{q,p\} = M(\{v,w\})}} J_{vw} s_q s_p$
 \Rightarrow New coefficients \overline{J} , \overline{H} with $s \in \{-1,1\}^{V_H}$

- \neg Problem graph $G = (V_G, E_G)$
- \neg Hardware graph $H = (V_H, E_H)$
- \neg Embedding $M: V_G \rightarrow 2^{V_H}$

Weight Distribution

$$earrow$$
 Obvious requirements: $H_v = \sum_{q \in M(v)} \overline{H}_q$
 $\overline{J} < \mathbb{O}$

✓ Equivalence of solutions for synchronized variables:

 $f(t) = \overline{f}(s) + offset \quad \Leftrightarrow \quad t_v = s_q \; \forall q \in M(v) \; \forall v \in V_G$

→ How to choose coefficients to guarantee optimality?

Weight Distribution

$$\overline{f}_{v}(s,t) = \sum_{q \in M(v)} \overline{H}_{q} s_{q} + \sum_{\substack{\{q,p\} \in E(M(v))\\ w \in d_{q}(v)}} \overline{J}_{qp} s_{q} s_{p} + \sum_{\substack{q \in M(v)\\ w \in d_{q}(v)}} J_{vw} s_{q} t_{w}$$

→ For synchronization

$$\underset{s \in \{-1,1\}^{M(v)}}{\operatorname{argmin}} \overline{f}_v(s,t) \subseteq \{-1,1\} \quad \forall t \in \{-1,1\}^{d(v)}$$

$$\label{eq:product} \begin{array}{l} & \textbf{\overrightarrow{T} hen \foralls \in \{-1,1\}^{M(v)} \setminus \{-1,1\} \forallt \in \{-1,1\}^{d(v)}:$} \\ & \overline{f}_v(s,t) > \min\left\{\overline{f}_v(-1,t),\overline{f}_v(1,t)\right\} \end{array} \end{array}$$

 $\rightarrow\,$ Exponential number of brute force constraints on $\overline{J},\,\overline{H}$

Simplifications

 K_q

 \overline{J}_{qp}

$$\overline{\overline{f}}_{v}(s,t) = \sum_{q \in M(v)} \overline{H}_{q} s_{q} - \overline{J} \sum_{\{q,p\} \in E(M(v))} s_{q} s_{p} + \sum_{q \in M(v)} K_{q} s_{q} t_{q}$$

$$\neg \text{ Restrict on } J > \mathbb{O} \text{ (symmetry in } t \in \{-1,1\}^{d(v)}\text{)}$$

$$\neg \text{ Combine the incoming strengths } K_{q} = \sum_{w \in d_{q}(v)} J_{vw}$$

$$\neg \text{ Set } \overline{J}_{qp} = -\overline{J} \text{ for all } \{q,p\} \in E(M(v))$$

$$\neg$$
 Start with weight $H_v = 0$, hence $\overline{H}_q = 0$

Reduction

- \neg Lower bounds on \overline{J} to be minimized
- → Related to graph property called expansion for zero weight

dlr.de - Slide 15 of 17 > > Elisabeth Lobe - Embedding and Weight Distribution > 05/09/2019

Reduction

$$\overline{J} > \max_{\substack{ \emptyset \neq S \subset M(v) \\ S \text{ is fundamental cut}}} \min \left\{ \sum_{q \in S} K_q, \sum_{q \in M(v) \setminus S} K_q \right\}$$

 \neg Lower bounds on \overline{J} to be minimized

- → Related to graph property called expansion for zero weight
 - → easy to compute for trees, like in embedding setting

Reduction

$$\bar{J} > \max_{\substack{\emptyset \neq S \subset M(v)\\S \text{ is fundamental cut}}} \frac{\min\left\{\sum_{q \in S} (K_q - \overline{H}_q), \sum_{q \in M(v) \setminus S} (K_q + \overline{H}_q)\right\}}{|\delta(S)|}$$

- \neg Lower bounds on \overline{J} to be minimized
- → Related to graph property called expansion for zero weight
 - → easy to compute for trees, like in embedding setting
- → Reintroducing weight
 - → advantage of specific unequal distribution

Reduction

$$\overline{J} > \max_{\substack{\emptyset \neq S \subset M(v)\\S \text{ is fundamental cut}}} \min\left\{ \sum_{q \in S} (K_q - \overline{H}_q), \sum_{q \in M(v) \setminus S} (K_q + \overline{H}_q) \right\}$$

earrow Lower bounds on \overline{J} to be minimized

- → Related to graph property called expansion for zero weight
 - → easy to compute for trees, like in embedding setting
- → Reintroducing weight
 - → advantage of specific unequal distribution
 - → still easy to compute
- \neg Minimizing all coefficients with $\overline{J} \geq \|\overline{H}\|_{\infty}$ and/or $\overline{J} \in \mathbb{N}$, $\overline{H} \in \mathbb{N}^{M(v)}$
 - → work in progress

Preliminary Results

- → Yields better scaling in coefficient ratio of embedded Ising
- → Influence of penalty weight
- → Larger success probabilities expected

Questions?

Elisabeth Lobe

High Performance Computing Simulation and Software Technology DLR German Aerospace Center

nowledge for Tomorrow

elisabeth.lobe@dlr.de

