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Abstract 

 

The effects of fatigue on cognition has been extensively studied however the biochemical mechanisms are still 

not well understood. With the advancements of the various “-omics” sciences, understanding the biochemical 

effects of fatigue has become an increasingly popular area of research. Of all the “-omics” platforms, 

metabolomics has risen to show great applicability in many applications of biomedical research, particularly 

with biomarker discovery. This paper has reviewed the current metabolomic strategies for biomarker 

discovery and developments in fatigue biomarker research. This highlighted gaps in the literature; studies in 

this field are dominated by analysis on male subjects therefore there is a lack of studies that investigate the 

effects of fatigue on females. There is also a lack of research on the analysis of urine with NMR spectroscopy, 

both of which show great potential for the development of biomarkers. This instigated the development of a 

study to address the gaps in the literature to enhance the knowledge based surrounding the metabolomic 

effects of sleep deprivation on cognitive function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction  

 

The reliance of 24 hour operations in a number of industries such as health care, defence and transportation 

has led to fatigue as a result of insufficient sleep being one of the most widespread concerns in modern day 

society1. It is well noted that the quantity and quality of sleep are key aspects in the maintenance of healthy 

physical and cognitive function2,3. Without adequate sleep, cognitive performance indicators such as focus, 

reaction times and alertness can be severely impaired2,3. This can increase the risk of physical injury, leading 

to devastating consequences in workplaces and on the road. A recent study by Welehan et al4., concluded that 

sleep deprivation negatively impacted the technical skill performance of surgeons. They reported a decline of 

up to 32% in the performance of surgeons in simulated surgeries, which is concerning as it can have serious 

clinical implications for patient safety4. Similarly, the Australian Defence Force (ADF) also stated that fatigue 

was one of the leading contributors to serious accidents that occurred amongst their officers5. This can lead 

to a diminished efficiency of operations and can put the safety of personnel and civilians at jeopardy.   

 

Australia’s large size and underdeveloped rail system has resulted in a heavy reliance on road transport, 

consequently fatigue and road safety is a particularly strong concern6. Studies have shown that 20% of all 

traffic accidents can be attributed to impaired cognitive performance of the driver due to fatigue7. Alarmingly, 

alongside drink driving and speeding, reduced cognitive performance as a result of fatigue has been reported 

as one of the largest contributors to deaths on Australian roads8. Fatigue-related performance impairment 

has been compared to that of impairments experienced when under the influence of various blood alcohol 

content’s (BAC), with fatigue induced by 28 hours of sleep deprivation equating to a BAC of 0.1%9. Unlike BAC 

though, there is no universal method of accurately quantifying therefore it is difficult to regulate or monitor.  

 

The demand for a method of predicting impaired cognitive performance as a way of assessing ‘fitness for duty’, 

both as a roadside screening tool and in the workplace, could be addressed via metabolomics. The premise of 

metabolomics is based on the assumption that a stimulus – in this instance fatigue as a result of insufficient 

sleep – will disturb normal metabolism and induce a measurable change in the metabolic signature of an 

individual10. By comparing cohorts of healthy samples with fatigued samples, discriminatory metabolites that 

act as a quantitative “biomarker” of fatigue can be identified. These biomarkers can then be used to 

understand and monitor the biochemical pathways associated with fatigue, in order to predict impaired 

cognitive performance as a result of fatigue.  

 

This paper will review the current metabolomic strategies for biomarker development and their applications 

to studies of fatigue as a result of insufficient sleep, mainly including the terminology of metabolomics, 



metabolomics workflow, current developments and limitations. It is also important to note that fatigue can 

manifest both mentally and physically, therefore, there are many definitions of fatigue in the literature. 

Physical fatigue is likened to muscle fatigue, whereas mental fatigue is synonymous with impaired mental 

performance1. This review will adopt Lal and Craig’s1 definition of fatigue as a “transitory period between wake 

and sleep and if uninterrupted, can lead to sleep”, and therefore all further mention of fatigue will refer to 

mental fatigue. For the purpose of this review, all subcategories of sleep impairment such as “sleep 

deprivation”, “sleep restriction” and “sleep interruption” will be included in the definition of  insufficient sleep. 

 

2.  Why metabolomics for fatigue biomarker discovery? 

The decoding of the human genome in the 1990’s revolutionised the way biomedical research was 

conducted10,11. Rather than focusing on the structure and function of a particular gene, transcript, protein or 

metabolite, research was directed at mapping the simultaneous changes of all molecular entities and 

reintegrating them to elucidate how they interact in the context of a living system10,11. From this emerged the 

field of systems biology10,12, which is defined as the “integrated system of genetics, protein, metabolite, 

cellular and pathway events that are in flux and interdependent”13. The study of each of the platforms 

developed into their own independent fields and introduced the various “omics” sciences; genomics, 

transcriptomics, proteomics and metabolomics10,12,14. Each of these platforms are explored in many areas of 

biomedical research, such as drug discovery, disease diagnosis and biomarker discovery15–17. Metabolomics 

appears to be the platform of choice in the field of biomarker studies, because even though metabolomics sits 

at the bottom of the systems biology hierarchy, it has a number of advantages over the other “-omics” 

platforms10,17.  

 

Firstly, information on what may happen in an organism can be gathered from genomics, transcriptomics and 

proteomics, however it is not always conclusive15. With genomics the possibility of a phenotype may be 

predicted, however, mutations at the genome level don’t always translate to the phenotype and they don’t 

account for environmental or epigenetic influences15,18. The post-translational modification of proteins and 

differential splicing of transcripts results in the proteome and transcriptome not being a true reflection of the 

current biological state, making proteomics and transcriptomics much more complex to work with10,17. 

Metabolomics is the only platform that can provide a definitive answer as it can accurately capture a 

“snapshot” of the current state of an organism10,11.  This is very useful in biomarker research because it is 

assumed that various stimuli, such as fatigue, will disrupt normal functioning of biochemical pathways, 

resulting in a characteristic “metabolic fingerprint” as the outcome10,19. Studies have shown that the metabolic 

phenotype of healthy individuals are consistent20, which allows for the discrimination of a fatigued metabolic 

phenotype from a healthy one with confidence in the validity of the comparison.   



Secondly, metabolites are the terminal molecules of all the processes in the central dogma of molecular 

biology, therefore making the metabolome the most proximal system to the phenotype10,21. Metabolites are 

small enough to quickly and easily distribute all around the body and are present in all biofluids, unlike nucleic 

acids or large proteins which are not normally present due to their size10,22,23.Their presence in biofluids, such 

as urine, plasma and saliva, also allows for the easy transition from metabolomic studies to use in clinical 

practice10,22,24–26, as they can be collected easily with minimal sample preparation unlike other biological 

samples such as tissues which needs extensive preparation prior to analysis10,27. There are also fewer numbers 

of metabolites in comparison to the vast numbers of genes, transcripts and proteins10,24,25,  increasing the 

likelihood of detecting changes as a result of fatigue. 

 

Finally, a metabolic response to stimuli are prompt and will occur within seconds28, in contrast to proteins 

which may take days to show a response or even no response at all in the instance of nucleic acids.22  

Consequently, the metabolome will indicate the current biological state, which is important in the 

investigation of biomarkers as the response to stimuli can be measured directly17. The highly dynamic nature 

of the metabolome and its sensitivity to a multitude of endogenous and exogenous factors make the 

metabolome unique in its ability to capture even the most subtle of changes10,19.  Even if molecular changes 

within the other “-omics” platforms are not observed, changes in metabolites indicative of fatigue can be 

present in biofluids long before physical symptoms present14. Although there are clear advantages in the use 

of metabolomics for biomarker discovery, there are still limitations that need to be addressed, which will be 

discussed later. These limitations are directly related to the various steps in the metabolomics workflow, such 

as with the consistency of sample collection and preparation, choice of analytical platform and data analysis, 

and can have detrimental impact on the accuracy and validity of the results.   

 

3. Terminology 

Put simply, the field of metabolomics investigates all metabolites (identification and quantification) present 

in a biological system10,14. There are many technical definitions, which are often incorrectly used 

interchangeably as they differ greatly with respects to the analytical approach14,22,29,30. These approaches 

consist of two groups and are categorised according to whether the experimental design will allow for the 

investigation of a specific metabolite (targeted metabolomics) or the analysis of as many metabolites as 

possible (untargeted metabolomics)10,16,17.  

 

 There are many reoccurring definitions that appear in the literature14,31, including: (1) metabolite target 

analysis, (2) metabolite profiling, (3) metabolic fingerprinting, (4) metabonomics, (5) metabolomics, (6) 

metabolic footprinting. 



1. Metabolomics is the most widely used definition10,22,27,31–33. It is defined as the unbiased global 

identification and quantification of all metabolites in a biological system10,31,32,34. With this approach, 

the metabolic phenotype of the biological system under investigation, or “metabotype” can be 

ascertained10,33.  

2. Metabonomics is a method that was pioneered in 1999 by Professor Jeremy Nicholson19. It is defined 

as the quantitative measurement of the metabolic response of a biological system to 

pathophysiological changes, genetic modification or external stimuli, such as drugs or toxins10,19,31,35,36. 

There is a lot of debate on what the exact differences between metabolomics and metabonomics are, 

however there is growing unanimity in that metabolomics focuses on endogenous, cellular 

metabolism14,29,31. Metabonomics on the other hand extends the definition to include information 

gathered as a result of disturbances of metabolism by exogenous influences such as diet or 

disease19,27,31,36. 

3. Metabolic fingerprinting involves screening for differences in the metabolic “signatures” of a 

biological sample and a larger sample population10,14,31,35.  Once the differences in the signatures are 

detected, the metabolites and their biochemical pathways can be determined to understand their 

biological relevance10,14. This method requires minimal sample preparation and is considered a “semi-

quantitative” analysis as the identification and quantification of each individual metabolite is not 

required10,28,30. 

4. Metabolite target analysis is a method that is used to quantitively identify a target metabolite, or a 

small group of metabolites that are related to a specific biochemical pathway, in a biological 

sample10,14,32,35. This method relies on extensive sample preparation and separation to isolate the 

metabolite in question prior to detection on highly sensitive equipment31. 

5. Metabolite profiling is very similar to metabolite target analysis, however instead of looking at a few 

metabolites, it aims to analyse a larger number of metabolites that are related through their metabolic 

pathways10,14,30,31. 

 

When investigating for novel biomarkers, it can be futile to adopt targeted approaches as they only provide a 

very narrow study window. Rather than looking at a small number of specific metabolites, it would be more 

efficient to simultaneously map a large number of metabolites10,13. This opens up opportunities to investigate 

biochemical pathways that may have previously been unexplored and maximises the likelihood of detecting 

metabolites that are up or downregulated during different physiological states, such as when one is 

fatigued10,37. This is supported by Schrimpe-Rutledge et al.38, who described untargeted methods as 

“hypothesis generating” approaches that are ideal for the discovery of new metabolites, whereas targeted 

methods are “hypothesis driven” and more applicable for validating the discoveries of untargeted approaches. 



As this paper aims to review the current methods for developing biomarkers for fatigue, it will therefore focus 

on the metabolomics workflow of an untargeted metabolomics experiment, but will later discuss the findings 

of all metabolomic experiments that have investigated metabolites of fatigue.  

 

4.  Metabolomics workflow 

As mentioned earlier, the principle of using metabolomics in the search for a fatigue biomarker is based on 

the assumption that a stimulus, such as sleep deprivation, will disturb normal physiological metabolism and 

induce a measurable change in the metabolome10,19. To achieve this aim, the design of the metabolomics 

experiment must be carefully thought-out and executed to guarantee results that are reproducible10. This is 

done by selecting an analytical technique that will provide the most coverage of the metabolome and then 

analysing and interpreting the data with appropriate chemometrics and bioinformatics10,11,14,16,18.  The 

fundamental goal is to identify metabolites that can discriminate between fatigue and non-fatigued samples 

that can undergo validation studies to assess their potential as a biomarker10,17. 

 

At the moment, there is no sole analytical method that can achieve a complete assessment of the entire 

metabolome10,11,31. Due to the fact that metabolites are highly heterogeneous in their chemical structures, 

properties and concentrations, the process of analysis always has a degree of bias10,17. This is a result of the 

metabolite selection, and occurs all the way from extraction through to detection10,17. To reduce the effects 

of bias, certain measures in the collection, handling, extracting, storing and preparation of samples must be 

employed34,39. Furthermore, appropriate methods of obtaining, normalising and interpreting of data are 

required to report accurate findings10,32. The optimisation of sample preparation protocols have recently 

gained a lot of interest and, in combination with developments in analytical approaches, the coverage of the 

metabolome has grown greatly10,25,37. Hence, to ensure that metabolites are optimally collected, extracted, 

detected, identified and analysed there are different steps that must be adhered to in a metabolomic 

experiment10,40,41. These steps, also known as the metabolomics workflow, comprise of six key steps: (1) study 

design, (2) sample collection and preparation, (3) metabolites separation and detection, (4) data mining and 

extraction, (5) data analysis and interpretation and (6) biomarker validation 10,40,41, that will be described 

below. 

4.1 Study Design 

Due to the nature of the metabolome being highly sensitive to various endogenous (i.e., age and sex) and 

exogenous (i.e. diet, lifestyle, medication) factors, careful study design is crucial to the success of a 

metabolomics study investigating fatigue biomarkers10,42. Each of these factors have the potential of biasing 

the results of a study by introducing variance and complicating the interpretation of experimental data10,42. 

The type of study subjects (i.e. males vs females, humans vs rodents), the cohort size and the number of 



controls are some crucial factors take into consideration to ensure statistical significance when associating 

metabolites to a phenotype10,42. Data on the subjects pertaining to their medical history and current 

medication, a dietary log and environmental exposure should also be collected10,42. To minimise the effects of 

dietary variation, investigators often provide the test subjects with strict diets or fasting schedules during 

study periods10,42. The consistency of sampling procedures, time between sample preparation, processing and 

storage also needs to be carefully reviewed as some analytes can be at risk of degradation (i.e. bacterial growth 

or on-going biochemical reactions) 10,42.  

4.2 Sample Collection and Preparation 

By definition, the aim of an untargeted metabolomics study is to assess all metabolites in a biological sample, 

therefore an ideal experiment would have no sample preparation prior to analysis to minimise the risk of 

contaminating the sample with foreign metabolites10,17,31. However, this is not practicable and appropriate 

sample collection, handling and preparation measures must be enforced to ensure a consistent and unbiased 

comparisons of metabolites between samples10,17,31. In fact, rather than compromising the metabolome, 

contamination risks are actually reduced through optimised sample handling and storage protocols that 

protect the sample from the appearance of unrelated metabolites (e.g. bacteria)24 or degradation due to 

ongoing biochemical reactions37. As mentioned previously, metabolomic analysis can be achieved with a 

number of different biological samples10. In human fatigue metabolite studies, a large majority were 

conducted on biofluids such as urine, plasma and serum25,43–53. Plasma has the advantage of providing an 

instantaneous snapshot of the current metabolic state of all anabolic and catabolic processes occurring in the 

organism at the time of collection54. Urine, on the other hand, only enables the investigator to assess the 

metabolites that are excreted as a by-product of catabolic processes54. The advantages of using urine in 

metabolomic studies however, is that it can be obtained easily, in large amounts and with non-invasive 

procedures, which is especially useful when repeated sampling is required10,54 . It also has the added benefit 

of less sample preparation as it contains minimal proteins55. Blood samples on the other hand must be pre-

processed to remove all large proteins as they can mask smaller metabolites during analysis55.  

 

The collection of various samples require different considerations, especially biofluids such as urine and blood 

that naturally have diurnal variation10,23,56. Diurnal variation refers to the cyclic variations that occur according 

to the time of the day as a result of circadian rhythm, or our “sleep-wake” cycle56. This needs to be taken into 

consideration when collecting samples for fatigue biomarker discovery to ensure that any variation observed 

in metabolites is due to sleep deprivation and not as a result of normal circadian rhythm. A number of studies 

were also conducted on tissues such as liver and brain tissue, however these are almost exclusively done on 

rodents57–62. The following will highlight the collection methods of samples collected for fatigue metabolomic 

studies.  



4.2.1 Urine 

The importance of urine preparation and storage conditions was highlighted in a study that showed significant 

changes in the metabolome of raw urine due to bacterial contamination63. It was concluded that to prevent 

bacterial growth, preservatives such as sodium azide must be added to the samples63. There are a number of 

concerns when using sodium azide, however, namely that it can have a potential impact on unknown 

metabolites and that it is a toxic compound54. Safer options, such as filtration systems, are also available to 

prevent bacterial contamination. A recent study comparing the efficiency of 0.2-um filtration with sodium 

azide concluded that filtration was in fact a far more superior method for preventing bacterial growth63.  

 

In addition to this, some studies believe that quenching metabolic processes in urine at low temperatures is a 

necessary step to stop all chemical activity in the sample. Van de Merbel et al.64, reported that when urine 

was kept at ambient temperatures, metabolites that were easily oxidised were prone to depletion. They also 

observed that conversion of metabolites, such as cytidine into uridine, continued at a rapid rate after sample 

collection. This, however, is contraindicated in a study by Dunn et al.65, who compared the stability of urine 

samples that were immediately frozen at -80°C with samples that were stored at 4°C for 24 hours before being 

frozen at -80°. Interestingly, they reported no statistical significance in the metabolic profiles of the samples 

under the two different storage conditions, indicating that quenching may be an unnecessary step in the 

preparation and storage of urine.  

4.2.2 Plasma 

The sampling and storage conditions of plasma is similar to urine in respects to storage temperatures, however 

it does require additional steps such as addition of anticoagulants and protein precipitation27,55. There are a 

number of anticoagulants that are used, such as EDTA, heparin and citrate, and are chosen according to 

downstream analytical processes. When using NMR, the use of heparin is recommended as EDTA and citrate 

are known to produce interfering signals in the spectra27. Protein precipitation is crucial in the preparation of 

plasma for metabolomic analysis due to the high number of large proteins that can obscure small metabolites. 

Of all the different organic solvents, acids and salts that can be used, acetonitrile, trichloroacetic acid and zine 

sulfate were found to be the most effective protein precipitants66.  

4.2.3 Tissue 

Unlike urine, there is no debate on whether quenching is a necessary step in the processing of tissue samples. 

When collecting tissue samples, the sampling procedure can initiate a “stress” response in their metabolites, 

therefore samples must immediately be quenched to halt the metabolism in that tissue10,67. The most common 

method of quenching is “flash freezing” with liquid nitrogen or a method called “freeze clamping”, which 

involves the use of containers that are of a low temperature10,67. Acid treatments for the precipitation of 



proteins, such as perchloric acid and nitric acid, can also be used but must be carefully controlled as 

metabolites can become unstable at extreme pH levels32.  

4.3 Separation and Detection 

There are many analytical methods that are used in metabolomic studies, each having their own advantages 

and disadvantages, particularly when it comes to sensitivity, reproducibility and cost effectiveness10,25. 

Therefore, when choosing an analytical platform, one must consider sample types, available resources and 

the purpose of the analysis. According to the literature, the two most commonly used analytical approaches 

are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy10,13,16,28,36,40. The pioneering 

metabolomics experiments were NMR spectroscopy based19, however, in more recent years there has been a 

switch to opting for MS-based approaches over NMR17. As neither of these methods alone can provide a truly 

comprehensive assessment of the entire metabolome, it is not uncommon to see studies incorporating the 

use of both of these techniques in parallel or one preceding the other. Other spectroscopy methods such as 

Raman or infrared can also be used, however these are much less common31.   

4.3.1 NMR Spectroscopy 

This technique is based on the interaction of atomic nuclei with radio-waves in the presence of a powerful 

magnet which allows for the identification of an atom and its relative location within a molecule10,68–70. When 

an atomic nuclei in a low energy state is exposed to radiofrequency pulses, under the influence of a strong 

magnetic field, the energy is absorbed and the atomic nuclei transitions to a high energy state10,68–70. Once the 

radiofrequency pulse is removed, the atomic nuclei returns to its original low energy state as it loses the 

energy that it had absorbed10,68–70. The change in energy states will produce a pattern of resonance peaks, 

called a spectral output or NMR spectrum, which are unique to each molecule10,19. To obtain the NMR 

spectrum of an entire sample, the spectra of all metabolites must be simultaneously evaluated and then 

superimposed10,19. 

 

There are many advantages to using NMR spectroscopy in metabolomics, namely that it is a highly 

reproducible technique (typically >98%)25 that can quantitatively analyse metabolites in a sample10. It involves 

minimal sample preparation because unlike MS approaches, separation of molecules prior to analysis is not 

required, allowing for the integrity of the sample to be preserved71. Furthermore, NMR structural information 

obtained from the NMR spectrum can be used to identify unknown metabolites, which is especially useful 

when investigating novel biomarkers71.  Additionally, NMR is non-discriminative in that it can detect all 

compounds that have a resonating atomic nuclei, most commonly hydrogen (1H-NMR) however 13C,  15N and 

17O can also be used10,72. C-NMR spectroscopy provides greater spectral variety in comparison to 1H-NMR, 

however it is not as commonly used as 1H-NMR as it has limited sensitivity due to the naturally lower 

abundance of 13C nuclei (1.1%) compared to 1H nuclei (99.9%)10. 



There are a number of downsides to using NMR in metabolomic research. Firstly, the overall sensitivity of 

NMR in comparison to MS-based approaches is much lower, which can result in important metabolites being 

overlooked68–70. Larger sample volumes are required as the ability of NMR to detect metabolites of a low 

abundance is weak, often requiring much more expensive instrumentation to do so27,36,68. Another 

disadvantage of using H-NMR is that it is susceptible to spectral interference from hydrogen molecules present 

in water73.  This can make the interpretation of biofluids that contain a high concentration of water, such as 

urine, very difficult. It can also be difficult to interpret the spectra of biofluids due to the natural variation in 

metabolite concentrations. Potential biomarkers that are present in trace amounts can be missed during 

analysis, as the presence of molecules in very high concentrations can often obscure molecules that are 

present in lower concentrations73.  

 

Magnetic resonance spectroscopy, or MRS, is a technique that couples the foundations of NMR with MRI, to 

allow the quantification of metabolites within tissue samples73. It is completely non-invasive and does not 

require any pre-collection of samples, hence it can be used to analyse metabolites in vivo74. This has 

successfully been used in a number of fatigue metabolite studies investigating the effects of sleep deprivation 

on metabolites of the brain57,58. As with NMR, there are a number of limitations to MRS. Magnetic 

susceptibility of adjacent tissues, such as bone next to brain tissue, can be a major issue as the difference in 

susceptibility can cause interference with the MRS analysis74. Availability of instrumentation can be quite 

limited as it is very expensive and requires specialised knowledge to operate and interpret the spectra74.  

4.3.2 Mass Spectrometry 

Mass Spectrometry is a highly sensitive and specific analytical tool that is used to measure the mass-to-charge 

(m/z) of molecules in a sample10,14,28,36. The high sensitivity of mass spectrometry enables a greater coverage 

of the metabolome as it can detect metabolites in the nM to pM range10,14,28,36. In order to do so, however, 

these molecules must first be ionised and converted to gas-phase ions10,14,28,36. These ions are then sorted 

according to both their charge and their mass10,14,28,36. These separated ions then reach a detector in order of 

increasing mass, as the lighter ions travel quicker, and are measured and displayed as a mass spectrum10,14,28,36. 

The mass spectrum depicts the mass-to-charge ratios of each ion as a peak plotted against their relative 

abundance, or intensity. Hence, each mass spectrum will be a unique pattern of peaks specific to the molecule, 

which is why it is so useful in the identification of metabolites10,14,28,36.. 

 

Typically, mass spectroscopy is used to identify metabolites of a known structure, by comparing the mass 

spectrum obtained from the analysis of a sample with those in a standardised library or database75,76. Mass 

spectra can often provide overwhelmingly large data sets of high complexity, so to reduce this MS is commonly 

coupled with various chromatographic techniques, such as liquid chromatography (LC) or gas chromatography 



(GC)75,76. This combination of chromatographic separation prior to mass spectrometry analysis hugely impacts 

the resolution, sensitivity and selectivity of mass spectrometry instruments and can even allow for the 

identification of isobaric metabolites that are of the same mass but different molecular constituents10,75,76. 

Chromatographic separation also provide additional information on various physiochemical properties by 

measuring the retention time of the metabolites and offer greater separation of mixtures that are complex in 

nature10,75,76. 

 

The physiochemical properties of metabolites, along with the source and mechanism of ionisation all 

determine the efficiency of ionisation. There are many ionisation mechanisms that have been used in MS 

based metabolomics, all of which were selected according to what chromatographic separation was used 

prior10. GC-MS is often paired with electron-impact (EI) or chemical ionisation (CI) mechanisms. EI ionisation 

is very sensitive and powerful mechanism that creates unique fragmentation patterns, however this often 

results in the molecular ion being lost from the spectrum10,77. This, in combination with its limited mass 

detection range, can limit the capacity of maximum metabolome coverage and hinders metabolite 

identification10,77. In contrast to this, CI mechanisms are much less energetic, resulting in ions that are more 

stable and the molecular ion present in the spectrum10,77. LC-MS on the other hand is commonly combined 

with electrospray ionisation (ESI) or atmospheric pressure chemical ionisation (APCI). APCI is often preferred 

as it not as affected by the ionisation suppression and enhancement effects that is observed in ESI 

mechanisms10,77. The advantages and limitations of each of these ionisation mechanisms highlights the 

importance of study design to achieve the best experimental outcomes. 

 

There are clear advantages to using mass spectrometry in metabolomics, however MS does not come without 

its downsides. The most obvious drawback is the need for extensive sample preparation prior to analysis, 

which can change the metabolic composition of a sample and therefore create a data set that is not truly 

reflective of the original sample metabolome10,22,24. Unlike NMR spectroscopy, which can quickly identify and 

quantify metabolites, quantification isn’t a feature of mass spectrometry and processing times can be quite 

long (hours vs minutes when using NMR)10,24. Furthermore, even though NMR has very high instrumentation 

costs, the cost per sample of MS analysis is considerably higher than NMR10,75.  

4.4 Data Pre-Processing 

Data pre-processing is a crucial step in the metabolomics workflow and can significantly impact the statistical 

analyses and final interpretation of data10,78. Due to the nature of the untargeted metabolomics studies, the 

volume of raw data obtained is astronomical and often complicated by experimental drifts in the 

instrumentation10,78. This means that all spectra, whether it be obtained by NMR or MS, must be corrected for 

any variation that appears as a result of experimental variables to reduce any possible bias10,38. There are many 



steps that are applied, namely: (1) baseline correction, (2) feature detection, (3) peak detection, (4) spectral 

alignment, (5) feature normalisation and (6) deconvolution78. 

1. Baseline Correction is used to eradicate differences in samples that are due to experimental or 

instrumental variation and to eliminate any low frequency artefacts. This is often paired with high-

frequency filters to remove any electronic noise generated by the instrumentation78. 

2. Feature Detection is used to quantitively identify the features present on a spectrum78. MS based 

approaches tend to quantify metabolites by using a ‘peak-base’ method to detect peaks across a 

spectrum and combine their areas79–81. This is used in combination with spectral alignment, either 

before or after detection78. With NMR based approaches on the other hand, ‘binning-based’ methods 

are more widely used to detect peaks of interest in complex samples78. However, in comparison to 

peak-based methods, they perform quite poorly82. This is especially true when there is substantial 

misalignment in the spectra or when different metabolites have overlapping peaks82. Peak overlap 

makes interpretation of spectra very difficult, and spectral ‘deconvolution’ methods have been 

implemented to address this problem83,84 

3. Peak Detection is achieved by using filters to smoothen the spectra and detection thresholds to 

identify individual peaks85–87. Parameters such as peak heights, areas and signal to noise ratios are all 

subject to these thresholds87. When studies involve large sample numbers, frequency filters such as 

consensus peak signal filters can also be applied to only select peaks that are present in a low 

frequency78. 

4. Spectral Alignment is one of the most crucial pre-processing steps in metabolomics, particularly with 

studies that involve multiple samples78. When looking at the spectra of multiple samples, non-linear 

shifts can significantly affect the position of peaks that belong to the same metabolite78. In MS-based 

studies, peak shifts along the retention time axis are observed when there is a change in the stationary 

phase of a chromatographic column88. Whereas in NMR-based studies, peak shifts are caused by 

discrepancies in the samples chemical environment, such as differences in pH, and are observed on 

the ppm axis89. Spectral alignment methods fall into two categories, warping and segmenting78. 

Warping methods of spectral alignment maximise the correlation between multiple spectra by 

elongating or shortening segments of the spectra along the ppm (NMR) or retention time (MS) 

axes78,90,91. On the other hand, spectral segmenting methods align multiple spectra by applying a 

constant shift to all of the peaks78,90,91. This is achieved by either aligning the entire spectra or 

segmenting the spectra into smaller sections and aligning each section independently78,90,91. 

5. Feature Normalisation is a key step in removing experimental biases to leave only biologically relevant 

discriminatory features78.  This is especially important when investigating complex biological samples 

such as blood and urine, where the use of internal standards is difficult and differences in metabolite 



concentrations between samples are large78. To address this there are two commonly used methods, 

the use of total spectral area (area under the curve) and the incorporation of endogenous metabolites, 

such as creatinine in urine78,89,92,93. 

6. Deconvolution as mentioned earlier, one of the key pitfalls of metabolite quantification using NMR or 

MS is the overlap of peaks belonging to different metabolites78. This method allows the investigator 

to identify an individual metabolite from a group of overlapping peaks by fitting the sample spectra 

to a template78,94,95. The key downside of this method is that they are unable to identify peaks 

belonging to metabolites that have not been characterised before because there would not be a 

reference spectra to fit the sample with78. 

4.5 Data Analysis 

Once the raw data is pre-processed, the resulting prepared data is statistically analysed to obtain group 

clusters (for example, healthy versus fatigued) to identify the discriminatory characteristics of the samples’ 

subsequent metabolic signatures10,78. The most effective way to easily observe discriminative patterns 

between groups is by using chemometric methods such as univariate and multivariate statistics78,96. Following 

pre-processing, the metabolomics data is often presented as a table called a feature quantification matrix, or 

FQM10,78. The samples are presented in the rows and the metabolic features are presented in the columns, 

with each features relating to the concentration of a particular metabolite. The input metabolomic features, 

for data analysis is dependent on the upstream analytical and pre-process techniques10,78: 

• Spectral peak areas: For both MS and NMR metabolomics data, spectral peak areas is one of the most 

commonly used metabolomic feature. These peaks are used to identify the metabolite that it 

corresponds to provide a biologically relevant meaning to the results78.  

• Metabolite concentrations: Metabolites are identified to obtained concentrations to be used to data 

analysis. This feature is useful to not only provide biological meaning, but also minimises redundancy 

of peak areas when one metabolite is represented by a number of peaks78.   

• Spectral bin areas: This feature is more common in NMR studies and is often used in addition to peak 

areas and metabolite concentrations. This is achieved by segmenting the spectra into evenly spaced 

segments that are later recombined to obtain the matching bin area. To prevent issues such as peaks 

falling into two neighbouring bins, some methods have adopted algorithms that divide bins unevenly. 

These algorithms don’t come without their downsides, they often include features that are not 

informative, such as areas with no peaks, and don’t perform well with spectra that is significantly 

misaligned78. 

 

 



4.5.1 Univariate Analysis 

Univariate methods are common statistical approaches used to analyse each metabolomic feature 

independently10,78. There many methods available and are selected according to the statistical properties of 

the distribution of metabolomic features and whether they fit assumptions of normality78,97. For example, 

when comparing the differences between two groups, parametric tests such as Students t-test or ANOVA can 

be used if the data obtained is normally distributed. If normality of the data cannot be assumed, then non-

parametric tests such as Mann-Whitney U test or Kruskal-Wallis analyses can be used instead78,97. 

 

Additionally, when selecting a suitable statistical test for the analysis of metabolomic data, attention must be 

drawn to the issue that arises with testing multiple features at the same time78,97. As most untargeted 

metabolomics studies simultaneously analyse numerous metabolomic features, there is a high probability of 

reporting a false metabolomic correlation (i.e., a false positive) just by chance78,97.  To address this, various 

correction methods, such as the Bonferroni approach, have been developed to prevent false positives, but 

this is often done at the expense of increasing the probability of discarding true metabolomic correlations (i.e., 

false negatives) 78,97.  Rather than looking at minimising the probability of at least one false positive, there are 

other approaches available that are less conservative and focus on reducing the false-discovery rates (FDR) of 

metabolomic features78,97.  These FDR-based methods work by minimizing the expected amount of false 

positives within the total number of reported positives, which is a much more applicable approach for 

untargeted metabolomics studies that investigate a large number of metabolites78,97. 

 

Univariate statistical approaches are easy to conduct and interpret, however the main draw back with this 

method is that they don’t account for any potential interactions between the metabolic features78,97. This can 

be unfeasible for metabolomics studies as the entire nature of metabolomics is based on the correlations 

between features from the same metabolite and the interactions of metabolites belonging to the same 

biochemical pathway78,97. Studies have also shown that solely using univariate methods can increase the 

chance of falsely reporting positive or negative results78,97. This is because they also do not take into 

consideration the effects of confounding variables such as gender or age78,97. For these reasons, multivariate 

analytical techniques are often the analytical platform of choice for metabolomic studies78,97.  

4.5.2 Multivariate Analysis 

Unlike univariate statistical methods, multivariate analytical approaches simultaneously account for all of the 

metabolomic features of a sample and therefore can detect patterns of relationship between the features78,97. 

These pattern-recognition approaches comprise of two main categories: unsupervised and supervised78,97. The 

main difference between these two techniques is that provision of knowledge on the sample class78,97. 

Unsupervised methods discriminate between the metabolic composition of samples without any prior 



knowledge of the class or type of the samples. In supervised methods however, clusters are generated with 

the use of sample labels78,97. These labels are used to classify a metabolomic feature, or combination of 

features, that is related to a particular phenotype. 

4.5.2.1 Unsupervised Methods 

Unsupervised approaches are commonly used to condense and simplify the complicated data that arises from 

metabolomic studies78. They are particularly useful for quickly identifying any outliers and similarities or 

differences between samples (in this case, fatigue-related patterns). The most commonly used unsupervised 

approach in the metabolomics community is principal component analysis, or PCA98,99. This method involves 

reducing the dimensionality of metabolomics data by identifying patterns in a large data set and transforming 

it into a smaller one that is still representative of the information of the original data set98,99. By reducing the 

number of variables in a data set, the accuracy of the analysis is also reduced. This is a commonly accepted 

trade-off for the simplicity of visualising and interpreting the smaller data sets, or ‘principal components’98,99. 

PCA can be applied to identify hidden biases or sample outliers, it is also frequently used to assess the quality 

of data98,99. A number of studies investigated how technical variation can impact the analysis of metabolic 

phenotypes and did so by using PCA analysis98,99. 

  

Hierarchical clustering analysis (HCA) and self-organising maps (SOMs), are two other unsupervised methods 

that are frequently used in metabolomics78,100. These methods are especially appropriate for the detection of 

non-linear trends in data that can’t easily be covered with PCA78,100. SOMs are commonly used to envisage 

metabolic phenotypes and patterns whilst giving priority to metabolites that are of interest based on their 

likeness in a form of a heat map78,100. HCA on the other hand is a visualisation tool that provides hierarchical 

clustering information as a dendrogram78,100. 

4.5.2.2 Supervised Methods 

Supervised approaches are a useful way of identifying metabolic patterns that are associated with the 

phenotype of interest while reducing the influence of other variances78. The most commonly used supervised 

method in metabolomics is partial least square (PLS)101. In contrast to PCA, PLS components maximise the 

covariance between the variable of interest and the rest of the dataset101. This allows PLS components to 

portray how much a particular feature contributes to the discrimination of various sample cohorts101. The 

downside of PLS is that it can be easily influenced by metabolic features that don’t correlate with the 

phenotype of interest101. To address this, orthogonal PLS (O-PLS) was developed, which categorises the data 

variance into two groups: a first group which correlates with the phenotype of interest and a second, 

orthogonal group, which does not correlate 101,102. Metabolites are commonly classified by fitting PLS-DA and 

O-PLS-DA, the discriminant versions of these analyses101,102. There has been extensive comparisons of the 



performance of both PLS and O-PLS models, yet there is no consensus on which is the superior method. In 

recent years, however, the metabolomics community has shifted to using O-PLS models over PLS models101,102. 

4.6 Metabolite Identification and Spectral Databases 

Once the discriminatory metabolic signatures have been determined, the metabolites must then be identified 

by comparing experimental spectra with spectral databases10. There are a number of databases available for 

metabolite identification, however the most commonly used databases are the Human Metabolome Data 

(HMDB)12, METLIN103, SetupX104 and the Kyoto Encyclopedia of genes and genomes (KEGG)105. These databases 

can provide a range of metabolomics information; specific to certain species (HMDB), to chemical structure 

and properties (METLIN) and even information about experimental workflows (SetupX)10. After the metabolite 

is identified, their biological significance needs to be determined with pathway analysis which can be done 

with the use of pathway databases such as KEGG10. Next, novel biomarkers are identified using supervised 

analysis models as they have the ability to summarise the quantification of multiple metabolites78. To 

transition from research to clinical applications, the validity and efficiency of the final classification models 

must be evaluated78. This is achieved via performance assessment and model validation78.  

4.7 Performance Assessment 

Performance assessment analyses how well the real metabolomic outcome matches the outcome that was 

predicted by the model78. This is achieved by a number of corresponding measures, namely: predictive 

accuracy (percentage of subjects that were correctly classified), sensitivity (percentage of correctly classified 

true positives) and specificity (percentage of correctly classified true negatives)78. With a set limit for the 

decision boundary, the performance of the classifier can be assessed by these three measures78. This can 

introduce bias to the analysis as the choice of decision boundary and outcome prevalence can have an 

influence on the performance measures102. This can be avoided with the use of a receiver operating 

characteristic (ROC) curve, which is why it the most used method of performance assessment in 

metabolomics102. To predict how well a classification model will perform when fitted to other samples, a 

validation step is required when designing a classification model78. This is especially important when working 

with small sample cohorts to prevent overfitting of the model78. This can be achieved with permutation 

testing, which aims to determine the performance of a prediction model by calculating the probability of 

observing an equal or better performance purely by chance106. This is accomplished by estimating the ‘area 

under the curve’ (AUC) or null distribution of the performance measures under the assumption that the 

sample cohorts display no differences106. This is performed by randomly swapping the sample cohorts multiple 

times and determining the statistics under each swapped dataset106. To be considered statistically significant, 

the performance measures of the sample model must lie outside the confidence internals of the estimated 

null distributions (e.g., 95 or 99%)106. 



5. Potential fatigue biomarkers revealed using metabolomics 

As mentioned previously, the metabolome is a highly dynamic system that has fluctuating rhythms of 

metabolites10. This is especially true for fatigue metabolites as the regulation of the sleep-wake cycle is a text 

book example of circadian rhythms in the metabolome107. This can be both an advantage and a challenge for 

developing fatigue biomarkers. The following section will discuss some of the key findings of total sleep 

deprivation (TSD) and sleep restriction (SR) metabolomics studies in both human and rodent models, which 

will also be summarised in table 1. It will also highlight the studies that are focusing on fatigue metabolites 

alone, or both fatigue and circadian metabolites.  

5.1 Human studies 

When compared to control cohorts, differences in the overall metabolome of sleep deprived urine and plasma 

samples have been observed. Giskeødegård et al.43, reported 16 discriminatory metabolites (8 increased, 8 

decreased) in the urinary metabolome of male subjects after 24 hours of TSD. Similarly, Davies et al.108, 

subjected male volunteers to 24 hours TSD and reported an increase in 27 of the 171 serum metabolites 

identified. They also reported that more than half of the identified metabolites retained their circadian 

rhythmicity, however they were all reduced in amplitude as a result of forced wakefulness. Of the 27 

metabolites that increased, the majority consisted of species of carnitines and glycerophospholipids. In a 

different study49, however, these same metabolite species were reported to have decreased in the plasma 

metabolome of females after TSD. The contraindication of these findings highlights the importance of 

including both sexes in studies investigating sleep related metabolic variations. Even though there is evidence 

of confounding variation due to sex, male only subjects dominate metabolomic fatigue biomarker studies and 

there is a serious gap in the literature investigating female subjects. Although SD studies have delivered many 

insights to the metabolic effects of insufficient sleep, it is also important to investigate the effects of sleep 

restriction as well. This is because SR will reveal metabolites that are more realistic in a natural scenario, which 

can sometimes not correspond with what’s reported from SD studies. An good example of this is with 

acylcarnitine levels, which has been shown to decrease with SR89 but increase with SD43. There is a gap in the 

literature of studies that investigate metabolites under both sleep conditions in parallel, which is a potential 

subject area that could be addressed in future studies.  

 

As mentioned previously, when deciding on sample types and analytical platforms, urine and NMR have been 

highlighted as being some of the most popular choices. They have been readily used in a number of biomedical 

research areas, but have especially shown great potential for biomarker discovery. In light of this, of all the 

metabolomic studies investigating biomarkers of fatigue, only one analysed urine with NMR43. This is 

surprising, given the number of advantages both urine and NMR have for biomarker research. 

 



5.2 Rodent studies 

Due to the similarity of the genomes of rodents and humans and the ability to strictly control confounding 

factors, rodents have been readily used in a number of metabolomic studies investigating biomarkers of 

fatigue45,59–62,109–112. This lead to a shift in the prevalence of sample types collected and analysed. The 

investigation of metabolites within tissue samples is rarely conducted in human studies, however this is not 

the case in rodent studies. Approximately half of all the studies that investigated the metabolic fingerprint of 

fatigue analysed brain and liver tissue. Unlike in human studies, serum was not as widely investigated and 

urine was not featured at all. A summary of these studies are displayed below in Table 1. 

 

It is important to note that although rodents and humans share genetic similarities, they still have huge 

differences in their physiology107. Firstly, rodents are naturally nocturnal, which immediately will show a huge 

difference in the metabolic rhythms when compared to humans107. Studies have also shown that rodents have 

a metabolic rate that is seven times higher than that of humans and can express different metabolic 

enzymes107. These differences in rodents and humans may bias experimental results, therefore highlighting 

the necessity to carefully consider the choice of study subjects.  

 

Table 1. Summary of the findings of metabolomic studies investigating biomarkers of fatigue 

Metabolite Cohort Sample Study  Method Biological Significance Reference 

 Taurine, formate, citrate, 3-indoxyl sulfate, 
carnitine, 3-hydroxyisobutyrate, TMAO, 

acetate (increased);  Dimethylamine, 4-DTA, 
creatinine, ascorbate, 2-hydroxyisobutyrate, 
allantoin, 4-DEA, 4-hydroxyphenylacetate 

n = 15 
(15 M) 

Urine 24h 
TSD 

H-NMR 
 

3-indoxyl sulfate – metabolite of tryptophan 
(involved in sleep/wake), formate – 
intermediate carboxylic acid for many 
processes, carnitine – fatty acid metabolism, 
taurine – sleep/wake and depression 
 

Giskeødegård 
et al., 201543 

Prostaglandin PGE2 N = 15 
(11 M) 
 

Urine 88h 
TSD 

PGE-M 
assay 

PGs – mediators of inflammation and pain 
 
 

Haack et al., 
200946 

Propionylcarnitines, phosphatidylcholines, 
sphingomyelins 

N=16 
(8M) 
 

Plasma 5 x 5h 
SR 

MS ATP binding cassette transporters in lipid 
homeostasis, phospholipid metabolic process, 
plasma lipoprotein remodelling, sphingolipid 
metabolism 
 

Depner et al., 
202047 

 Aconitic acid, uridine;  Phosphoric acid, 
proline 
 

n = 13 

(9M) 
 

Plasma 40h 

TSD 

HILIC-LC-

MS 

Mainly related to glycolysis and Krebs cycle 

pathways 
 

Grant et al., 

201948 

 melatonin, tetradecenoylcarnitine, taurine, 

methionine, threonine;  histidine, glutamate, 
glutamine, lysine, citrulline, carnitine, SDMA, 
LysoPC a c18:0, 
6 x glycerophospholipids, 
7 x phosphatidylcholines 
 
 

N=12 
(5M) 

Plasma 40h 
TSD 

UPLC + 
assay 

Melatonin – sleep/wake regulator, histidine – 
precursor to histamine, which plays a major 
role in arousal, glutamate –excitatory 
neurotransmitter and precursor to GABA, 
which plays a role in sleep-promoting systems, 
glutamine – antioxidant, removes excess 
nitrogen/ammonia, SDMA – negatively 
associated with nitric oxide production. Nitric 
oxide regulates sleep/wake state 

Honma et al., 
201949 

 ATP, Glutathione, Homocysteine, GSH 
 

N = 19 
(10 M) 
 

Plasma 40h 
TSD 

HPLC - ED GSH – plasma antioxidant 
 

Trivedi et al., 
201750 



 Phosphatidylcholines and triacylglycerides; 

 Choline plasmalogens 
 

N = 20 
(20M) 

Plasma 40h 
TSD 

HPLC-MS Choline plasmalogen – important for 
membrane structure, phosphatidylcholines 
and triacylglycerides – modulate lipid 
metabolism 
 

Chua et al., 
201551 

 acylcarnitine C14:1, C18:1, C18:2 
 

N =16 
(9 M) 

Plasma 4h SR Assay 
+ 
FIA/Ms/MS 
 

Acylcarnitine - vital for energy homeostasis  
 

Van den Berd 
et al., 2015113 

 Tryptophan, serotonin, taurine, 8 x 
acylcarnitines, 13 x glycerophospholipids, 3 x 
sphingolipids 
 

n = 12 
(12 M) 

Plasma 24h 
TSD 

LC-MS Serotonin – sleep/wake, tryptophan – vital for 
the formation of serotonin 
 

Davies et al., 
2014108 

 12 amino acids, fatty acids, bile, steroid 

hormone, tricarboxylic acid;  Glucose, 
monosaccharides, gluconate, 5C alcohols 
 

N = 11 
(6 M) 
 

Plasma 8 x 
5.5h SR 

UHPLC/MS/
MS 
+ 
GC/MS 

Amino acid and peptide metabolism, 
carbohydrate and energy metabolism, 
xenobiotics, cofactors and vitamin, nucleoside 
metabolism 
 

Bell et al., 
201352 

Plasma (35) – 14 increased/13 decreased; 
Saliva (27) – 8 Increased/18 decreased 
 

N = 10 
(10M) 

Plasma +  
Saliva 

40h 
TSD 

LC-MS 
+ 
GC-MS 

3 – hydroxybutyrate (increased in both 
samples) –  energy carrier and mediator of 
normal cognitive function 
 
 

Dallmann et 
al., 201253 

 GGHPPPP and ESPSLIA 
 

N = 19 
(19 M) 

Saliva 48h 
TSD 

LC-MS GGHPPPP and ESPLIA - are part of the Fatigue 
Biomarker Index (FBI) of saliva 
 

Michael et 
al., 2013114 

 LDL;  Phosphatidylcholines, phosphatidyl 
ethanolamides, triglycerides and cholesterol 
esters 
 

N = 14 
(14M) 
 

Serum 5 x 4h 
SR 

NMR 
+  
UPLC-
qTOF-MS 

Lipid metabolism 
 

Aho et al., 
201644 

 Oxalic acid and diacylglycerol 36:3;  
phospholipids 
 

N = 20 
(10 
rats/10 
human,  
5M) 

Serum 5 x 4h 
SR 

LC/GC-
qTOF-MS 

Oxalic acid – glycolate metabolism, 
diacylglycerol – lipid messenger 
 

Weljie et al., 
201545 

 CSF Orexin 
 

N = 13 
 
 

CSF 5 x 4h 
SR 

Assay + 
HPLC-ED 

Orexin - involved in sleep/wake cycle 
 

Olsson et al., 
2018115 

 Glycine;  Myo-inositol N = 17 
(17 M) 

Brain 
tissue 

40h 
TSD 

H-MRS Both metabolites are linked to the mGluR5-
Homer1a-IP3 signalling cascade – sleep/wake 

regulation 
 

Holst et al., 
201757 

 N-acetyl-aspartate (NAA) and Choline 
containing compounds (Cho) 
 

N = 18 
(18 F) 

Brain 
tissue 

40h 
TSD 

H-MRS NAA – brain energy metabolism, Cho – 
essential component of cell membranes and 
precursor for acetylcholine (neurotransmitter) 
 

Urrila et al., 
200658 

Phosphatidylcholines (PC), 
lysophosphatidylcholines (LPC), 
triacylglycerols (TAG), diacylglycerols (DAG), 
sphingomyelins (SM) and amino acids 
 

N = 16 
rats 

Serum +  
Brain 
tissue  

96h 
TSD 
+ 
10 x 4h 
SR 

HPLC-QqQ-
MS 
+ 
GC-MS 

Pathways involved – Arginine and proline 
metabolism/Aminoacyl-tRNA 
biosynthesis/Alanine, aspartate and glutamate 
metabolism/Purine metabolism/Pantothenate 
and CoA biosynthesis/Glyoxylate and 
dicarboxylate metabolism/Nitrogen 
metabolism/Ascorbate and aldarate 
metabolism/Glycolysis or gluconeogenesis 
 

Yoon et al., 
2019116 

 Acetyl coenzyme A, 3β-hydroxybutyric acid, 
acylcarnitines 
 

N = ? 
mice 

Liver 
tissue 

6h SR CE-TOF-MS 
+ 
LC-TOF-MS 
 

Acetyl-CoA – vital for Krebs cycle – energy 
production, 3β-hydroxybutyric acid – energy 
carrier and mediator of normal cognitive 
function 
 

Shigiyama et 
al., 201860 

 NAP, NADP, N-methylnicotinamide, 
nicotinamide riboside, histidine, glutamine, 
adenine, adenosine, AMP, guanosine, 
glutamine, AMP, glutamine, NAD, methionine, 

SAH, SAM, methionine sulfoxide;  2-Pyr, 4-
Pyr, serine, aspartate, ATP, urea, xanthine, 
xanthosine, urea, aconitate, citrate, isocitrate 
 

N = 10 
rats 

Liver 
tissue 

5 x 4h 
SR 

UPLC-MS Pathways involved – Nicotinate and 
nicotinamide metabolism/Purine 
metabolism/Ammonia recycling/Urea 
cycle/TCA cycle/Methionine metabolism 
 

Sengupta et 
al., 201861 



 

 

6. Current limitations of metabolomics 

Even with all the technical advancements and numerous successful experiments, the field of metabolomics 

persists with a number of challenges. The main concerns and their potential resolutions will be discussed 

further below. 

6.1 Massive amounts of complex data 

The complex nature of the metabolome is very advantageous for biomarker research, however this is also one 

of the main limitations of metabolomics10. Data analysis and interpretation can be very challenging due to the 

large numbers of metabolites with varying physiochemical properties28. This is further complicated by the 

various dynamics of certain metabolites, such as those that have circadian rhythms53. Unlike genes and 

proteins, that are comprised of combinations of the same foundations of four nucleotides and 21 amino acids 

respectively, metabolites can comprise of a variety of different compounds, such as amino acids, lipids, organic 

acids and carbohydrates67. Finally, the variety of concentrations in the metabolome has been estimated to 

range from pM to mM10. As such, the analysis of trace metabolites in the presence of metabolites of larger 

quantities is very difficult10. This, in combination with the enormous amounts of data produced by 

metabolomics experiments remains to be one of the key factors in the difficulty of transitioning experimental 

biomarkers to use in clinical applications24. 

 L-tryptophan, myristoylcarnitine and 

palmitoylcarnitine;  Adenosine 
monophosphate, hypoxanthine, L-glutamate, 
L-aspartate, L-methionine and 
glycerophosphocholine 
 

N = 48 
rats 

Brain 
tissue 

15 x SF 
 (30s 
on/90s 
off FE) 

LC-MS Alanine, aspartate and glutamate metabolism 
pathway common pathway 
 

Yoon et al., 
201959 

 Kynurenic acid (KYNA) – only in males 
 

N = 208 
rats  
 

Brain 
tissue + 
serum 
 

6h SR HPLC-ED KYNA – mediates healthy cognitive function 
 

Baratta et al., 
201862 

 Uric acid, allantoic acid, 
Vaccenyl carnitine, palmitoylcarnitine, 2-
hexadecenoyl-carnitine, 4,8-dimethylnonanoyl 

carnitine;  Retinal, retinol, retinoic acid, 
retinol acetate, docosapentaenoic acid, valine, 
choline 

N = 20 
mice 

Serum 14 x SI LC-MS Choline – precursor of acetylcholine which 
mediates cognitive function, valine – 
precursor of glutamate which mediates 
normal cognitive function, retinoids – 
antioxidant, protects cognitive function, 
carnitines – involved in energy supply 
 

Feng et al., 
2015117 

 glutamate, homovanillic acid, lactate, 
pyruvate, tryptophan, uridine, D-gluconate, N-
acetyl-beta-alanine, N-acetylglutamine, 
orotate, succinate/methylmalonate 
 

N = 19 
mice 

Brain ECF 6h SR UHPLC-MS Lactate and pyruvate – involved in glycolytic 
and astrocytic functions, orotate and uridine - 
de novo pyrimidine pathway 
 

Bourdon et 
al., 2018110 

 5-hydroxyindoleceticacid (5-HIAA), 3,4-
dihydroxyphenylacetic acid (DOPAC), 
homovanillic acid (HVA) 

 

n = ? 
rats 

Brain ECF  6h SR HPLC-MS 5-HIAA – metabolite of serotonin, DOPAC + 
HVA – metabolites of dopamine 

Zant et al., 
2011111 

 5-hydroxytriptamine (5-HT) 
 

N = ? 
rats 

Brain ECF 24h 
TSD 

LCMS-ED 5-hydroxytriptamine – also known as 
serotonin, key mediator of sleep/wake cycles 
 

Lopez-
Rodriguez et 
al., 2003112 



6.2 Metabolite identification 

Metabolomics rely on the availability of reference databases in order to identify the metabolites that are 

detected78. In theory, this is an excellent approach however it’s practical application can be limited because 

unlike the human genome, the human metabolome has not been fully determined12. This challenge initiated 

the launch of the Human Metabolome Project (HMP), which in turn facilitated the development of the most 

complete database of human metabolic information, HMDB12. This database is a collective of all information 

from books, journal articles and other databases12. It currently contains structural, physiochemical and 

spectral data for almost 8000 metabolites, yet it still is not enough for the comprehensive identification of the 

entire metabolome12. In light of this, metabolomics is a highly dynamic field and is rapidly evolving, so it is 

expected that more complete databases are attainable in the coming years.  

6.3 Inter and Intra-Individuality 

The metabolome is a highly sensitive system to both endogenous (i.e. age and sex) and exogenous (i.e. diet 

and medication) factors29,36,118. These factors can all contribute to the overall metabolome, making it difficult 

to interpret data. It can be hard to determine what metabolic differences between sample cohorts are due to 

a target phenotype, such as fatigue, or if they are due to these confounding factors. The effects that these 

confounding factors have on the metabolome must therefore be “subtracted” from the study to avoid this 

kind of bias29,36,118. Methods of minimising the impacts of confounding variances have been developed to be 

implemented during the pre-processing stage of the metabolomic workflow78.  

 

In addition to this, biomarkers of fatigue are identified by comparing the metabolic signatures of a fatigued 

sample with a “normal” metabolic signature from a control group10,56,119,120. The susceptibility of the 

metabolome to confounding factors make it very difficult to define what a “normal” metabolic signature 

should look like10,56,119,120. In actual fact, numerous studies have shown that the urinary metabolome of healthy 

volunteers showed great inter- and intra- variability purely due to differences in cultural backgrounds, age and 

dietary intake120. This is further supported by the findings of Saude et al.56, who compared the urinary 

metabolites of humans and guinea pigs. The strain, age, gender, diet and environment were all identical in the 

guinea pig cohort, however these confounding variables were not controlled in the human cohort56. 

Interestingly, after analysing the urinary metabolites of both groups, they reported that both the controlled 

and uncontrolled cohorts consisted of similar coefficients of variability56. This shows that prior to any 

comparison with fatigued groups, the range of inter- and intra- metabolic variability of the control group must 

first be defined.  

6.4 Reproducibility 

The sensitivity and dynamic nature of the metabolome, in combination with the enormous amounts of data, 

necessitates consistency and reproducibility in metabolomics experiments10,121. Even with the advancements 



of various aspects of the metabolomics workflow, differences are still observed in the analysis of the same 

sample at different laboratories10,24. As more attention has been drawn towards endogenous, exogenous and 

experimental confounding factors, the importance of standardisation and careful study design has also come 

to light63,92,121–123. At each step of the metabolomics workflow, there is the potential for bias, which if 

introduced, can have a serious impact on the final metabolic profile obtained24. This, therefore, highlights the 

importunacy of having strict control over experimental procedures as well as identifying and removing any 

sources of inconsistency. It is also crucial to collect information on confounding factors such as age, sex, diet 

and medication and keep in mind when analysing and interpreting the experimental data24,120,122.  

7. Conclusions 

This paper has reviewed the potential for the use of metabolomic strategies in the search for a biomarker of 

fatigue. By doing so, the best experimental approaches and gaps in the current knowledgebase have been 

identified. It has been shown that there is a lack of studies that investigate urine samples, female subjects and 

use NMR approaches. This has guided the development of a study that aims to address all three of these gaps 

to add to the current understandings of the metabolomic effects of fatigue on cognitive function. 

 

 

8. Experimental Design 

As previously described there is a gap in the literature of: (1) studies that investigate fatigue biomarkers in 

urine, (2) with both male and female subjects using (3) NMR spectroscopy. This research will addressed this 

gap in the literature by aiming to identifying single or multiple metabolites that may be indicators of fatigue 

in urine samples using an untargeted NMR spectroscopy approach. This study aims to achieve the following 

objectives: 

• Observing, identifying and categorising metabolites and relative metabolite concentrations 

detected in urine using NMR spectroscopy  

• Calculating the prevalence of each metabolite and relative metabolite concentrations across the 

entire data set 

• Performing statistical analyses to assess whether these metabolites and relative metabolite 

concentrations occurred at a level greater than what was expected by chance 

• Recognising variations between metabolites and metabolite concentrations across urine samples 

due to whether where they were subjected or not subjected to sleep deprivation 

 

8.1 Hypotheses  

H1: That with NMR based metabolomic analysis of urine it is possible to identify single or multiple metabolites 

that will discriminate between a fatigued cohort and a control cohort  



H0: That with NMR based metabolomic analysis of urine it is not possible to identify single or multiple 

metabolites that will discriminate between a fatigued cohort and a control cohort 

 

8.2 Methodology 

This study period will run over the course of three consecutive days (1700-1700). The outline of the study 

period in brief is: 

• Period 1 (normalisation) – sleep from 11pm-7am, controlled diet, no urine collected 

• Period 2 (baseline) – sleep from 11pm-7am, controlled diet, urine collected 

• Period 3 (fatigue) – no sleep for the duration of 24 hours, controlled diet, urine collected 

 

Approximately 10-15 healthy volunteer participants, both male and female, will be recruited. Participants will 

be non-smokers, have no known metabolic or sleep disorders and not be using any medication that can affect 

sleep quality. Standardised meals will be provided and participants will be instructed to consume these meals 

during specific time frames to reduce diet related variation. Participants will be instructed to not consume any 

caffeinated or alcoholic beverages for the entirety of the study period (72 hours). Participants will be asked to 

keep a sleep log and not engage in any strenuous physical activity during the study period.  

 

The participants will self-collect mid-stream urine samples (during period 2 and period 3) every time they pass 

urine and note the times that they were collected. Each urine sample will then be immediately stored at -20°C. 

During the normalisation and baseline periods, the participants will be requested to sleep from 11pm-7am. 

During the fatigue period the participants will asked not to sleep for the duration of the 24 hours. If the 

participants fall asleep, they will be asked to notify the research when they did so and for how long. Depending 

on compliance, the researcher will determine whether to include or exclude these samples from the study. 

 

Samples will then be prepared and analysed in accordance to Beckonert et al., procedure recommendations 

for the metabolomic profiling of urine using NMR spectroscopy. NMR spectra will be corrected for all variation 

that may have been caused by experimental variables (peak normalisation, peak alignment, baseline 

correction etc). After pre-processing, the data will be statistically analysed to obtain group clustering using 

various pattern recognition methods. Following this, NMR spectral information will be searched against 

databases to identify the metabolites that enabled group clustering. Once identified, biochemical pathway 

analysis will be conducted to evaluate biological relevance of how these metabolites are being produced when 

fatigued. 
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Abstract 

The National Road Safety Action Plan concluded that “fatigue is four times more likely to contribute to 

impairment than drugs or alcohol”, however, unlike drugs and alcohol, there is currently no universal method 

of objectively testing for fatigue. This demand for a method of assessing fatigue-induced cognitive impairment 

as a way of determining a driver’s ‘fitness for operating a vehicle’, however, may be addressed via 

metabolomics. Here, this study explored the metabolic response to sleep deprivation in the urinary 

metabolome of 9 individuals (6 female, 3 male) who were subjected to 24 hours of continual wakefulness 

using Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS). With NMR, an 

untargeted discovery approach, to highlight new metabolic pathways that may be impaired during sleep 

deprivation, as well as a targeted approach using a panel of 50 metabolites quantified by a special extraction 

algorithm was conducted. MS was used to investigate the effects of sleep deprivation on a panel of 19 

bioactive metabolites from the Tryptophan pathway (consisting of amino acids, kynurenines and 

neurotransmitters). Analysis of the untargeted NMR spectral data showed a strong influence of urinary 

dilution on the metabolite profiles. The utilization of PQN normalisation to account for dilution revealed 

spectral differences that were not associated with fatigue. Further integrated multivariate statistical analysis 

of the targeted NMR and MS metabolites highlighted three metabolites (acetone, nicotinic acid and picolinic 

acid) which appeared to present in higher concentrations and four metabolites (dopamine, valine, citric acid 

and hydroxyindole acetic acid) in lower concentrations within the fatigue cohort. Of these seven metabolites, 

only acetone (p = 7.82E-05), dopamine (p = 0.026544) and hydroxyindole acetic acid (p = 0.002662) were 

univariately significant ( = 0.05). Whilst trying to control for diet related variables, a new confounding variable 

was introduced – fasting. It was determined that acetone was not significant due to fatigue, rather due to the 

participants fasting over the fatigue period. Further univariate comparisons of the four significant metabolites 

also showed no statistically significant differences between males and females. The results of this study 

indicate that the urinary metabolome may be useful for identifying discriminatory biomarkers of fatigue that 

can be used in a forensic context for both males and females, however further investigation is required. Future 

studies should incorporate a larger number of participants, alternate normalisation methods to correct for 

dilution effects and minimize the confounding effects of fasting and urine dilution.  
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1. Introduction  

It is well noted that the quantity and quality of sleep are key aspects in the maintenance of healthy physical 

and cognitive function. Without adequate sleep, cognitive performance indicators such as focus, reaction 

times and alertness can be severely impaired with sleep-related misperception increasing the risk of physical 

injury, leading to devastating consequences on the road. The National Road Safety Action Plan concluded that 

“fatigue is four times more likely to contribute to impairment than drugs or alcohol”1, however unlike drugs 

and alcohol, there is currently no universal method of objectively testing for fatigue. This makes it difficult to 

regulate and put legal procedures in place to act as a deterrent to impaired drivers or ban repeated offenders. 

Out of an estimated $27 billion, fatigue-related road accidents have been thought to cost the Australian 

economy $3 billion per year2. The Road Safety Commission of Western Australia has reported that 20-30% of 

all serious injuries and fatal crashes on Australian roads are attributed to fatigue3. This figure, however, is 

thought to be underrepresented due to the lack of currently available methods to accurately quantify fatigue. 

The methods of fatigue detection that are available presently involve highly technical electroencephalography 

assessments or psychomotor vigilance tasks to assess behavioural responses4. Both methods are useful in a 

scientific setting, however they are not viable in roadside environments as they can be difficult to interpret, 

require highly specialized equipment and are time consuming4. This demand for a method of assessing fatigue-

induced cognitive impairment as a way of determining a driver’s ‘fitness for operating a vehicle’, however, 

may be addressed via metabolomics. 

 

Metabolomics (also termed metabolic profiling, fingerprinting or phenotyping) is the study of small molecules 

(<2kDa) to characterise a system’s response to genetic and environmental stimuli5–7. Along with proteomics, 

transcriptomics and genomics, metabolomics is one of the core pillars in the field of system’s medicine, a 

scientific discipline that studies the simultaneous changes of molecular entities whilst reintegrating them to 

understand how they interact in the context of a living system5,8,9. Systems medicine is structured around the 

central dogma of molecular biology, therefore they are all interrelated and have some impact on the final 

phenotype, however as metabolites are the terminal molecules of all the processes that occur, it makes them 

the most proximal system to the phenotype5,10.This is highly advantageous for biomarker studies as any 

stimulus that occurs will affect the metabolome and is likely to produce a measurable phenotypic expression. 

This is not the case in other systems of biology such as the genome, which has been used for predicting 

phenotypes, however changes at the genome level don’t always present in the expressed phenotype11,12.  

 

Another advantage to metabolomics is that unlike other biological systems which may take days to show a 

response to stimuli, a metabolic response is prompt and often occurs within seconds6,13. The sensitive and 

dynamic nature of the metabolome allows it to capture even the most subtle of changes, so even if molecular 



changes within other “-omics” platforms are not yet observed, changes may be present in the metabolome5,14. 

The metabolome can provide a true “snapshot” of the current state of a biological system5,15. This is favourable 

as it allows the investigator to be able to characterise systemic changes in metabolite profiles, or “metabolic 

fingerprints”5, and phenotype individuals according to their reaction to an internal or external stimulus, such 

as for sleep deprivation induced fatigue14. 

 

In the field of system’s medicine, commonly investigated biofluids include blood-derived analyte matrices (e.g. 

plasma and serum) and urine, with the latter often being preferred due to the ability to collect large amounts 

with non-invasive methods5,16. This is beneficial as it can then allow for an easy transition from the research 

laboratory to use as a forensic investigative tool. The metabolites found in urine comprise of endogenous 

water-soluble (produced by the body) and exogenous (e.g. from food or drug) metabolites which are the end 

products of countless metabolic interactions4,5,17.  The analysis of urine will provide an indication of the events 

that have occurred previously, whereas blood, even though its more invasive, can show the interactions that 

were occurring at the time of sampling4,17.  

 

There are a number of analytical platforms that are used in metabolomics, however the two most common 

are nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS) coupled to a 

chromatographic separation method such as liquid or gas chromatography (LC and GC, respectively)4,5,17–20. 

Each of these methods have their own advantages and limitations; NMR is useful as it is a quantitative5, non-

destructive method that requires minimal sample preparation and therefore has negligible sample bias21. It is 

non-selective and provides structural information that can be used to identify unknown compounds21. For 

these reasons, NMR is often used for untargeted metabolic profiling methods to generate thousands of 

chemical variables that reflect internal metabolic process of an individual at a specific point in time. The 

downfalls of NMR, however, are its lack of sensitivity22–24, therefore there is the potential of overlooking 

significant metabolites, and that it is susceptible to various matrix effects such as ionic strength and pH, which 

can lead to spectral interference including small chemical shift variations25.  

 

MS, on the other hand, is an extremely sensitive and specific technique that provides high resolution analysis 

of metabolites5,9,13,19. When studies wish to adopt a targeted approach and focus on a particular metabolic 

pathway, rather than explore everything that could be in the sample, often they perform a specific mass 

spectrometry assay. A number of studies26–33 exploring the effects of sleep deprivation on the metabolome 

have specifically investigated metabolites of the tryptophan pathway (TP). Tryptophan is an essential amino 

acid which is heavily involved with the synthesis of a number of bioactive compounds that are involved in 

sleep regulation, such as serotonin and melatonin34. The pitfalls of MS is that it relies on extensive sample 



preparation prior to analysis, which can introduce sample bias as the resulting metabolic fingerprint is taken 

from a modified extract of the original sample5,6. Another limitation of MS is that processing times are very 

long and can take hours5,35, unlike NMR which only takes a few minutes, and cost-per-sample is higher for 

analysis5,36.  

 

A limitation of investigating the metabolome is that it is a highly sensitive system to both endogenous and 

exogenous confounding factors, such as sex and diet, respectively19,37,38. These factors can contribute to the 

overall metabonome and make it difficult to interpret data as it can be hard to determine whether a metabolic 

fingerprint under investigation is a result of the stimulus, such as sleep deprivation, or due to these 

confounding factors. The confounding effects of sex on the plasma metabolome following total sleep 

deprivation (TSD) was reported in a number of studies27,28. Davies et al.,28 reported an increase in the 

concentrations of 27 metabolites, mainly phospholipids and carnitines, in males after TSD. These findings 

conflict with results reported by a comparable study27 that investigated the effects of TSD on the plasma 

metabolome of females, as they reported a decrease in these same metabolites after TSD. This discrepancy in 

the findings of these studies highlights the importance of looking at the effect of fatigue on the metabolome 

of both males and females as sex seems to be a confounding factor when looking at these specific metabolites. 

In addition to this, these studies used a targeted approach to analyse specific metabolites that they expected 

to see a change in after sleep depriving their participants, which biases their approach due to their narrow 

search parameters.  

 

When exploring the global systemic changes in response to sleep deprivation, an untargeted approach can 

provide the opportunity to investigate all changes and potentially highlight biochemical pathways that were 

previously overlooked. This was successfully demonstrated in previous studies4,26 that investigated the effects 

of TSD of the urinary metabolome using NMR spectroscopy. Giskeødegård et al.,26 investigated the urinary 

metabolome of sleep deprived males after 24 hours of TSD and reported 8 discriminatory metabolites that 

had increased, and 8 that had decreased. This showed great promise for the development for a biomarker 

panel for fatigue however it cannot be assumed that these same metabolites will also show similar effects in 

a female cohort as sex proved to be a confounding factor in studies that investigated the effects of TSD plasma 

metabolome27. Similarly, DelRaso et al.,4 investigated the effects of 36 hours of TSD on the urinary 

metabolome using NMR spectroscopy on a cohort of 23 individuals that included 4 females. Interestingly, they 

did not detect any confounding variables due to sex, however they did report diet related confounding 

variables as they reported that over half of their significant metabolites were associated with energy 

metabolism and nutritional status4.  



Figure 1. Graphical summary of study workflow including metabolite analysis of urine collected from 9 participants.  

To address this gap in the literature for a universal biomarker of fatigue, this study was conducted with the 

aim to identify and validate peripheral biomarkers of sleep deprived fatigue in urine in both males and females. 

Due to the variability in the strengths NMR compared to MS, this study included both platforms in an effort 

to obtain a wider coverage of the urinary metabolome. An untargeted NMR approach was performed with the 

aim to discover new metabolic pathways that may be affected during sleep deprivation. In parallel to the NMR 

, a targeted panel of 19 bioactive metabolites of the tryptophan pathway consisting of amino acid, kynurenines 

and neurotransmitters were investigated using MS (Figure 1). This panel was selected as each of the 

metabolites have a role sleep regulation and, as discussed beforehand, were reported in previous sleep 

deprivation studies26–33.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Methods 

2.1 Study participants and sample collection.  

The study was approved by the Human Research Ethics Committee of Murdoch University (Approval 

2020/133) and conducted in accordance with the Declaration of Helsinki. Written informed consent was 

provided by all participants prior to partaking in the study. Participants were screened via questionnaires to 

determine eligibility for the study. Study exclusion criteria comprised the presence of existing metabolic or 

sleep related medical disorders (i.e. diabetes or insomnia), intake of prescription medication or supplements 



Figure 2. Timeline of sample collection and meal times.  

that may affect sleep quality (i.e. melatonin or dextroamphetamines), and recreational drug use including 

tobacco smoking and heavy alcohol consumption (no more than 10 standard drinks a week). All study 

participants were considered free of these exclusion criteria based on the results of their questionnaires, 

however no further diagnostic testing was conducted to verify this. Participants were informed that they were 

permitted to withdraw at any point during the study and that all identifying data were encrypted and treated 

as confidential  to ensure anonymity.  

 

A total of nine healthy male (n = 3, age 26.1 ± 2.7 years (mean ± SD)) and female (n = 6, age 23.9 ± 0.95 years 

(mean ± SD)) volunteers were enrolled in the study, which took place in their home environments. The study 

was conducted in longitudinal fashion and involved three consecutive overnight periods: during the 

normalisation (night 1) and baseline (night 2) period the participants were requested to obtain a normal 

night’s sleep (8h sleep opportunity 23:00-7:00), whereas during the third period (night 3) the participants were 

requested to stay awake, experiencing 24 hours of continual wakefulness (total sleep deprivation).  

 

Participants were requested to go about their day as they would normally; however they were requested to 

abstain from caffeine and alcohol consumption, or engage in any strenuous physical activity for the entirety 

of the study period (three 24 hour cycles). Strenuous physical activity was defined as any activity that can’t be 

completed whilst talking. Midstream urine samples were self-collected by the participants during the baseline 

and fatigue periods at 3 hour intervals and immediately stored at -20°C. Diet was controlled for, study 

participants were allowed to uptake meals that were identical in caloric and nutritious content within 

allocated time frames, as highlighted in Figure 2. At the end of the study period, all samples were collected 

and stored at -80°C prior to analysis. 

 

 

 

 

 

 

 

 

 

 

 

  



2.1 NMR Spectroscopy 

2.1.1 NMR data acquisition. 

 Laboratory procedure for sample preparation was adapted from Dona et al.39 Urine samples were thawed at 

room temperature, and centrifuged at 13000 RPM for 15 minutes at 4°C. A volume of 585μL of the supernatant 

was aliquoted in to a microcentrifuge tube and mixed with 65μL of buffer (1.5M KH2PO4, 2mM NaN3, 0.1% 

TSP, pH 7.4). 600μL of this mixture was then transferred to NMR tubes (5 mm diameter). A standard one 

dimension proton NMR (1H NMR) and 2D J-resolved NMR spectroscopy experiments were performed for each 

sample using a Bruker Avance 600 MHz spectrometer (Bruker Biospin GmbH, Germany) operated at 300K. The 

spectrometer was equipped with a refrigerated (5°C) autosampler (Bruker Samplejet) and the analytical run 

was automated in high-throughput fashion using the software ICON NMR and TopSpin (V 3.6.2, Bruker 

Biospin). The data acquired from NMR underwent two processing pipelines. The first resulted in a metabolic 

profile, whilst the second utilised a Bruker proprietary algorithm to quantify 50 metabolites from the spectra. 

2.1.2 NMR profiling data pre-processing.  

Free induction decays (FIDs) were zero-filled to double the number of data points, multiplied by an exponential 

line broadening function (exp 0.2) and Fourier transformed to obtain one dimensional NMR spectra. Spectra 

were zero order phase and baseline corrected. The chemical shift axis was calibrated to 

trimethylsilylpropanoic acid (TSP), giving rise to a singlet resonating at zero ppm. Spectral areas bearing no 

biologically relevant information were excised, including  < 0 ppm,  4.5-5.2 ppm (residual water peak) and 

 > 9 ppm. To account for individual urine dilution effects, e.g. due to differential uptake of water, spectra 

were normalised using probabilistic quotient normalisation (PQN)40. 

2.1.3 NMR IVDR targeted quantification data pre-processing.  

Absolute concentrations of 50 metabolites were obtained via an automated peak fitting routine using the 

standard 1D 1H NMR spectra available within the Bruker AVANCE iVDR experiment suite (B.I. QUANT-UR 1.1 

RUO, Bruker Biospin). Metabolites were normalised to creatinine to account for individual urine 

concentrations.  

2.2 Mass Spectrometry 

 A targeted mass spectrometry screen of fourteen bioactive metabolites, including amino acids, kynurenines 

and neurotransmitters was completed as reported previously41. In short, a Biomek i5 sample processing 

robotic system was used to extract metabolites using a sample volume of 50μL of urine, mixed with 20μL of 

SIL internal standards, and 250μL of 2mM ammonium formate in methanol. The samples were then 

transferred to a Phenomenex PHREETM solid phase extraction plate to remove phospholipid compounds 

(Phenomenex, NSW, Aus.), and were washed with 150μL of 2mM ammonium formate in methanol. A 

SpeedVac vacuum concentrator (Thermo Fisher, Massachusetts, USA) was used to dry the eluent collection 

plates. Prior to LC-MS analysis, the dried extracts were re-suspended in 100μL of 0.1% formic acid in water. 



LC-MS analysis was completed using a Waters Acquity UPLC®(Waters Corp., Milford, MA, USA) together with 

a Waters Xevo TQ-S MS (Waters Corp., Wilmslow, UK). The TargetLynx package in Mass Lynx v4.2 (Waters 

Corp., Milford, MA, USA) was used for peak identification and signal quantification by means of peak 

integration.  

2.3 Statistical analyses.  

The final NMR data matrix comprised of 25859 spectral variables that showed a high degree of 

multicollinearity, primarily due to the fact that a single peak is composed of multi variables, secondary due to 

the co-dependency of metabolites (two or more metabolites may play a role in the same metabolic pathway). 

Therefore, statistical analysis using univariate measures is inappropriate and data were interrogated using 

multivariate projection methods principal component analysis (PCA) and orthogonal-projection to latent 

structure (O-PLS). PCA is an unsupervised data analysis method that creates a new coordinate space (each PCA 

dimension if termed principal components) that summarised the systemic data variation of the original 

variables. This method effectively compresses the NMR data and allows data interpretation in only a few 

dimensions. Supervised analysis was conducted with O-PLS. This method is comparable to PCA, however, it 

models the outcome variable (fatigue) by relating it to the NMR data using a principal components space. To 

avoid data overfitting, the optimal number of components was determined in a leave-one-out cross validation 

(LOO-CV) framework).  

 

The final targeted metabolite data set comprised of 50 NMR variables and 18 MS variables. Univariate 

statistical group comparison was performed for each metabolite using the non-parametric and two-sided 

Kruskal Wallis rank sum test42. The significant metabolites were further investigated via Mann-Whitney U test 

to determine if there differences in how males and females were affected by sleep deprivation. The level of 

significance was fixed at  = 0.005 for both tests. p values were not adjusted for the number of performed 

tests as the condition of statistical independency was violated due to strong pathway connectivity’s of the 

assayed tryptophan metabolites. An effect size measure using differences in mean, however, was included to 

quantify the degree of differences in individual metabolites between the control and fatigue groups. All 

statistical analyses were performed using R (V 4.0.3) in RStudio (V 3.6.1), NMR data pre-processing and 

multivariate statistical analyses were performed using the metabom8 library (V 0.2) available at 

https://github.com/tkimhofer/ (accessed 11 Dec 2020).  
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Figure 3. Principal component analysis scores plot displaying untargeted NMR spectral data 

3 Results  

To ascertain the effects of sleep deprivation on the urinary metabolome, analysis was focused on identifying 

discriminatory metabolites using an untargeted 1H NMR discovery profile approach (full resolution spectra 

and 50 NMR-derived metabolites fitted using peak integration), in combination with the measurement of 18 

tryptophan pathway-related metabolites using a targeted MS approach. 

3.1 1H NMR Urine Discovery Profile 

3.1.1 Principal Component Analysis (PCA) 

Unsupervised analysis was conducted on 139 NMR spectra via principal component analysis (Figure 3), to 

obtain an unbiased view of the clustering of samples and to identify any outliers. Firstly, the long-term 

reference (LTR) samples -a pooled quality control sample that undergoes repeat preparation using the same 

method as the study samples and run at regular intervals throughout the NMR data acquisition workflow - 

were tightly clustered, indicating high reproducibility of the experiments. The first principal component (16% 

of total data variation) describes an evenly spread sample distribution, with a trend of fatigue and control 

samples having positive and negative scores, respectively. The second principal component (8.1% of total data 

variation) describes a clustering trend of two subgroups where the majority of samples, which are represented 

in the first subgroup, having positive scores whereas the smaller subgroup having negative scores.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



To ascertain the NMR features that were driving the observed scores distribution in PC1 and PC2, PCA loadings 

were interrogated. The PC1 loadings, as shown in Figure 4., highlight a number of significant peaks in the 

negative scores, namely in the 7-8 ppm spectral region. In contrast, the PC2 loadings, depicted in Figure 5., 

show minimal significant peaks apart from the broad peak observed at 5.75ppm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Principal component 2 loadings plot 

Figure 4. Principal component 1 loadings plot 



3.1.2 Supervised analysis – Orthogonal-Projection to Latent Structure-Discriminant Analysis 

An orthogonal-projection to latent structure-discriminant analysis (O-PLS-DA) was conducted modelling NMR 

spectra from fatigue vs control samples, and is displayed in Figure 6. There were two components, a predictive 

component describing the differences between sample class and an orthogonal component describing non-

class driven data differences. The primary purpose of the O-PLS-DA was to determine whether there was a set 

of metabolites able to discriminate between the control and fatigue sample subsets. The O-PLS-DA model 

scores shown in Figure X indicate a strong systemic difference in the control urine samples in comparison to 

the sleep deprived urine samples and classified the two subsets with an AUROC = 0.99 (R2X = 0.07, R2Y = 0.98, 

Q2 = 0.9) and a leave-one-out- (LOO-CV) cross validated AUROC = 0.90. The high cross-validated AUROC, close 

to 1, indicates that the model has not overfitted the data and that this model is likely to achieve similar 

discriminatory power in comparable data sets. There is a clear trend in the predictive component scores, with 

fatigue samples having positive predictive scores and control samples have on average negative predictive 

scores.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The O-PLS-DA loadings plot (Figure 7) was produced to ascertain the NMR features that were driving the 

variance in the model. The loadings plot indicates the spectral areas that are contributing the most to the 

Figure 6. Orthogonal-Projected on Latent Structures-Discriminant Analysis Scores Plot (Q2 = 0.9, R2X = 0.07, R2Y = 0.98, 
AUROC = 0.99, CV-AUROC = 0.90) 



variance in the data set, colouring them by significance, with red being the most significant. There were very 

few regions in the spectral data that were significant, mainly the 0-0.5 ppm, 1.5-2.5 and 8.5-9.5 ppm regions.  

 

 

 

 

 

 

 

 

 

 

 

3.2 Targeted NMR and Mass Spectrometry Metabolites 

A total of 68 targeted metabolites were analysed by 1H NMR spectrometry (50 metabolites) and Mass 

Spectrometry (18 metabolites). The quantified metabolites were then normalized to creatinine dividing the 

concentrations of each metabolite by the concentration of creatinine. Following normalisation, the samples 

were filtered to only include those metabolites that were quantified in at least 80% of all samples, resulting in 

a final targeted panel of 33 metabolites. Once filtered, the small metabolite concentrations of the remaining 

panel were compared using multivariate statistical analyses.  

3.2.1 Principal Component Analysis 

Firstly, unsupervised principal component analysis was performed to ascertain the data quality for each 

analytical platform independently. The total data variation in the NMR PCA model, as shown in Figure 8A. was 

81.5%, with the first principal component contributing to 72.6% of the total data variation due to the two 

outliers observed away from the main cluster. This was similarly reflected in the MS PCA model, depicted in 

Figure 8B., as it also had two outliers influencing a large first principal component contribution to the total 

data variation by 87.5%, contributing greatly to the total data variation of 95%. As class separation was difficult 

to observe due to a high degree of overlap as a result of the two outliers, these outliers were removed prior 

to further analysis. 

 

 

 

Figure 7. O-PLS-DA component 1 loadings plot 



 

3.2.2 Supervised analysis – Orthogonal-Projection to Latent Structure-Discriminant Analysis 

Following the unsupervised PCA analysis and removal of outliers from the dataset, integrated supervised 

analysis was conducted. The quantified NMR and MS metabolites were combined and orthogonal-projection 

to latent structure-discriminant analysis performed to identify metabolites that may be able to discriminate 

between the fatigue and control samples. The O-PLS-DA model scores (Figure 9) show a systemic difference 

between the two sub sets, classifying them with an AUROC = 0.96 (R2X = 0.1, R2Y = 0.95, Q2 = 0.78) and a leave-

one-out cross validated AUROC = 0.79. There is a trend in the predictive component, with fatigue samples 

having more positive scores and control samples have negative scores, however there is a degree of overlap.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. O-PLS-DA scores plot of integrated NMR and MS data (AUROC = 0.96 (R2X = 0.1, R2Y = 0.95, Q2 = 0.78) and a 
leave-one-out cross validated AUROC = 0.79) 

Figure 8. A). Principal component analysis of targeted NMR data scores plot; B) Principal component analysis of targeted MS data scores plot 

A B 



Figure 10. O-PLS-DA of integrated NMR and MS data loadings plot 

When interrogating the O-PLS-DA loadings plot (Figure 10) to ascertain the metabolites that were driving the 

variance in the OPLS-DA model, a number of key metabolites were observed. Acetone, nicotinic acid, and 

picolinic acid appeared to be present higher in the fatigue samples as they had the highest positive scores in 

the predictive component, with Acetone having the highest score. On the other hand, dopamine, valine, citric 

acid and X5. hydroxyindole acetic acid were lower in the fatigue samples as they had the highest negative 

scores in the predictive component. Of these four metabolites, dopamine had the highest predictive score, 

however it was only marginally different to the other metabolites, unlike acetone which was substantially 

larger. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Univariate analysis – Kruskal-Wallis test 

Once discriminatory metabolites are identified it is important to investigate how significant they are to the 

model to avoid making conclusions based on results that only reflect a small number of samples. From the 

panel of 33 metabolites, 4 were univariately significant (p < 0.05, post-Kruskal Wallis test) between the control 

and fatigue groups (Table 1). Higher concentrations of acetone (p = 7.82E-05) were observed in the fatigue 

group, whilst lower concentrations of 5-hydroxindole acetic acid (p = 0.002662), dopamine (p = 0.026544) and 

oxaloacetic acid (p = 0.038506) were observed in the fatigue group (Table 1). 

 

 

 

 

 

 



Table 1. p value table of 32 targeted metabolites. Univariate analysis was completed using Kruskal-Wallis non-parametric testing. 

Metabolite p value Effect size Mean (Control) Mean (Fatigue) 

Acetone 7.82E-05 0.501807 0.002057 0.004421 

5-hydroxyindole acetic acid 0.002662 -0.38663 984.6654 551.491 

dopamine 0.026544 -0.28546 23.66416 17.49988 

Oxaloacetic acid 0.038506 -0.20958 0.007962 0.006665 

picolinic acid 0.062862 0.239386 12.13387 16.67021 

nicotinamide adenine ribonucleotide 0.081713 -0.22403 10.21481 8.202 

Valine 0.087064 -0.21996 0.003773 0.002992 

Citric acid 0.119095 -0.20054 0.326498 0.245905 

quinolinic acid 0.13125 -0.19422 1068.701 937.0796 

N,N-Dimethylglycine 0.138844 0.188799 0.005692 0.007016 

kynurenic acid 0.214071 -0.15989 156.373 132.4545 

Allantoin 0.265209 -0.12647 0.010842 0.007572 

xanthurenic acid 0.273499 -0.14092 67.38154 57.26515 

serotonin 0.315481 -0.12918 22.2659 16.7031 

3-hydroxyanthranilic acid 0.322297 -0.12737 62.31237 49.72624 

3-hydroxykynurenine 0.325741 -0.12647 21.17543 15.78371 

kynurenine 0.403538 -0.1075 48.14143 39.07643 

tryptophan 0.407501 0.106594 969.7178 1081.398 

neopterin 0.532145 0.080397 8.368238 7.970101 

Proline betaine 0.539124 0.074074 0.027499 0.028076 

Succinic acid 0.586703 -0.0682 0.006534 0.005485 

beta-nicotinamide mononucleotide 0.689075 -0.05149 214.7979 207.5467 

D-Glucose 0.699603 0.047877 0.026739 0.029099 

indole-3-acetic acid 0.715101 -0.04697 745.5473 818.0668 

nicotinamide riboside 0.725608 -0.04517 15.83013 14.21837 

Taurine 0.745784 -0.03162 0.043509 0.038592 

nicotinic acid 0.84968 -0.02439 34.8675 43.16017 

Glycine 0.866207 0.02168 0.169021 0.177123 

Formic acid 0.868177 -0.02123 0.013435 0.012827 

Acetic acid 0.899179 0.01626 0.008777 0.008443 

citrulline 0.916144 -0.01355 84.86919 92.66394 

Betaine 0.98593 0.002258 0.012896 0.012502 



Time trajectory plots (Figure 11) and boxplots (Figure 12) were then created for the four significant 

metabolites, centred to 0, to interrogate the changes of the metabolites across various time points and to 

observe inter-subject trends. From the time trajectory plots, it was observed that both acetone and dopamine 

showed large fluctuations when comparing the participants to each other, however looking at them as a whole 

at the box plots showed minimal fluctuations, particularly with 5-hydroxyindole acetic acid and dopamine. 

Although 5-hydroxyindole acetic acid was determined to be significant, this was driven by participant 3 having 

an extremely high concentration in C2, skewing the results. Oxaloacetic acid was also highlighted as a 

significant metabolite, however when further investigated it was observed that this metabolite was only 

detected in 6 of the 9 participants and also being outlier driven due to participant 2’s first fatigue sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Time trajectory plots of the four univariately significant metabolites (acetone, oxaloacetic acid, hydroxyindol acetic acid and dopamine) 
to observe their changes over time 

Figure 12. Boxplots of the four univariately significant metabolites (acetone, oxaloacetic acid, hydroxyindol acetic acid and dopamine) 
to observe their changes over time 



The concentration of these metabolites were then investigated to observe their changes over time (Figure 14). 

Interestingly, as the day progressed, the concentration of metabolites appeared to fluctuate however when 

the most fatigued time point, F3, is compared with the first control time point, C1, there isn’t a significant 

difference in concentrations. The exception to this is Alanine, which decreased and Formic Acid which 

increased in concentration as time progressed. 

3.2.4 Mann-Whitney U Test 

The four significant metabolite concentrations were integrated and univariate analysis was conducted via 

Mann-Whitney U test, to observe whether there were differences between males and females, and are 

displayed in Table 2. The test was conducted with a two tailed hypothesis and set a significance threshold of 

 = 0.05. There was no statistically significant difference between the male and female concentrations for 

acetone (p = 0.65994), 5-hydroxyindole acetic acid (p = 0.24604), dopamine (0.27134) or oxaloacetic acid 

(0.96012).  

 

Table 2. p value table of the differences between males and females in the four significant metabolites. Univariate analysis was 

completed using Mann-Whitney U testing. 

 

 

 

 

 

 

 

4 Discussion 

4.1 Effect of Sleep Deprivation on 1H NMR Spectra of Urine – Untargeted  

This study aimed to identify urinary metabolites able to discriminate between a rested and fatigued state using 

untargeted and targeted metabolomic approaches. PCA is an unsupervised method which describes the 

metabolites that are showing the highest degree of variation in the model43. O-PLS-DA, on the other hand, will 

describe the metabolites that are related to the outcome (fatigue)43. Following the analysis of the PCA and 

OPLS-DA models, there was evidence of confounding effects on the variation observed in the model due to 

dilution effects, rather than sleep deprivation.  

 

Firstly, the spectral areas of significance highlighted by the first principal component loadings plot included 

peaks that belong to metabolites that are produced as a result of paracetamol metabolism ( 7-8 ppm44). 

During the study period, participants were requested to not consume any medication, caffeine or alcohol, 

Metabolite z value p value 

Acetone 0.43615 0.65994 

5-hydroxyindole acetic acid 1.16194 0.24604 

dopamine 1.10061 0.27134 

Oxaloacetic acid 0.0477 0.96012 



however this was not was feasible for participant ID 7, who had consumed 1000mg of paracetamol on day 2. 

The presence of high concentrations of paracetamol in samples of participant ID 7 explain the PCA scores 

distribution, with participant ID 7 forming a scores subcluster in PC2, separated from other individuals, driving 

the majority of the variance in the PC2 component. Samples of Participant ID 5 also showed outlier tendencies 

in the PCA scores as the spectra showed broad background signals, most likely due to the presence of proteins 

in the sample (blood contamination due to menstruation). These samples were not excluded from statistical 

analysis due to the small number of study participants (n = 9), however future studies may choose to exclude 

outlier samples like these as the contributed variance is unrelated to the study investigation and can introduce 

confounding variables. 

 

Secondly, the second principal component’s loadings plot shows minimal positional peak shifts (indicated by 

the peak distortions with zero-crossing in the loadings line plot), apart from the broad peak observed at 

5.75ppm. This peak belongs to urea, a metabolic end-product of amino acid turnover and the most abundant 

metabolite found in urine of healthy individuals45. Urea exchanges protons with water, so the urea peak is not 

quantitative and should be excluded for statistical analysis. Future studies should remove the spectral area 

which contains the urea peak and re-model the data. There was further evidence of dilution effects in the 

loadings of the OPLS-DA plot, which showed significant peaks in the 0-0.5 ppm, 1.5-2.5 and 8.5-9.5 ppm 

regions. These spectral regions are dominated by detector background noise (a normal phenomenon), and are 

usually insignificant in metabolomic studies as there are no peaks here that belong to metabolites. These 

regions being assigned high model important (red coloured in the loadings line plot), indicate that the 

background noise in the spectra is quite dynamic and is showing lots of variation between the samples, which 

is a characteristic signature of variation introduced with the normalisation process (low intensity/highly 

diluted samples are upscaled and high intensity spectra/highly concentrated samples are downscaled). 

Samples that were collected early in the morning were highly concentrated and showed high spectral peak 

intensities, however samples that were collected later in the day were very dilute and the resulting NMR 

spectra showed very low peak intensities. To account for this, Probabilistic Quotient Normalisation (PQN) was 

performed to scale all spectra to common statistical reference (median spectrum), and in doing so, the 

background noise in the spectra were scaled as well. Therefore, when investigating the PCA plot, the areas of 

significance were areas that should have only been baseline noise, due to all the differences that occurred 

when normalising the data to correct for dilution. Future studies may consider controlling participant’s uptake 

of water to control for sample dilution to avoid this issue. 

 

 



Dilution sensitivity is further supported in the 1.5-2.5ppm spectral area, which once zoomed in shows peaks 

affected by spectral shift (Figure 13), which are characterised by a blue starting colour at baseline level and 

transitioning to red towards the peak apex. Spectral shift is a commonly observed feature in urine NMR 

analysis and occurs as a result of minimal differences in pH and ionic strength across samples46. The pH of 

healthy human urine can range from 5.5-6.525, hence a pH buffer was added to the samples before NMR 

analysis, therefore in this instance the spectral shift observed is more likely a result of differences in ionic 

strength. In urine, ions such as Na+, Mg2+, K+ and Cl- are present in concentrations that are much higher than 

other compounds47. These ions can interact with metabolites in the urine and cause them to shift in their 

spectral regions, as observed in Figure 9. Differences in dilution will greatly impact the ionic strength in 

samples, as the more concentrated a sample is the greater the ionic strength due to the higher concentration 

of ions present.  

 

 

 

 

 

 

 

 

 

 

Due to the normalisation effects and contribution to variance in the multivariate models, the spectra were 

unsuitable for metabolite assignment and quantification. To avoid this, future studies may adopt a number of 

strategies. First, increasing the number of data acquisition scans during NMR analysis will significantly improve 

the signal-to-noise ratio of spectra from diluted samples. Each standard 1D spectrum represents the 

summation of 32 FID’s (“number of scans”), therefore it is recommended to increase the number of scans 

when working with samples where a large range in dilution is expected. Secondly, to reduce dilution related 

variation, the spectra may be normalised using urinary creatinine (UCr) concentrations rather than PQN. This 

is a commonly used method in clinical biochemistry to normalise analytes for quantification48. Creatinine is 

used as it is a waste product of metabolism and is continuously excreted in urine at a relatively constant rate, 

therefore the concentration of creatinine in the sample indicates the concentration of the urine48.  

 

 

 

Figure 13. OPLS-DA loadings zoomed in 1.5-2.5 spectral region 



4.2 Effect of Sleep Deprivation on targeted NMR and Mass Spectrometry Metabolites 

Due to the effects of dilution that was observed when normalizing the untargeted NMR data with PQN, the 

targeted metabolites that were quantified were immediately normalised to creatinine to control for this 

variation. The final metabolite panel comprised of all 18 MS metabolites, which can be attributed to the 

sensitivity of mass spectrometry. NMR spectroscopy on the other hand is not as sensitive, hence why it was 

only able to quantify 15 of the 50 metabolites that were under investigation. This, however, does not mean 

that the remaining 35 metabolites were not present in the urine samples, rather that they may have been 

present in concentrations lower than the detection limit of the NMR (< 0.01 mM). The PCA models generated 

from both the NMR and MS metabolites both appeared to be very outlier driven, resulting in very high variance 

scores. To increase the strength of further supervised analysis models, these outliers were identified, removed 

and a strong OPLS-DA was performed showing excellent model generalization capacity (indicated by the high 

cross validated AUROC of 0.90). The statistical significance of this model, however, requires validation as the 

study cohort size was fairly small (n = 9). The OPLS loadings plot highlight that urinary acetone, nicotinic acid 

and picolinic acid were elevated in fatigue samples, whereas dopamine, valine, citric acid and 5-

hydroxyindoleacetic acid was lower in the fatigue cohort. Of these 7 discriminating metabolites, however, only 

acetone, dopamine and hydroxyindole acetic acid were found to be statistically significant across both study 

groups using univariate testing by the Kruskal-Wallis non-parametric method. 

 

Acetone is a ketone body that is produced during lipolysis, the metabolism of lipid triglycerides49. When the 

body has exhausted all available glucose, such as during exercise or fasting, it will undergo lipolysis to convert 

lipids for its energy source49. In an effort to control diet related variables, the participants were requested not 

to eat any food from 9:30pm till 8:00am the following morning during the fatigue period. Whilst doing so, 

however, a different confounding variable was introduced – fasting. Previous studies50 have demonstrated 

that exhaled acetone concentrations in the breath underlie significant circadian rhythms, being increased 

overnight while sleeping, and therefore being in a fasted state, and decreased during the day when they were 

allowed to eat normally. It is evident that the high concentrations of acetone in the fatigue cohort is not 

primarily an indication of sleep deprivation, but rather a marker of the participants being in a fasted state.  

 

Dopamine is another metabolite that is regulated by circadian rhythm and plays a major role in the sleep-wake 

cycle by reducing the effects of norepinephrine51. Norepinephrine is a neurotransmitter which stimulates the 

release of melatonin, the key sleep inducing hormone51. Dopamine is therefore associated with wakefulness, 

hence why it is targeted by drugs that increase feelings of alertness, such as amphetamines, which work by 

increasing dopamine levels in the brain52. The decreased urine dopamine concentrations observed in the 

fatigue cohort in the present study reflects the sleep regulatory effects of dopamine, however in a similar 



urine NMR metabolomics study by DelRaso et al4, dopamine was found as not being significantly associated 

to sleep deprivation. The difference in results may be attributed to the analytical platform used, as this study 

quantified dopamine using Mass Spectrometry which is a far more sensitive and specific technique than NMR, 

the platform used by DelRaso et al4.   

 

5-hydroxyindoleacetic acid is one of the main metabolites of serotonin, another key neurotransmitter involved 

in the sleep-wake cycle53. Serotonin promotes wakefulness by inhibiting rapid eye movement (REM) sleep to 

bring the sleep cycle to an end54. As serotonin is produced via the metabolism of tryptophan, an essential 

amino acid that can be present in high concentrations in a number of different foods54. The decrease of 5-

hydroxindoleacetic acid in urine in the fatigue cohort observed in this study is assumed to reflect alterations 

to serotonin metabolism during sleep deprivation and not as a result of diet as all participants were given the 

same meals at the same time across the entire study period. As mentioned beforehand, there has been 

conflicting results from studies investigating fatigue biomarkers within the plasma metabolome as males and 

females have showed different responses to sleep deprivation. With this in mind, further univariate statistics 

were performed on the four significant metabolites highlighted above to investigate sex differences. The 

results of the Mann-Whitney U test highlighted no differences of statistical significance between the effects 

of sleep deprivation on males and females. This is a very promising result, highlighting the potential that the 

urinary metabolome has for the discovery of a universal biomarker of fatigue.  

 

5 Conclusion 

The objective of this study was to employ both a discovery metabolomics approach using NMR and targeted 

MS assay, to gain new knowledge on the effects of sleep deprivation on the urinary metabolome. The results 

of this study indicate that the urinary metabolome may be useful for identifying discriminatory biomarkers of 

fatigue that can be used in a forensic context for both males and females, however further investigation is 

required. Future studies should incorporate a larger number of participants, alternate normalisation methods 

to correct for dilution effects and minimize the confounding effects of fasting and urine dilution. As tryptophan 

is a precursor for the synthesis of key sleep modulators such as serotonin and melatonin, future studies could 

also investigate the effects of dietary tryptophan on sleep deprivation and whether it has an confounding 

influence on potential biomarkers.  
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