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Abstract

This research is motivated by the belief that skewness in security

returns is highly relevant to investors in long option portfolios.

Because options possess positively skewed distributions, the traditional

maxim of diversification, which can destroy positive skewness, may not

be consistent with investment objectives. This paper presents theoretical

justification for including skewness in evaluating option portfolios and

presents analytical measures of portfolio skewness as a function of

portfolio size. Our results indicate that the majority of skewness in

option portfolios is diversified away at a relatively small portfolio

size; however, the magnitude of nondiversifiable skewness is highly

significant. Even though options are shown to perform poorly relative

to stocks on a risk-return basis, their dominance once skewness is

considered indicates the suitability of options in an environment where

an investor's utility function is measured by the first three moments of

the return distribution.





INVESTORS AND SKEWNESS PREFERENCE IN OPTION PORTFOLIOS

I« Introduction

The modification of a portfolio's return distribution which is made

possible by call options requires that new thought be given to diversi-

fication in an option portfolio context. By making restrictive assump-

tions about investor utility, current financial theory explains security

valuation using the first two moments of return distributions. However,

the popularity of call options which have return distributions charac-

terized by low means, high variances, but large positive skewnesses ap-

pears to be inconsistent with mean-variance analysis.

This research is motivated by the belief that skewness in security

returns is highly relevant to investors in long option portfolios.

Because options possess positively skewed distributions, the traditional

maxim of diversification, which can destroy positive skewness, may not

be consistent with investment objectives. Supporting this thesis is the

observation that most retail option brokerage accounts which we surveyed

typically held five or fewer options at any point in time.

This paper presents theoretical justification for including skew-

ness in evaluating option portfolios and presents analytical measures

of portfolio skewness as a function of portfolio size. Based on several

years of security data, the behavior of option portfolio skewness mea-

sures for various stock price/exercise price ratios are examined and

compared. Our results indicate that the majority of skewness in option

portfolios is diversified away at a relatively small portfolio size;

however, the magnitude of non-diversif iable skewness is highly signi-

ficant. Even though options are shown to perform poorly relative to
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stocks on a risk-return basis, their dominance once skewness is consid-

ered indicates the suitability of options in an environment where an

investor's utility function is measured by the first three moments of

the return distribution.

II. Options and Investor Utility

Theory relating investor utility to common stock is contained in

previous literature [1, 4, 14, 16, 18, 28]. A brief review is necessary

to relate the importance of option skewness to investor utility.

It is generally assumed that investors seek to maximize expected

utility where utility is a function of investment return, R. Using a

Taylor series expansion, expected utility can be expressed as a function

of the moments about R:

i[.a)] - »[ia>] ,gai,' /"'ifi ,;2!
U
R 3! R

n,

+ + u"[E(R)] n
'••

n! °R
(1)

2
where E(r) is expected return, a is the variance about expected return,

R

o is the skewness about expected return and o is the nth moment
R R

about expected return. Even though the fourth and higher moments may

play some part in explaining investor behavior, their importance is still

unresolved. Our analysis will focus on the first three moments and their

importance to option investors.

At least three reasons have been given for ignoring skewness when

determining investor utility. First, if the utility function is quadratic,

the third and higher moments are zero. Criticisms of the assumption of

quadratic utility are contained in Jean [15] and Levy [17].
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Second, if the return distribution is normal, the third moment will

be zero. Previous studies of stock return distributions have provided

ambiguous results which leaves the normality assumption open to question.

Positively skewed stock return distributions are reported frequently in

the literature [3, 4, 28], but Fama [10] indicates that distributions of

continuously compounded rates of return sufficiently approximate nor-

mality. Still others [12, 15] have found the measurement of stock re-

turn skewness to be sensitive to the differencing interval as well as

the sample period. Regarding options, however, research [20, 24, 29]

consistently reports non-normal, positively skewed return distributions,

thus supporting inclusion of the third moment in equation (1)

.

Third, some argue that if risks are small, the third as well as

higher moments will be small and unimportant. Previous analyses of

options [20, 24, 29] report large deviations in returns and much greater

risk than their underlying securities. Omission of higher moments when

evaluating utility from options may provide incorrect conclusions.

When evaluating the impact of skewness on asset pricing, it is

necessary to consider together the first three moments of the return

distribution. Generally, it is accepted that investors exhibit a prefer-

ence for return, u'[E(R)] > 0, but an aversion to risk, u"E[(R)] < 0.

Given these relationships, it can be shown [1] that u'"[E(R)] > 0,

implying that investors have a preference for positive skewness and

should be willing to accept a lower expected return from an investment

having greater positive skewness, holding risk constant.

No empirical studies relating option returns to risk and skewness

have been reported. However, given the nature of empirical option return
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distributions, it seems apparent that rationale for option investment

must lie with the skewness of returns. Inclusion of skewness in the

investment decision necessarily complicates the process of utility

maximization since investors also should be concerned with return and

risk as well. In particular, since investors hold multi-asset port-

folios, an understanding of the behavior of option skewness with in-

creased portfolio holdings is necessary in establishing portfolio ob-

jectives .

The effects of diversification upon portfolio skewness can present

the option investor with a set of complex tradeoffs. In the next sec-

tion, we investigate the nature of these tradeoffs by analyzing the

effects of diversification upon three important elements of option port-

folio skewness

.

III. An Analysis of the Components of Option Portfolio Skewness

Traditionally, security skewness has been measured on an ex-post

basis by the skewness in the time series return distribution. In a

3
portfolio context, this skewness in return, a , on a portfolio of n

securities is:

_ n n n
a = E E E x.x.x, o. .. (2)
n .

t
. .. i j k ljk

1=1 j=l k=l J J

where x., x. and x, represent portfolio proportions invested in i, j and
i j k

k and a... indicates the coskewness between the time series returns on
ijk

i, j and k.

Under a policy of equal investment in each security, expected port-

folio skewness is expressed as:



-5-

E(o3) = (i) 2
(a

3 -a
ijk) + a..

k (3)

—3 —
where a is the average skewness for a one security portfolio and a..,

ljk
2

denotes the average security coskewness for the security population.

3
Ex ante, it is difficult to predict the effect on E(o ) of increasing

n

portfolio size since the signs as well as the relative magnitudes of

—3 —
a and a. ., are unique to each population. Thus, an empirical exam-

ination is necessary to measure the effects of portfolio size on the

positive skewness present in option return distributions.

Often overlooked [4, 8, 23, 28] in the analysis of skewness is that

the investor should not only be concerned with the mean portfolio skew-

3
ness, E(a ), but also with the dispersion about it. The greater the

variability among portfolio skews at a given portfolio size, the greater

the uncertainty concerning the skewness of the option portfolio actually

chosen by the investor. Since returns vary considerably across options,

omission of the variability consideration can result in a serious mis-

statement of the return and skewness expected by the investor.

Mathematically, this dispersion among portfolio skews is greatest

3when only one security is held and is zero when the market is held.

Combining this consideration with the possible effects of diversification

3
upon E(a ) presents the option investor with a tradeoff between reducing

n

the uncertainty about portfolio skewness vs. reducing the expected level

of skewness.

Finally, it can be argued that there is a third skewness consider-

ation facing option investors since for any portfolio smaller than the mark

there exists a probability that the average return on the portfolio will
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differ from the return earned by the market. Put differently, there is

a cross-sectional distribution of average returns. For options, this

distribution should be highly skewed since the maximum loss is restricted,

but the maximum return can be quite large due to the leverage involved.

The presence of positive cross-sectional skevness implies that diversi-

fication can reduce the upside average return potential of the portfolio

chosen. Cross-sectional skevness at any portfolio size is measured by equatio

(4):
4

2

E(7 - 7 )
3

= (i) 2
(l - \^)E(7. - T) 3

(4)
n N n . TZ .. l N

N — i

where: n = number of securities in the portfolio

N = number of securities in the market

E(r - r ) = skev.'ness of expected returns on portfolios of size n
n is

E(r. - r,J = skewness of the expected returns on the securities
1 Di

(r.) about the expected return on the market (r )

One motivation for option investment is the opportunity for abnor-

mally high returns from a small investment. Equation (4) indicates that

the probability of selecting a portfolio with an abnormally high average

return (relative to the market) is greatest when n=l and disappears when n=N.

The implications of this concept upon the diversification issue can best

be illustrated with the following example. Suppose the population con-

sists of only three options whose expected returns are -100%, -100% and

200%. Nov: suppose an investor randomly selects a portfolio comprised

of these securities. Even though the average expected return is 0%,

regardless if one, two or all three options are held, the upside return

potential differs significantly across the three portfolio sizes. At
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n=l, there is the opportunity to earn 200%, whereas when n=2 and n=3, the

maximum return potentials are 50% and 0%, respectively. Given the small

investment outlay, the option investor may be willing to trade some of

the reduction in return uncertainty to preserve the upside return poten-

tial and thus be motivated to hold a portfolio smaller than the market.

In summary, the option investor who is motivated by a preference

for positive skewness is faced with a complex set of tradeoffs when es-

tablishing an appropriate portfolio size. Unlike portfolio risk con-

siderations [9], the tradeoffs do not proceed in a consistent direction.

Having analyzed these relationships, we now empirically evaluate the

implications of these results upon option performance.

IV. The Data and Methodology

The sample chosen includes the 136 stocks having listed options

available on December 31, 1975. Securities not having complete price

data on the Compustat tapes over the period July 1, 1963 to December 31,

1978, were eliminated, resulting in 102 sample securities for analysis.

Although the choice of this particular stock group introduces a selection

bias in the study, these securities represent over one-third of the popula-

tion of listed option securities; thus, these results may be inferred to

the current universe of optionable stocks.

Since listed options were not available until 1973, six month option

premiums for the 102 stock sample were generated for the 15 1/2 year

sample period using the Black and Scholes pricing model (5)

:

C = Pi;(Dl) - Ke~
rt

N(D2) (5)
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where: Dl = [ln(P/K) + (r + | v
2

) t]/v/t

D2 = Dl - v/t

The beginning of period price, P, was obtained from the Compustat

tapes; time to maturity, t, was specified as 180 days; the daily equiva-

lent of the six month commercial paper rate was proxied for the risk-

2
free rate, r; and the variance rate, v , was estimated from the log of

daily price changes obtained from the CRSP tapes for the six months prior

to each option pricing date. The impact of dividends on the option pre-

mium was considered by reducing the stock price by the present value of

dividends paid during the life of the option (see [5]). The above data

were used to generate option premiums, C, across three exercise prices

(K) : 10 percent in the money (P/K=l.l), at the money (P/K=1.0), and 10

percent out of the money (P/K=.9).

Use of Black-Scholes beginning of period option premiums is believed

necessary to generate a sample period of sufficient length and to stan-

dardize the stock price/exercise price ratios. The similarity between

Black-Scholes model prices and actual premiums previously has been demon-

strated [20].

Semiannual returns (gross of commission costs) for each option for

the thirty-one six month periods were calculated by dividing the call

value at expiration by the beginning of period call value. Stock hold-

ing period returns include price appreciation plus dividends.

V. The Results

The objectives of the empirical analysis are threefold. First,

after a brief review of the return distribution statistics, we will
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examine the effects of diversification upon the positive skewness pre-

sent in option return distributions. Second, an assessment is made of

the implications of the variability in skewness and cross-sectional

skewness statistics. Finally, portfolio skewness will be integrated

with portfolio return and risk to evaluate the effects that increasing

portfolio size has upon the return performances of option portfolios.

Average Distribution Statistics for Alternative Portfolios

Table I presents return distribution statistics for the four secur-

ity groups examined. Line 1 reveals that average returns increase

(.066 to .210) as one moves from stocks to options with successively

higher prices, while total risk as measured by average security variance,

—2
a", increases from 6.969 to 759.347. That option portfolios contain a

great degree of systematic risk is shown by either the market portfolio

2 —
variance, c , or the average security covariance, a,, (lines 3 and 4).

—3 3 —
Total skewness (o ) and systematic skewness (o or o... ) data pre-

sented in lines 5, 6 and 7 show that all portfolios exhibit positive

skewness and implies that increasing portfolio size will cause portfolio

skewness to decline toward coskewness, or... (see equation (3)), for all

security samples.

— — 2
Cross-sectional variance, E(r. - r ) , line 8, and cross-sectional

skewness, E(r. - r„.) , line 9, are relatively small for stocks, but

become progressively greater for options. For example, for out of the

money options, the uncertainty about average return (line 8) is 23.024

which is over 100 times the size of the mean return of .210. Furthermore,

the skewness in this return distribution (line 9) is highly significant,

even after allowance for the dispersion in average returns. The large
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variance and skewness in option returns is attributable to a few contracts

which showed average returns of several thousand percent, while the majority

lost money.

Finally, lines 10 and 11 present evidence that there is also con-

siderable dispersion among option risks and skews as well. Data in

lines 8-11 serve as a caution to those attempting to assess the "typical"

option.

Evaluation of the data in Table I illustrates a return-risk disad-

vantage for option portfolios. Even though average returns increase

by approximately threefold from stocks to out of the money options

(.066 vs .210) average systematic risk increases 50 times (2.779 vs

141.567). The fact that average systematic skewness increases

in excess of 420 times (5.471 vs 2,313.971) is consistent with the

hypothesis that investors are willing to sacrifice expected return for

positive skewness in option portfolios. Since investors diversify

their holdings to modify portfolio return distribution characteristics,

it is instructive to examine the behavior of the elements of option

skewness in response to changes in portfolio size.

Diversification and the Components of Skewness

Using the skewness and coskewness data for each group in equation

(3) , the mean values of the time series elements of portfolio skewness

are presented in Table II. As noted earlier, since a > a... , diversi-
xjk

fication within this sample will reduce portfolio skew. Consequently,

96% of diversif iable skewness is destroyed with a five-security port-

folio and 99% is diversified with a ten-security portfolio, regardless

of the stock price/exercise price ratio considered. The rate at which
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Table II

Diversification and its Effects upon the Time Series Element of
Skevness of Alternative Stock and Option Samples

% of

Dive:rsif iable**
Portfolio Options,* Options,* Options,* Skewness
Size Stocks* P/K=l.l P/K=1.0 P/K=.9 Destroyed

1 30.17 4,596.45 18,929.70 143,519.29

2 11.65 1,460.76 5,408.11 35,304.22 75.0

3 8.21 880.08 2,904.11 17,993.16 88.9

4 7.01 676.84 2,027.71 11,128.45 93.8

5 6.46 582.77 1,622.06 7,951.07 96.0

10 5.72 457.34 1,081.20 3,714.56 99.0

20 5.53 425.98 945.98 2,655.43 99.8

3C 5.50 420.18 920.94 2,459.30 99.9

40 5.48 418.14 912.18 2,390.65 99.9

50 ' 5.48 417.20 908.12 2,358.88 99.9

102 (a"j[) 5.47 415.93 902.64 2,315.96 99.9

Minimum (a. ., ) 5.47 415.53 900.91 2,302.39 100.0

3,-3
C 10
N

.18 .09 .05 .02

"Calculated using equation (3) and lines 5 and 7 of Table I.

a
3

- E(a
3

)

** = ^r —
, any sample's % may differ slightly due to rounding.

o - a. ..
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total skewness approaches its minimum level is the same across all

strategies; however, the proportion of skewness which is destroyed via

3—3 3—3
diversification (1 - o /a ) differs across the groups. The ratio a„/a

N N

(last line, Table II) indicates that a substantial difference exists in

the correlation structures internal to the various security groups. Corre-

lation is greatest for stock returns and systematically declines as the

stock price/exercise price ratio declines. These results reveal that an

attempt to reduce portfolio risk via diversification will also destroy

portfolio skewness. Furthermore, this process is especially damaging in

the high-risk, highly skewed strategies— a result which may reduce the

utility from option investment.

The cross-sectional skewness, equation (4), is examined in Table

III. The data reveal that this element is positive for all four security

samples and dramatically increases as P/K declines. As seen in Table III,

increasing portfolio size rapidly reduces the positive skewness inherent

in the distribution of portfolio average returns. As previously discussed

the importance of this component of skewness can be gauged in terms of

how the diversification process affects investor return opportunities.

Since a considerable amount of uncertainty exists concerning the mean

return of the security chosen (Table I, line 8) , there is motivation to

diversify security holdings. Diversification, however, removes the

right tail of the portfolio mean return distribution, at a rate faster

than return uncertainty. Thus, choosing an appropriate portfolio

size involves a tradeoff between decreasing return uncertainty as

portfolio size increases, while reducing the probability of abnormally

high returns.
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Table III

Diversification and its Effects upon the Cross-Sectional Component
of Expected Skewness for Alternative Stock and Option Samples

Portfolio Options,* Options,* Options ,* % of Diversifiable :

Size Stocks* P/K-l.l P/K=1.0 P/K=.9 Skewness Eliminatec

1 .040 3.490 14.157 167.590

2 .010 .872 3.536 41.885 75.0

3 .004 .388 1.571 18.607 88.9

4 .003 .218 .883 10.459 93.8

5 .002 .139 .565 6.688 96.0

10 .001 .035 .140 1.660 99.0

20 .000 .008 .034 .403 99.8

30 .000 .004 .014 .170 99.9

40 .000 .002 .007 .089 99.9

50 .000 .001 .004 .051 99.9

102 100.0

^Calculated using equation (4) and line 9 of Table I.

2

N - 1
, any sample's % may differ slightly

E(r
i

- v 3

due to rounding.
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Finally, the impact that diversification has upon the variance in

skewness is illustrated in Table IV. Since this statistic equals line

11 in Table I when n=l and is zero when n=N, our purpose is to examine

the magnitude and behavior of this element as portfolio size is increased.

To do this, we randomly selected, with replacement, 1000 portfolios of

size 2, ... ,5,10,20, ... ,50. In each simulation, the same stream of random

numbers was generated to facilitate comparisons.

As shown in Table IV, a small amount of diversification quickly

reduces the uncertainty surrounding skewness. A portfolio of five se-

curities has reduced more than 98% of the variance in skewness for stocks

and more than 99% for option portfolios. But, due to the differences

in magnitudes of the numbers, percentage comparisons can be misleading.

For example, even though over 99% of the variance in skewness has been

eliminated with five out of the money options, the magnitude of this un-

certainty is more than 100 times the size of the mean level of skewness

(818,220.46/7951.07 = 102.9). On the other hand, at the five security,

this same comparison for stocks is only .008 (.05/6.46 = .008). On the

whole, diversification can be detrimental due to its effects on the time

series and cross-sectional elements, but beneficial in the reduction of

skewness uncertainty.

VI. The Performance of Option Portfolios

Our last consideration concerns the effects that increased portfolio

size has upon the investment performance of option portfolios. Traditiona

evaluation of performance uses the first two moments of the time series

return distribution—r./a., or return per unit of risk. For securities11 r

possessing skewed times series return distributions, a second value

—
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3 3
~./(c.) —skewness per unit or risk (or normalized skewness) can provide

additional information concerning investment desirability [1]. Increasing

values of normalized skew imply a benefit from diversification since the

reduction in risk is not offset totally by the reduction in positive skew-

ness. Dominant security positions are those investments which possess

greater values of both measures of performance.

To investigate the impact of diversification upon option portfolio

performance, we randomly selected, with replacement, 1000 portfolios of

size 2, ... ,5,10,20, ... ,50. For each portfolio, the above tine series mea-

— 3 3
sures were computed and then averaged to provide the E[r./a.J and E[o./(a.)

at each portfolio level. The size one and 102 values for these two

measures were computed directly from the sample data. The results are

presented in Table V.

Of course, E[r./o. ] is everywhere increasing with diversification

since portfolio expected return is constant but portfolio risk declines

as n increases. Stocks dominate options implying that the additional

risk from options is not adequately compensated by additional return.

The skewness/risk measure, however, shows options to be more desir-

able than stocks. The dominant strategy is out of the money options

with the other option categories performing well vis a vis stocks at

smaller portfolio sizes. Noteworthy is the divergent behavior cf the

normalized skewness measure. For the sample of stocks, skewness per

unit of risk increases with diversification. However, for options this

measure declines implying that reductions in risk are more than offset

by losses in skewness as portfolio size is increased.
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VII. Summary and Conclusions

This paper has examined both theoretically and empirically the im-

portance of skewness to holders of long option positions. Justification

for including the third moment when measuring option investor utility

is based on the arguments that (1) investor utility functions may not

be quadratic, (2) option return distributions exhibit large positive

skew and (3) relatively high risk exists in long option portfolios.

Three components of option skewness were presented and analyzed:

time series, cross-sectional and the variance in skewness. Because

diversification affects each component- differently, the investor faces

a complex set of tradeoffs when determining an optimal portfolio size.

For option portfolios, diversification reduces time-series and cross-

sectional skewness which is undesirable, while at the same time removes

uncertainty about portfolio skew. Maximization of investor utility re-

quires simultaneous consideration of the three components of skewness

along with portfolio return and risk.

Because of the considerable uncertainty regarding the parameters

of return, risk and skewness, an analysis of diversification can not

determine an optimal portfolio size, but can only demonstrate the

tradeoffs. Recent work [8] has demonstrated an optimization algorithm

incorporating return, risk and skewness for a universe of homogenous

assets; but, application of this technique to option portfolios appears

impractical due to the heterogeneous nature of these securities.

Since the diversif ication-skewness issue entails several tradeoffs,

it appears that a policy of some but not total diversification is optimal

fcr option investors. This conclusion is supported by the desirability
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of potentially skewed returns with small port-folios of options and the

observation that option investors contain retail rokerage accounts of

small undiversified portfolios.

Footnotes

X
In this paper we will use the term "skewness" to refer to a distri-

bution's raw third moment. We will use the phrase "normalized skewness"
to denote the raw third moment divided by the cube of the standard de-
viation.

2
An equal investment policy is optimal when one is unable to predict

future return distributions. A knowledge of the future return-risk-
skewness structure of returns implies that security weights can be ad-
justed to improve the parameter structures of portfolios.

For the derivation of (3), see [25, Appendix A], In essence, equa-
tion (2) can be decomposed into its skewness and coskewness components:

3 ? 3 3
.

? ?
n

O = L X.O.+ I L= L X.O". + l L L x.x.x, a. ..

11

i-1
1 X

i=l j-1 ta-1
X 2 ^ ljk

where ESZ excludes those terms where i=i=k. Setting x. = — for all i
, n

-}
nnn in

1 o . L Z E a. .,

, . -. . -3 1=1
x

,
- i=l .1=1 k=l

1Jk
. ... .

ana defining a = and a. .,
= —x , equation (3) is

n ilk 3J n - n

developed.

3
See [25, Appendix CJ.

4
See [25, Appendix D]

.

For example, the t statistic for out of the money option cross-
sectional skewness is 6.346, which is highly significant.

From Elton and Gruber [9, page 420], the variance about portfolio
1 n - 1 — — 2

expected return = -=-(1 - — r-)E(r. - r„) . A comparison reveals that
n N — 1 i W

reductions in this variable are more than offset by reductions in

cross-sectional skewness.
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