

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Determinación de Espesores en Pavimento Flexible para Mejoramiento de Carreteras usando Deflectómetro de Impacto (FWD) y ASSTHO 93, Combapata-Sicuani 2021"

TESIS PARA OBTENER EL TITULO PROFESIONAL DE: Ingeniero Civil

AUTORA:

Bach. Condori Enríquez, Kely Ruth (ORCID: 0000-0002-3357-7573)

ASESOR:

Ms.Ing. Aybar Arriola, Gustavo Adolfo (ORCID: 0000-0001-8625-3989)

LINEA DE INVESTIGACION:

Diseño de Infraestructura Vial

LIMA – PERU 2021

DEDICATORIA

Le dedico esta tesis con todo mi cariño a Dios, a mi familia y en especial a mis padres, a ellos que siempre estuvieron listos para brindarme su apoyo y prepararme para los retos que pone la vida.

AGRADECIMIENTO

A la universidad cesar vallejo, y a mi asesor Ms. Ing. Gustavo Adolfo Aybar Arriola por brindarme su conocimiento y contribuir en mi desarrollo profesional en cada paso de esta investigación.

A la empresa Construcción y Administración S.A, por otorgarme las facilidades de acceso al proyecto, experiencia fundamental adquirida en los estudios técnicos de la obra.

A las personas que me brindaron su apoyo e impulsaron con el desarrollo de la presente investigación, a mi amigo M.L. por brindarme sus conocimientos para que este gran esfuerzo sea realidad.

INDICE DE CONTENIDO

DEDICA	ATORIA	ii
AGRAD	DECIMIENTO	iii
INDICE	E DE CONTENIDO	iv
INDICE	E DE TABLAS	v
INDICE	E DE ILUSTRACIONES	v
RESUM	IEN	vii
ABSTR	ACT	viii
I. INTR	ODUCCIÓN	9
II. MAR	RCO TEORICO	5
III. ME	TODOLOGÍA	11
3.1.	Tipo y diseño de investigación	11
3.2.	Variables y Operacionalización:	11
3.3.	Población, muestra y muestreo:	12
3.4.	Tecnica e instrumentos:	12
3.5.	Procedimientos:	14
3.6.	Método de análisis:	14
3.7.	Aspectos éticos:	14
IV. RES	SULTADOS	15
Cá	álculo de variables estructurales	28
v. disc	CUSIÓN	48
VI. CON	NCLUSIONES	54
VII. RE	COMENDACIONES	56
REFER	ENCIAS BIBLIOGRAFICAS	57
ANEXO	OS	62
ANEX	(O 1. Matriz operacional de variables	63
ANEX	(O 2. Matriz de consistencia	64
ANEX	(O 3. Formato de juicio de expertos	66
ANEX	(O 4. Espesores de pavimento_ASSHTO 93	70
ANEX	(O 5. Determinación de CBR SN_ESAL	73
ΔNFX	(O 6. Estudio de Mecánica de suelos	82

INDICE DE TABLAS	
Tabla 1: Ensayos de mecánica de suelos realizados. Tabla 2. Resumen de resultados de ensayos de laboratorio. Tabla 3: Valores de CBR promedio ponderado y CBR característico de diseño	16 20 22 23 24 26 27 29 30 32 34 35 37 38 39 41 42
INDICE DE ILUSTRACIONES	
Ilustración 1: Estructura de pavimento existente y propuesta de reciclado	.21 .22 .25

Ilustración 6: Muestra la Deflexión Benkelman Normalizada	28
Ilustración 7: Módulo Resiliente del Tramo	29
Ilustración 8: Modulo Equivalente del Tramo	31
Ilustración 9: Número Estructural (SN act) obtenidos por retrocalculo por sector	
homogéneo	32
Ilustración 10: Concepto del Método de Diferencias Acumuladas	40
Ilustración 11: Comparación de numero estructural (SN) de refuerzo requerido y	
proporcionado	47

RESUMEN

El presente trabajo de investigación se desarrolló en la vía Cusco - Puno, iniciando en el km 1076+502 y continua en dirección sur este hacia el km 1112+170 con una longitud aproximada de 35.67 kilómetros, perteneciente a la ruta vecinal PE 3S, ubicada en la región de Cusco, con la finalidad de mejorar condiciones e índices de serviciabilidad de la vía a partir de la rehabilitación con el servicio de reciclado y recapeo del tramo Combapata - Sicuani, el cual conecta diferentes localidades de importancia para el desarrollo turístico y comercial.

Para mantener la comodidad, continuidad, fluidez y seguridad de la población, se procedió a realizar el diseño del pavimento flexible por medio de la metodología de retrocálculo obtenido del ensayo del deflectómetro de impacto FWD y la ASSHTO 93, determinando espesores de refuerzo para el tipo de intervención definida en los términos de referencia (base estabilizada y carpeta asfáltica) del proyecto. Desde un análisis deflectométrico de las deformaciones y deflexiones, para un determinado número estructural efectivo y geotécnicamente mediante variables obtenidas de laboratorio de suelos y del estudio de tráfico, dentro de los parámetros establecidos del Manual de diseño MTC 2014, para el cálculo de un numero estructural requerido por la ASSHTO 93, evaluando la capacidad estructural del pavimento. Lo que conllevara beneficios sociales atribuibles, como la reducción de costos operativos vehiculares y tiempos de viaje en beneficio de los usuarios, generando un impacto muy positivo en la logística de transporte.

Palabra Clave: Numero estructural efectivo, Numero estructural requerido, Deflectometría, Deflectómetro de impacto, Espesores, CBR y Esal.

ABSTRACT

The present research work was developed on the Cusco - Puno road, starting at km 1076 + 502 and continuing south east towards km 1112 + 170 with an approximate length of 35.67 kilometers, belonging to the PE 3S neighborhood route, located in the Cusco region, in order to improve conditions and serviceability indexes of the road from the rehabilitation with the recycling and repackaging service of the Combapata - Sicuani section, which connects different locations of importance for tourist and commercial development .

To maintain the comfort, continuity, fluidity and safety of the population, the flexible pavement design was carried out through the back-calculation methodology obtained from the FWD impact deflectometer test and the ASSHTO 93, determining reinforcement thicknesses for the type of intervention defined in the terms of reference (stabilized base and asphalt layer) of the project. From a deflectometric analysis of the deformations and deflections, for a certain effective structural number and geotechnically through variables obtained from the soil laboratory and from the traffic study, within the established parameters of the MTC 2014 Design Manual, for the calculation of a structural number required by ASSHTO 93, evaluating the structural capacity of the pavement. This will entail attributable social benefits, such as the reduction of vehicle operating costs and travel times for the benefit of users, generating a very positive impact on transport logistics.

Keywords: Effective structural number, Required structural number, Deflectometry, Impact deflectometer, Thicknesses, CBR and Esal.

I. INTRODUCCIÓN

La red vial del Perú está constituida por 27,000 kilómetros, de los cuales 22,436 Km han sido asfaltados hasta el presente año 2020 y en la actualidad el estado de estas vías ha ido cambiando, debido al crecimiento socio económico de la población, impulsando el incremento del flujo vehicular, generalmente las vías actuales existentes fueron construidas en décadas pasadas con criterios de diseño diferentes a los actualmente aceptados en la práctica. Y muchos de esos diseños se ha deteriorado, culminando su vida útil por muchos factores como al ser diseñados o por procesos constructivos, volumen de tránsito y cargas, etc. Por tanto, el transporte disminuye en eficiencia debido a que el conductor tiende disminuir la velocidad de tránsito, lo que con lleva al incremento de tiempos de viaje. Dificultando al desarrollo de la población que transita por esta carretera.

La carretera motivo del presente estudio pertenece a la ruta nacional PE 3S, cuyo recorrido tiene el punto de inicio km 1076+052 y punto final km 1112+160, y está ubicado entre las localidades de Combapata y Sicuani de la región Cusco, teniendo una extensión aproximada de 37 km, la superficie de calzada se compone de un pavimento de flexible construido por la década de 1990 y que ha tenido intervenciones diversas a lo largo de su periodo de servicio, en la actualidad presenta fallas estructurales, por razones que se asocian a su uso, diseño y construcción. Por la cual es necesario hacer la intervención de la estructura de pavimento existente en dicho estudio, la intervención consiste en el reciclado de la base existente para obtener una base estabilizada con emulsión y colocar una carpeta asfáltica. Con la finalidad de asegurar la transitabilidad de forma segura y eficiente de la población, siendo necesario plantear una nueva metodología, basado en el ensayo FWD, que es un ensayo no destructivo que permite obtener las propiedades de los pavimentos existente, este procedimiento de cálculo permitiría efectuar el diseño de intervención y mejorar la calidad del pavimento flexible frente a las exigencias de incremento de flujo vehicular, tipo de clima de la zona, etc.

1.1. Formulación del Problema:

1.1.1. Problema General

¿Cómo podemos utilizar la metodología de retrocalculo del ensayo (FWD) y la ASSHTO 93 para determinar los espesores de pavimento flexible de refuerzo?

1.1.2. Problemas Específicos

- ¿Cómo podemos determinar el CBR de diseño para el cálculo del número estructural de diseño requerido?
- 2. ¿Cómo podemos determinar el número estructural efectivo del pavimento actual usando el deflectómetro de impacto (FWD)?
- 3. ¿Cómo podemos determinar el número estructural de diseño requerido usando AASHTO 93 para el tráfico vehicular y CBR existente en la carretera en estudio?
- 4. ¿Cómo podemos sectorizar el tramo de la carretera para realizar el diseño de pavimentos?

1.2. Justificación de la Investigación.

El proyecto se lleva a cabo debido la necesidad de intervenir en la recuperación de las obras viales mediante la conservación periódica de la carretera: Combapata – Sicuani en entorno a su carpeta asfáltica, ya que actualmente gran parte de dicha vía presenta un deterioro, y es una vía importante que beneficia el crecimiento económico y social de la población. Razón por la cual se aplican nuevas tendencias en diseño de pavimentos y cálculo de espesores óptimos. El ensayo del deflectómetro de impacto (FWD), es una metodología de diagnóstico estructural no

destructivo, la cual permite conocer y evaluar el comportamiento estructural actual en que se encuentra la carretera de un pavimento flexible, para posteriormente realizar la conservación de la vía.

En nuestro país el estado de las vías ha ido perjudicando al usuario al momento del viaje, y esto sucede cuando el deterioro del pavimento es excesivo o éste ha fallado. Debido a esto es necesario implementar nuevas las metodologías de diseño de pavimentos, ya que el análisis estructural destructivo es demoroso y costoso, pero principalmente afecta el comportamiento y las condiciones estructurales de la vía. Esta intervención permitirá mejorar la serviciabilidad de la vía, a fin de mantener fluidez y seguridad de la transitabilidad vehicular; reduciendo costos y tiempos de viaje en beneficio de la población.

1.3. Objetivos:

1.3.1. Objetivo General.

Determinar los espesores de pavimento flexible utilizando la metodología de retrocalculo obtenido del ensayo (FWD) y ASSHTO 93.

1.3.2. Objetivos Específicos.

- Determinar el CBR de diseño usando manual de diseño de suelos, geología, geotecnia y pavimentos MTC 2014.
- Determinar el número estructural efectivo del pavimento existente usando la metodología del deflectómetro de impacto (FWD).
- 3. Determinar el número estructural de diseño requerido usando método AASHTO 93 para el tráfico vehicular y CBR existente en la carretera.
- Sectorizar la carretera usando los resultados de evaluación superficial (PCI), funcional (IRI) y estructural (deflectometría) de la carretera mediante el uso

de la técnica de diferencias acumuladas.

1.4. Hipótesis de la Investigación

1.4.1. Hipótesis General.

Los espesores de un pavimento flexible se pueden determinar utilizando los resultados de la evaluación por retrocalculo mediante ensayo de Deflectómetro de Impacto (FWD) y la metodología ASSHTO 93.

1.4.2. Hipótesis Específicas.

- Se puede determinar el valor de CBR de diseño, utilizando el criterio del Manual de diseño de suelos y pavimentos MTC 2014.
- 2. Se determina el número estructural efectivo del pavimento existente mediante el retrocalculo de los resultados de deflexiones del ensayo FWD.
- Se determina el número estructural de diseño requerido usando los resultados de ensayos de CBR y el estudio de tráfico aplicando el método de diseño de pavimentos AASHTO 93.
- Se sectoriza la carretera usando la técnica de diferencias acumuladas a partir de los resultados obtenidos de la evaluación funcional (IRI + Textura), superficial (PCI) y estructural (deflectometría)

II. MARCO TEORICO

2.1. Antecedentes Internacionales:

Para la caracterización del estado de unión de la subrasante con el deflectómetro de Impacto, Razali et (2018). Plantea la utilización de la medición de Impacto (FWD), para caracterizar el estado de la subrasante de un tramo de carretera de 4 Km en Pulau Pinang (Malasia), determinando el uso del FWD tiene ventajas para determinar el estado de la subrasante y para determinar el estado de daño de pavimentos, según los autores el nivel de deflexión es función de la estructura del pavimento y es influenciado por la resistencia o rigidez de las capas y el soporte de la subrasante.

Para el uso de los parámetros de la cuenca de deflexión de FWD, evaluando el nivel de red de pavimentos. Rabbi F. y Mishra D. (2019). Plantea la utilización de los parámetros del cuenco de deflexiones (DBP) obtenidos de los resultados del ensayo Deflectómetro de Impacto (FWD) en el estudio de 4 tramos de carretera en el estado de Idaho (Estados Unidos de Norteamérica), para evaluar el estado de los pavimentos, estos parámetros son similares a los utilizados por Fuente et al (2020). Encontrando que el análisis por DBP tiene la ventaja que no depende de los datos de espesores de pavimento.

Para el Análisis Inverso del Deflectómetro de Impacto con optimización de Levenberg – Marquadt. Raposo S. y Rowe G. (2019). Presenta el uso del deflectómetro de impacto (FWD) para evaluar y realizar el retrocalculo de las pistas de aterrizaje de 2 aeródromos localizados en la región central de Estados Unidos de América, esto con la finalidad de obtener el número de clasificación de pavimentos (PCN), determinando que para realizar el retrocalculo de los ensayos FWD la estructura de pavimento debe de ser previamente establecido.

Para el uso de datos del deflectómetro de peso descendente con Diseño Mecánico-Empírico y Análisis, según Smith K, Bruinsma J y Chatti K, (2017). En la revista de La Administración Federal de Carreteras (Federal Highway Administración o FHWA en inglés). Realiza un ambicioso proyecto para implementar los resultados de los ensayos Deflectómetro de Impacto (FWD) en la guía mecanistico empírico de pavimentos, los cuales se publicaron en tres volúmenes.

En el primer volumen publicado por la FHWA presenta los procedimientos de ensayos de deflexión de pavimentos y los procedimientos de retrocalculo son revisados tanto para pavimentos flexibles, rígidos y estructuras compuestas; en el volumen II presenta 6 casos de estudio, para pavimentos flexibles, pavimentos rígidos sobre base granular, pavimento rígido sobre base estabilizada, pavimento compuesto (mezcla asfáltica en caliente sobre pavimento de concreto) donde fueron usados para evaluar como las deflexiones FWD se puede utilizar en la rehabilitación de pavimentos usando la guía de diseño mecanistico-empírico; finalmente en el volumen III presenta las pautas de buenas prácticas para realizar los ensayos en estructuras de pavimentos existentes y como interpretar dichos resultados como parte del proceso de evaluación y rehabilitación del diseño mecanistico-empírico de pavimentos.

Para la evaluación estructural del pavimento, Cruz O. y Ocaña F. (2019). Realizaron esta investigación en su tesis analizando los cuencos de las deflexiones DBP del deflectómetro de impacto FWD, en 8 carreteras de la localidad de Usme, Colombia, las cuales fueron construidas de pavimento convencional. así mismo plantea que la realización de técnicas No Destructivas entre esos ensayos destaca la utilización de Deflectómetro de Impacto(FWD) la cual analiza la condición estructural interpretando las deflexiones generadas bajo cargas dinámicas que simula el impacto tránsito vehicular. determinando modelos matemáticos que relacionan las tecnologías atreves de parámetros e indicadores del estado estructural del pavimento, obteniendo números estructurales existentes y módulos resilientes y/o efectivos.

Para el cálculo Mecánico de Pavimentos, a partir de los ensayos NO Destructivos. Tavira J. (2016). Realiza esta investigación en sus tesis para el cálculo del análisis estructural, partiendo de los cuencos de deflexión (DBP) se tiene una apreciada información sobre el estado de la vía, ya que esta informa el módulo del estado de las capas. Realizando el estudio en la autovía 16 de Sevilla-Utrera y utilizando el deflectómetro de impacto (FWD) y Georradar (GPR), para detectar módulos de capa firme comparando entre dos métodos de evaluación mecanistico (calculo directo e inverso) obteniendo valores razonables más próximos a los espesores de las explanadas.

Para determinar los factores de ajuste de los módulos por retrocalculo en pavimentos flexibles Edwin A. (2017). Realiza esta investigación en su tesis, en el cual bosqueja dos técnicas para evaluar la capacidad estructural del pavimento, en un tramo localizado en el departamento de Cundimarca- Colombia. En la primera técnica se obtiene el módulo resiliente y equivalente de las diferentes capas mediante retrocalculo usando el cuenco de deflexiones obtenido con el ensayo de (FWD) y en la segunda determina la capacidad estructural del pavimento a partir del módulo de la sub rasante y la deflexión máxima medida con el FWD. Las cuales deben ser ajustadas a sistemas de carga y condiciones ambientales, mencionando que las deflexiones del pavimento son dependientes de variaciones ambientales.

2.2. Antecedentes nacionales:

Para el diseño estructural del pavimento flexible en el distrito de la victoria – Lambayeque, Zúñiga O. (2018). Realiza esta investigación en su tesis plantea el diseño estructural de un pavimento flexible con medida de reconstrucción, permitiendo el flujo normal del tránsito vehicular y la comodidad de los usuarios , a partir de los datos obtenidos por el ensayo del deflectómetro de impacto (FWD), realiza el cálculo de módulos resilientes y equivalentes de la sub rasante y define sectores similares, también menciona que para diseño del pavimento debe determinar un número estructural requerido, considerando el análisis topográfico, estudio de tráfico vehicular y de mecánica suelos, proyectando a un periodo de

vida útil, como resultado se propone dimensiones de espesores de la capa del componente estructural del pavimento mejorando la perspectiva de la vía.

Para la determinación de la condición y serviciabilidad de la vía bajo la evaluación deflectométrica, Álamo W. (2018). Realiza esta investigación en su tesis evaluando las deflexiones del pavimento flexible determinando su condición e índice de serviciabilidad idónea, mostrando un perfil técnico de diseño en cual cumple con la normativa, por el contrario, analizando los procedimientos constructivos se observa daños y/o fallas. el autor se utiliza otros procedimientos de prueba para determinar la causa del deterioro severo y el de la deflexión del pavimento, realizando ensayos no destructivos como es el método del PCI, que determinar fallas y hundimientos, también utiliza ensayos de georradar (GPR) que determina el espesor del paquete estructural y por último efectúa la evaluación de deflectómetro de impacto (FWD), determinando deflexiones y deformaciones en el pavimento, siendo estos datos más confiables. Obteniendo como resultados de acuerdo con el PCI que el pavimento se encuentra en estado regular, con el georradar determino que el valor del espesor es de 52 cm y finalmente con la evaluación deflectométrica (FWD) obtuvo los módulos de resilientes de 50 y 57 Mpa para los diferentes carriles.

Para determinar el refuerzo de la carretea bajo en enfoque deflectométrico, Ocmin A. y Ramos C. (2019). Realiza la investigación en su tesis examinando los componentes que están afectando la deflexión del pavimento flexible, con el objeto de decidir la predominación del refuerzo en la vía, por medio de la metodología AASHTO 93. resaltando la teoría de Boussinesq, utilizado para el cálculo de la tensión, deformación y deflexión aproximadas del terreno de fundación y estima un numero estructural efectivo o actual mediante el retrocalculo del uso del ensayo del deflectómetro de impacto (FWD), obteniendo valores que muestran que el espesor se reduce significativamente, en cualquier caso, teniendo en cuenta la composición del suelo, los componentes de la carga y los factores climáticos. colocando aproximadamente en un 52%, 12% y 3% del espesor de la capa de refuerzo, respectivamente, lo que confirma que tiene efecto sobre la determinación del diseño de la estructura de la vía.

Para la evaluación del MR Fundamentado en la deflectometría y la geotecnia Rodríguez J (2020-) realiza esta investigación en su tesis para el terreno de fundación y del componente estructural del pavimento, basándose en la medición de impacto y en los estudios geotécnicos, para la incorporación de pavimentos reutilizados. El cual identifica deflectométricamente valores altos de los módulos comparados por los obtenidos por el estudio geotécnico, debido a la existencia de relevantes espesores existentes de las capas del pavimento, no llegando a ser detectados por el ensayo FWD dando la necesidad de deducir resultados del procedimiento geotécnico, siendo este un análisis necesario al aporte real del componente de la estructura del pavimento. Comparando ambos procedimientos el autor llega a la conclusión que el diseño del espesor por deflectometría es menor que el propuesto por geotecnia por ende el costo de la inversión es mínimo por deflectometría y recomienda comparar diseños mediante el módulo de resilencia.

2.3. Glosario de términos:

El pavimento se define como "una composición de numerosas capas (carpeta asfáltica, base, sub base y rasante) y está construida sobre la sub rasante del terreno natural, el cual se diseña para sostener y repartir esfuerzos producidos por el tránsito de los vehículos, mejorando las condiciones para el tránsito del usuario". Según el MTC (2014, pág. 23)

La ASSHTO define como ESAL, "al impacto del daño provocado sobre la estructura del pavimento por un eje estándar compuesto por dos ruedas con una carga dinámica de 8.2 tn, con neumáticos bajo de presión de 80 *lbs/pulg*², el cual es proyectado para un periodo de diseño". Según el MTC (2014, pág. 78)

La deflectometría se define como "el análisis de las deformaciones o hundimientos verticales de la superficie de la carretera, debido a la acción de una carga o fuerza específica". Según el MTC (2014, pág. 197)

La deflexión es el valor de la deformación vertical del compuesto "plataforma – calzada", con respecto a una carga determinada y representa el decaimiento de la resistencia del pavimento frente al tránsito de vehículos. Según el MTC (2014, pág. 197)

Las fallas superficiales se definen como "las deficiencias de la superficie de la calzada, que solo se originan a nivel de la carpeta asfáltica y no alberga iteración con la composición del pavimento, regularizándose con la intervención de freseado o recapeo de la capeta asfáltica, por lo contrario, con las fallas estructurales que son deficiencias originadas en la composición estructural del pavimento, siendo necesario la rehabilitación o reconstrucción". Según el MTC (2014, pág. 195)

El refuerzo de los pavimentos debería producir mejoras con respecto a su vida útil, frente al impacto del incremento tráfico vehicular, con una serviciabilidad idónea y con el presupuesto de conservación rutinaria o periódica correspondientes al tipo de vía. Según el MTC (2014, pág. 193)

La rehabilitación superficial del pavimento, consta "en restablecer de sus características superficiales, no posee la intención de incrementar la resistencia, aunque en definidos casos puede mejorar sus desempeños". Según el MTC (2014, pág. 201)

El CBR es un "parámetro que determina la capacidad de resistencia de un suelo, y se cuantifica por la aplicación de una fuerza a un volumen de muestra, utilizado principalmente para la determinación del diseño de pavimentos". Según el Glosario de Términos del MTC (2014, pág. 7)

El Modulo resiliente se define como "la medición de la rigidez del suelo, y se usa una ecuación relacionada con el valor del CBR de diseño para calcularlo". Según el MTC (2014 pág.153)

III. METODOLOGÍA

3.1. Tipo y diseño de investigación

Tipo

Es explicativa - correlacional, porque se analiza la relación entre los resultados obtenidos del laboratorio del suelo, desde la perspectiva geotécnica y deflectométrica, para determinar el espesor de la base estabilizada a reforzar. Según Fidias G. Arias (2012, pág. 25)

Diseño

Es No experimental debido a que se obtiene los datos de campo de los estudios de deflectometría y CBR de diseño, procesados en gabinete, sin alterar alguna variable. Según Fidias G. Arias (2012, pág. 31)

Enfoque

Se puede afirmar que la investigación tiene un enfoque de tipo cuantitativa, puesto que es realizada con la finalidad de recolectar una cantidad de datos gracias al empleo de una medición numérica. Según Fidias G. Arias (2012, pág. 58)

3.2. Variables y Operacionalización:

- Variable Dependiente: Mejoramiento de la Carretera.
- Variable Independiente: Determinación de Espesores en Pavimento Flexible.

Se adjunta en el anexo 1, la matriz de Operacionalización de variables.

3.3. Población, muestra y muestreo:

Población

Es una agrupación limitada o ilimitada con propiedades usuales, donde las conclusiones serán extensas. Según Fidias G. Arias (2012, pág. 81)

Para la investigación la población es la vía pavimentada (35.67 km), correspondiente al tramo Combapata - Sicuani del proyecto, de la región de cusco.

Muestra

Es una sub agrupación representativa e limitada, el cual es extraída de la población accesible. Según Fidias G. Arias (2012, pág. 83)

La muestra corresponde 1 km de vía pavimentada comprendida entre la progresiva de inicio km 1076+502 (Pte. Combapata) a la progresiva final km 1112+169.45(Pte. Enrique P. Mejía) de la Ruta Nacional PE-3S (red vecinal según la SINAC 2016) en el departamento de Cusco.

Muestreo

Se seleccionó a criterio de los estándares nacionales y conforme con los términos del proyecto.

El muestreo es no probabilístico. Según Fidias G. Arias (2012, pág. 85)

3.4. Tecnica e instrumentos:

Técnica

La técnica que se empleada para la investigación, se realiza recolectando datos y/o

información de los formatos y resultados proporcionados por Construcción y Administración S.A. correspondientes al estudio tráfico vehicular, evaluación de pavimentos (PCI, IRI + Textura y deflectometría) y el estudio geotécnico, de acuerdo a las determinadas exigencias de los manuales del MTC. Según Fidias G. Arias (2012, pág. 67).

Instrumento

Los instrumentos de recolección de datos pueden ser formatos para almacenar información. Según Fidias G. Arias (2012, pág. 68).

Los instrumentos son:

- Fichas y/o formatos con datos de laboratorio (CBR diseño)
- Fichas y/o formatos con datos recolectados del estudio de tráfico vehicular (ESAL diseño)
- Formatos con datos recolectados de la Evaluación de pavimentos (Deflectometría)
- Materiales y equipos de oficina técnica.

Validez y confiabilidad

Se empleó el criterio de juicio de expertos, con lo cual el instrumento propuesto fue sometido a la valoración por expertos quienes juzgaron la capacidad de este instrumento de poder evaluar realmente las variables en estudio.

Las mediciones de los datos serán exactas, y esto debido a que los diferentes ensayos cumplen con los estándares de calidad de la evaluación de las muestras. Según Fidias G. Arias (2012, pág. 135)

3.5. Procedimientos:

Se han realizado los diferentes estudios:

- Estudio de tráfico.
- Estudio de suelos
- Evaluación estructural.

Para determinar el espesor de base estabilizada mediante las metodologías de retrocalculo y ASSTHO 93.

3.6. Método de análisis:

Para el desarrollo de la presente investigación, se ha empleado la recolección de datos que han sido analizados de los diferentes estudios, teniendo presente el método de retrocalculo y AASTHO 93.

3.7. Aspectos éticos:

La investigación expuesta se desarrolla cumpliendo con valores y principios éticos, respetando la propiedad literaria. Asimismo, se cumplió con la normativa del ministerio de transportes y comunicaciones y el reglamento interno de investigación de la Universidad. Es importante mencionar que se ha cumplido con todo lo establecido por el estilo ISO 690.

IV. RESULTADOS

Seguidamente, detallo el resultado del objetivo específico 1, que fue determinar el CBR de diseño usando Manual de diseño de suelos y pavimentos del MTC 2014.

Se realizó la ejecución de 74 calicatas a cielo abierto cada 500 metros a lo largo de la vía, de acuerdo con la reglamentación de MTC, especificaciones técnicas 93 de las cuales se obtuvieron las diversas unidades de muestra, las mismas que se realizaron de manera alternada en los carriles de la carretera.

Para la presente memoria de cálculo se consideraron los resultados de 18 calicatas en las que se determinaron los valores de CBR al 95% de compactación, describiendo los materiales y espesores de la estructura del pavimento.

- Se realizó la elaboración de programas de exploración y reconocimiento de campo, para la determinación de las características del suelo según la normativa del ministerio de transportes y comunicaciones.
- Se proyectó la excavación de calicatas, con una profundidad máxima de 2.20 metros, profundidad siempre que la naturaleza del terreno lo permita.
- Luego de la extracción de muestras representativas se prosiguió el estudio de laboratorio, realizándose las siguientes pruebas:

Tabla 1: Ensayos de mecánica de suelos realizados.

NOMBRE DEL ENSAYO	USO	MÉTODO AASHTO	ENSAYO ASTIM	NORMA MTC
Contenido de Humedad	Clasificación y Compactación	T 265	D 2216	MTC E 108
Análisis Granulométrico	Clasificación	T 88	D 422	MTC E 107
Límite Líquido	Clasificación	T 89	D 4318	MTC E 110
Límite Plástico	Clasificación	T 90	D 4318	MTC E 111
Clasificación SUCS	Clasificación	-	D 2487	-
Clasificación AASHTO	Clasificación	M 145	D 3282	-
Proctor Modificado	Caracterización	T 180	D 1557	MTC E 115
CBR	Compactación	T 193	D 1883	MTC E 132

Mediante los datos obtenidos de los estudios de campo y pruebas de laboratorio, se clasifico los suelos, en base a los sistemas SUCS y AASHTO, con el objetivo de analizar y correlacionar los suelos y elaborar el perfil estratigráfico del terreno de fundación, asimismo se presentó los resultados de los ensayos de relación de soporte (CBR) al 95 % de compactación.

La tabla 2, muestra los resultados de las pruebas de laboratorio:

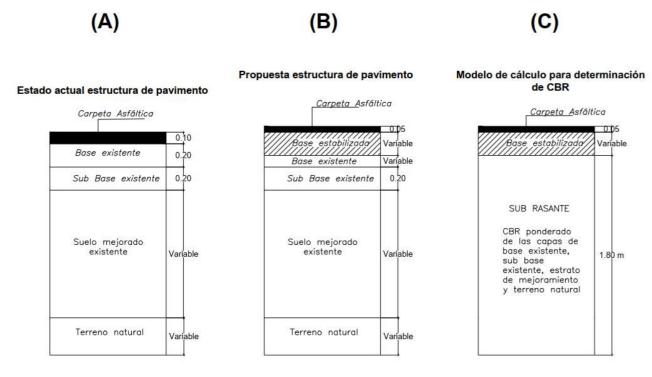
Tabla 2. Resumen de resultados de ensayos de laboratorio.

				LIMITE	S DE CONSIS	STENCIA	PRO	PROCTOR CBR		BR	CLASIFICACION		
NUME RO DE CALI CATA	PROG. (Km)	N° MUESTRA	HUMEDAD NATURAL %	LIMITE LIQUIDO	LIMITE PLASTICO	INDICE DE PLASTICI DAD	DENS IDAD MAX. SECA (gr/c m3)	OPTI MO CONT . DE HUME DAD (%)	CBR DE LAB. 95%	CBR DE LAB. 100%	sucs	AASHTO	INDIC E
		M- 1	2.7	19.23	18.33	0.9	2.261	6.1	26.50%	48.00%	GM	A-1-b	0
C-08	1080 + 050	M- 2	2.9	21.13	15.38	5.75	2.252	7.07	24.10%	43.80%	GM- GC	A-1-b	0
		M- 3	3.9	22.58	15.38	7.2	2.007	6.19	16.30%	30.20%	SC	A-2-4	0
C-12	1082 +	M- 1	4.1	20.7	13.86	6.84	2.272	6.26	18.00%	33.40%	SM- SC	A-2-4	0
0-12	050	M- 2	5.7	24.26	13.95	10.31	1.987	7.42	3.70%	13.70%	SC	A-6	-1
		M- 1	2.5	18.32	16.91	1.4	2.249	6.41	19.90%	37.10%	SM	A-1-b	0
C-14	1083 + 050	M- 2	10	20.56	12.02	8.54	2.249	7.91	21.70%	31.20%	GP- GC	A-2-4	0
		M- 3	5.3	29.42	15.35	14.08	1.956	12.37	4.50%	8.50%	SC	A-2-6	0
	1085 + 050	M- 1	2.4	0	NP	NP	2.281	6.46	35.10%	46.40%	GW- GM	A-1-a	0
C-19		M- 2	7.2	18.39	15.88	2.51	2.275	6.56	19.80%	34.00%	SM	A-1-b	0
0-13		M- 3	12.2	27.47	17.89	9.59	2.249	7.26	17.50%	33.10%	GC	A-2-4	0
		M- 4	21.6	35.45	18.17	17.28	1.953	13.37	2.50%	4.70%	CL	A-6	-11
		M- 1	3.8	15.77	NP	NP	2.197	6.55	31.00%	41.40%	SP- SM	A-1-b	0
C-23	1087 +	M- 2	5.6	16.6	15.57	1.03	2.267	6.37	13.90%	24.70%	SM	A-1-b	0
0-23	050	M- 3	6.1	16.65	15.57	1.08	2.26	6.42	16.60%	29.60%	SM	A-2-4	0
		M- 4	12.3	21.46	16.25	5.2	2.003	10.81	2.30%	4.40%	SM- SC	A-2-4	0
C-25	1088 +	M- 1	5.3	18.51	12.83	5.68	2.104	9.45	26.20%	42.40%	GM- GC	A-1-b	0
0.23	050	M- 2	8.8	16.49	15.1	1.4	2.032	11.28	3.60%	4.70%	ML	A-4	-5
		M- 1	2.9	15.98	15.85	0.12	2.253	6.88	21.30%	39.90%	GP- GM	A-1-a	0
C-27	1089 + 050	M- 2	2.6	19.61	15.04	4.57	2.238	6.76	21.40%	38.80%	SM- SC	A-1-b	0
		M- 3	36	26.21	16.35	9.85	1.953	12.81	2.50%	3.30%	CL	A-4	-6

					LIMITES DE CONSISTENCIA			PROCTOR		CBR		CLASIFICACION		
NUME RO DE CALI CATA	PROG. (Km)	N° MUESTRA	HUMEDAD NATURAL %	LIMITE LIQUIDO	LIMITE PLASTICO	INDICE DE PLASTICI DAD	DENS IDAD MAX. SECA (gr/c m3)	OPTI MO CONT . DE HUME DAD (%)	CBR DE LAB. 95%	CBR DE LAB. 100%	sucs	AASHTO	INDIC E	
		M- 1	3.7	15.74	14.25	1.49	2.276	6.52	24.80%	44.40%	GP- GM	A-1-a	0	
C-29	1090 + 050	M- 2	4.8	19.38	14.25	5.13	2.098	8.69	32.30%	60.70%	GP- GC	A-1-a	0	
		M- 3	5.7	26.04	16.36	9.68	1.998	12.01	4.70%	8.90%	SC	A-4	-3	
		M- 1	4.2	18.52	15.54	2.98	2.249	6.49	22.20%	37.10%	SM	A-1-b	0	
C-33 - A	1092 + 280	M- 2	9.6	21.09	14.24	6.85	2.254	7.12	23.80%	39.70%	GM- GC	A-2-4	0	
		M- 3	36.6	12.01	NP	NP	1.835	20.93	6.60%	11.00%	SM	A-1-b	0	
		M- 1	2.6	21.05	14.25	6.81	2.251	7.08	32.10%	54.50%	GM- GC	A-2-4	0	
C-35	1093 + 050	M- 2	3.1	16.77	14.5	2.26	2.238	6.78	19.40%	35.60%	SM	A-1-b	0	
		M- 3	20.8	26.44	17.89	8.55	1.936	12	7.40%	10.00%	SC	A-4	-2	
		M- 1	10.9	18.02	14.86	3.16	2.253	6.51	26.00%	43.80%	GM	A-1-b	0	
C-38	1094 + 550	M- 2	21	36.17	22.28	13.89	1.944	11.42	8.20%	14.60%	CL	A-6	-7	
		M- 3	16.8	25.35	16.27	9.08	2.035	9.48	9.80%	16.70%	CL	A-4	-4	
		M- 1	2.5	16.11	14.42	1.69	2.272	6.07	23.70%	42.10%	SM	A-1-b	0	
C-39	1095 + 050	M- 2	1.5	19.36	12.7	6.66	2.245	6.88	24.90%	45.30%	GM- GC	A-2-4	0	
		M- 3	27.1	42.08	20.45	21.63	1.872	13.29	3.50%	6.30%	CL	A-7-6	-11	
	1097 + 500	M- 1	1.9	17.05	14.11	2.94	2.253	6.45	22.10%	36.70%	SM	A-1-b	0	
C-44 - A		M- 2	3.3	17.28	15.11	2.17	2.261	6.24	18.70%	30.20%	SM	A-1-b	0	
		M- 3	17.3	36.3	21.96	14.34	1.836	15.01	7.70%	13.50%	CL	A-6	-9	
		M- 1	2.5	15.69	14.91	0.78	2.255	6.92	22.80%	42.10%	GP- GM	A-1-a	0	
C-55	1103 +	M- 2	2.9	13.25	NP	NP	2.239	6.91	22.30%	40.20%	GP- GM	A-1-a	0	
U-55	050	M- 3	14.9	23.02	15.36	7.66	1.913	12.78	2.10%	4.20%	CL	A-4	-3	
		M- 4	10.3	28.55	18.09	10.46	1.922	12.51	1.10%	2.10%	CL	A-6	-8	
		M- 1	1.8	15.43	13.54	1.89	2.24	6.92	23.50%	40.80%	GM	A-1-b	0	
C-57	1104 + 050	M- 2	2.5	15.97	15.4	0.57	2.263	5.08	37.70%	72.80%	GP- GM	A-1-a	0	
		M- 3	13.9	29.01	20.89	8.12	1.827	14.05	11.30%	19.30%	GC	A-2-4	0	
		M- 1	2.6	19.36	13.79	5.56	2.25	6.22	47.70%	63.80%	SM- SC	A-1-b	0	
C-61	1106 + 050	M- 2	5.6	17.6	15.31	2.29	2.266	6.75	20.90%	34.10%	SM	A-1-b	0	
		M- 3	13.6	31.03	19.75	11.28	1.998	12.56	3.80%	5.50%	CL	A-6	-5	
		M- 1	2.5	19.55	13.48	6.07	2.259	6.57	19.60%	34.60%	SM- SC	A-2-4	0	
C-63	1107 + 050	M- 2	12.9	23.21	15.47	7.74	2.184	8.56	12.30%	22.10%	SC	A-4	-3	
	vov	M- 3	5.9	24.7	16.72	7.98	2.184	8.5	12.90%	19.80%	SC	A-2-4	0	
		M- 1	3.6	15.2	12.43	2.76	2.05	8.68	41.80%	69.20%	SW- SM	A-1-a	0	
C-71	1111 + 050	M- 2	4.4	18.68	12.44	6.24	2.252	7.04	24.40%	42.10%	GM- GC	A-2-4	0	
	303	M- 3	8.5	23.4	15.17	8.23	2.306	5.91	37.60%	77.80%	GC	A-2-4	0	

Obtenido los datos de la capacidad de soporte es muy importante tomar en cuenta los sectores donde se tenga baja capacidad de soporte, generalmente se presentan donde existen materiales de granulometría fina en su composición como limos y arcillas. Se considera una subrasante pobre o de baja calidad a todos aquellos que poseen un valor de CBR menor a 6%.

De acuerdo con la sectorización multiparametro se pudo determinar tres sectores homogéneos, el mismo que se detalla en el siguiente cuadro:


Cuadro 1. Sectores homogéneos determinados por sectorización multiparametro.

SECTOR	PROGRESIVA INICIO	PROGRESIVA FINAL		
1	1076+519	1080+500		
2	1080+500	1102+000		
3	1102+000	1112+240		

Fuente: Elaboración propia

Definimos la subrasante con base en criterios de diseño (rasante) y características de estos suelos que se presenta en el punto de estudio, definiéndose también cuadros de resumen de las pruebas de laboratorio y los perfiles estratigráficos,

Ilustración 1: Estructura de pavimento existente y propuesta de reciclado.

Para la determinación del Numero Estructural de diseño requerido es necesario como parámetro de entrada el valor de CBR de diseño, por tanto, para su determinación se usó el procedimiento de ponderar los CBR de los estratos de suelo encontrados en las calicatas, en la ilustración 1 se muestra la estructura actual de pavimento, propuesta de reciclado y el modelo de cálculo, determinando valores de CBR de diseño, nótese que el nuevo nivel de la subrasante esta inmediatamente debajo de la capa base estabilizada con emulsión, el espesor total de esta subrasante es de 1.80m.

Se determinó el valor del CBR de diseño para la subrasante, considerando los criterios del manual de suelos y pavimentos del MTC 2014, que define los siguiente:

Cuadro 2. Criterio de determinación del valor de CBR de diseño.

Valor de CBR	Criterio
≥ 6	* Se promedia un total.
< 6	* si son parecidos o similares se promedia un total. * si no son parecidos o similares se toma en cuenta el más crítico.

La tabla 3, muestra los resultados del CBR diseño determinado de acuerdo al criterio previamente descrito, se puede observar que la subrasante en el sector 1 es muy buena, en tanto que los sectores 2 y 3 se tiene una sub rasante buena.

Tabla 3: Valores de CBR promedio ponderado y CBR característico de diseño

SECTOR	CBR de diseño
1	22.07
2	11.47
3	12.96

Fuente: Elaboración propia

Seguidamente se detalla el resultado del objetivo específico 2 que fue determinar el número estructural efectivo del pavimento existente usando el método de retrocalculo del deflectómetro de impacto (FWD).

Se calcula partiendo de las deflexiones obtenidas en campo, realizando el procesamiento de la información, para normalizar las deflexiones de carga y temperatura, mediante el método de la ASSHTO, con dicha información y teniendo los espesores existentes de campo, se lleva a cabo el retrocalculo de los parámetros obteniendo el número estructural efectivo actual *SN eff* del pavimento.

La estructura actual del pavimento está compuesta por una capa de material granular y carpeta asfáltica, la cual se encuentra con alto deterioro. Adicionalmente, el valor del IRI promedio de 5.7 m/km para el tramo, existiendo valores de hasta 8.9 m/km que se corresponden con la condición de la vía.

A continuación, se presenta en gráficos y tablas de las deflexiones obtenida en campo.

Deflexiones normalizadas por Carga y Temperatura

Las deflexiones obtenidas son normalizadas y estandarizadas bajo una carga de 40KN, según la metodología AASHTO 93.

La ilustración 2, muestra la tendencia del valor promedio de las deflexiones centrales del presente tramo.

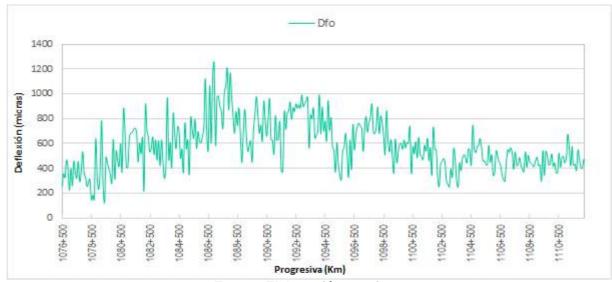


Ilustración 2: Distribución de la deflexión central normalizada a 40 kN.

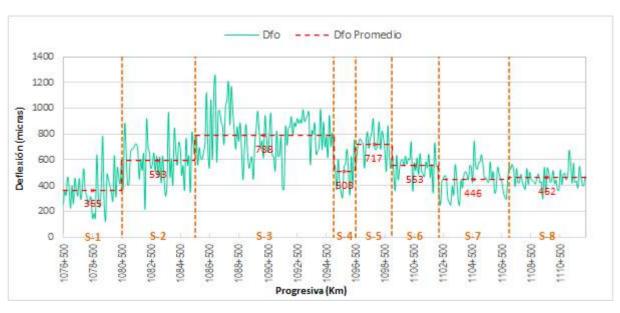
Fuente: Elaboración propia

En el deflectograma mostrado, se observa la distribución de las deflexiones centrales obtenidas por la medición de impacto (FWD) normalizadas a 40 kN, mostrando que el 95% de los valores de las deflexiones se encuentran en el rango de 200(1/1000mm) y 1000(1/1000mm). Asimismo, se aprecia que el valor más alto de las deflexiones se encuentra en el Km 1086+900, cuyo valor de deflexión es de 1247(1/1000mm). El promedio general para todo el tramo es de 581(1/1000mm).

Zonas Homogéneas

Analizando las tendencias de las deflexiones y aplicando la metodología de diferencias acumuladas de la guía ASSHTO 93, se distingue ocho (08) sectores con comportamiento homogéneo.

La tabla 4, muestra el punto de inicio y fin para los sectores.


Tabla 4: Sector Homogéneo del Tramo.

Sector	Progresiva Inicial (Km)	Progresiva Final
	micial (mi)	(Km)
1	1076+502	1080+500
2	1080+500	1085+500
3	1085+500	1095+000
4	1095+000	1096+500
5	1096+500	1099+000
6	1099+000	1102+200
7	1102+200	1107+000
8	1107+000	1112+300

Fuente: Elaboración Propia

La ilustración 3, se observa la distribución de las deflexiones centrales obtenidas con el FWD, normalizadas a 40 KN por cada sector homogéneo.

Ilustración 3: Distribución de la deflexión central normalizada a 40 KN.

Fuente: Elaboración Propia

La tabla 5, muestra los valores de las deflexiones por cada sector homogéneo.

Tabla 5: Estadística de las Deflexiones del Tramo.

Sector	Progresiva Inicial (Km)	Progresiva Final (Km)	Deflexión Mínima (1/1000 mm)	Deflexión Máxima (1/1000 mm)	Promedio de Deflexiones (1/1000 mm)	Desv. Estándar	Coef. De Var.
1	1076+502	1080+500	125	785	365	136	37%
2	1080+500	1085+500	219	970	593	160	27%
3	1085+500	1095+000	371	1247	788	178	23%
4	1095+000	1096+500	310	753	508	137	27%
5	1096+500	1099+000	514	919	717	109	15%
6	1099+000	1102+200	346	735	553	94	17%
7	1102+200	1107+000	251	746	446	110	25%
8	1107+000	1112+300	299	675	462	69	15%

Fuente: Elaboración Propia

De acuerdo a la tabla 5, se muestra los sectores que presentan una baja variabilidad en los datos con coeficientes de variación por debajo del 35%, con excepción del sector 1. Asimismo, se puede apreciar que el sector 3 presenta el promedio más alto con un valor de 788 (1/1000mm) y el promedio de las deflexiones para todo el tramo es de 581 (1/1000mm). Adicionalmente, se observa que el valor máximo de las deflexiones es de 1247 (1/1000mm) y se ubica en el sector 3.

Deflexión Característica

La deflexión característica es el valor de la deflexión que se considera representativo.

Por ello, se ha realizado la división de la vía por sectores homogéneos; haciendo mediciones cada 100m calzada a tres-bolillo. Asimismo, se realizaron mediciones de temperatura sobre la capa asfáltica. Las medidas de deflexión tomadas son procesadas utilizando herramientas estadísticas y, posteriormente, se realizó el cálculo de la deflexión característica. La deflexión característica fue calculada de la siguiente manera:

DC = DP + 1.645 (Desviación Estándar)

Donde:

DC: Deflexion Caracteristica

DP: Deflexion Promedio

Como se mencionó anteriormente, para este caso en particular las deflexiones se midieron con el equipo deflectométrico (FWD).

En la tabla 6, muestra la deflexión característica en 1/1000mm por cada sector homogéneo.

Tabla 6: Estadística de las deflexiones características del tramo.

Sector	Progresiva Inicial (Km)	Progresiva Final (Km)	Promedio de Deflexiones (1/1000 mm)	Desviación Estándar	Deflexión Característica (1/1000 mm)
1	1076+502	1080+500	365	136.46	590
2	1080+500	1085+500	593	160.29	857
3	1085+500	1095+000	788	178.37	1081
4	1095+000	1096+500	508	136.68	733
5	1096+500	1099+000	717	109.02	896
6	1099+000	1102+200	553	94.03	707
7	1102+200	1107+000	446	109.56	626
8	1107+000	1112+300	462	69.37	576

Fuente: Elaboración Propia

Ilustración 4: Deflexión Característica del Tramo.

La ilustración 4 y la tabla 6, muestra el comparativo de la deflexión central promedio vs la deflexión característica por sectores homogéneos, donde se desprende que los promedios de las deflexiones características por sector, varían entre 576 μ m y 1081 μ m.

Radio Característico y de Curvatura

El radio de curvatura determina la magnitud de la deformación lineal por tracción que experimentan las capas bajo el efecto de las cargas.

El cálculo de este valor es mediante la siguiente ecuación:

$$R = 20000/(D0 - D20)$$

Donde:

R: Radio de la curvatura en m.

D0: Deflexion recuperable en el eje vertical ed la carga en mm.

D20: Deflexion recuperable en el eje vertical de la carga en mm.

Una vez que se obtienen los radios de curvatura por tramo homogéneo, se calcula el radio característico de acuerdo a la siguiente expresión:

 $R \ característico = RC + 1.645 * (Desviación Estándar)$

La tabla 7, muestra los resultados por cada sector homogéneo del radio de curvatura. Los promedios se encuentran entre 76 μ m y 253 μ m, respecto a la variabilidad de datos, la mayoría de los sectores presentaron una alta dispersión, con coeficientes de variación superiores a 30%.

Tabla 7: Radio característico de los sectores homogéneos del Tramo.

Sector	Progresiva Inicial (Km)	Progresiva Final (Km)	Promedio de Radio de curvatura (m)	Desviación Estándar	Radio Característico (m)
1	1076+502	1080+500	141	68	253
2	1080+500	1085+500	78	25	119
3	1085+500	1095+000	54	17	81
4	1095+000	1096+500	95	33	150
5	1096+500	1099+000	60	10	76
6	1099+000	1102+200	76	19	107
7	1102+200	1107+000	99	29	147
8	1107+000	1112+300	115	28	160

Fuente: Elaboración Propia

La ilustración 5, muestra los Radios de Curvatura para todo el tramo.

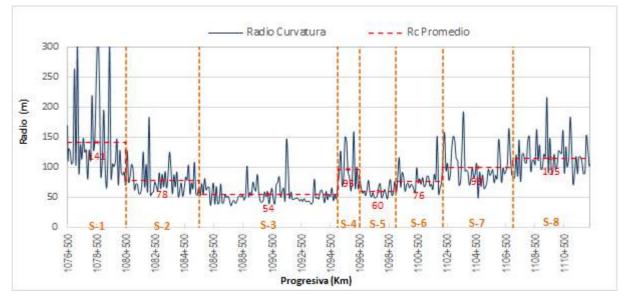


Ilustración 5 : Radio de Curvatura del Tramo.

Fuente: Elaboración Propia

Deflexión Viga Benkelman

Se normaliza y estandariza las deflexiones bajo una a una carga de 50 KN y una temperatura de 20°C para la conversión a viga Benkelman.

La tabla 8, muestra el promedio de las deflexiones, así como las deflexiones máximas y mínimas encontradas por cada tramo homogéneo:

Tabla 8: Deflexiones Benkelman normalizadas por sector homogéneo del tramo.

Sector	Progresiva Inicial (Km)	Progresiva Final (Km)	Deflexión Mínima (1/100 mm)	Deflexión Máxima (1/100 mm)	Promedio de Deflexiones (1/100 mm)
1	1076+502	1080+500	8	100	36
2	1080+500	1085+500	17	133	69
3	1085+500	1095+000	35	189	101
4	1095+000	1096+500	28	94	56
5	1096+500	1099+000	55	124	88
6	1099+000	1102+200	32	91	62
7	1102+200	1107+000	21	93	46
8	1107+000	1112+300	26	81	48

Fuente: Elaboración Propia

La ilustración 6, muestra que la deflexión mínima es de $8(^{1}/_{100}$ mm) en el sector 1 y la deflexión máxima de $189(^{1}/_{100}$ mm) en el sector 3. El promedio de las deflexiones para todo el tramo es de $68(^{1}/_{100}$ mm).

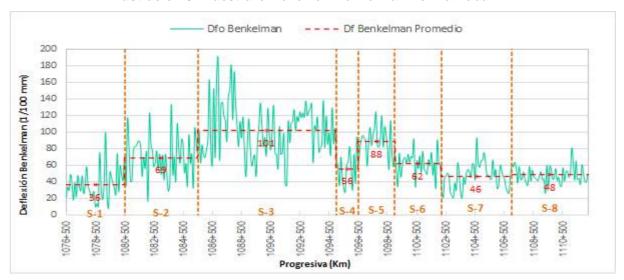


Ilustración 6: Muestra la Deflexión Benkelman Normalizada.

Fuente: Elaboración Propia

Cálculo de variables estructurales

Teniendo los datos de la medición deflectométrica, se procesan por retrocálculo el módulo resiliente y elástico equivalente. Desarrollándose con métodos iterativos.

a. Módulo Resiliente (Mr)

Con este método no destructivo se determina el Módulo Resiliente de la sub rasante a partir de la deflexión superficial el cual se produce bajo una carga estática o dinámica. Se calcula con la expresión:

$$M_r = \frac{024P}{d_r * r}$$

Donde:

Mr: Modulo resiliente de la subrasante

P: Caraga aplicada sobre la placa de 30 cm

dr: Deflexion superficial a una distancia r del plato de carga


La tabla 9, muestra el promedio del módulo de resilencia para cada sector homogéneo, se puede decir que el mayor valor promedio corresponde al sector 1, con 2,823 km/cm2. Cabe destacar que el menor valor de módulo resiliente promedio pertenece al sector 7 siendo este 632 kg/cm2.

Tabla 9. Módulo Resiliente por sector del Tramo.

Sector	Progresiva Inicial (Km)	Progresiva Final (Km)	Promedio de Mr Diseño Aashto (kg/cm²)
1	1076+502	1080+500	2,823
2	1080+500	1085+500	1,166
3	1085+500	1095+000	687
4	1095+000	1096+500	787
5	1096+500	1099+000	691
6	1099+000	1102+200	1,000
7	1102+200	1107+000	632
8	1107+000	1112+300	1,013

Fuente: Elaboración Propia

Ilustración 7: Módulo Resiliente del Tramo.

Fuente: Elaboración Propia

b. Módulo Equivalente (Ep)

Para obtener el módulo equivalente, se efectúa el uso de las deflexiones de campo con la medición de Impacto (FWD). se calculó mediante la siguiente expresión de la AASHTO 93.

$$d_0 = 1.5 * p * a * \left\{ \frac{1}{M_r \sqrt{1/\left(\frac{D}{a}\sqrt[3]{\frac{E_P}{M_R}}\right)^2}} / \left[\frac{1 - \frac{1}{\sqrt{1/\left(\frac{D}{a}\right)^2}}}{E_p} \right] \right\}$$

Donde:

d0: Deflexion central maxima medida bajo el plato de carga.

p: Presion del plato de carga, en psi.

a: Radio del plato de carga (30cm)

D: *Espesor* total del paquete estructural.

La tabla 10, muestra los valores del Módulo Equivalente (Ep) para los sectores homogéneos, el sector 1 presenta un mayor módulo equivalente con 4,516 kg/cm2 en promedio y que el sector 3 presenta el menor valor con 1,946 kg/cm2 en promedio, lo cual refleja la menor capacidad estructural de este último.

Tabla 10. Módulo Equivalente por sector del Tramo.

Sector	Progresiva Inicial (Km)	Progresiva Final (Km)	Promedio de Modulo Equivalente (Ep) (kg/cm²)
1	1076+502	1080+500	4,516
2	1080+500	1085+500	2,495
3	1085+500	1095+000	1,946
4	1095+000	1096+500	3,432
5	1096+500	1099+000	2,086
6	1099+000	1102+200	2,651
7	1102+200	1107+000	3,422
8	1107+000	1112+300	3,162

Fuente: Elaboración Propia

Ep 11000 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 S-8 0 100+500 104+500 078+500 086+500 000+000 008+860 102+500 108+500 1110+500 8 8 \$ 50 L Progresiva (Km) Fuente: Elaboración Propia

Ilustración 8: Modulo Equivalente del Tramo.

c. Número Estructural (SN)

En el caso de usar métodos no destructivos (deflectómetro de impacto), la guía de AASHTO 93, lo determina por medio de la siguiente ecuación:

$$SNeff = 0.0045D(Ep)1/3$$

Donde

Ep: Modulo Efectivo del pavimento

 $SNeff: Numero\ estructural\ efectivo$

D: Espesor total del paquete estructural (cm)

Los resultados del numero estructural efectivo por tramo se detalla en el Anexo 4.

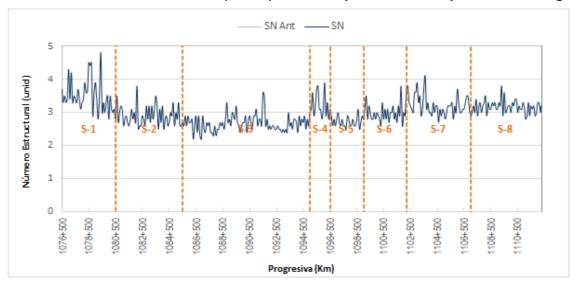

La tabla 11, muestra el número estructural efectivo SN_{eff} para cada sector homogéneo:

Tabla 11. Número Estructural por sector del homogéneo.

Sector	Progresiva Inicial	Progresiva Final	Promedio de SN _{Efectivo}
1	1076+502	1080+500	3.5
2	1080+500	1085+500	2.9
3	1085+500	1095+000	2.7
4	1095+000	1096+500	3.2
5	1096+500	1099+000	2.7
6	1099+000	1102+200	3.0
7	1102+200	1107+000	3.2
8	1107+000	1112+300	3.2

Fuente: Elaboración Propia

Ilustración 9: Número Estructural (SN act) obtenidos por retrocalculo por sector homogéneo

Fuente: Elaboración Propia

La ilustración 9, verifica el comportamiento del número estructural del tramo. Los valores de SN presentan un comportamiento regular, con valores que varían entre 2.2 y 4.8. El promedio para todo el tramo es de 3.0. El mayor número estructural promedio es 3.5 que corresponde al sector 1, mientras que el menor número estructural promedio es 3.0 que corresponde al sector 6.

A continuación, detallo los resultados del objetivo específico 3 que fue determinar el número estructural de diseño requerido usando método AASHTO 93 para el tráfico vehicular y CBR de diseño en la carretera.

Para la determinación del Numero Estructural (SN req) de diseño requerido es necesario como parámetro de entrada el valor de CBR de diseño y ESAL de diseño.

ESAL de diseño:

El estudio de tráfico nos permitió cuantificar, clasificar los vehículos por clase, conocer el volumen diario, y estimar el ESAL de diseño.

La recolección de datos consistió en la elaboración de las siguientes tareas:

- Inspección de campo
- Conteos de tráfico y clasificación vehicular.
- Encuestas de O/D.
- Censos de carga
- Fichas de Observación.

Se realizaron las actividades correspondientes al estudio de trafico como se muestra en la figura 3, teniendo en 03 estaciones de conteo vehicular, durante 7 días continuos por 24 horas cada día y se establecieron 02 estaciones para las encuestas O/D, durante 3 días por 24 horas consecutivas, se tiene un total de 1605 encuestas entre vehículos de transporte público, ligeros y de carga.

Figura 1. Personal realizando el Conteo

Fuente: Elaboración Propia

Asimismo, se realizó el censo de carga en 02 estaciones pesaje estático durante 07 días, paralelamente se registró las placas vehiculares para el estudio el de velocidad, como se puede observar en la figura 2.

Figura 2. Estación de Pesaje Qquehuar.

Fuente: Elaboración Propia

A partir de los resultados de los antecedentes y trabajos de campo, que se detalla en Anexo 7, para la obtención de las Repeticiones de Ejes Equivalentes de carga, en cada tramo se han determinado factores destructivos y factores de equivalencia.

A continuación, se presenta los resúmenes de las cargas de tránsito en el tramo combapata Sicuani, para los horizontes del proyecto:

Tabla 12. Resumen de cargas del tramo combapata Sicuani

ESTACION	E1 Combapata -0	Qquehuar	E2 Qquehuar - EMP. PE 34G (Sicuani)		
IMDS (Índice medio Diario Semanal)	4048	3	5311		
FC % (Factor de Correlación	FC Liv%	FC Pes%	FC Liv%	FC Pes%	
Estacional)	0.987	0.94	0.987	0.94	
	TC	PBI	тс	PBI	
R% (Tasa de Crecimiento de Trafico)	0.29	7.05	0.29	7.05	
N° años (Periodo de Diseño)			5 AÑOS		
IMDA 2020(Índice Medio Diario Anual)	3990)	5192		
IMDA 2025	4611		5959		
ESAL de diseño	4.35E+	06	1.82E+06		

Fuente: Elaboración Propia

La tabla 12, presenta el conteo vehicular con un IMDs de 4048 Veh/día en la estación 1 y 5311 Veh/día en la estación 2, el cálculo del Índice Medio Anual de 3990 y 5192 Veh/día respectivamente. A partir de estos datos, se realiza una proyección de 5 años de vida útil para la rehabilitación de la carretera, se estimó en 4611 y 5959 Veh/día respectivamente con un ESAL de diseño de 4.3Ee+06 en la estación 1, siendo esta el tramo más transitado y 1.82E+06 en la estación 2.

Subrasante (CBR de diseño)

Se definieron bajo el criterio de diseño de rasante, cuyas características se presenta se detalla en anexo 5.

La tabla 13, muestra los valores de CBR diseño de la subrasante de acuerdo criterio del manual de diseño de suelos y pavimentos MTC 2014.

Tabla 13. Valores de CBR promedio ponderado

SECTOR	CBR de diseño
1	22.07
2	11.47
3	12.96

Fuente: Elaboración Propia

Una vez determinado los parámetros de los diferentes estudios realizados, se calculó el numero estructural requerido.

Cálculo del Número estructural requerido (SN req)

Según la guía ASSHTO 93 expresa la siguiente ecuación básica empleada en el diseño para pavimentos flexibles:

$$\log W_{18} = Z_r S_o + 9.36 \log(SN + 1) - 0.2 + \frac{\log\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log M_r - 8.07$$

Se relaciona el numero estructural (SN) con los espesores de las capas del pavimento flexible en la siguiente expresión:

$$SN = a1 * D1 + a2 * D2 * m1 * 2 + a3 * m2 * D3$$

Donde:

a1, a2, a3: Coeficientes estructurales de capa

m1, m2: Coefiientes de drenaje

D1, D2, D3: Espesores de capa

En este ítem se definirán los parámetros de diseño, por la metodología AASHTO.

a. Capacidad de soporte del suelo

Teniendo los valores CBR de diseño, es preciso que sea traducido a un módulo resiliente, empleando la siguiente correlación:

$$Mr = 2555 * CBR^{0.64}$$

De acuerdo con la sectorización multiparamétrico se determinó tres sectores homogéneos, la tabla 14 muestra los resultados del módulo resiliente determinado de acuerdo a la correlación expuesta:

Tabla 14. Valores de Mr.

SECTOR	CBR de diseño	Mr
1	22.07	18510.76
2	11.47	12176.19
3	12.96	13166.12

Fuente: Elaboración Propia

b. Tráfico (ESAL de diseño)

Se presenta el estudio de tráfico, obteniéndose un ESAL proyectado al año 2025 los valores de 4.35E+06 y 1.81E+06 de ejes equivalentes para los tramos Combapata-Qquehuar y Qquehuar – Sicuani respectivamente.

Tabla 15. Valores ESAL para el 2025.

UBICACIÓN	ESAL al año 2025
Estación de conteo Qquehuar	4 353 374

Fuente: Elaboración Propia

c. Confiabilidad

Se determinó una confiabilidad del 85%, de conforme a lo indicado en el Manual de Suelos y Pavimentos.

Tabla 16. Criterio de Confiabilidad (%R) – Manual de Carreteras (MTC-2014).

Cuadro 12.6 Valores recomendados de Nivel de Confiabilidad Para una sola etapa de diseño (10 o 20 años) según rango de Tráfico NIVEL DE TIPO DE CAMINOS TRAFICO EJES EQUIVALENTES ACUMULADOS CONFIABILIDAD (R) 75,000 150,000 65% Tre 150 001 Caminos de Bajo Tes 300,000 70% Volumen de Tez 300,001 500,000 Tránsito Tes 500,001 750,000 80% Tea 750 001 1,000,000 80% Tes 1,000,001 1,500,000 85% Tre 1,500,001 3,000,000 85% 85% 3.000.001 5 000 000 287 .500,000 7,500,001 10'000,000 Resto de Caminos Tero 10000,001 12'500,000 90% 12'500 001 Ten 15'000.000 90% Tess 15'000,001 20'000,000 95% 20'000,001 25'000,000 Test 95% Ten 25'000,001 30'000,000 95% Tess >30'000.000 95% Fuente: Elaboración Propia, en base a datos de la Guia AASHTO 93

Fuente: Elaboración Propia

d. Coeficiente de Desviación Estándar Normal (Zr)

Según el manual de diseño, se ha considerado el siguiente valor de Coeficiente de desviación estándar: Zr=-1.036

Tabla 17. Coeficiente de Desviación Estándar – Manual de Carreteras (MTC-2014).

Cuadro 12.8 Coeficiente Estadístico de la Desviación Estándar Normal (Zr) Para una sola etapa de diseño (10 o 20 años) Según el Nivel de Confiabilidad seleccionado y el Rango de Tráfico DESVIACIÓN ESTÁNDAR NORMAL (ZR) TIPO DE CAMINOS TRAFECO EJES EQUIVALENTES ACUMULADOS 1 000 001 1.500,000 -1.036 1,500,001 3,000,000 Tre -1.036 3,000,001 5,000,000 -1.036 5,000,001 7,500,000 -1.282 Tex Tes 7,500,001 10 000,000 -1.282 10'000,001 12'500,000 -1.282 Ten 12'500.001 15'000.000 -1.282 15'000,001 20'000,000 -1.645 201000,001 25 000,000 -1.645 Teu 25'000,001 20'000,000 -1.645 -1.645

Fuente: Elaboración Propia

e. Desviación Estándar Combinada (So)

La guía ASSHTO, recomienda optar el valor de desviación estándar combinada de 0.45 para los pavimentos flexibles.

$$S_0 = 0.45$$

f. Índice de Serviciabilidad

Según el manual de diseño de suelos y pavimentos, se ha considerado los siguientes valores:

Serviciabilidad inicial (pi): 4.00

Serviciabilidad terminal (pt) : 2.50

Mediante la ecuación de la ASSHTO 93, se calculó el valor del SN_{req} a futuro considerando los siguientes parámetros:

- ESAL de 4.35 x 10⁶
- confiabilidad del 85%
- coeficiente de desviación estándar de -1.036
- desviación estándar combinada de 0.45
- índice de serviciabilidad inicial y final de 4.0 y 2.5 correspondientemente.

Se determinó el módulo resilientes M_r a partir de los valores del CBR ponderado de la tabla 6.

La Tabla 18, muestra los resultados del SN_{req} por sectores homogéneos.

Tabla 18. Valores de Numero estructural de diseño requerido.

SECTOR	CBR promedio ponderado	Numero estructural de diseño requerido SN_{req} calculado	Numero estructural de diseño requerido SN_{req} utilizado (*)
1	22.07	3.06	3.80
2	11.47	3.62	3.80
3	12.96	3.51	3.80

Fuente: Elaboración Propia

(*) Se usa este valor de SN_{req} por estar contemplado en los términos de referencia (TDR)

Como se puede observar en la tabla 18 los valores de numero estructural SN de diseño requerido (SN_{req}) obtenidos por calculo para los tres sectores es inferior a 3.8 el que se especifica en los términos de referencia (TDR), por tanto, se usará este último valor como el numero estructural del diseño requerido para el diseño.

A continuación, detallo los resultados del objetivo específico 4 que fue Sectorizar la carretera usando los resultados de evaluación superficial (PCI), funcional (IRI) y estructural (deflectometría) de la carretera mediante el uso de la técnica de diferencias acumuladas.

Se realizó la sectorización homogénea para el diseño a partir de los resultados obtenidos de la evaluación del pavimento (superficial, funcional y estructural), determinando las medidas de tendencia central, obteniendo mediante el método de diferencia acumuladas según la guía ASSHTO 93.

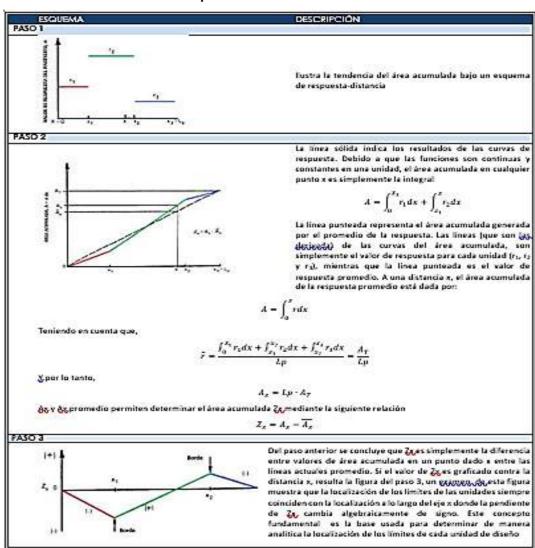


Ilustración 10: Concepto del Método de Diferencias Acumuladas.

Fuente: Guía de Diseño AASHTO 93. Apéndice J

En la práctica, el comportamiento de las mediciones no es idealizado con el caso planteado en la figura anterior, las mediciones son discontinuas y por ende siempre se obtienen intervalos múltiples no constantes, por lo tanto, se emplea una aproximación para el cálculo de las diferencias acumuladas, como sigue;

$$Z_{x} = \sum_{i=1}^{n} a_{i} - \frac{\sum_{i=1}^{n} a_{i}}{L_{p}} \sum_{i=1}^{n} x_{i}$$

Adicionalmente,

$$a_i = \frac{(r_{i-1} + r_i) \times x_i}{2} = \overline{r_i} \times x_i$$

Se puede permitir que r₀ sea igual a r₁ para el primer intervalo

Donde:

n: la medida del paviemtno n – ésima.

 n_t : numero total de medidas de respuesta tomada en el pavimento.

 r_i : valor de la medida de respuesta i — ésima.

 $\overline{r_i}$: valor promedio entre el ensayo i-1 y el i-ésimo.

 L_p : longitud total de la via.

El resultado de la sectorización homogénea multiparametro desarrollado para la presente investigación se muestra en el anexo 8, y basado en los resultados obtenidos de las diferentes actividades de medición realizadas del tramo Combapata – Sicuani, ha sido divido en 3 sectores homogéneos, quedando establecido de la siguiente manera:

Tabla 19. Sectores homogéneos Tramo Combapata - Sicuani.

Sector	Progresiva Inicial	Progresiva Final
	(Km)	(Km)
1	1076+502	1080+500
2	1080+500	1102+000
3	1102+000	1112+169

Fuente: Elaboración Propia

Basados en lo anterior, se procede a determinar los valores promedio que serán establecidos en el diseño. Los resultados son los siguientes:

Tabla 20 Sectorización Multicriterio, Resultados de Mediciones

Tramo	Sector	Progresiva Inicial	Progresiva Final	Mr diseño (Kg/cm2)	NEE 8.2T (2021 -2025)	IRI (m/km)	Serviciabilidad (PSI)	PCI Carril derecho	PCI Carril izquierdo	SN efectivo
	1	1076+502	1080+500	3443	4.35E+06	4.4	Regular (2.2)	51	40	3.5
Combapata - Sicuani	2	1080+500	1102+000	1562	4.35E+06	4.6	Regular (2.2)	23	20	2.8
	3	1102+000	1112+169	2207	1.82E+06	3.7	Regular (2.6)	44	39	3.2

Fuente: Elaboración Propia

La tabla 20, muestra tres sectores que presenta una condición regular de serviciabilidad, es decir, por lo cual los vehículos pueden transitar con comodidad de forma continua pero a velocidad limitada, en tanto que para los valores de PCI el sector 1 y 3 presentan una clasificación de regular a pobre, en tanto que el sector 2 tiene una condición muy pobre; con respecto a los valores de IRI el sector 2 presenta una condición mala y los sectores 1 y 3 la calificación es regular; finalmente con respecto al número estructural (SN) efectivo se observa que el sector 2 presenta un menor valor.

A continuación, detallo los resultados del Objetivo General que es determinar los espesores de pavimento flexible utilizando la metodología de retrocalculo obtenido del ensayo (FWD) y ASSHTO 93.

Para establecer los resultados del objetivo general se realizó el siguiente procedimiento:

Se determinó un SN un numero estructural de diseño requerido a partir de la metodología ASSHTO.

Figura 3. Ecuación de diseño de pavimentos flexibles.

$$\log W_{18} = Z_R S_O + 9.36 \log (SN + 1) - 0.20 + \frac{\log(\frac{\Delta PSI}{4.2 - 1.5})}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \log M_R - 8.07$$

Fuente: Guía ASSHTO 1993.

Los valores obtenidos mediante un procedimiento iterativo por calculo fueron 3.06, 3.62 y 3.51 por sectores homogéneos, los cuales fueron inferiores 3.8 propuesto en los términos de referencia del proyecto, por esta razón se utilizó este último valor.

Luego se determinó SN_{act} del pavimento a partir del retrocalculo del ensayo de medición del impacto (FWD), previamente se procedió a ajustar el SN_{act} , debido a que se van a retirar capas de pavimento que luego serán reemplazados por material de mejor calidad, para tal fin se usara la siguiente ecuación:

$$SN_{act-aj} = SN_{act} - a_{f1}xD_{f1} - a_{f2}xD_{f2}$$

Donde:

 SN_{act} : Numero estructural actual determinado por retrocalculo del ensayo FWD

 a_{f1} , a_{f2} : Ceoficiente estructural de las capas

 D_{f1} , D_{f2} : Espesores de las capas

Coeficientes Estructurales de Capas

Según el Manual de diseño de Suelos y Pavimentos, se consideró las capas del

pavimento que se serán retiradas siendo a_{f1} , el coeficiente estructural considerado

para la carpeta asfáltica es 0.17 cm y a_{f2} el coeficiente de la base granular de

0.043.

Espesores de las Capas

Se consideró espesores de campo, que serán retiradas (reciclado), Siendo $\emph{\textbf{D}}_{f1}$

igual a 10 cm y D_{f2} varia entre 10 cm a 15 cm.

Los resultados del numero estructural actual ajustado (SN act-aj) se muestra en el

Anexo 3.

Calculo del espesor de refuerzo:

Se realizó mediante el siguiente procedimiento:

Con el valor de SN_{act-aj} se calcula el SN_{ref} , el mismo que será cubierto con los

nuevos espesores de pavimento propuestos, siendo un proceso iterativo.

 $SN_{ref} = SN_{reg} - SN_{act-ai}$

44

Para completar el diseño, el valor de SN_{ref} será cubierto por la carpeta asfáltica y

la base estabilizada de la siguiente manera:

$$SN_{ref} = a_1D_1 + a_2m_1D_2$$

También debe cumplir la siguiente expresión:

$$SN_{req} \leq SN_{ref}$$

Donde:

 SN_{ref} : Numero estructural de refuerzo

 a_1 , a_2 : Coeficiente estructural de las capas

 m_1 : Coeficiente de drenaje

 D_1 , D_2 : Espesores de pavimento

Coeficientes estructurales de Capas

Según el Manual de diseño Suelos y Pavimentos, se considera el coeficiente

estructural a_1 para el concreto asfáltico de **0.17 cm.**

En caso de la base estabilizada con asfalto, el coeficiente estructural considerado

es:

a2 = 0.115/cm (Estabilidad Marshall de 1500 lb)

Coeficiente de Drenaje

Se determinó el coeficiente de drenaje, teniendo en cuenta el medio ambiente en

donde se desarrolla la carretera estudiada, las condiciones pluviométricas y el

tiempo de exposición al agua que podría estar el pavimento. En este sentido se ha

tomado las siguientes consideraciones:

45

En condición ideal:

$$m2 = 1.0$$
 $m1 = 1.0$

Reemplazando los valores de coeficientes estructurales anteriormente definidos la ecuación queda de esta manera:

$$SN_{ref} = 0.17D_1 + 0.115D_2$$

Dónde D_1 y D_2 son los espesores de las capas de la carpeta asfáltica y la base estabilizada, los cuales son determinados de manera iterativa.

Para los cálculos del espesores de la base estabilizada, se adoptó el espesor de 5 cm indicados en los términos de referencia(TDR), teniendo en cuenta una evaluación conjunta, tanto la evaluación superficial, funcional y estructural del proyecto se realizó la sectorización, además considerando la evaluación de las calicatas (CBR) y la evaluación de deflexiones con el FWD se determinó el SN requerido el cual según los TDR y obtenido por cálculo debe de tener como mínimo el valor de 3.8, por lo que teniendo como base el reciclado de los primeros 0.20 m indicados en los TDR, este se va a profundizar dicho reciclado en 5 y 10 cm en 3 de los 5 sectores o subtramos de diseño, con el fin de cumplir SN de refuerzo requerido.

La tabla 21, muestra los resultados de proceso iterativo determinando los espesores finales para los 5 sub sectores de la vía.

Tabla 21. Resumen de espesores de pavimentos propuestos por el contratista

SUB TRAMO	INICIO	FIN	LONG (KM)	Sub base existente (cm)	carpeta asfáltica (cm)	Espesor de base estabilizada (cm)	Espesor base existente a reciclar (cm)	Espesor aporte de material (cm)	Espesor carpeta asfáltica a reciclar (cm)
1	1076+502	1080+500	4.00	variable	5.00	20.00	10.00	0.00	10.00
2	1080+500	1083+700	3.20	variable	5.00	25.00	15.00	0.00	10.00
3	1083+700	1095+000	11.30	variable	5.00	30.00	15.00	5.00	10.00
4	1095+000	1102+000	7.00	variable	5.00	25.00	15.00	0.00	10.00
5	1102+000	1112+169	10.17	variable	5.00	20.00	10.00	0.00	10.00

Fuente: Elaboración propia

Con la propuesta anteriormente descrito, se presenta el diseño y se muestra como el número estructura proporcionado es mayor al número estructura de refuerzo requerido, por tanto, este diseño es satisfactorio.

Ilustración 11: Comparación de numero estructural (SN) de refuerzo requerido y proporcionado .

Fuente: Elaboración propia

V. DISCUSIÓN

Hipótesis General: Los espesores de un pavimento flexible se pueden determinar utilizando los resultados de la Evaluación por retrocalculo mediante ensayo de Deflectómetro de Impacto (FWD) y la AASTHO 93.

Para determinar los espesores del pavimento flexible, fue requerido obtener los datos de los estudios tránsito vehicular y de mecánica de suelos de la vía, a partir de sus resultados de CBR Y ESAL de diseño, se determina un numero estructural requerido mediante la ASSHTO 93, obteniendo por calculo un valor inferior de 3.8 de SN req que se especifica en los términos de referencia (TDR), por lo cual, se usa este último valor como el numero estructural del diseño requerido y de la evaluación de deflexiones con deflectómetro de impacto (FWD), se obtiene directamente el SN efectivo mediante la metodología de retrocalculo, el cual se ajusta, teniendo como base el reciclado de los primeros 0.20 m indicados en los TDR, obteniendo el numero estructural efectivo ajustado (SN eff-aj).

Se diseña los espesores del paquete estructural por tramos homogéneos mediante un criterio envolvente, obteniendo espesores de 0.2, 0.25 y 0.30 m de base estabilizada y 0.05 m de carpeta asfáltica, para un periodo proyecto de 5 años mejorando la serviciabilidad de la vía.

Según Rodríguez J. (2020). Realiza la optimización del diseño de pavimentos reciclados utilizando el método del retrocalculo por deflectometría del ensayo del deflectómetro de impacto (FWD) obteniendo un SN efectivo, y a su vez determina un numero estructural requerido por la ASSHTO 93 teniendo en cuenta las variables y debe responder que el SN proporcionado debe ser mayor al SN requerido, teniendo como propuesta 10 cm de carpeta asfáltica y 20 cm del paquete estructural, el cual se estabilizo con emulsión.

Por tanto, se acepta la hipótesis general que establece que mediante los valores obtenidos de numero estructural actual por retrocalculo y el numero estructural requerido por ASSTHO se desarrolla el análisis para la determinación de espesores

de pavimento flexible, en el proyecto de "Servicio de Reciclado y Recapeo de la Carretera Urcos – Sicuani, Tramo: Combapata –Sicuani".

Hipótesis Específica N°1: Se puede determinar el valor de CBR de diseño, utilizando el criterio del Manual de diseño de suelos y pavimentos MTC 2014.

En base a los resultados obtenidos de los ensayos de CBR en el laboratorio y de las 74 calicatas realizadas de acuerdo a lo indicado en TDR (termino de referencias), se tiene mayormente suelos entre regular a excelente subrasante y en menor proporción suelos con pobre a inadecuada capacidad de soporte. Seleccionando los resultados más inadecuados, de acuerdo al estado actual de la estructural del pavimento encontrado en campo se pondera el CBR de todas las capas o estratos hasta una profundidad de 1.80 m, teniendo el valor del CBR mas critico de 5.48 % de la C- 25 en el km 1088+050 con una longitud de 250 metros.

Para determinar el valor de CBR de diseño se promedio de los valores por sectores homogéneos, conforme al criterio del manual de diseño de suelos y pavimentos MTC 2014, obteniendo resultados para 3 sectores de 22.07%, 11.47% y 12.96% respectivamente en toda la zona en estudio.

según Padilla A. y Pinto R. (2019), realiza el estudio de diferentes metodologías de cálculo del CBR de diseño, encontrando que el método menos recomendado es el criterio de promedios, cuando exista gran dispersión de los datos, el coeficiente de variación es tan grande que el nivel de confianza en este método es cercano a cero, por lo contrario, si es demasiado pequeño los datos son confiables, considerando que en el manual del MTC se considera dos escenarios, cuando se tiene más de 6 datos de CBR se recomienda usar el promedio aritméticos y cuando sea menor la cantidad de datos se puede usar el promedio si los datos no presentan dispersión o el menor valor, bajo ese orden de ideas se puede inferir que el método del MTC no sea del todo correcto cuando se tenga que usar el promedio aritmético cuando se presente una cantidad de datos mayor a 6 y estos tengan mucha dispersión, no obstante al ser un manual de estricto cumplimiento para proyectos viales del MTC, en la presente tesis se optó por usar su criterio, debido a que

revisores de la mencionada entidad se basan en su manuales para la aprobación de los diseños.

Por tanto, se acepta la hipótesis específica 2 que establece se puede determinar el valor de CBR de diseño según el criterio del manual de diseño de suelos y pavimentos del MTC 2014.

Hipótesis Específica N. 2: Se determina el número estructural efectivo del pavimento existente mediante el retrocalculo de los resultados de deflexiones del ensayo FWD.

Al evaluar la condición de la capacidad de soporte del material de la sub rasante y los espesores existentes en campo, se estima un módulo de resiliencia y un módulo elástico equivalente por retrocalculo con base a las deflexiones obtenidas, con el deflectómetro de impacto (FWD), puede distinguirse una misma tendencia en los valores puntuales que oscilan entre 500 a 2000 kg/cm2 en todos los sectores, con excepción del sector 1 donde los valores oscilan entre 1000 kg/cm2 a 7000 kg/cm2, el promedio general del tramo es de 1,070 kg/cm2. El módulo equivalente calculado, oscila entre 1000 y 8000 kg/cm2, existen sectores puntuales con valores superiores a 8,000 kg/cm2, el Km 1077+000, km 1078+500 y km 1079+400. Al observar los valores obtenidos, solo se identifica una sola tendencia general de los valores que se encuentran entre 2.3 a 4.0, con un promedio de SN Efectivo de 3.0.

Estos resultados obtenidos contrastan con lo que sostiene Ocmin A. y Ramos C. (2019). Quienes realizaron su investigación en la vía Lima – Chosica, determinando un numero estructural efectivo (SNeff) de la estructura del pavimento a partir de las deformaciones y deflexiones tomadas del deflectómetro de impacto (FWD), obteniendo valores que se encuentran entre 2.27 a 5.88, con un promedio de SN Efectivo de 3.6 siendo este valor, una variable en el cálculo del espesor de refuerzo, lo que significa que el numero estructural efectivo (SN eff) influye de manera directa en la determinación de los espesores de las capas del pavimento.

Por tanto, se acepta la hipótesis específica 2 que establece que mediante los resultados de deflexiones del ensayo FWD por retrocalculo se determina el numero estructural efectivo o actual del pavimento.

Hipótesis Específica N. 3: Se determina el número estructural (SN) de diseño requerido usando los resultados del estudio de tráfico y mecánica de suelos, aplicando el método de diseño de pavimentos AASHTO 93.

Para determinar del Numero Estructural (SN) de diseño requerido, se usó el método ASSHTO 93, donde es necesario como parámetro de entrada los valores de CBR y el ESAL de diseño, por tanto, para la determinación del CBR se usó el procedimiento de ponderar los CBR de los estratos de suelo encontrados en las calicatas (ensayos destructivos), según el criterio del Manual de diseño de suelos y pavimentos MTC 2014, los CBR representativo para cada sector de la subrasante fueron 22.07, 11.47 y 12.96%, con respecto un determinado EE con una carga dinámica de 8.2 tn (ESAL de diseño), obteniéndose bajo los estudios de tráfico, teniendo en cuenta que, durante la ejecución del presente estudio, el país se encontraba en etapa de reactivación económica, lo cual hace presumir que el tráfico mostrado en el estudio sufrió una merma considerable y por tanto esta subestimado, conocido el Valor de IMDs, factor de correlación, tasa de crecimiento y periodo de diseño, se define el valor de ESAL de diseño de 4.35E+06.

Mediante la metodología ASSTHO 93 se obtuvieron por calculo el número estructural de diseño requerido para los tres sectores los cuales fueron valores de 3.06, 3.62 y 3.51. Siendo esto valores inferiores a 3.8 como se especifica en el TDR del proyecto, debido a lo cual, se usó este último valor como el numero estructural del diseño para la determinación del espesor de refuerzo.

Según Zúñiga O. (2018). Realiza el diseño de la estructura de un pavimento flexible por medio de los valores obtenidos del deflectómetro de impacto (FWD) y también menciona que debe cumplirse un determinado número estructural requerido, obteniéndose bajo los resultados del estudio del tráfico vehicular (ESAL) para un periodo proyectado de diseño y de la resistencia del suelo natural (CBR de diseño),

considerando un análisis topográfico.

Por tanto, se acepta la hipótesis específica 2 que establece que a partir de los resultados de los estudios de tráfico y ensayos de CBR se puede definir o determinar el número estructural requerido (SN *req*) aplicando la metodología ASSHTO 93.

Hipótesis Específica N. 4: Se sectoriza la carretera usando la técnica de diferencias acumuladas a partir de los resultados de la evaluación superficial (PCI), funcional (IRI + Textura) y estructural (deflectometría).

Para determinar sectores homogéneos con comportamientos y propiedades parecidas o similares, el cual puedan facilitar en la determinación de parámetros para cada sector, se empleó la metodología de diferencias acumuladas que propone la AASHTO 93. Para la aplicación de este método se utilizan variables como la deflexión, regularidad IRI, resistencia al deslizamiento o fricción, índices de deterioro "Is" del pavimento entre otros, teniendo como resultado 3 sectores descritos en la tabla 21, para cumplir con los Niveles de Servicio exigidos, se establece que la intervención es necesaria, siendo necesario un reforzamiento de la estructura de pavimento, en particular el sector 2 que presenta una condición mala para los indicadores previamente analizados.

Según Ocmin A. y Ramos C. (2019). Realiza el cálculo de sectores homogéneos, determinando 9 sectores a partir de valores promedios para la estimación del refuerzo y según Chávez A. (2017). En su tesis plantea el desarrollo de una propuesta analítica, determinando el estado estructural del pavimento de carreteras con bajo tránsito vehicular, a partir de la medición de deflexiones (deflectometría), parámetros y criterios, analizando el modulo elástico y la clasificación de suelos mediante el valor de soporte CBR, analizando 4 metodologías para la tramificación de la carretera y una de las metodología más desarrolladas y aplicadas para el estudio de tramificación y/o sectorización es la propuesta por la ASSHTO 93.

Por tanto, se acepta la hipótesis específica 4, que establece que partir de los resultados de las diferentes evaluaciones del pavimento se puede sectorizar la carretera mediante la técnica de diferencias acumuladas de la ASSHTO 93.

VI. CONCLUSIONES

Primera:

Se determina los espesores del pavimento flexible en 5 sub tramos para una proyección de diseño de 5 años, teniendo en cuenta el método dela ASSHTO 93 y la metodología de retrocalculo (FWD) siendo más fácil y rápido el cual optimiza el servicio de reciclado y recapeo para poder poseer un pavimento eficiente que permita la circulación segura de los vehículos y de la población.

Segunda:

Se realizó el estudio de mecanizado de suelos obtenido valores de CBR al 95% de las distintas muestras y clasificando en mayor parte como una subrasante buena y en Menor con una subrasante inadecuada, se determina el CBR de diseño ponderado por sectores según el criterio del guía de diseño de suelos y pavimentos MTC 2014.

Tercera:

Se determina el Numero estructural efectivo mediante las metodologías de retrocalculo, usando las deflexiones producidas por el equipo de deflectómetro de impacto (FWD) y los espesores encontrados en campo son muy importantes para iniciar el retro análisis, teniéndose un valor mínimo SN efectivo o actual de 2.3, máximo de 4.0 y un promedio de 3.0 para todos los puntos del tramo de la carretera.

Cuarta:

Se determina el Numero estructural de diseño requerido mediante el método de AASHTO 93, usando el ESAL de 4.35+06E del tramo Combapata – Qquehuar para un periodo de 5 años y valores ponderados de la capacidad de soporte (CBR de diseño), obtenidos de los ensayos destructivos, obteniéndose números estructurales (SN) de diseño requeridos menores a 3.8 para todos los sectores homogéneos, usándose un SN req mínimo de 3.8 valor proporcionado en los términos de referencia del proyecto.

Quinta:

Se sectoriza la carretera a partir de los resultados de las evaluaciones del pavimento mediante la técnica de diferencias acumuladas de ASSHTO 93 teniendo 3 sectores homogéneos y 5 sub sectores, facilitando la determinación de los espesores a colocar. mediante un criterio envolvente.

VII. RECOMENDACIONES

Primera:

Se recomienda el emplear de la metodología de retrocalculo (FWD) y la ASSHTO 93, en la futuras investigaciones y proyectos viales ya que ha demostrado su eficacia en la determinación de los espesores del pavimento.

Segunda:

Se recomienda analizar y considerar los criterios técnicos de la guía de diseño de suelos y pavimentos MTC 2014, para la determinación de valores de los diferentes ensayos de suelos.

Tercera:

Se recomienda que para el desarrollo de la evaluación estructural se cumpla con los estándares de carga y presión expuestos en la ASSHTO 93 y teniendo en cuenta los datos de los espesores de campo son muy importantes ya que si se desconoce de estos valores se trabajaría con número estructural efectivo no valido.

Cuarta:

Se recomienda tener en cuenta los estudios de trafico preliminares y analizarlos para poder determinar cuál es la cantidad de tráfico de diseño y el que mejor se ajuste a la realidad de la vía. Al mismo tener en cuenta los CBR críticos e inadecuados para un mejor análisis de diseño.

Quinta:

se recomienda analizar y sectorizar los tramos de estudio por la metodología de diferencias acumuladas de la ASSHTO 93 puesto que tiene una mayor confiabilidad y define mejor los parámetros de diseño, para la determinación de espesores de las capas del pavimento.

REFERENCIAS BIBLIOGRAFICAS

- Ocmin, A. y Ramos, C. (2019). Deflectometría de Impacto para la Determinación del Refuerzo en la carretera Lima – Chosica km 35+535 al km 39+500. (Tesis de Postgrado), Universidad Ricardo Palma, Lima - Perú.
- 2. Rodríguez, J. (2020). Evaluación del Módulo Resiliente fundamentado en la Deflectometría y la Geotecnia para Optimizar diseños y costos en pavimentos reciclados de la carretera Yanango Puente herrería. (Tesis de Postgrado), Universidad de San Ignacio de Loyola, Lima Perú.
- Álamo, W. (2018). Evaluación Deflectométrica en Pavimentos Flexibles para determinar la condición, Índice de serviciabilidad en vías de Alto Tránsito en el distrito Cercado de Lima-Av. Venezuela (Tesis de Postgrado), Universidad Cesar vallejo, Lima-Perú.
- Mostacero, E. (2018). Mejoramiento del Comportamiento Estructural de Pavimentos Asfalticos de Alto volumen de Transito mediante procedimiento de Rehabilitación con Tecnologías Modernas en la ciudad de Lima (Tesis de Postgrado), Universidad Federico Villa Real, Lima – Perú.
- 5. Balarezo, J. (2017). Evaluación Estructural usando Viga Belkenman aplicada a un Pavimento (Tesis de Postgrado), Universidad de Piura, Piura Perú.
- Jinchuña, M. (2020). Evaluación por Deflectometría y la Rugosidad del Pavimento Flexible para Mejorar la Transitabilidad Vehicular en la Av. Billinghurst, tramo Av. Bolognesi – Av. Tarapacá – Tacna, 2019, (Tesis de Postgrado), Universidad Privada de Tacna, Tacna – Perú.
- 7. Silva, J. (2019). Evaluación Visual y estructural del Pavimento Flexible de la Urbanización Los jardines, Barranca 2017, (Tesis de Postgrado), Universidad Nacional Santiago Antúnez de Mayolo, Huaraz Perú.
- 8. Condezo R. (2020). Análisis del Comportamiento Funcional y Estructural de la Carretera Pamashto y Bellavista Ledoy con Tratamientos Superficiales, (Tesis de Posgrado). Universidad Nacional de San Martin, Tarapoto Perú.

- Ramos W. (2017). Evaluación del estado del Pavimento por Deflectometría e Índice de Rugosidad Internacional de la Carretera: Puno – Vilque – Mañazo – 4km Críticos -2015. (Tesis de Postgrado). Universidad Nacional del Altiplano – Puno – Perú.
- 10. Valentín J. (2019). Uso del ensayo del Módulo Resiliente para calcular Características Dinámicas del suelo como el diseño de la subrasante en el distrito de Catahuasi, 2019, (Tesis de Post grado), Universidad Cesar Vallejo, Lima – Perú.
- 11. Zúñiga O. (2018). Diseño de la Estructura del Pavimento Flexible de las Calles Comprendidas dentro del perímetro de la CA. VHRT, CA. LA PAZ, CA. Pachacutec y Av. Gran Chimú de Distrito de la Victoria Chiclayo Lambayeque (Tesis de postgrado), Universidad Señor de Sipan, Pimentel Perú.
- 12. Padilla A. y Pinto R. (2019). Análisis de las distintas metodologías de CBR de diseño para el cálculo de espesores en pavimentos flexibles, (Tesis de Postgrado), Universidad de la costa, Barranquilla Atlántico.
- 13. Tavira J. (2016). Calculo Mecánico de Pavimentos a partir de ensayos no destructivos, (Tesis de Postgrado), Universidad de Sevilla, España.
- 14. Edwin A. (2017). Factores para el ajuste de los módulos de retrocalculo pavimentos flexibles, (articulo), Universidad Tecnológica y Pedagógica de Colombia.
- 15. Sánchez H. y Santamaría E. (2021). Diseño en Sobrecapa de pavimento flexible a partir de los resultados de retrocalculo por la metodología multicapa elástica, (Tesis de post grado), Universidad de el salvador, Ecuador.
- 16. Zelada L. (2019). Diseño de 1KM de pavimento, carretera Juliaca puno (km 44+000 km 45+000), (Tesis de Postgrado), Pontificia universidad Católica del Perú, Lima Perú.
- 17. Chávez M. y Fano J. (2017). Diseño estructural de un pavimento básico reciclado y mejorados con cemento portland para diferentes dosificaciones en el proyecto de conservación vial de Huancavelica, (Tesis de Postgrado), Universidad Peruana de Ciencias Aplicadas, Lima Perú.
- 18. Castillo J. (2018). Diseño del pavimento para el mejoramiento de la transitabilidad vial entre los jirones Helmes y Ortiz Los Olivos, 2018, (Tesis de Postgrado). Universidad Cesar Vallejo, Callao Lima.

- 19. Escobar L. y Huincho J. (2017). Diseño de pavimento flexible, bajo influencia de parámetros de diseño debido al deterioro del pavimento en Santa Rosa Sachapite, Huancavelica 2017, (Tesis de Postgrado). Universidad Nacional de Huancavelica, Huancavelica Perú.
- 20. Cruz O. y Ocaña Freddy (2019). Evaluación Estructural de pavimentos flexibles construidos en la localidad de Usme utilizando el Deflectómetro de Impacto o FWD, (Tesis de Postgrado). Universidad Santo Tomas, Bogotá Colombia.
- 21. Quito I. (2019). Análisis deflectométrico del pavimento flexible de la carretera Cajamarca Jesús, tramo Dv. a Llacanora (plaza pecuaria iscoconga) La Huaraclla; para determinar su comportamiento estructural, (Tesis de Postgrado), Universidad Nacional de Cajamarca, Cajamarca Perú.
- 22. Mendieta D. (2016). Aplicación de una metodología para rehabilitación de pavimentos mediante sobre capas de refuerzo, utilizando ASSHTO 93, (Tesis de Postgrado). Universidad del Azuay, Cuenca Ecuador.
- 23. Chávez A. (2017). Propuesta de Tramificación de carreteras de bajo volumen de tránsito para determinar su estado estructural, (Tesis de Postgrado), Universidad Nacional de Ingenieria, Lima Perú.
- 24. Terrones G. (2018). Diseño estructural del pavimento flexible utilizando método ASSTHO 93 en las calles I y J de la cuarta etapa del C.h Micaela Bastidas Piura, (Tesis de Postgrado), Universidad Cesar Vallejo, Piura Perú.
- 25. Allen H, Robert L y Robert C (2017). Comparison of computer predictions and field data for dinamic analysis of falling weight deflectometer data, Article: Transpotation reserranch record 1923.
- 26. Amir K, Mojtaba A, Fereiddoom M y Armin B. (2017). A new method to determine maintenance and repair activities at network-level pavement management using falling weight deflectometer. Journal of Civil Engineering and Management, 2017.
- 27. Caroles L. (2020). Correlation of modulus elasticity of Falling Weight Deflectometer (FWD) towards Light Weight Deflectometer (LWD) laboratory. Department of Civil Engineering, Universitas Hasanuddin, Makassar Indonesia.

- 28. Bashar A, y Michael D. (2018) Relationships between international roughnees index and present serviceability rating. Transportation Research Record Journal of the Transportation Research Board.
- 29. Junhui Z, Le D, Ling Z, Qianfeng G and Fan G (2020). Using portable falling weight deflectometer to determine treatment depth of subgrades in highway reconstruction of Southern China. Transportation Safety and Environment.
- 30. M. Razali, N. A. Che Mahmood, K. A. Hashim, S. Mansor, and N. I. Zainuddin (2018). The falling weight deflectometer (FWD) for characterization bonding state of subgrade. Article: Faculty of Civil Engineering, Universiti Teknologi Mara Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang.
- 31. Fuentes L, Taborda K, Xiaodi Hu, Emile Horak, Tao Bai & Lubinda F. Walubita (2020). A probabilistic approach to detect structural problems in flexible pavement sections at network level assessment. Article: International Journal of Pavement Engineering.
- 32. Rabbi F. and Mishra D. (2019). Using FWD deflection basin parameters for network-level assessment of flexible pavements. Article: International Journal of Pavement Engineering.
- 33. Raposo S. and Rowe G. (2019). Falling Weight Deflectometer Tests Back-Analysis Using Levenberg-Marquartd Optimization. Article: Airfield and Highway Pavements 2019.
- 34. Vasquez L, and Garcia F. (2020). An overview of asphalt pavement design for streets an roads. Revista Facultad de Ingeniería
- 35. Coni M, Mistretta F, Stochino F, Rombi J, Sassu M and Puppio M. (2021). Fast FallingWeight Deflectometer Method for Condition Assessment of RC Bridges. Department of Civil Environmental Engineering and Architecture.
- 36. Nathan D. (2018). use of falling weight deflectometer testing in the pavement me ac/ac overlay design procedure. (postgraduate thesis). University of Pittsburgh.

- 37. Bruinsma J, Vandenbossche J, Chatti K and Smith K. (2017). Using Falling Weight Deflectometer Data with Mechanistic-Empirical Design and Analysis, Volume II: Case Study Reports. Publication no. FHWA-HRT-16-010
- 38. Karim C, Emin M, Lajnef N, Imen Zaabar, Varma S, and Suk Lee H (2017). Enhanced Analysis of Falling Weight Deflectometer Data for Use With Mechanistic-Empirical Flexible Pavement Design and Analysis and Recommendations for Improvements to Falling Weight Deflectometers. Publication no. FHWA-HRT-15-063
- 39. Smith K, Bruinsma J, Wade M, Chatti K, Vandenbossche J, and Yu H. (2017). Using Falling Weight Deflectometer Data with Mechanistic-Empirical Design and Analysis, Volume I: Final Report. Publication no. FHWA-HRT-16-009.
- 40. Burhani A. (2016). Correlation Study on the Falling Weight Deflectometer and Light Weight Deflectometer for the Local Pavement Systems, (postgraduate thesis), College of Engineering and Technology of Ohio University.
- 41. Casia J. (2015). Evaluación estructural de pavimento flexible usando el deflectómetro de impacto en la carretera Tarma- La Merced, (Tesis de Postgrado), Universidad Nacional del Centro del Perú, Huancayo Perú.
- 42. Rabbi Z. (2018). Effect of subsurface conditions on flexible pavement behavior: non-destructive testing and mechanistic analysis, (postgraduate thesis). Boise State University.
- 43. Mohammad A. (2020). Falling Weight Deflectometer (FWD) is not Reliable for evaluation of flexible pavemet. North Carolina State University.

ANEXOS

ANEXO 1. Matriz operacional de variables.

		OPERACIONALIZACION DE VARIAB	LES		
TITULO	"DETERMINACIÓN DE ESPESORES EN PA	AVIMENTO FLEXIBLE PARA MEJORAMIE COMBAPATA	NTO DE CARRETERA, U A-SICUANI 2021"	SANDO DEFLECTÓMETRO	DE IMPACTO (FWD) Y ASSTHO 93,
VARIABLE INDEPENDIENTE	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADORES	ESCALSA DE DIMENSION
Determinación de Espesores del	Es la dimensión de la sección de la capa de rodadura del pavimento flexible, diseñada para sostener directamente el transito vehicular.	Operacionalmente el método de retrocalculo del ensayo de deflectómetro de impacto (FWD) nos permite la evaluar y determinar la dimensión de los espesores	Diseño del espesor del pavimento flexible de refuerzo	Espesores del paquete estructural. Temperatura.	Razón
Pavimento Flexible.	(Manual de Suelos y Pavimentos, pág. 24)	del pavimento flexible de refuerzo , ya que el deflectómetro es un equipo que utiliza la técnica no destructiva en la evaluación de estructural del pavimento existente.	Evaluación Deflectométrica con ensayo (FWD)	Magnitud de carga.	
				Deflexiones de Campo.	
VARIABLE DEPENDIENTE	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	DIMENSIONES	INDICADORES	ESCALSA DE DIMENSION
			Resistencia del suelo	Porcentaje	
Mejoramiento de la Carretera.	Consiste en mejorar o ampliar las características técnicas y geométricas de la carretera con variación al eje transversal o vertical, ampliación de	El mejoramiento de la carreta se determina a partir de los estudios, evaluaciones y criterios básicos de la ingeniería, obteniendo resultados	coeficientes estructurales	Modulo elastico del asfalto CBR de la base CBR de la sub base Modulo resiliente	Razón
Mejoralinento de la Carretera.	curvas y/o cambios en las características de la superficie de rodadura respecto al diseño original. (Gerencia Nacional de Infraestructura	que permitan mejorar y asegurar la adecuada transitabilidad para el transporte.	ESAL	Numero de Ejes Equivalentes a 18klb	Nazoli
	vial.2019 pág 3)		PCI IRI Deflectometría	Estado del pavimento Falla en los pavimentos Rugosidad Deflectometria	

ANEXO 2. Matriz de consistencia.

TITULO:	"DETERMINACIÓN DE ESPES	ORES EN PAVIMENTO FLEXIBLE PARA	MEJORAMIENTO DE CARRETERA	A, USANDO DEFLECTÓN	METRO DE IMPACTO (FV	VD) Y ASSTHO 93, COMB	APATA-SICUANI 2021"
PROBLEMA	OBJETIVOS	HIPOTESIS	VARIABLES E INDICADORES				METODOLOGIA
Problema General	Objetivo General	Hipótesis General	Variable independiente	Dimensiones	Indicadores	Escala de Medición	
PG. ¿Cómo podemos utilizar el método de retrocalculo del ensayo (FWD) para determinar los espesores de pavimento flexible?	OG. Determinar los espesores de pavimento flexible utilizando la metodología de retrocalculo obtenido del ensayo (FWD) y ASSHTO 93.	HG. Los espesores de un pavimento flexible se determinan utilizando los resultados de la Evaluación por retrocalculo mediante ensayo de Deflectómetro de Impacto (FWD) y la metodología ASSHTO 93.	Determinación Espesores en Pavimento Flexible.	Diseño del espesor del pavimento flexible de refuerzo Evaluación Deflectométrica con ensayo (FWD)	Espesores del paquete estructural. Temperatura. Magnitud de carga. Deflexiones de Campo.	Nominal	Tipo de Inestigación: Explicativa - Correlacional
Problemas Específicos	Objetivos Específicos	Hipótesis Especificas	Variable Dependiente	Dimensiones	Indicadores	Escala de Medición	
PE 1. ¿Como podemos determinar el CBR de diseño para el cálculo del numero estructural de diseño requerido?	OE 1. Determinar el CBR de Diseño usando manual de suelos y pavimentos MTC 2014.	HE 1. Se determina el valor de CBR de diseño, utilizando el criterio del Manual de diseño de suelos y pavimentos MTC 2014.		Resistencia del suelo	Porcentaje	Razón	Diseño de Investigación No Experimental Enfoque de Investigación: Cuantitativo

Problemas Específicos	Objetivos Específicos	Hipótesis Especificas	Variable Dependiente	Dimensiones	Indicadores	Escala de Medición	METODOLOGIA
PE 2. ¿Cómo podemos determinar el numero estructural efectivo del pavimento existente usando el deflectómetro de impacto (FWD)?	OE 2. Determinar el numero estructural efectivo del pavimento existente usando la metodología del deflectómetro de impacto FWD.	HE 2. Se determina el numero estructural efectivo del pavimento existente mediante el retrocalculo de los resultados de deflexiones del ensayo FWD.	Mejoramiento de la	coeficientes estructurales	Modulo elástico del asfalto CBR de la base CBR de la sub base Modulo resiliente	Razón	Población: Pavimento flexible de la Carretera Combapata- Sicuani (35.67 km).
PE 3. ¿Cómo podemos determinar el numero estructural de diseño requerido usando AASHTO 93 para el trafico vehicular y CBR existente en la carretera en estudio ?	OE 3. Determinar el numero estructural de diseño requerido usando método AASHTO 93 para el trafico vehicular y CBR existente en la carretera.	HE 3. Se determina el numero estructural de diseño requerido usando los resultados de estudio de trafico vehicular y ensayos de CBR aplicando el método de diseño de pavimentos AASHTO 93.	Carretera	ESAL de diseño	Numero de Ejes Equivalentes a 18klb	Razón	Muestra: 1 km de vía pavimentada.
PE 4. ¿Cómo podemos sectorizar el tramo de la carretera para realizar el diseño de pavimentos?	OE 4. Sectorizar la carretera usando los resultados de evaluación superficial (PCI), funcional (IRI) y estructural (deflectometría) de la carretera mediante el uso de la técnica de diferencias acumuladas.	HE 4.Se sectoriza la carretera usando la técnica de diferencias acumuladas a partir de los resultados de la evaluación superficial (PCI), funcional (IRI + Textura) y estructural (deflectometría)		PCI IRI Deflectometría	Estado del pavimento Falla en los pavimentos Rugosidad Deflectometría	Razón	

ANEXO 3. Formato de Jucio de Expertos.

CERTIFICADO DE VALIDEZ DE CONTENDO DEL INSTRUMENTO QUE MIDE

No	VARIABLES7DIMENSIONE7INDICADORES	Pertin	iencia1	Releva	ncia ²	Clar	ridad ³	Sugerencias
	VARIABLE INDEPENDIENTE: Determinación de espesores	51×	No	184	No	96	No	
	DIMENSIÓN 1	SK	No	-81	No	X1	No	
1	Diseño del espesor del pavimento flexible de refuerzo							
	DIMENSIÓN 2.	SK	No	*	No	SC	No	
2	Evaluación Deflectométrico con ensayo (FWD)							
	VARIABLE DEPENDIENTE: Mejoramiento de la carretera.	%	No	×	No	38(No	
	DIMENSIÓN 1:	Sir	No	SL	No	SK	No	
3	Resistencia del suelo							
	DIMENSIÓN 2	×	No	-81	No	×	No	
1	Coeficientes Estructurales							
	DIMENSIÓN 3	%	No	×	No	X	No	
•	ESAL de diseño	7.						
	DIMENSIÓN 4	% (No	×	No	18	No	
;	PCI, IRI y Deflectometria			-				

Observaciones (precisar si ha	y suficiencia):					
Opinión de aplicabilidad:	Aplicable [火]	Aplicable des	pués de corregir	[]	No aplicable []	- 2 0 80
Apellidos y nombres del juez	validador. Dr/ Mg:	GOMEL	TICONA	FIDE	1	DNI: 42759230
Especialidad del validador:	1N6	ENIERO	civic			

Nota: Suficiencia, se dice suficiencia cuando los ítems planteados

Jourses, Of de Julia del 2021

OP N- 150378

Firma del Experto Informante.

¹Pertinencia:El ítem corresponde al concepto teórico formulado.

²Relevancia: El ítem es apropiado para representar al componente o dimensión específica del constructo

³Claridad: Se entiende sin dificultad alguna el enunciado del ítem, es conciso, exacto y directo

CERTIFICADO DE VALIDEZ DE CONTENDO DEL INSTRUMENTO QUE MIDE

	THE PROPERTY OF THE PROPERTY O	Perti	nencia1	Releva	ncia ²	Clar	ridad3	Sugerencias
Nº	VARIABLES7DIMENSIONE7INDICADORES	≫si	No	Sí	No	×	No	
	VARIABLE INDEPENDIENTE: Determinación de espesores	701	140	1		-		
		Xi	No	%	No	180	No	
	DIMENSIÓN 1	/SL	140	JOK.	140	-		
1	Diseño del espesor del pavimento flexible de refuerzo			-				
		381	No	785	No	Si	No	
	DIMENSIÓN 2.	/OL	140	- Port	140			
2	Evaluación Deflectométrico con ensayo (FWD)		-	1				
				+				
		'84	No	36	No	SL	No	
	VARIABLE DEPENDIENTE: Mejoramiento de la carretera.	1	140	7				
		>54	No	- XK	No	×Si.	No	
	DIMENSIÓN 1:	751	140	1				
3	Resistencia del suelo							
		Ж	No	85	No	78 L	No	
	DIMENSIÓN 2	DI-	110					
4	Coeficientes Estructurales		1					
		SL	No	751	No	84	No	
	DIMENSIÓN 3		115					
5	ESAL de diseño							
		SK	No	SI	No	SK	No	
	DIMENSIÓN 4	-	110					
6	PCI, IRI y Deflectometria		_			-		

Observaciones (precisar si	hay suficiencia): LOS ITEMS SON SUFICIENTES
	Aplicable [x] Aplicable después de corregir [] No aplicable [] No aplicable [] No aplicable [] No aplicable []
Especialidad del validador:	INGENIERO CIVIL
1Pertinencia:El ítem corresponde al c	concepto teórico formulado.

²Relevancia: El item es apropiado para representar al componente o dimensión específica del constructo

³Claridad: Se entiende sin dificultad alguna el enunciado del item, es conciso, exacto y directo

Nota: Suficiencia, se dice suficiencia cuando los ítems planteados son suficientes para medir la dimensión

CERTIFICADO DE VALIDEZ DE CONTENDO DEL INSTRUMENTO QUE MIDE

No	VARIABLES/DIMENSIONE/INDICADORES		inencia ¹		ancia ²		ridad³	
-	VARIABLE INDEPENDIENTE: Determinación de espesores	-31<		Si	No			Sugerencias
-			110	701	NO	SK	No	
_	DIMENSIÓN 1	-St_	No	81	-	-		
1	Diseño del espesor del pavimento flexible de refuerzo	0	NO	-	No	-81	No	
	DIMENSIÓN 2.			1.,				
2	Evaluación Deflectométrico con ensayo (FWD)	>81	No	S	No	SK	No	
			7					
	VARIABLE DEPENDIENTE: Mejoramiento de la carretera.		No	8	No	X	No	
	DIMENSIÓN 1:		110	100	IVU	31	NO	
3		>81	No	81	No	186	No	
	Resistencia del suelo				140	7	NO	
	DIMENSIÓN 2							
4	Coeficientes Estructurales	->&C	No	781	No	781	No	
	DIMENSIÓN 3							
5	ESAL de diseño	350	No	81	No	SK	No	
_	COAL de diseilo						140	
	DIMENSIÓN 4	(ar						
6	PCI, IRI y Deflectometria	Set	No	>81	No	X5.	No	

observaciones (precisar si hay suficiencia): LOS Items Son Suficientes	
Opinión de aplicabilidad: Aplicable [X] Aplicable después de corregir [] No aplicable []	
Apellidos y nombres del juez validador. Dr/ Mg: Cahua paza Velarde Fredy	DNI: 02435908
Especialidad del validador: Inceniero Civil	DNI:
9	***************************************

Pertinencia: El item corresponde al concepto teórico formulado.
 Relevancia: El item es apropiado para representar al componente o dimensión específica del constructo

³Claridad: Se entiende sin dificultad alguna el enunciado del ítem, es conciso, exacto y directo

ANEXO 4. Espesores de pavimento_AASHTO.

CONSORCIO VIAL SICUANI

CALCULO DE ESPESORES DE PAVIMENTO

: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

PROYECTO UBICACIÓN FECHA : RAUL DELGADO ARAGON : CUSCO ING. ESP. : ENERO 2021

The color of the									P	ROPUESTA TD	R									PROPU	ESTA CONTRA	ATISTA				
		SN actual o	Coeficiente	Espesor	Coeficiente	Fsnesor sub				Coeficiente	Fenesor hase	Coeficiente	Espesor			Coeficiente	Espesor sub				Coeficiente	Esnesor hase	Coeficiente	Espesor		
	PROGRESIVA		estructural de	carpeta			SN act-ai	SN diseño	SN refuerzo	estructural		estructural de	carpeta	SN refuerzo			base	SN act-ai			estructural	-	estructural de	carpeta		VERIFICACIÓN
1	TROGRESIVA		carpeta	asfaltica a			Sit act aj	requerido	requerido	base		carpeta	asfaltica	proporcionado	DE DISEÑO		existente a	Jiv act aj	requerido	requerido	base		carpeta	asfaltica	proporcionado	DE DISEÑO
		en campo	asfaltica	retirar	Sub base	retirai				estabilizada	(CIII)	asfaltica	(cm)			Sub base	retirar				estabilizada	(cm)	asfaltica	(cm)		
		а	b	С	d	e	f=a-(b)(c)-(d)(e)	g	h=g-f	i	j	k	1	m=(i)(j)+(k)(l)	m>h	n	0	p=a-(b)(c)-(n)(o)	g	q=g-p	r	s	t	u	v=(r)(s)+(t)(v)	v>q
Company Comp	s 1076+519	3.70	0.17	10	0.043	10	1.570	3.80	2.23	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.570	3.80	2.23	0.115	20	0.17	5	3.15	CUMPLE
2 State	s 1076+555	3.40	0.17	10	0.043	10	1.270	3.80	2.53	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.270	3.80	2.53	0.115	20	0.17	5	3.15	CUMPLE
The color The	S 1076+600	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE
1.5	s 1076+700	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE
1. 1. 1. 1. 1. 1. 1. 1.	s 1076+800	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63		20	0.17	5		CUMPLE
2		_				_							5				1	1								CUMPLE
2		_				_															1					CUMPLE
2 1979 198	_	_															1									CUMPLE
2	_	_																								CUMPLE
10						_											1				1					CUMPLE
2		_													_						1					CUMPLE
No. Control Column Col		_				_															1					CUMPLE
No. 1979 1970 1970 1971 1		_															1	1								
	_	_				_									_						1					CUMPLE
No. 1967-10 1.55 1.57		_				_											1	1			1					CUMPLE
															_		1									CUMPLE
1. Biff 1. Min		_					1						5				1	1								CUMPLE
1		_											5													CUMPLE
							1										1									CUMPLE
17 17 17 17 18 18 17 18 18															_						1					CUMPLE
	_	_																								CUMPLE
		_													_						1					CUMPLE
No.						_															1					CUMPLE
10 10 10 10 10 10 10 10						_											1	1								CUMPLE
No. Control						_									_						1					CUMPLE
10 10 10 10 10 10 10 10		_					1										1	1								CUMPLE
19 19 19 10 10 12 12 12 12 13 13 13 13		3.60								0.115			5		_		10.00	1.470				20		5		CUMPLE
18 197-197 18 18 18 18 18 18 18 1						_																				CUMPLE
No. 1979 19 190 1917 19 190 1918 191 190 1918 191 19		_																			1					CUMPLE
No.	_	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE
No. 10	s 1079+300	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE
No. Property 19	s 1079+400	4.80	0.17	10	0.043	10	2.670	3.80	1.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	2.670	3.80	1.13	0.115	20	0.17	5	3.15	CUMPLE
18 19 19 19 19 19 19 19	s 1079+500	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE
19 19 19 19 19 19 19 19	s 1079+600	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE
No. 1979-1970 1-99 1-1	s 1079+700	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE
18 180,000 2 28 17 18 18 19 19 19 110 1110 113 20 127 5 113 113 113 20 127 5 133 113 113 20 127 5 135 110	s 1079+800	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE
No. St.	s 1079+900	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE
38 1000-200 100 0.17 10 0.943 10 0.970 3.80 2.83 0.115 20 0.17 5 3.15 0.17 10 0.941 10 0.970 3.80 2.83 0.115 20 0.17 5 3.15 0.17 10 0.941 10 0.970 3.80 2.83 0.115 20 0.17 5 3.15 0.17 10 0.941 10 0.970 3.80 2.83 0.115 20 0.17 5 3.15 0.18 0.	s 1080+000	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE
No. Control No. Control No. Control No. Control No.	s 1080+100	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE
38 3009-400 2.10 0.27 10 0.044 10 0.0770 3.80 2.18 0.115 20 0.17 5 3.15 0.044 10 0.0770 3.80 3.18 0.115 20 0.17 5 3.15 0.044 10 0.043 1.10 0.15 2.10 0.17 5 3.15 0.044 1.10 0.043 1.10 0.1770 3.80 3.18 0.115 20 0.17 5 3.15 0.044 1.10 0.043 0.10 0.043 1.10 0.043 0.043 0.043 0.043 0.043 0.043 0.0	s 1080+200	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE
18 1809-1900 2-10 0.17 10 0.041 19 0.070 1.80 1.18 0.115 20 0.17 5 1.35 0.040 1.19 0.040 1.17 1.15 1	s 1080+300	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE
St. Company	s 1080+400	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE
38 1089-700 0 7.7	s 1080+500	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMPLE
35 1009-900 0 300 0.17 10 0.043 10 0.870 3.80 2.93 0.115 20 0.17 5 3.15 0 CMME 0.043 15.00 0.655 3.80 3.55 0.115 25 0.17 5 3.725 0 35 1001-900 0.10 0.17 10 0.043 10 0.070 3.80 2.83 0.115 20 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 10 0.041 10 0.041 10 0.047 3.80 3.33 0.115 20 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.35 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.35 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.35 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.043 15.00 0.855 3.80 3.35 0.115 25 0.17 5 3.725 0 0.17 5 3.15 0 CMME 0.044 1.00	s 1080+600	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	1.155	3.80	2.65	0.115	25	0.17	5	3.725	CUMPLE
38 1099-900 9 320 017 10 0043 10 1070 330 229 017 5 315 0 CLMPE 0043 1500 0555 1380 225 017 5 3725 0 38 1091-900 20 20 017 10 0043 10 0570 330 123 0 115 20 017 5 315 0 CLMPE 0043 1500 0555 1380 105 0115 25 017 5 3725 0 10 10 10 043 10 0570 330 133 0115 20 017 5 315 0 CLMPE 0043 1500 0555 1380 105 0115 25 017 5 3725 0 10 10 0581 10 0570 330 133 0115 20 017 5 315 0 CLMPE 0043 1500 0555 1380 1555 0115 25 017 5 3725 0 10 10 0581 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 043 10 0570 130 057	s 1080+700	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	25	0.17	5	3.725	CUMPLE
38 1081-000 Q 240 0.17 10 0.043 10 0.77 3.80 2.88 0.15 20 0.17 5 3.15 0.00MPE 0.043 15.00 0.755 3.80 3.05 0.15 25 0.17 5 3.775 3.35 1081-000 Q 240 0.17 10 0.043 10 0.770 3.80 3.33 0.15 20 0.17 5 3.15 0.00MPE 0.043 15.00 0.255 3.80 3.55 0.15 25 0.17 5 3.775 3.35 1081-000 Q 240 0.17 10 0.043 10 0.770 3.80 3.03 3.00 3.015 20 0.17 5 3.15 0.00MPE 0.043 15.00 0.355 3.80 3.55 0.15 25 0.17 5 3.775 3.35 1081-000 Q 240 0.17 10 0.043 10 0.770 3.80 3.23 0.15 20 0.17 5 3.15 0.00MPE 0.043 15.00 0.355 3.80 3.55 0.15 25 0.17 5 3.775 3.35 1081-000 Q 240 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.55 0.15 25 0.17 5 3.775 3.35 1081-000 Q 240 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.55 0.15 25 0.17 5 3.775 3.35 1081-000 Q 240 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.55 0.15 25 0.17 5 3.775 3.35 1081-000 Q 240 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.55 0.15 25 0.17 5 3.775 3.35 1081-000 Q 3.00 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.55 0.115 25 0.17 5 3.775 3.35 1081-000 Q 3.00 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.35 0.115 25 0.17 5 3.775 3.35 1081-000 Q 3.00 0.17 10 0.043 10 0.570 3.80 3.80 3.35 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.35 0.115 25 0.17 5 3.775 3.35 1081-000 Q 3.00 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.35 0.115 25 0.17 5 3.775 3.35 1081-000 Q 3.00 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.35 0.115 25 0.17 5 3.775 3.35 1081-000 Q 3.00 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.35 0.115 25 0.17 5 3.775 3.35 1081-000 Q 3.00 0.17 10 0.043 10 0.570 3.80 3.33 0.15 20 0.17 5 3.35 0.00MPE 0.043 15.00 0.355 3.80 3.35 0.15 25 0.17 5 3.775 3.35 1081-000 Q 3.00 0.17 10 0.043 10 0.070 3.80 3.33 0.15 20 0.17 5 3.35 0	S 1080+800	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.655	3.80	3.15	0.115	25	0.17	5	3.725	CUMPLE
35 1081+00	s 1080+900	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.855	3.80	2.95	0.115	25	0.17	5	3.725	CUMPLE
38 1081-900 2 280 0.17 10 0.043 10 0.770 3.80 3.13 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.455 3.80 13.5 0.119 22 0.17 5 3.775 0.119 10 0.043 10 0.770 3.80 10.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.555 3.80 13.5 0.119 22 0.17 5 3.775 0.119 10 0.043 10 0.770 3.80 12.2 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.555 3.80 13.5 0.119 22 0.17 5 3.775 0.119 10 0.043 10 0.770 3.80 13.2 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.555 3.80 13.5 0.119 22 0.17 5 3.775 0.119 10 0.043 10 0.070 3.80 13.8 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.555 3.80 13.5 0.119 22 0.17 5 3.775 0.119 10 0.043 10 0.070 3.80 13.8 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.455 3.80 3.55 0.119 22 0.17 5 3.775 0.119 10 0.043 10 0.070 3.80 13.8 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.455 3.80 3.55 0.119 22 0.17 5 3.775 0.119 10 0.043 10 0.070 3.80 2.80 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.455 3.80 3.55 0.115 22 0.17 5 3.775 0.119 10 0.043 10 0.070 3.80 2.80 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.455 3.80 3.55 0.115 22 0.17 5 3.775 0.119 10 0.043 10 0.070 3.80 2.80 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.455 3.80 3.35 0.115 22 0.17 5 3.775 0.119 10 0.043 10 0.070 3.80 2.39 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.455 3.80 3.35 0.115 22 0.17 5 3.775 0.119 0.119 0.043 10 0.070 3.80 2.39 0.115 20 0.17 5 3.15 0.UMPIE 0.043 15.00 0.455 3.80 3.35 0.115 22 0.17 5 3.775 0.119 0.	S 1081+000	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17	5	3.725	CUMPLE
38 1081-900 2.80 0.17 10 0.043 10 0.670 3.80 3.13 0.115 20 0.17 5 3.15 0.UMPLE 0.043 15.00 0.455 3.80 3.25 0.115 25 0.17 5 3.775 0.00 0.17 10 0.043 10 0.770 3.80 5.03 0.115 20 0.17 5 3.15 0.UMPLE 0.043 15.00 0.555 3.80 3.25 0.115 25 0.17 5 3.775 0.00 0.17 10 0.043 10 0.470 3.80 5.33 0.115 20 0.17 5 3.15 0.00 0.00 0.17 10 0.043 10 0.470 3.80 5.33 0.115 20 0.17 5 3.15 0.00 0.00 0.15 10 0.00 0.1	S 1081+100	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMPLE
35 1081+00 0 2.70 0.17 10 0.043 10 0.570 3.80 3.23 0.115 20 0.17 5 3.15 0 NOCUMPE 0.043 15.00 0.355 3.80 3.45 0.115 25 0.17 5 3.725 0 NOCUMPE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5	S 1081+200	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMPLE
38 1081+500 0 2.60 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0 CUMPE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.181+700 0 3.10 0.17 10 0.043 10 0.670 3.80 3.13 0.115 20 0.17 5 3.15 0 CUMPE 0.043 15.00 0.455 3.80 3.05 0.115 25 0.17 5 3.725 0.17 5 3.725 0.181+700 0 3.10 0.17 10 0.043 10 0.670 3.80 3.80 3.13 0.115 20 0.17 5 3.15 0 CUMPE 0.043 15.00 0.455 3.80 3.05 0.115 25 0.17 5 3.725 0.17 10 0.043 10 0.670 3.80 3.80 3.80 3.13 0.115 20 0.17 5 3.15 0 CUMPE 0.043 15.00 0.455 3.80 3.05 0.115 25 0.17 5 3.725 0.17 10 0.043 10 0.670 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.8	S 1081+300	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	25	0.17	5	3.725	CUMPLE
38 1081+500 0 2.60 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0 CUMPE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.181+700 0 3.10 0.17 10 0.043 10 0.670 3.80 3.13 0.115 20 0.17 5 3.15 0 CUMPE 0.043 15.00 0.455 3.80 3.05 0.115 25 0.17 5 3.725 0.17 5 3.725 0.181+700 0 3.10 0.17 10 0.043 10 0.670 3.80 3.80 3.13 0.115 20 0.17 5 3.15 0 CUMPE 0.043 15.00 0.455 3.80 3.05 0.115 25 0.17 5 3.725 0.17 10 0.043 10 0.670 3.80 3.80 3.80 3.13 0.115 20 0.17 5 3.15 0 CUMPE 0.043 15.00 0.455 3.80 3.05 0.115 25 0.17 5 3.725 0.17 10 0.043 10 0.670 3.80 3.80 3.80 3.80 3.80 3.80 3.80 3.8	S 1081+400	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	25	0.17	5	3.725	CUMPLE
35 1081+700 0 310 0.17 10 0.043 10 0.970 3.80 2.83 0.115 20 0.17 5 3.15 0 CUMPLE 0.043 15.00 0.755 3.80 3.05 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.670 3.80 3.80 3.13 0.115 20 0.17 5 3.15 0 CUMPLE 0.043 15.00 0.655 3.80 3.15 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.570 3.80 3.23 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.655 3.80 3.15 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.570 3.80 3.23 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.655 3.80 3.15 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.570 3.80 3.23 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.055 3.80 3.05 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0570 3.80 3.23 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.055 3.80 3.05 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0570 3.80 3.83 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.055 3.80 3.05 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0570 3.80 3.83 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.055 3.80 3.05 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0570 3.80 3.80 3.83 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 10 0.043 10 0.0470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.725 0 0.17 10 0.043 10 0.0470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17 5 3.725 0 0.17	S 1081+500	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMPLE
38 1081-800	s 1081+600	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMPLE
38 1081+900		_				10	0.970						5		CUMPLE			0.755			1			5		CUMPLE
38 1081+900 0 300 017 10 0.043 10 0.870 3.80 2.93 0.115 20 0.17 5 3.15 0 CUMPLE 0.043 15.00 0.655 3.80 3.15 0.115 25 0.17 5 3.725 0.15 1082+000 2.270 0.17 10 0.043 10 0.570 3.80 3.23 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.355 3.80 3.45 0.115 25 0.17 5 3.725 0.17 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.043 10 0.040 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.155 3.80 3.65 0.115 25 0.17 5 3.725 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18			0.17	10	0.043	10	0.670				20		5		CUMPLE	0.043		0.455	3.80				0.17	5		CUMPLE
38 1082+000 \$ 2.70	_	_													•											CUMPLE
38 1082+100 3.80 0.17 10 0.043 10 1.670 3.80 2.13 0.115 20 0.17 5 3.15 0.00 0.185 3.80 2.35 0.115 25 0.17 5 3.725 0.385 1082+200 2.50 0.17 10 0.043 10 0.370 3.80 3.43 0.115 20 0.17 5 3.15 0.00 0.043 15.00 0.155 3.80 3.55 0.115 25 0.17 5 3.725 0.385 1082+400 2.60 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0.00 0.048 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.385 1082+400 2.20 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0.00 0.048 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.385 1082+400 2.20 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0.00 0.048 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.385 1082+400 2.20 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0.00 0.048 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.385 1082+400 2.20 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0.00 0.048 15.00 0.255 3.80 3.25 0.115 25 0.17 5 3.725 0.385 1082+400 2.20 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0.00 0.048 15.00 0.555 3.80 3.25 0.115 25 0.17 5 3.725 0.385 0.3		_			0.043								5		NO CUMPLE		1	0.355						5		CUMPLE
38 1082+200 0 2.50 0.17 10 0.043 10 0.370 3.80 3.43 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.18 1082+300 0 2.60 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.18 1082+400 0 2.60 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.18 1082+400 0 2.60 0.17 10 0.043 10 0.470 3.80 3.03 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.18 1082+408 0 2.90 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.17 5 3.725 0.18 1082+400 0 2.60 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.455 3.80 3.35 0.115 25 0.17 5 3.725 0.17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 0 NO CUMPLE 0.043 15.00 0.455 3.80 3.35 0.115 25 0.17 5 3.725 0.17	_	_				_									_						1					CUMPLE
1082+300	_	-				_																				CUMPLE
1082+400	_)													_						1					CUMPLE
35 1082+488	_	_				_									_											CUMPLE
35 1082+600 3 2.80 0.17 10 0.043 10 0.670 3.80 3.13 0.115 20 0.17 5 3.15 CUMPLE 0.043 15.00 0.455 3.80 3.35 0.115 25 0.17 5 3.725 0.182+700 17 10 0.043 10 0.043 10 0.040 3.80 3.33 0.115 20 0.17 5 3.15 CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.182+800 3.20 0.17 10 0.043 10 0.043 10 0.070 3.80 2.73 0.115 20 0.17 5 3.15 CUMPLE 0.043 15.00 0.855 3.80 2.95 0.115 25 0.17 5 3.725 0.182+800 3.20 0.17 10 0.043 10 0.043 10 0.060 3.80 3.13 0.115 20 0.17 CONSORCIO VIA 3.15 CUMPLE 0.043 15.00 0.855 3.80 3.35 0.115 25 0.17 5 CONSORCIO VIA 3.15 0.182+10 0.043 15.00 0.045 3.80 3.35 0.115 25 0.17 5 CONSORCIO VIA 3.15 0.15 0.17 5 0.		_																								CUMPLE
33 1082+70 0 17 10 0.043 10 0.470 3.80 3.33 0.115 20 0.17 5 3.15 NO CUMPLE 0.043 15.00 0.255 3.80 3.55 0.115 25 0.17 5 3.725 0.182+780 0.77 10 0.043 10 1.070 3.80 2.73 0.115 20 0.17 5 3.15 CUMPLE 0.043 15.00 0.855 3.80 2.95 0.115 25 0.17 5 3.725 0.17 5 3.725 0.17 5 0.	_			-		_																				CUMPLE
35. 10827900 2.80 61 10 0.043 10 0.670 3.80 3.13 0.115 20 0.17 CONSORCIO VIAL SICURIUS 0.043 15.00 0.455 3.80 3.35 0.115 25 0.17 5 CONSORCIO VIA 10.043 10 0.043 10 0.043 10 0.043 10 0.070 3.80 2.73 0.115 20 0.17 5 0.17						_	1																			CUMPLE
35. 10827900 2.80 61 10 0.043 10 0.670 3.80 3.13 0.115 20 0.17 CONSORCIO VIAL SICURIUS 0.043 15.00 0.455 3.80 3.35 0.115 25 0.17 5 CONSORCIO VIA 10.043 10 0.043 10 0.043 10 0.043 10 0.070 3.80 2.73 0.115 20 0.17 5 0.17	CONSORC	KOTVIAĽSK	CUANITY																							CUMPLE
33 1083 108 3.20 0.47 10 0.043 10 1.070 3.80 2.73 0.115 20 0.17 3 15 0.043 15.00 0.855 3.80 2.95 0.115 25 0.17 5 12.725 10 10 0.043 10 0.570 3.80 3.23 0.115 20 0.17 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0							1											1								
10 0.043 10 0.570 3.80 3.23 0.115 20 0.17 5 0.15 0.043 15.00 0.355 3.80 3.45 0.115 25 0.17 5 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18												0.17	ONSOR	CIO VIAL	SICUANIE											
35 US 10 0.043 10 0.0	- U03#100	3.20	0.17																		1					
30 NARREPUN 10342 2020 NT 10 0.043 10 0.670 3.80 3.13 0.115 20 0.17 10 0.043 15.00 0.455 3.80 3.35 0.115 25 0.17 5 HIMBERTO HIGH 15.00 0.455 3.80 3.35 0.115 25 0.17 5 TIEC ENSURED 10 0.450 15.00 0.455 3.80 0.455 3.	ng. J. Antho	n <mark>y Mayta I</mark>	lamani			_						0.17	5	M DENG	NO COMPLE						1					
20 0.045 1.0 0.0	TESTOE!	VIE DE OBI	RA 0.17									0.17	ng RAUL	E. DELGAD	ARAGON									5 H	UMBERTO H	ALLEAVELL
	CONTRACTOR	17403422020-	M 1 C/20/	10	U.U43	10	U.b/U	3.80	5.15	U.115	20	0.17	ESPECIALIS	STA EN SUFROS Y P	O MATO (20	0.043	15.00	0.455	3.80	3.35	U.115	25	0.17	5 / C	ONTRATO Nº	34/2020-MT

CONSORCIO VIAL SICUANI

CALCULO DE ESPESORES DE PAVIMENTO

PROYECTO UBICACIÓN : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

: RAUL DELGADO ARAGON : CUSCO ING. ESP. FECHA : ENERO 2021

									P	PROPUESTA TI	OR .									PROPU	ESTA CONTRA	TISTA				
		SN actual o	Coeficiente	Espesor	Coeficiente	Espesor sub				Coeficiente	Espesor base	Coeficiente	Espesor			Coeficiente	Espesor sub				Coeficiente	Espesor base	Coeficiente	Espesor		
ĕ PRO		eal existente	estructural de	carpeta	estructural	base a	SN act-aj	SN diseño	SN refuerzo	estructural	estabilizada	estructural de	carpeta	SN refuerzo	VERIFICACIÓN	estructural	base	SN act-aj	SN diseño	SN refuerzo	estructural	estabilizada	estructural de	carpeta	SN refuerzo	VERIFICACIÓ
~		en campo	carpeta asfaltica	asfaltica a retirar	sub base	retirar		requerido	requerido	base estabilizada	(cm)	carpeta asfaltica	asfaltica (cm)	proporcionado	DE DISEÑO	sub base	existente a retirar		requerido	requerido	base estabilizada	(cm)	carpeta asfaltica	asfaltica (cm)	proporcionado	DE DISEÑO
		а	b	C	d	е	f=a-(b)(c)-(d)(e)) g	h=g-f	i	i	k	l (ciii)	m=(i)(j)+(k)(l)	m>h	n	0	p=a-(b)(c)-(n)(o)	g	q=g-p	r	s	t	u	v=(r)(s)+(t)(v)	v>q
-3S 108	83+400	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17	5	3.725	CUMPLE
-3S 108	83+500	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	1.155	3.80	2.65	0.115	25	0.17	5	3.725	CUMPLE
-3S 108	83+600	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.855	3.80	2.95	0.115	25	0.17	5	3.725	CUMPLE
	83+700	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUMPLE
	83+800 83+900	3.10	0.17	10 10	0.043	10 10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043 0.043	15.00	0.755 0.355	3.80	3.05	0.115	30 30	0.17	5	4.3	CUMPLE CUMPLE
	84+000	3 2.70	0.17 0.17	10	0.043	10	0.570 1.070	3.80	3.23 2.73	0.115 0.115	20	0.17 0.17	5	3.15 3.15	NO CUMPLE CUMPLE	0.043	15.00 15.00	0.355	3.80 3.80	3.45 2.95	0.115 0.115	30	0.17 0.17	5	4.3	CUMPLE
_	84+100	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUMPLE
-3S 108	84+200	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	30	0.17	5	4.3	CUMPLE
_	84+300	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUMPLE
	84+400 §	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE NO CUMPLE	0.043	15.00	0.255 0.355	3.80	3.55	0.115	30	0.17	5	4.3	CUMPLE
	84+600	3 2.70	0.17 0.17	10 10	0.043	10 10	0.570 0.870	3.80	3.23 2.93	0.115 0.115	20	0.17 0.17	5	3.15 3.15	CUMPLE	0.043 0.043	15.00 15.00	0.355	3.80 3.80	3.45 3.15	0.115 0.115	30 30	0.17 0.17	5	4.3	CUMPLE
	84+700	3.00	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUMPLE
	84+800	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.955	3.80	2.85	0.115	30	0.17	5	4.3	CUMPLE
-3S 108	84+900	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUMPLE
	85+000	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.655	3.80	3.15	0.115	30	0.17	5	4.3	CUMPLE
_	85+100 (85+200) (85+200 (85+200 (85+200 (85+200 (85+200 (85+200 (85+200 (85+20	3 3.30	0.17	10 10	0.043	10 10	0.670	3.80	3.13	0.115 0.115	20	0.17 0.17	5	3.15	CUMPLE	0.043 0.043	15.00 15.00	0.455 0.955	3.80	3.35	0.115 0.115	30	0.17 0.17	5	4.3	CUMPLE
	85+200	3.30	0.17 0.17	10	0.043	10	1.170 0.470	3.80	2.63 3.33	0.115	20	0.17	5	3.15 3.15	NO CUMPLE	0.043	15.00	0.955	3.80 3.80	2.85 3.55	0.115	30 30	0.17	5	4.3	CUMPLI
	85+400	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUMPL
_	85+500	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMPL
_	85+600	3 2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUMPL
	85+700	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUMPL
	85+800 (85+900 (2.60	0.17 0.17	10 10	0.043	10 10	0.470 0.770	3.80	3.33	0.115 0.115	20	0.17 0.17	5	3.15 3.15	NO CUMPLE CUMPLE	0.043 0.043	15.00 15.00	0.255 0.555	3.80 3.80	3.55 3.25	0.115 0.115	30 30	0.17 0.17	5	4.3	CUMPL CUMPL
_	86+000	2.90	0.17	10	0.043	10	0.770	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.25	0.115	30	0.17	5	4.3	CUMPLI
_	86+100	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMPLI
3S 108	86+207	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	30	0.17	5	4.3	CUMPLE
_	86+300	2.20	0.17	10	0.043	10	0.070	3.80	3.73	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	-0.145	3.80	3.95	0.115	30	0.17	5	4.3	CUMPL
	86+400	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUMPLE
_	86+495 86+600	2.90	0.17 0.17	10	0.043	10 10	0.770 0.270	3.80	3.03 3.53	0.115 0.115	20	0.17 0.17	5	3.15 3.15	NO CUMPLE	0.043 0.043	15.00 15.00	0.555 0.055	3.80 3.80	3.25	0.115 0.115	30	0.17 0.17	5	4.3	CUMPLE
	86+700	2.40	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUMPLE
_	86+800	2.30	0.17	10	0.043	10	0.170	3.80	3.63	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	-0.045	3.80	3.85	0.115	30	0.17	5	4.3	CUMPLE
-3S 108	86+900	2.20	0.17	10	0.043	10	0.070	3.80	3.73	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	-0.145	3.80	3.95	0.115	30	0.17	5	4.3	CUMPLE
	87+000	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUMPLE
	87+100 §	2.50	0.17 0.17	10 10	0.043	10 10	0.370 0.270	3.80	3.43 3.53	0.115 0.115	20	0.17 0.17	5	3.15 3.15	NO CUMPLE NO CUMPLE	0.043 0.043	15.00 15.00	0.155 0.055	3.80 3.80	3.65 3.75	0.115	30 30	0.17 0.17	5	4.3	CUMPLE
	87+300	2.40	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115 0.115	30	0.17	5	4.3	CUMPLE
	87+400	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUMPLE
-35 108	87+500	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMPLE
_	87+600	2.40	0.17	10	0.043	10	0.270	3.80	3.53	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.055	3.80	3.75	0.115	30	0.17	5	4.3	CUMPLE
	87+700	2.40	0.17	10	0.043	10	0.270	3.80	3.53	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.055	3.80	3.75	0.115	30	0.17	5	4.3	CUMPLE
_	87+800 87+900	2.30	0.17 0.17	10 10	0.043	10 10	0.170 0.470	3.80	3.63 3.33	0.115 0.115	20	0.17 0.17	5	3.15 3.15	NO CUMPLE NO CUMPLE	0.043 0.043	15.00 15.00	-0.045 0.255	3.80 3.80	3.85	0.115 0.115	30 30	0.17 0.17	5	4.3	CUMPLE
	88+000	2.30	0.17	10	0.043	10	0.170	3.80	3.63	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	-0.045	3.80	3.85	0.115	30	0.17	5	4.3	CUMPLE
-3S 108	88+100	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUMPLE
_	88+200	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUMPLE
		2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMPLE
	88+400 88+500	2.60	0.17 0.17	10 10	0.043	10 10	0.470 0.570	3.80	3.33 3.23	0.115 0.115	20	0.17 0.17	5	3.15 3.15	NO CUMPLE NO CUMPLE	0.043 0.043	15.00 15.00	0.255 0.355	3.80 3.80	3.55 3.45	0.115 0.115	30 30	0.17 0.17	5	4.3	CUMPLE CUMPLE
_	88+600	2.70	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUMPLE
	88+700	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	30	0.17	5	4.3	CUMPLE
	88+800	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.955	3.80	2.85	0.115	30	0.17	5	4.3	CUMPLE
_	88+900	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMPLI
_	89+000 (89+100) (89+100 (89+100) (89+100 (89+100) (89+100) (89+100 (89+100) (89	2.80	0.17 0.17	10 10	0.043	10 10	0.670 0.470	3.80	3.13 3.33	0.115 0.115	20	0.17 0.17	5	3.15 3.15	NO CUMPLE	0.043 0.043	15.00 15.00	0.455	3.80 3.80	3.35 3.55	0.115 0.115	30 30	0.17 0.17	5	4.3	CUMPLI
	89+100	3 2.60	0.17	10	0.043	10	0.470	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.255 0.655	3.80	3.55	0.115	30	0.17	5	4.3	CUMPLE
_	89+300	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUMPLE
	89+400	3 2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	30	0.17	5	4.3	CUMPLE
	89+500	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.855	3.80	2.95	0.115	30	0.17	5	4.3	CUMPLE
	89+600	2.70	0.17	10 /	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMPLE
3 CONS	SORCIO	VIA SIC	UAN 17	10 10	0.043	10 10	0.470 0.270	3.80	3.33 3.53	0.115 0.115	20	0.17 0.17	5 5 [3.15 3.15	NO CUMPLE NO CUMPLE	0.043 0.043	15.00 15.00	0.255 0.055	3.80 3.80	3.55 3.75	0.115	30 30	0.17 0.17	5	4.3	CUMPLE
	89+300		0:17	10	0.043	10	0.270	3.80	3.53	0.115	20				_	0.043	15.00	0.055	3.80	3.75	0.115 0.115	30	0.17		NSO-RCIO	
33 - 1/09	90+00	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	UNSOR	CIO VIAL	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	204.3	
7S 79	9)+10	E-BE ⁰ OBR 03422020-	771	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.18	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	There	CUMPLE
-100	90±200-	2500 PB	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	D D AVIII	E. DELGADO	A DACCIMOLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5 H	UMBÉRTO H	ALLEUMPLE
35-	FOILVENT			10	0.043	10	0.270	3.80	3.53	0.115	20	0.17			ACACATA	0.043	15.00	0.055	3.80	3.75	0.115	30	0.17	5 /	TEC. ENSUELO	

CONSORCIO VIAL SICUANI

CALCULO DE ESPESORES DE PAVIMENTO

PROYECTO UBICACIÓN : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

: RAUL DELGADO ARAGON : CUSCO ING. ESP. FECHA : ENERO 2021

								ı	PROPUESTA TI	OR .									PROPU	JESTA CONTRA	ATISTA				
	SN actual o	Coeficiente	Espesor	Coeficiente	Espesor sub				Coeficiente	Espesor base	Coeficiente	Espesor			Coeficiente	Espesor sub				Coeficiente	Espesor base	Coeficiente	Espesor		
PROGRESIVA	real existente	estructural de	carpeta	estructural	base a	SN act-aj	SN diseño	SN refuerzo	estructural	estabilizada	estructural de	carpeta	SN refuerzo	VERIFICACIÓN	estructural	base	SN act-aj	SN diseño	SN refuerzo	estructural	estabilizada	estructural de	carpeta	SN refuerzo	VERIFICAC
	en campo	carpeta	asfaltica a	sub base	retirar		requerido	requerido	base	(cm)	carpeta	asfaltica	proporcionado	DE DISEÑO	sub base	existente a		requerido	requerido	base	(cm)	carpeta		proporcionado	DE DISEÑ
	•	asfaltica	retirar			6 (1)() (1)()			estabilizada		asfaltica	(cm)	(2)(2) (1)(1)			retirar	(1)(1)(1)(1)			estabilizada	1	asfaltica	(cm)	() () () ()	
1000.100	a	b	C	d	e	f=a-(b)(c)-(d)(e)) g	h=g-f	0.115	J	k	_ن_	m=(i)(j)+(k)(l)	m>h	n	0	p=a-(b)(c)-(n)(o)	g	q=g-p	r	S	t		v=(r)(s)+(t)(v)	v>q
1090+400 1090+500	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMPL
1090+500 1090+600	2.90	0.17 0.17	10 10	0.043	10 10	0.770 0.570	3.80 3.80	3.03 3.23	0.115 0.115	20	0.17 0.17	5	3.15 3.15	OUMPLE NO CUMPLE	0.043 0.043	15.00 15.00	0.555 0.355	3.80 3.80	3.25 3.45	0.115 0.115	30 30	0.17 0.17	5	4.3	CUMP
1090+000	2.70	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUMP
1090+800	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUMP
s 1090+900	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUMP
s 1091+000	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	30	0.17	5	4.3	CUMP
s 1091+100	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUMP
1091+200	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	30	0.17	5	4.3	CUMP
S 1091+300	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	30	0.17	5	4.3	CUMF
1091+400	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUMF
1091+500	3.60	0.17	10	0.043	10	1.470	3.80	2.33	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	1.255	3.80	2.55	0.115	30	0.17	5	4.3	CUM
S 1091+600	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	1.155	3.80	2.65	0.115	30	0.17	5	4.3	CUMF
S 1091+700 S 1091+810	2.602.80	0.17 0.17	10 10	0.043	10	0.470 0.670	3.80	3.33 3.13	0.115 0.115	20	0.17	5	3.15 3.15	NO CUMPLE CUMPLE	0.043	15.00 15.00	0.255 0.455	3.80	3.55 3.35	0.115	30 30	0.17 0.17	5	4.3	CUMP
S 1091+810 S 1091+900	2.80	0.17	10	0.043	10	0.870	3.80	3.13	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.455	3.80 3.80	3.65	0.115 0.115	30	0.17	5	4.3	CUMP
1092+000	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUMF
1092+100	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUM
1092+200	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	СИМІ
1092+300	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUM
1092+400	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUM
1092+500 1092+600	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUM
	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUM
1092+700	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUM
1092+800 1092+900	2.502.40	0.17 0.17	10 10	0.043	10	0.370 0.270	3.80	3.43 3.53	0.115 0.115	20	0.17	5	3.15 3.15	NO CUMPLE NO CUMPLE	0.043	15.00 15.00	0.155 0.055	3.80 3.80	3.65 3.75	0.115 0.115	30 30	0.17 0.17	5	4.3	CUM
S 1092+900 S 1093+000	2.40	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUM
1093+100	2.40	0.17	10	0.043	10	0.270	3.80	3.53	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.055	3.80	3.75	0.115	30	0.17	5	4.3	CUM
1093+200	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUMI
1093+300	2.40	0.17	10	0.043	10	0.270	3.80	3.53	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.055	3.80	3.75	0.115	30	0.17	5	4.3	CUM
1093+400	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.655	3.80	3.15	0.115	30	0.17	5	4.3	CUM
S 1093+500	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUM
s 1093+600	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUM
s 1093+700	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUM
S 1093+800 S 1093+900	2.80	0.17 0.17	10 10	0.043	10 10	0.670 0.670	3.80 3.80	3.13 3.13	0.115 0.115	20	0.17 0.17	5	3.15 3.15	CUMPLE CUMPLE	0.043 0.043	15.00 15.00	0.455 0.455	3.80 3.80	3.35 3.35	0.115 0.115	30 30	0.17 0.17	5	4.3	CUM
3S 1093+900 3S 1094+000	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMI
S 1094+100	2.40	0.17	10	0.043	10	0.270	3.80	3.53	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.055	3.80	3.75	0.115	30	0.17	5	4.3	CUMF
s 1094+200	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUM
S 1094+300	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	30	0.17	5	4.3	CUM
S 1094+400	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	30	0.17	5	4.3	CUMI
S 1094+500	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	30	0.17	5	4.3	CUMI
IS 1094+600	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	30	0.17	5	4.3	CUM
S 1094+700	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	30	0.17	5	4.3	CUM
S 1094+800 S 1094+900	2.80 2.60	0.17 0.17	10 10	0.043	10	0.670 0.470	3.80	3.13 3.33	0.115 0.115	20	0.17 0.17	5	3.15 3.15	OUMPLE NO CUMPLE	0.043	15.00 15.00	0.455 0.255	3.80 3.80	3.35 3.55	0.115 0.115	30 30	0.17 0.17	5	4.3	CUM
S 1094+900 S 1095+000	3.00	0.17	10	0.043	10	0.470	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.655	3.80	3.15	0.115	25	0.17	5	3.725	CUM
s 1095+100	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17	5	3.725	CUM
s 1095+200	3.60	0.17	10	0.043	10	1.470	3.80	2.33	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	1.255	3.80	2.55	0.115	25	0.17	5	3.725	CUM
1095+300		0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	25	0.17	5	3.725	CUM
	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.855	3.80	2.95	0.115	25	0.17	5	3.725	CUM
1095+500		0.17	10	0.043	10	1.570	3.80	2.23	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	1.355	3.80	2.45	0.115	25	0.17	5	3.725	CUM
1095+600	3.80	0.17	10	0.043	10	1.670	3.80	2.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	1.455	3.80	2.35	0.115	25	0.17	5	3.725	CUM
1095+700	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17	5	3.725	CUM
1095+800 1095+900	3.10	0.17	10	0.043	10	0.970 0.670	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17 0.17	5	3.725	CUM
1095+900	2.80 3.10	0.17 0.17	10 10	0.043	10	0.670	3.80 3.80	3.13 2.83	0.115 0.115	20	0.17 0.17	5	3.15 3.15	CUMPLE	0.043 0.043	15.00 15.00	0.455 0.755	3.80 3.80	3.35 3.05	0.115 0.115	25 25	0.17	5	3.725 3.725	CUM
1096+000	3.10	0.17	10	0.043	10	1.770	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	1.555	3.80	2.25	0.115	25	0.17	5	3.725	CUM
1096+200	,	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	25	0.17	5	3.725	CUM
1096+300	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.955	3.80	2.85	0.115	25	0.17	5	3.725	СИМ
1096+400	_	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUM
1096+500	_	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17	5	3.725	CUM
1096+600	2.90	0.17	10 /	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	25	0.17	5	3.725	CUM
1096+700 1096+800	2.60 QLC	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUM
			10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUM
1096+900		017	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17 G	ONSOF	CIO3VIAL	SIC WAYNILE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17		VSORCIO	
1097+00	2.80	0.17	10	0.043	10	0.670 0.870	3.80 3.80	3.13 2.93	0.115 0.115	20	0.17		8.10		0.043 0.043	15.00	0.455 0.655	3.80	3.35	0.115	25	0.17 0.17		3.725	
	Mauta N	lamani	10	0.043	10 10	0.870	3.80	3.23	0.115	20		· · · · · · ·	N O P. J.	COMPLE	0.043	15.00 15.00	0.655	3.80 3.80	3.15 3.45	0.115 0.115	25 25	0.17		IMBEZETO HI	
ig. J. antho	2-0-	0.17							0.113	20	. 0.1/					10.00	0.333	J.00	J.7J						
090±000 1097±760 0N4097±800N	TE DE OBR	0.17	10 10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	ng. RAUL	E. DELGADO	RAGON JENGGEJMPI F	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5 7 7	TEC. EMSUELOS	Y PALININE

CONSORCIO VIAL SICUANI

CALCULO DE ESPESORES DE PAVIMENTO

PROYECTO UBICACIÓN : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

: RAUL DELGADO ARAGON : CUSCO ING. ESP. FECHA : ENERO 2021

								ı	PROPUESTA T	DR									PROPU	UESTA CONTRA	ATISTA				
	SN actual o	Coeficiente	Espesor	Coeficiente	Espesor sub	ь			Coeficiente	Espesor base	Coeficiente	Espesor			Coeficiente	Espesor sub				Coeficiente	Espesor base	Coeficiente	Espesor	1	
PROGRESIVA		estructural de	carpeta	estructural	base a	SN act-aj	SN diseño	SN refuerzo	estructural	estabilizada	estructural de	carpeta	SN refuerzo	VERIFICACIÓN	estructural	base	SN act-aj	SN diseño	SN refuerzo	estructural	estabilizada	estructural de	carpeta	SN refuerzo	VERIFICACI
	en campo	carpeta asfaltica	asfaltica a retirar	sub base	retirar		requerido	requerido	base estabilizada	(cm)	carpeta asfaltica	asfaltica (cm)	proporcionado	DE DISEÑO	sub base	existente a		requerido	requerido	base estabilizada	(cm)	carpeta asfaltica	asfaltica (cm)	proporcionado	DE DISEÑ
	2	asiaitica h	C	d	e	f=a-(b)(c)-(d)(e)) 0	h=g-f	i	i	dSiditica k	(CIII)	m=(i)(j)+(k)(l)	m>h	,	retirar	p=a-(b)(c)-(n)(o)		q=g-p	r	S	dSIdILICA †	u (cm)	v=(r)(s)+(t)(v)	v>q
3S 1097+400	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMPLE
s 1097+500	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMPL
1097+600	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMPL
S 1097+700	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	25	0.17	5	3.725	CUMPL
S 1097+800	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	25	0.17	5	3.725	CUMPL
S 1097+900	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMPL
3S 1098+000	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMPL
S 1098+100	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMPL
S 1098+200 S 1098+300	2.80 2.60	0.17 0.17	10 10	0.043	10 10	0.670 0.470	3.80 3.80	3.13 3.33	0.115 0.115	20 20	0.17 0.17	5	3.15 3.15	NO CUMPLE	0.043 0.043	15.00 15.00	0.455 0.255	3.80 3.80	3.35 3.55	0.115 0.115	25 25	0.17	5	3.725 3.725	CUMPI CUMPI
1098+400	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMP
1098+500	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMP
s 1098+600		0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17	5	3.725	CUMPI
S 1098+700	2.50	0.17	10	0.043	10	0.370	3.80	3.43	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.155	3.80	3.65	0.115	25	0.17	5	3.725	CUMPI
S 1098+800	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	25	0.17	5	3.725	CUMPL
s 1098+900	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.555	3.80	3.25	0.115	25	0.17	5	3.725	CUMPI
S 1099+000 S 1099+100	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMP
1099+100 1099+200	3.10 3.50	0.17 0.17	10 10	0.043	10 10	0.970 1.370	3.80 3.80	2.83	0.115 0.115	20 20	0.17 0.17	5	3.15 (3.15 (CUMPLE	0.043 0.043	15.00 15.00	0.755 1.155	3.80 3.80	3.05 2.65	0.115 0.115	25 25	0.17 0.17	5	3.725 3.725	CUMP CUMP
1099+200	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMP
1099+400	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	2.95	0.115	25	0.17	5	3.725	CUMF
	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.655	3.80	3.15	0.115	25	0.17	5	3.725	CUMF
1099+500 1099+600	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMF
1099+700	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUM
1099+800	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.655	3.80	3.15	0.115	25	0.17	5	3.725	CUMF
s 1099+900 s 1100+000	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMF
	3.00 2.90	0.17 0.17	10 10	0.043	10 10	0.870 0.770	3.80 3.80	2.93 3.03	0.115 0.115	20	0.17 0.17	5	3.15 (3.15 (CUMPLE	0.043 0.043	15.00 15.00	0.655 0.555	3.80 3.80	3.15 3.25	0.115 0.115	25 25	0.17 0.17	5	3.725	CUMF CUMF
1100+100 1100+200	2.90	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMP
1100+300	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMF
1100+400	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.955	3.80	2.85	0.115	25	0.17	5	3.725	CUMP
S 1100+500	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMP
S 1100+600	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17	5	3.725	CUMF
S 1100+700	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMF
3S 1100+800 3S 1100+900	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.755	3.80	3.05	0.115	25	0.17	5	3.725	CUMP
IS 1100+900 IS 1101+000	2.703.00	0.17 0.17	10	0.043	10 10	0.570 0.870	3.80	3.23 2.93	0.115 0.115	20	0.17	5	3.15 3.15	NO CUMPLE CUMPLE	0.043 0.043	15.00 15.00	0.355 0.655	3.80	3.45 3.15	0.115 0.115	25 25	0.17	5	3.725	CUMP CUMP
S 1101+100	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.655	3.80	3.15	0.115	25	0.17	5	3.725	CUMP
S 1101+200	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.855	3.80	2.95	0.115	25	0.17	5	3.725	CUMP
IS 1101+300	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.455	3.80	3.35	0.115	25	0.17	5	3.725	CUMP
S 1101+400	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.655	3.80	3.15	0.115	25	0.17	5	3.725	CUMP
IS 1101+500	2.70	0.17	10	0.043	10	0.570	3.80	3.23	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.355	3.80	3.45	0.115	25	0.17	5	3.725	CUMP
S 1101+600 S 1101+700	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	15.00	0.855	3.80	2.95	0.115	25	0.17	5	3.725	CUMP
	2.903.80	0.17 0.17	10 10	0.043	10 10	0.770 1.670	3.80 3.80	3.03 2.13	0.115 0.115	20 20	0.17	5	3.15 3.15	CUMPLE	0.043 0.043	15.00 15.00	0.555 1.455	3.80 3.80	3.25 2.35	0.115 0.115	25 25	0.17 0.17	5	3.725 3.725	CUMF
S 1101+800 S 1101+900	2.60	0.17	10	0.043	10	0.470	3.80	3.33	0.115	20	0.17	5	3.15	NO CUMPLE	0.043	15.00	0.255	3.80	3.55	0.115	25	0.17	5	3.725	CUMF
S 1102+000	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMF
S 1102+100	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17	5	3.15	СИМР
1102+200	3.70	0.17	10	0.043	10	1.570	3.80	2.23	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.570	3.80	2.23	0.115	20	0.17	5	3.15	CUMF
1102+300		0.17	10	0.043	10	1.670	3.80	2.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.670	3.80	2.13	0.115	20	0.17	5	3.15	CUMF
	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMP CUMP
1102+500 1102+600	3.20 3.10	0.17 0.17	10	0.043	10 10	1.070 0.970	3.80 3.80	2.73	0.115 0.115	20	0.17	5	3.15 (3.15 (CUMPLE	0.043 0.043	10.00	1.070 0.970	3.80 3.80	2.73 2.83	0.115 0.115	20	0.17	5	3.15	CUMF
S 1102+000 S 1102+700	3.10	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMF
1102+800	3.60	0.17	10	0.043	10	1.470	3.80	2.33	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.470	3.80	2.33	0.115	20	0.17	5	3.15	CUMI
s 1102+900	3.60	0.17	10	0.043	10	1.470	3.80	2.33	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.470	3.80	2.33	0.115	20	0.17	5	3.15	CUM
1103+000	3.90	0.17	10	0.043	10	1.770	3.80	2.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.770	3.80	2.03	0.115	20	0.17	5	3.15	CUMI
1103+100	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMI
1103+200	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMI
1103+300 1103+400	2.90 3.10	0.17 0.17	10 10	0.043	10 10	0.770 0.970	3.80 3.80	3.03 2.83	0.115 0.115	20 20	0.17 0.17	5	3.15 (3.15 (CUMPLE	0.043 0.043	10.00 10.00	0.770 0.970	3.80 3.80	3.03 2.83	0.115 0.115	20	0.17 0.17	5	3.15	CUMF
1103+400	3.10	0.17	10	0.043	10	1.570	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.570	3.80	2.23	0.115	20	0.17	5	3.15	CUMI
1103+600	3.70 4.10	0.17	10	0.043	10	1.970	3.80	1.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.970	3.80	1.83	0.115	20	0.17	5	3.15	CUMF
			10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMF
CONSTRUCK	VIAL SIC	0:17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMI
1103+900	3.00	(بوق	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17 C	ONSOR	CIO VIAL	SIC LEAVING	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17		NSORCIO	
1104+00	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20					0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	W L A SUDE
	2.90	aman i	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	4 6 B.16 Q	CUMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17	5	LIMBÈRTO HI	CUMF
ng. J. anthon	A_MANTHEM _ WA	STATE OF THE PERSON NAMED IN						2.63	0.115	20	0.17			LINADIF	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17			- A L L ÆLLMP
Anthor	TE DE OBR	0.17	10 10	0.043	10 10	1.170 0.870	3.80 3.80	2.93	0.115	20	0.17	g RAUL	E. DELGADO	ARAGON	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17		TEC. ENSUELOS	

CONSORCIO VIAL SICUANI

CALCULO DE ESPESORES DE PAVIMENTO

PROYECTO UBICACIÓN : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

: RAUL DELGADO ARAGON : CUSCO ING. ESP. FECHA : ENERO 2021

								P	PROPUESTA TO)R									PROPU	JESTA CONTRA	ATISTA				
	SN actual o	Coeficiente	Espesor	Coeficiente	Espesor sub	,			Coeficiente	Espesor base	Coeficiente	Espesor			Coeficiente	Espesor sub				Coeficiente	Espesor base	Coeficiente	Espesor		
PROGRESIVA	real existente	estructural de	carpeta	estructural	base a	SN act-aj	SN diseño	SN refuerzo	estructural	estabilizada	estructural de	carpeta	SN refuerzo	VERIFICACIÓN	estructural	base	SN act-aj	SN diseño	SN refuerzo	estructural	estabilizada	estructural de	carpeta	SN refuerzo	VERIFICACI
	en campo	carpeta	asfaltica a	sub base	retirar		requerido	requerido	base	(cm)	carpeta	asfaltica	proporcionado	DE DISEÑO	sub base	existente a		requerido	requerido	base	(cm)	carpeta	asfaltica	proporcionado	DE DISEÑ
		asfaltica	retirar						estabilizada		asfaltica	(cm)	(2)(2) . (1.3(1)			retirar	(1)(1)(1)			estabilizada		asfaltica	(cm)	() () () ()	4
26 1104 1400	a 2.20	b	C 10	d 0.042	e	f=a-(b)(c)-(d)(e)) g	h=g-f	0.445	J	K 0.47	- 1	m=(i)(j)+(k)(l)	m>h	n	0	p=a-(b)(c)-(n)(o)	g 2.00	q=g-p	r	S	0.17	u	v=(r)(s)+(t)(v)	v>q
3S 1104+400	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMP
3S 1104+500 3S 1104+600	3.20 2.70	0.17 0.17	10	0.043	10 10	1.070 0.570	3.80 3.80	2.73	0.115 0.115	20	0.17 0.17	5	3.15	NO CUMPLE	0.043 0.043	10.00	1.070 0.570	3.80 3.80	2.73 3.23	0.115 0.115	20	0.17 0.17	5	3.15	NO CUM
	3.10	0.17	10	0.043	10	0.570	3.80	3.23 2.83	0.115	20	0.17	5	3.15 3.15	CUMPLE	0.043	10.00	0.570	3.80	2.83	_	20	0.17	5	3.15	CUMI
3S 1104+700 3S 1104+800	2.90	0.17	10	0.043	10	0.970	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	3.03	0.115 0.115	20	0.17	5	3.15	CUMI
3S 1104+900	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMI
3S 1104+300	3.10	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUM
3S 1105+100	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUM
3S 1105+200	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMI
3S 1105+300	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMI
3S 1105+400	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMI
3S 1105+500	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMI
3S 1105+600	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMI
3S 1105+700	2.80	0.17	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.670	3.80	3.13	0.115	20	0.17	5	3.15	CUMI
3S 1105+800	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMI
3S 1105+900	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUM
3S 1106+000	3.70	0.17	10	0.043	10	1.570	3.80	2.23	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.570	3.80	2.23	0.115	20	0.17	5	3.15	СИМІ
3S 1106+100	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUM
3S 1106+200	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUM
S 1106+300	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUM
3S 1106+400	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUM
35 1106+500	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUM
3S 1106+600	_	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUM
3S 1106+700 3S 1106+800	3.50 3.50	0.17 0.17	10 10	0.043	10 10	1.370 1.370	3.80 3.80	2.43 2.43	0.115 0.115	20	0.17 0.17	5	3.15 3.15	CUMPLE	0.043 0.043	10.00	1.370 1.370	3.80 3.80	2.43	0.115 0.115	20	0.17 0.17	5	3.15 3.15	CUM
3S 1106+800 3S 1106+900	_	0.17	10	0.043	10	0.970	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.43	0.115	20	0.17	5	3.15	CUM
3S 1100+900	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUM
3S 1107+100	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUM
3S 1107+200	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUM
3S 1107+305	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUM
3S 1107+400	3.40	0.17	10	0.043	10	1.270	3.80	2.53	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.270	3.80	2.53	0.115	20	0.17	5	3.15	CUMI
3S 1107+500	_	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMI
3S 1107+610	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUM
3S 1107+700	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUM
3S 1107+800	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUM
3S 1107+900	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUM
3S 1108+000	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMI
3S 1108+096	3.50	0.17	10	0.043	10	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.370	3.80	2.43	0.115	20	0.17	5	3.15	CUM
3S 1108+200	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUM
35 1108+300	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMI
3S 1108+400 3S 1108+500	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUM
3S 1108+500 3S 1108+600	3.10 3.30	0.17 0.17	10	0.043	10 10	0.970 1.170	3.80 3.80	2.83	0.115 0.115	20	0.17 0.17	5	3.15 3.15	CUMPLE	0.043 0.043	10.00	0.970 1.170	3.80 3.80	2.83	0.115 0.115	20	0.17	5	3.15	CUM
3S 1108+700	3.30	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMI
3S 1108+800	3.20	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.73	0.115	20	0.17	5	3.15	CUM
3S 1108+900	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUM
3S 1109+000	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUM
3S 1109+100	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMI
3S 1109+200	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUM
3S 1109+300	3.80	0.17	10	0.043	10	1.670	3.80	2.13	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.670	3.80	2.13	0.115	20	0.17	5	3.15	CUM
3S 1109+400	_	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUM
IS 1109+500	3.60	0.17	10	0.043	10	1.470	3.80	2.33	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.470	3.80	2.33	0.115	20	0.17	5	3.15	CUM
3S 1109+600	_	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUM
3S 1109+700	_	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUM
3S 1109+800	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUM
3S 1109+900	_	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUM
S 1110+000 S 1110+100	_	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUN
_	_	0.17	10	0.043	10 10	1.170 1.070	3.80 3.80	2.63 2.73	0.115	20	0.17 0.17	5	3.15 3.15	CUMPLE	0.043 0.043	10.00	1.170 1.070	3.80 3.80	2.63	0.115 0.115	20	0.17	5	3.15 3.15	CUM
S 1110+200 S 1110+300	3.20 3.40	0.17 0.17	10	0.043	10	1.070	3.80	2.73	0.115 0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17 0.17	5	3.15	CUM
_	3.40	0.17	10	0.043	10	1.270	3.80	2.53	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.270	3.80	2.53	0.115	20	0.17	5	3.15	CUM
S 1110+406 S 1110+500	3.40	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.53	0.115	20	0.17	5	3.15	CUM
s 1110+300	_	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUM
			10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUM
CONSO 85	ĸÇVIÃĽ SK	U 7	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5 [3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUM
3S 1120+900	3.30	012	10	0.043	10	1.170	3.80	2.63	0.115	20					0.043	10.00	1.170	3.80	2.63	0.115	20	0.17		NSORCIO	
33 1111+01	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	ONSOK	CIO3VIAL	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	
ss Themu	2.80	7.011	10	0.043	10	0.670	3.80	3.13	0.115	20	0.17	5	3.18	CUMPLE	0.043	10.00	0.670	3.80	3.13	0.115	20	0.17	5	Tille	
	PT G PEG NEG N	CALIFORNIA I	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17		E. DELGADO	COMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17		IMBERTO HI	
11 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	VIET CE DOC	0.17	10	0.043																					

CONSORCIO VIAL SICUANI

CALCULO DE ESPESORES DE PAVIMENTO

PROYECTO UBICACIÓN FECHA : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" : RAUL DELGADO ARAGON : CUSCO ING. ESP. : ENERO 2021

									ı	PROPUESTA TO)R					PROPUESTA CONTRATISTA										
RUTA	PROGRESIVA	SN actual o real existente en campo	Coeficiente estructural de carpeta asfaltica	Espesor carpeta asfaltica a retirar	Coeficiente estructural sub base	Espesor sub base a retirar	SN act-aj	SN diseño requerido	SN refuerzo requerido	Coeficiente estructural base estabilizada	Espesor base estabilizada (cm)	Coeficiente estructural de carpeta asfaltica	Espesor carpeta asfaltica (cm)	SN refuerzo proporcionado	VERIFICACIÓN DE DISEÑO	Coeficiente estructural sub base	Espesor sub base existente a retirar	SN act-aj	SN diseño requerido	SN refuerzo requerido	estructural	Espesor base estabilizada (cm)	Coeficiente estructural de carpeta asfaltica	Espesor carpeta asfaltica (cm)	SN refuerzo proporcionado	VERIFICACIÓN DE DISEÑO
		а	b	С	d	е	f=a-(b)(c)-(d)(e)	g	h=g-f	i	j	k	- 1	m=(i)(j)+(k)(l)	m>h	n	0	p=a-(b)(c)-(n)(o)	g	q=g-p	r	s	t	u	v=(r)(s)+(t)(v)	v>q
PE-3S	1111+400	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1111+475	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1111+600	3.10	0.17	10	0.043	10	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.970	3.80	2.83	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1111+700	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1111+800	2.90	0.17	10	0.043	10	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.770	3.80	3.03	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1111+900	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1112+000	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1112+100	3.30	0.17	10	0.043	10	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.170	3.80	2.63	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1112+200	3.00	0.17	10	0.043	10	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	0.870	3.80	2.93	0.115	20	0.17	5	3.15	CUMPLE
PE-3S	1112+240	3.20	0.17	10	0.043	10	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE	0.043	10.00	1.070	3.80	2.73	0.115	20	0.17	5	3.15	CUMPLE

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Manaxi
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MT C/20

CONSORCIO VIAL SICUANI

Ing. RAUL E. DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLA HUMIRI
TEC. EN SUELON Y PAVIMENTOS
CONTRATO N° 034/2020-MTC/20

ANEXO 5. Determinación de CBR SN_ESAL y SN req.

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO N° 034-2020-MTC/20"

CONSORCIO VIAL SICUANI

CALCULO DE CBR PONDERADO DE DISEÑO

PROYECTO : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

UBICACIÓN : SICUANI ING. ESP. : RAUL DELGADO ARAGON

FECHA : Enero 2021

CALICATA PROGRESIVA		ESPESOR	RESTRATO	USADO PA	RA PONDE	RAR (m)	CBR (%)				CBR PONDERADO	
		Estrato 1	Estrato 2	Estrato 3	Estrato 4	Total	Estrato 1	Estrato 2	Estrato 3	Estrato 4	(%)	
C-08	1080 + 050	0.10	1.20	0.50		1.80	26.50	24.10	16.30		22.07	
C-12	1082 + 050	0.25	1.00	0.55		1.80	18.00	18.00	3.70		13.63	
C-14	1083 + 050	0.05	0.30	1.10	0.35	1.80	19.90	21.70	4.50		6.92	
C-19	1085 + 050	0.05	0.30	0.90	0.55	1.80	35.10	19.80	17.50	2.50	13.79	
C-23	1087 + 050	0.05	0.40	0.80	0.55	1.80	31.00	13.90	16.60	2.30	12.03	
C-25	1088 + 050	0.15	1.65			1.80	26.20	3.60			5.48	
C-27	1089 + 050	0.25	0.20	1.35		1.80	21.30	21.40	2.50		7.21	
C-29	1090 + 050	0.15	0.30	1.35		1.80	24.80	32.30	4.70		10.98	
C-33 - A	1092 + 280	0.05	0.50	1.25		1.80	22.20	23.80	6.60		11.81	
C-35	1093 + 050	0.05	1.20	0.55		1.80	32.10	19.40	7.30		16.06	
C-38	1094 + 550	0.15	0.40	1.25		1.80	26.00	8.20	9.80		10.79	
C-39	1095 + 050	0.05	0.80	0.95		1.80	23.70	24.90	3.50		13.57	
C-44 - A	1097 + 500	0.05	1.10	0.65		1.80	22.10	18.70	7.70		14.82	
C-55	1103 + 050	0.15	0.50	0.60	0.55	1.80	22.80	22.30	2.10	1.10	9.13	
C-57	1104 + 050	0.05	0.70	1.05		1.80	23.50	37.70	11.30		21.91	
C-61	1106 + 050	0.00	0.70	1.10		1.80	47.70	20.90	3.80		10.45	
C-63	1107 + 050	0.05	0.30	1.45		1.80	19.60	12.30	12.90		12.99	
C-71	1111 + 050	0.05	0.30	1.45		1.80	41.80	30.40	5.10		10.34	

CONSORÇIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO Vº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ing. RAUL E. DEL GADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI
GUILLO A HUMIRI
TEC. EN SUELO Y PAVIMENTOS
CONTRATO N° 034/2020-NTC/20

PROYECTO:

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS – SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO

CONSORCIO VIAL SICUANI

DETERMINACIÓN DE NUMERO ESTRUCTURAL (SN) AASHTO 93

W18

MR

ZR So

ΔPSI

PROYECTO : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 UBICACIÓN : SICUANI
 ING. ESP. : RAUL DELGADO ARAGON

 FECHA : Enero 2021
 SECTOR : 1, Prog. 1076+502 a 1080+500

DISEÑO DE PAVIMENTO FLEXIBLE - Método AASHTO 93

Manual de Carreteras

"Suelos, Geología, Geotecnia y Pavimentos"

Sección: Suelos y Pavimentos

ESAL (W18)	4 353 374
TIPO DE TRAFICO TP	TP7
CBR	22.07 %
MR Subrasante (Psi)	18509.0
NUMERO DE ETAPAS	1
NIVEL DE CONFIABILIDAD R (%)	85.00
Coeficiente Estadístico De Desviación Estándar Normal (ZR)	-1.036
Desviación Estándar Combinada (So)	0.45
Serviciabilidad Inicial (Pi)	4.00
Serviciabilidad Final o Terminal (PT)	2.50
Variación de Serviciabilidad (APSI)	1 50

$$Mr (psi) = 2555 \times CBR^{0.64}$$

$$\log_{10}(W_{18}) = Z_R S_O + 9.36 \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}(\frac{\Delta PSI}{4.2 - 1.5})}{0.4 + \frac{1094}{(SN + 1)^5}} + 2.32 \log_{10}(M_R) - 8.07$$

Numero Estructural Requerido (SNR)	3.059
W18 NOMINAL	6.639
W18 CALCULADO	6.639
ΔW18	0.000

Calcular SN

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ing. RAUL E. DELGADO ARAGON
ESPECIALISTA EN SUELOSY PAYMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

HUMBERTO HUALLIPA HUMIRI TEC EN SUELON Y PAUMENTOS CONTRATO N° 034/2020-01TC/20

CONSORCIO VIAL SICUANI

DETERMINACIÓN DE NUMERO ESTRUCTURAL (SN) AASHTO 93

W18

MR

ZR So

ΔPSI

: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI PROYECTO

UBICACIÓN : SICUANI ING. ESP. : RAUL DELGADO ARAGON : 2 , Prog. 1080+500 a 1102+000 FECHA : Enero 2021 SECTOR

DISEÑO DE PAVIMENTO FLEXIBLE - Método AASHTO 93

Manual de Carreteras

"Suelos, Geología, Geotecnia y Pavimentos"

Sección: Suelos y Pavimentos

ESAL (W18)	4 353 374
TIPO DE TRAFICO TP	TP7
CBR	11.42 %
MR Subrasante (Psi)	12145.3
NUMERO DE ETAPAS	1
NIVEL DE CONFIABILIDAD R (%)	85.00
Coeficiente Estadístico De Desviación Estándar Normal (ZR)	-1.036
Desviación Estándar Combinada (So)	0.45
Serviciabilidad Inicial (Pi)	4.00
Serviciabilidad Final o Terminal (PT)	2.50
Variación de Serviciabilidad (ΔPSI)	1.50

 $Mr (psi) = 2555 \times CBR^{0.64}$

$$\log_{10}(W_{18}) = Z_R S_O + 9.36 \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}(\frac{\Delta PSI}{4.2 - 1.5})}{0.4 + \frac{1094}{(SN + 1)^5}} + 2.32 \log_{10}(M_R) - 8.07$$

Numero Estructural Requerido (SNR)	3.621	
W18 NOMINAL	6.639	
W18 CALCULADO	6.638	
		_
ΔW18	0.001	*Cero

Calcular SN

CONSORÇIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI Ing. RAUL E. DELGADO ARAGON
ESPECIALISTA EN SUELOSY PAYMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLIPA HUMIRI TEC EN SUELON Y PAUMENTOS CONTRATO N° 034/2020-01TC/20

CONSORCIO VIAL SICUANI

DETERMINACIÓN DE NUMERO ESTRUCTURAL (SN) AASHTO 93

W18

MR

ZR So

ΔPSI

: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI PROYECTO

UBICACIÓN : SICUANI ING. ESP. : RAUL DELGADO ARAGON : Enero 2021 : 3 , Prog. 1102+000 a 1112+169 FECHA SECTOR

DISEÑO DE PAVIMENTO FLEXIBLE - Método AASHTO 93

Manual de Carreteras

"Suelos, Geología, Geotecnia y Pavimentos"

Sección: Suelos y Pavimentos

ESAL (W18)	4 353 374
TIPO DE TRAFICO TP	TP7
CBR	12.96 %
MR Subrasante (Psi)	13167.2
NUMERO DE ETAPAS	1
NIVEL DE CONFIABILIDAD R (%)	85.00
Coeficiente Estadístico De Desviación Estándar Normal (ZR)	-1.036
Desviación Estándar Combinada (So)	0.45
Serviciabilidad Inicial (Pi)	4.00
Serviciabilidad Final o Terminal (PT)	2.50
Variación de Serviciabilidad (ΔPSI)	1.50

Mr (psi) =
$$2555 \times CBR^{0.64}$$

$$\log_{10}(W_{18}) = Z_R S_O + 9.36 \log_{10}(SN + 1) - 0.2 + \frac{\log_{10}(\frac{\Delta PSI}{4.2 - 1.5})}{0.4 + \frac{1094}{(SN + 1)^5}} + 2.32 \log_{10}(M_R) - 8.07$$

Numero Estructural Requerido (SNR)	3.508
W18 NOMINAL	6.639
W18 CALCULADO	6.639
ΔW18	0.000

Calcular SN

CONSORÇIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI Ing. RAUL E. DELGADO ARAGON
ESPECIALISTA EN SUELOSY PAYMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLIPA HUMIRI TEC EN SUELON Y PAUMENTOS CONTRATO N° 034/2020-01TC/20

ANEXO 6. Estudio de Mecánica de suelos.

EXTRACIÓN DE MUESTRAS

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO N° 034-2020-MTC/201
UBICACIÓN : SICUANI
ING. ESP. : RAUL DELGADO ARAGON

| FECHA : 28-11-2020 | TECNICO : HUMBERTO HUALLPA HUMIRI

	DATOS DE LA EXCAVACION								DATOS DE ENSAYO							
PROGRESIVA	: KM 1080+050	REGISTRO N°	: EL-PE-0021	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN						
CALICATA N°	: C-08	LUGAR DE ENS.	: LAB SICUANI	E-1	GM	A-1-b	(0)	19.23	0.9	2.7						
LADO	: DERECHO	NIVEL FREATICO	: NP	E-2	GM-GC	A-1-b	(0)	21.13	5.75	2.9						
PROF. CALICATA.	: -2.00 m			E-3	SC	A-2-4	(0)	22.58	7.20	3.9						

				PERFIL ESTRATIGRAFICO				
٠٠.	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		-61
Eg.	(111)	LOI.	SIMBOLO	DESCRIPTION	SUCS	AASHTO	INDICE	fig.
	-0.10m	AS		Carpeta Asfaltica	-	-	-	
	-0.20m -0.25m -0.30m	M-1	GM	Grava limosas mezclas de grava arena limosa.	GM	A-1-b	(0)	
	-0.40m -0.50m -0.60m			Grava limosas mezclas de grava arena limosa.				
	-0.80m -0.90m -1.00m -1.10m	M-2	GM-GC	Grava arcillosas, mezclas de grava-arena-arcilla gravas con material fino, cantidad apreciable material fino.	GM-GC	A-1-b	(0)	
	-1.60m -1.70m	M-3	sc	Arenas arcillosas, mezclas de arena-arcilla.	SC	A-2-4	(0)	
				EOTOS				

OBSE	DBSERVACIONES								
		_							

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO № 034-2020-MTC/20

CONSORCIO VIAL SICUANI

CONSORCIO VIAL SICUANI

TIGE RAULE DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALL PA HUMIRI
TEC EN SUELOS Y PAVIMENTOS
CONTRATO N° 034/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO	: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"		-2020-MTC/201
UBICACIÓN	: SICUANI	ING. ESP.	: RAUL DELGADO ARAGON
EECHA	. 20.11.2020	TECNICO	- HUMPERTO HUMUL DA HUMIRI

	D/	ATOS DE LA EXCAVACION		DATOS DE ENSAYO								
PROGRESIVA	PROGRESIVA : KM 1082+050							LL	IP	HN		
CALICATA N°	: C-12	LUGAR DE ENS.	: LAB SICUANI	E-1	SM-SC	A-2-4	(0)	20.70	6.84	4.10		
LADO	: IZQUIERDO	NIVEL FREATICO	: NP	E-2	SC	A-6	(1)	24.26	10.31	5.70		
PROF. CALICATA.	: -2.10 m											

				PERFIL ESTRATIGRAFICO				
lego.	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		figr.
Ø.	()				SUCS	AASHTO	INDICE	€°
	-0.10m	AS		Carpeta Asfaltica	-	-	-	
	-0.20m -0.25m -0.30m -0.40m	M-1		Materiales finos sin plasticidad o con plasticidad muy baja.				
	-0.50m -0.60m -0.70m -0.80m -1.00m		SM-SC	Arenas arcillosas, mezclas de arena-arcilla.	SM-SC	A-2-4	(0)	
	-1.60m -1.70m -1.80m -2.00m	M-2	sc	Arenas arcillosas, mezclas de arena-arcilla.	SC	A-6	(1)	

OBSE	CIONES	

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20 CONSORCIO VIAL SICUANI

Ing. RAUL E. DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLIPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 1/34/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO N° 034-2020-MTC/20.
: SICUANI
ING. ESP. : RAUL DEL PROYECTO UBICACIÓN : RAUL DELGADO ARAGON : SICUANI FECHA : 30-11-2020 TECNICO : HUMBERTO HUALLPA HUMIRI

	DATOS DE LA EXCAVACION									
PROGRESIVA	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN			
CALICATA N°	: C-14	LUGAR DE ENS.	: LAB SICUANI	E-1	SM	A-1-b	(0)	18.32	1.40	2.50
LADO	: IZQUIERDO	NIVEL FREATICO	: NP	E-2	GP-GC	A-2-4	(0)	50.56	8.54	10.00
PROF. CALICATA.	; -2.00 m			E-3	SC	A-2-6	(0)	29.42	14.08	5.30

				PERFIL ESTRATIGRAFICO				
-Cr	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		
kg.	(111)	LOI.	SIMBOLO	DESCRIP CION	SUCS	AASHTO	INDICE	fig.
	-0.10m	AS		Carpeta Asfaltica	-	-	-	
	-0.20m	M-1		Materiales finos sin plasticidad o con plasticidad muy baja.	SM	A-1-b	(0)	
	-0.25m -0.30m			materiales illos siri piasticidad o cori piasticidad ility baja.	SIVI	A-1-0	(0)	
	-0.40m							
	-0.50m			Grava mal graduadas, mezcla de arena- grava con poco o nada de material fino.				
	-0.60m -0.70m							
	-0.70m	M-2	GP-GC		GP-GC	A-2-4	(0)	
	-0.90m			Grava arcillosas, mezclas de grava-arena-arcilla gravas con material fino, cantidad apreciable material fino.				
	-1.00m			material into				
	-1.50m -1.60m							-
	-1.80m	M-3	SC	Arenas arcillosas, mezclas de arena-arcilla.	SC	A-2-6	(0)	
	-1.90m			ruonas alviilusas, iliezulas de aleita alviila.	30	A-2-0	(0)	
	-2.00m		<i>171899</i>	FOTOS				
				FUIUS				
			Sombosputa - Siciani K. (1834-050)			. A 7		(100 p)

OBSE	/ACIONES

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO N° 034-2020-MTC/20 CONSORCIO VIAL SICUANI

Ing. RAUL E. DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 034/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO N° 034-2020-MTC/201 UBICACIÓN : SICUANI ING. ESP. : RAUL DELGADO ARAGON FECHA : 02-12-2020 TECNICO : HUMBERTO HUALLPA HUMIRI

		DATOS DE LA EXCAVACION				DATOS	DE EN	SAYO		
PROGRESIVA	: KM 1085+050	REGISTRO Nº	: EL-PE-0051	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN
CALICATA N°	: C-19	LUGAR DE ENS.	: LAB SICUANI	E-1	GW-GM	A-1-a	(0)	NP	NP	2.40
LADO	: IZQUIERDO	NIVEL FREATICO	: NP	E-2	SM	A-1-b	(0)	18.39	2.51	7.20
PROF. CALICATA.	: -2.00 m			E-3	GC	A-2-4	(0)	27.47	9.59	12.20
				E-4	CL	A-6	(11)	35.45	17.28	21.60

PERFIL ESTRATIGRAFICO

LSC.	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION	_	
43	(111)				SUCS	AASHTO	INDICE	4
	-0.10m			Carpeta Asfaltica	-	-	-	
	-0.20m	M-1	GW-GM	Gravas bien mezcladas con arena, grava con poco o nada material de fino, variacion de Tamaños Granulares	GW-GM	A-1-a	(0)	
	-0.30m		000000	Grava limosas mezclas de grava arena limosa.			, ,	
	-0.40m							
	-0.50m	M-2	SM	Materiales finos sin plasticidad o con plasticidad muy baja.	SM	A-1-b	(0)	
	-0.60m		7 1 7 1 7 1 7 1					L
	-0.70m							
	-0.80m	M-3		Grava arcillosas, mezclas de grava-arena-arcilla gravas con	GC	A-2-4	(0)	
	-0.90m		GC	material fino, cantidad apreciable material fino.		7.2.	(0)	
	-1.00m -1.50m							
	-1.60m							
	-1.80m	M-4		Arcillas Inorganicas de plasticidad baja o mediana, arcillas		4.6	(44)	
	-1.90m	M-4	CL	gravas, arcillas arenosas, arenas limosas, arcillas magras	CL	A-6	(11)	
	-2.00m							
				FOTOS				

OBSE	ACIONES

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO N° 034-2020-MT C/20 CONSORCIO VIAL SICUANI

Ing. RAUL E. DEL GADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 034/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

STREAM							PERFIL	<u>ESTRATIGRAFICO</u>								
DATOS DE LA EXCAVACION EST. DATOS DE LA EXCAVACION EST. SUCS SAS-HTO MIDICE LI PP. D04 EST. SUCS SAS-HTO MIDICE LI PP. D05 EST. SUCS SAS-HTO MIDICE LI PP. D05 EST. SUCS SAS-HTO MIDICE LI PP. D06 EST. SUSS SAS-HTO MIDICE LI PP. D06	ROYECTO				ADO Y RECAP	PEO DE LA	CARRETERA: URCOS - S	ICUANI, TRAMO: COMBAPATA - SICUA								
DATOS DE LA EXCAVACION DATOS DE ENSAYO																
REGISTRO N° EL-PE-0064 ESTR SUCS AASHTO NOICE LL P	CHA		: 03	-12-2020					IEC	CNICO	-	: HUMBERTO) HUALLPA	HUMIRI		
LUCATAN C-23				D	DATOS DE	E LA EX	CAVACION					DATOS	DE EN	SAYO		
DO CALICATA. : ¿210m			-		RI	EGISTRO I	N°	: EL-PE-0064								Н
CF CALICATA 1.2 (10 m) 1.0 (1.0 (1.0 (1.0 (1.0 (1.0 (1.0 (1.0		I°	-										, ,			3.8
PERFIL ESTRATIGRAFICO					N	IVEL FREA	TICO	: NP					. ,			5.6 6.1
PERFIL ESTRATIGRAFICO (m) EST. SIMBOLO DESCRIPCIÓN SUCS AASHTO INDICE -0.10m AS -0.20m Ms1	OF. CALIC	AIA.	: -2.	IU M												12
SUCS AASHTO INDICE -0.10m A5 -0.20m M-1 -0.30m M-1 -0.40m -0.50m M-2 -0.60m -0.70m -0.80m -0.90m -0.10m M3 -1.00m M3 -1.00m M4 -1.10m -1.50m							PERFIL	ESTRATIGRAFICO			SIVI-SC	NZ-T	(0)	21.40	0.2	
-0.10m AS -0.20m Multiples from the particular for the terration of te	. /)		CIMP	101.0			preceppoión				CLASIFIC	ACION			
-0.10m -0.20m -0.20m -0.30m -0.40m -0.50m -0.50m -0.50m -0.70m -0.70m -0.70m -0.10m -0.10m -0.30m -0.40m -0.50m -0.70m -0.50m -0.50m -0.70m -0.50m -0	Se. (III	n) ESI.		SIMB	OLO			DESCRIPCION		SUC	CS	AASH	ITO	IND	ICE	ć
-0.10m -0.20m -0.20m -0.30m -0.40m -0.50m -0.50m -0.50m -0.70m -0.70m -0.70m -0.10m -0.10m -0.30m -0.40m -0.50m -0.70m -0.50m -0.50m -0.70m -0.50m -0		AS														
0.20m 0.30m 0.40m 0.50m 0.50m 0.50m 0.70m 0.70m 0.70m 0.70m 0.80m 0.90m 0.10m 0.80m 0.10m 0.80m 0.10m 0.80m 0.10m 0.80m 0.10m 0.10m 0.10m 0.110m 0.15m	-0.10	0m														
-0.30m -0.40m -0.50m -0.50m -0.70m -0.80m -0.90m -0.90m -1.10m -1.50m -1.30m -1.40m -1									ominante							
-0.40m -0.50m M2 -0.60m -0.70m -0.80m -0.90m -1.10m -1.50m -1.30m -1.40m -2.10m -2.10m	-0.20	<u>∂m</u>		SP-S	SM \$		o una sene de tar	narios con auserica de particulas internas.		SP-S	SM	A-1-	b	(1	0)	1 -
-0.40m -0.50m -0.60m -0.70m -0.80m -0.90m -1.10m -1.50m -1.30m -1.40m -1.40m -2.10m	0.20	Om.	- 1				Materiales finos s	sin plasticidad o con plasticidad muy baja.								
-0.50m M-2 SM A-1-b (0) -0.60m -0.70m -0.80m -0.90m -1.10m -1.50m -1.30m -1.40m -1.40m -2.10m -1.40m -2.10m -1.40m -2.10m -1.10m -1.50m -1.40m -1.40m -2.10m -1.40m -1.40m -1.40m -2.10m -1.40m	-0.30	Jm	- -													┪┡
-0.50m M-2 SM A-1-b (0) -0.60m -0.70m -0.80m -0.90m -1.10m -1.50m -1.50m -1.40m -1.40m -1.40m -2.10m -1.40m -1.40m -2.10m	-0.40	0m				1 4										
-0.60m -0.70m -0.80m -0.90m -1.10m -1.50m -1.30m -1.40m -1.40m -1.10m -1	0.10					O II										
-0.60m -0.70m -0.90m -1.00m -1.10m -1.50m -1.30m -1.40m -2.10m	-0.50	0m " 2		SN	vi	ТЫ	Material or Second			c.			h		n.)	
-0.70m -0.80m -0.90m -1.00m -1.10m -1.50m -1.30m -1.40m -2.10m -1.40m -2.10m										OII	"	A-1	U	(0)		ΙГ
-0.80m -0.90m -1.00m -1.10m -1.50m -1.30m -1.40m -2.10m -1.40m -2.10m	0.60m															ΙL
-0.90m -1.00m -1.10m -1.50m -1.30m -1.40m -2.10m																
-0.90m -1.00m -1.10m -1.50m -1.30m -1.40m -1.40m -2.10m	-0.70	Ĵm		<u>T T </u>	<u> </u>	<u> </u>										4 📙
-0.90m -1.00m -1.10m -1.50m -1.30m -1.40m -1.40m -2.10m	0.00															
-1.00m -1.10m -1.50m -1.30m -1.40m -1	-0.60	JIII	Щ			Д ТІ										
-1.00m -1.10m -1.50m -1.30m -1.40m -1	-0.90	0m	ΠŲ			$ec{ec{ec{ec{ec{ec{ec{ec{ec{ec{$										
-1.10m -1.50m -1.30m -1.30m -1.40m -2.10m M44 -2.10m				SN	v		Material as force			01		4.2	4		0.)	[
-1.50m -1.30m -1.40m -2.10m -1.40m -2.10m	-1.00			Y LT	ΙŤ,	Τ YI	Materiales linos s	sin piasticidad o con piasticidad muy baja.		OII	"	H-2	-	(,	0)	
-1.50m -1.30m -1.40m -2.10m -2.10m -2.10m						\cup \square										
-1.30m -1.40m -2.10m M4 -1.40m -2.10m	-1.10	θm														Н
-1.30m -1.40m -2.10m M4 -2.10m		_		$Y \mid Y$	$\perp Y$	LΥ										
-1.40m -1.40m -2.10m M4 -1.40m -2.10m	-1.50	Jm	Ģ I	0101010	حرادر											┪┢
-1.40m -2.10m M4 Arenas arcillosas, mezclas de arena-arcilla. SM-SC A-2.4 (0)	-1 30	Ωm	<u>ב</u> ול לו	\$1\$1\$1			Materiales finos	sin plasticidad o con plasticidad muy baja.								
-1.40m -2.10m Arenas arcillosas, mezclas de arena-arcilla.	-1.30		\$ }													1 -
-2.10m	-1.40	0m M-4	후	\$ [\$] SM-S	SC					SM-	SC	A-2	4	(1	D)	
			‡ i	11111			Arenas a	rciliosas, mezcias de arena-arcilia.								
FOTOS	-2.10	θm	우 J	767674	(E/B)											Ц
								FOTOS								
						1000				100	Service of the last of the las		1000	200	CEL	
			1		1	1					W. The	7 16	T. Alle			ľ
				PA		36	B	The second second		1000	-	22	1 = 10	1		H
			80			1	STOR STORY	= 6	383	11/10	1	200	N W	70		
	1957				100	の	To large	-				Sec.		20		П
Control of Control	100	- 500	1		Papa fig				- A	-41		1	-		TICH	

OBSE	ERVACIONES	

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20 CONSORCIO VIAL SICUANI

Ing. RAULE. DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLIPA HUMIRI
TEC EN SUELOS Y PAVIMENTOS
CONTRATO N° 1/34/2020-MTC/20

CONSORCIO VIAL **SICUANI**

					PERFIL ESTRATIGRAFICO										
PROYE UBICAC	CIÓN		: SICUANI	CAPEO DE L	A CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - C	ING. ESP.		: RAUL DEL							
FECHA			: 04-12-2020			TECNICO		: HUMBERT							
PROGR	PESIVA		: KM 1088+050		CCAVACION	BSTR. SUCS AASHTO INDICE LL IP H									
CALICA			: C-25	REGISTRO LUGAR DE		E-1	GM-GC	A-1-b	(0)	18.51	5.68	5.30			
LADO	CALICATA		: IZQUIERDO : -2.00 m	NIVEL FREA	ATICO : NP	E-2	ML	A-4	(5)	16.49	1.40	8.80			
FROF.	CALICATA		: *2.00 III	_	PERFIL ESTRATIGRAFICO	<u> </u>	-	<u> </u>				<u> </u>			
61	(m)	EST.	SIMBOLO		DESCRIPCIÓN			CLASIFIC				60			
Eg.	(111)	2011	35525		2200.11.000		CS	AASI	НТО	IND	ICE	Egs.			
	-0.10m	AS			Carpeta Asfaltica		-	-			,	Ш			
	-0.20m				Grava limosas mezclas de grava arena limosa.										
		M-1	GM-GC			GM	-GC	A-1	-b	(())				
	-0.30m				Grava arcillosas, mezclas de grava-arena-arcilla gravas con material fino, cantidad apreciable material fino.						,				
	-0.40m														
	-0.50m														
	-0.60m														
	-0.70m														
	-0.80m														
	-0.90m														
		M-2			Limos organicos y arenas muy finos, polvo de roca, arena finos	N	1L	A-4		(5)					
	-1.00m		ML		limosos o arcillosos o limos arcillosos con ligera plasticidad.	WL				(3)					
	-1.10m														
	-1.20m														
	-1.30m														
	-1.40m														
	-2.00m														
					FOTOS										
		- Alexan			1										
	Ber														
												М			
			Addition		P.						1				
	77									1					
	-						+			4					
	800				MA Mary		*		3	5	1				
	683	SE F.					-Om	-	THE ST	Ole T					
	100	200	College to Division				Jak								
	23	100	1 ESSPECIAL DE LA COMP	-	SOUTH ALL SHOW		W.	1 🛔							
	100		Complete Sick	100			1			*					
			613 600	-	The water of the same of the s	1	1	The second	18						
		1	THE REAL PROPERTY.			1	the same of								
	10 m	South		CTURE 1			100		W H						
			A Alle	-			3.200	160	375	s (1)	A				
	Sales of the sales	100	S S No.					1	10		1	Ш			
	10	100			A STATE OF THE STA					1	3				
	10/6										- 7-				

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20

OBSERVACIONES

CONSORCIO VIAL SICUANI

Ing. RAULE. DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 1/34/2/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO UBICACIÓN "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO Nº 034-2020-MTC/201

: RAUL DELGADO ARAGON ING. ESP. : SICUANI FECHA : 05-12-2020 TECNICO : HUMBERTO HUALLPA HUMIRI

		DATOS DE LA EXCAVACION		DATOS DE ENSAYO						
PROGRESIVA	: KM 1089+050	REGISTRO Nº	: EL-PE-0075	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN
CALICATA N°	: C-27	LUGAR DE ENS.	: LAB SICUANI	E-1	GP-GM	A-1-a	(0)	15.98	0.12	2.9
LADO	: IZQUIERDO	NIVEL FREATICO	: 1.00 mts	E-2	SM-SC	A-1-b	(0)	19.61	4.57	2.6
PROF. CALICATA.	: -2.00 m			E-3	CL	A-4	(6)	26.21	9.85	36.00

				PERFIL ESTRATIGRAFICO				
.6.	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		
tize.	(111)	LOI.	SIMBOLO	DESCRIPTION .	SUCS	AASHTO	INDICE	ć
	-0.10m	AS		Carpeta Asfaltica	-	-	-	
	-0.20m -0.30m			Grava mal graduadas, mezcla de arena- grava con poco o nada de material fino.				
	-0.40m	M-1	GP-GM	Grava limosas mezclas de grava arena limosa.	GP-GM	A-1-a	(0)	
	-0.60m	M-2	SM-SC	Materiales finos sin plasticidad o con plasticidad muy baja.	SM-SC	A-1-b	(0)	
	-0.70m	m-z	9191919	Arenas arcillosas, mezclas de arena-arcilla.	GIVI-GC	A-1-0	(0)	
	-0.80m							
	-0.90m -1.00m						NF	
	-1.10m	M-3	/ /////,() //////,	Arcillas Inorganicas de plasticidad baja o mediana, arcillas gravas, arcillas arenosas, arenas limosas, arcillas magras	CL	A-4	(6)	
	-1.20m -1.30m							
	-1.40m		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>					
	-2.00m		<u>]////////////////////////////////////</u>					
				FOTOS				

OBSERVACIONE	

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO N° 034-2020-MT C/20

CONSORCIO VIAL SICUANI

Ing. RAUL E. DEL GADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 034/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO UBICACIÓN "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO Nº 034-2020-MTC/201

: RAUL DELGADO ARAGON ING. ESP. : SICUANI FECHA : 05-12-2020 TECNICO : HUMBERTO HUALLPA HUMIRI

		DATOS DE LA EXCAVACION				DATOS	DE EN	SAYO		
PROGRESIVA	: KM 1090+050	REGISTRO Nº	: EL-PE-0083	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN
CALICATA N°	: C-29	LUGAR DE ENS.	: LAB SICUANI	E-1	GP-GM	A-1-a	(0)	15.74	1.49	3.70
LADO	: IZQUIERDO	NIVEL FREATICO	: NP	E-2	GP-GC	A-1-a	(0)	19.38	5.13	4.80
PROF. CALICATA.	· -2.00 m			E-3	SC	A-4	(3)	26.04	9.68	5.70

				PERFIL ESTRATIGRAFICO				
^{Lig} r.	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		fêç.
€5	()				SUCS	AASHTO	INDICE	6
	-0.10m	AS		Carpeta Asfaltica	-	-	-	
	-0.20m			Grava mal graduadas, mezcla de arena- grava con poco o				
	-0.30m	M-1	GP-GM	nada de material fino.	GP-GM	A-1-a	(0)	
	-0.40m			Grava limosas mezclas de grava arena limosa.				
	-0.50m			Grava mal graduadas, mezcla de arena- grava con poco o				
	-0.60m	M-2	GP-GC	nada de material fino.	GP-GC	A-1-a	(0)	
	-0.70m			Grava arcillosas, mezclas de grava-arena-arcilla gravas con material fino, cantidad apreciable material fino.				
	-0.80m		707/70					
	-0.90m							
	-1.00m		77/797/					
	-1.10m		8972/897					
			79779					
	-1.20m	M-3	sc	Arenas arcillosas, mezclas de arena-arcilla.	SC	A-4	(3)	
	-1.30m			, 16.1.10 at 611.05da, 11.025da0 ao at 611a at 611a.		,,,	(0)	
	-1.40m		$\langle \mathcal{O} \mathcal{V} / \mathcal{A} \mathcal{O} \rangle$					
	-1.50m		[/// 6 ///]					
	-1.60m		87/207/					
	-1.70m		107/10h					
	-1.80m							
	-2.00m			FOTOS				

FOTOS

	ER'		

Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO N° 034-2020-MT C/20

CONSORCIO VIAL SICUANI

CONSORCIO VIAL SICUANI

Ing. RAUL E. DEL GADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 034/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO	: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" -	CONTRATO Nº 034-2	2020-MTC/201
UBICACIÓN	: SICUANI	ING. ESP.	: RAUL DELGADO ARAGON
FECHA	: 07-12-2020	TECNICO	: HUMBERTO HUALLPA HUMIRI

	DATOS DE LA EXCAVACION						DE EN	SAYO		
PROGRESIVA	: 1092+280	REGISTRO N°	: EL-PE-0098	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN
CALICATA N°	: C-33-A	LUGAR DE ENS.	: LAB SICUANI	E-1	SM	A-1-b	(0)	18.52	2.98	4.20
LADO	: IZQUIERDO	NIVEL FREATICO	: 1.0 m	E-2	GM-GC	A-2-4	(0)	21.09	6.85	9.60
PROF. CALICATA.	· -2.00 m			E-3	SM	A-1-b	(0)	12.01	NP	36.60

PROF.	CALICATA		: -2.00 m		E-3 SM	A-1-b (0)	12.01 NP	36.60		
				PERFIL ESTRATIGRAFICO						
fig.	(m)	EST.	SIMBOLO	DESCRIPCIÓN	sucs	CLASIFICACION AASHTO	INDICE	kg.		
	-0.10m	AS		Carpeta Asfaltica	-	-	-			
	-0.20m -0.30m	M-1	SM P	Materiales finos sin plasticidad o con plasticidad muy baja.	SM	A-1-b	(0)			
	-0.40m -0.50m -0.60m	M-2	GM-GC	Grava limosas mezclas de grava arena limosa.	GM-GC	A-2-4	(0)			
	-0.70m -0.80m			Grava arcillosas, mezclas de grava-arena-arcilla gravas con material fino, cantidad apreciable material fino.						
	-0.90m -1.00m						NF			
	-1.10m -1.20m -1.30m	M-3	SM O	Materiales finos sin plasticidad o con plasticidad muy baja.	SM	A-1-b	(0)			
	-1.40m -2.00m		<u> </u>	<u> </u>						
				FOTOS						
			Comba pa ta Km: 1992 + Prof 200 10 - 11 - 2	3/5 Can 2/3 2/3 3/3 3/3						

<u>. </u>	OBSE	ZVACIONES	

Ing. J. Anthony Mayta Manani
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ing. RAULE. DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLIPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 1/34/2020-MTC/20

PROYECTO:

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS – SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO N° 034-2020-MTC/20"

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO UBICACIÓN : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO Nº 034-2020-MTC/201 ING. ESP. : SICUANI : RAUL DELGADO ARAGON FECHA TECNICO : 08-11-2020 : HUMBERTO HUALLPA HUMIRI

	DATOS DE LA EXCAVACION						DE EN	SAYO		
PROGRESIVA	: 1093+050	REGISTRO N°	: EL-PE-0104	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN
CALICATA N°	: C-35	LUGAR DE ENS.	: LAB SICUANI	E-1	GM-GC	A-2-4	(0)	21.05	6.81	2.60
LADO	: IZQUIERDO	NIVEL FREATICO	: 1.95 m	E-2	SM	A-1-b	(0)	16.77	2.26	3.10
PROF. CALICATA.	: -2.10 m			E-3	SC	A-4	(2)	26.44	8.55	20.80

				PERFIL ESTRATIGRAFICO				
.c.	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		.c.
€2°.	(111)	L01.	SIMBOLO	DESCRIPCION	SUCS	AASHTO	INDICE	fec
	-0.10m			Carpeta Asfaltica	-	-	-	
	-0.20m	-	GM-GC	Grava limosas mezclas de grava arena limosa.	GM-GC	A-2-4	(0)	
	-0.30m			Grava arcillosas, mezclas de grava-arena-arcilla gravas con material fino, cantidad apreciable material fino.				
	-0.40m -0.50m	-						
	-0.60m	-						
	-0.70m -0.80m	-		Materiales finos sin plasticidad o con plasticidad muy baja.	SM	A-1-b	(0)	
	-0.90m	-						
	-1.00m	-						
	-1.10m	_						
	-1.50m] [_]
	-1.30m						NF	
	-1.95m		SC	Arenas arcillosas, mezclas de arena-arcilla.	sc	A-4	(0)	
	-2.10m							
				FOTOS				

OBSE	VACIONES

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ting. RAVILE DELGADO ARAGON ESPECIALISTA EN SUELOS Y PAVIMENTOS CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI HUMBERTO HUALLPA HUMIRI
TEC EN SUELOS Y PAVIMENTOS
CONTRATO N° 134/2020-1917C/20

PROYECTO:

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS – SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO N° 034-2020-MTC/20"

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO	: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO Nº 034-2020-MTC/201

 UBICACIÓN
 : SICUANI
 ING. ESP.
 : RAUL DELGADO ARAGON

 FECHA
 : 09-12-2020
 TECNICO
 : HUMBERTO HUALLPA HUMIRI

	DATOS	DE LA EXCAVACION				DATOS	DE EN	SAYO									
PROGRESIVA	: 1094+050	REGISTRO Nº	: EL-PE-0110	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN							
CALICATA N°	: C-37	LUGAR DE ENS.	: LAB SICUANI	E-1	GP-GM	A-1-b	(0)	16.23	0.51	4.10							
LADO	: IZQUIERDO	NIVEL FREATICO	: NP	E-2	SM-SC	A-2-4	(0)	26.13	6.10	8.40							
PROF. CALICATA.	: -2.00 m			E-3	CL	A-6	(9)	32.36	12.53	28.10							

				PERFIL ESTRATIGRAFICO				
c	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION	•	
fig.	(111)	LOI.	SIMBOLO	DESCRIPCION	SUCS	AASHTO	INDICE	fg
	-0.10m	AS		Carpeta Asfaltica	-	-	-	
	-0.20m			Grava mal graduadas, mezcla de arena- grava con poco o nada de material fino.				
	-0.30m	M-1	GP-GM		GP-GM	A-1-b	(0)	
	-0.40m			Grava limosas mezclas de grava arena limosa.				
	-0.50m							
	-0.60m			Materiales finos sin plasticidad o con plasticidad muy baja.				
	-0.70m			Arenas arcillosas, mezclas de arena-arcilla.		A-2-4		
	-0.80m	M-2	SM-SC V V V V		SM-SC		(0)	
	-0.90m							
	-1.00m	1						
	-1.40m		<u> </u>					
	-1.20m	M-3	$\mathbb{W} / / / / / / / / / / / / / / / / / / /$					
	-1.30m		W///// _n //////	Arcillas Inorganicas de plasticidad baja o mediana, arcillas	CL	A-6	(9)	
	-1.40m		//////\\\.	gravas, arcillas arenosas, arenas limosas, arcillas magras				
	-2.00m		<u> </u>					

OBSE	ACIONES	
	<u> </u>	_

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ing. RAUL E. DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALUPA HUMIRI
TEC. EN SUELOS Y PARIMENTOS
CONTRATO N° 034/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO Nº 034-2020-MTC/201 UBICACIÓN : SICUANI ING. ESP. : RAUL DELGADO ARAGON FECHA : 09-12-2020 TECNICO : HUMBERTO HUALLPA HUMIRI

		DATOS DE LA EXCAVACION				DATOS	DE EN	SAYO	YO							
PROGRESIVA	: 1095+050	REGISTRO Nº	: EL-PE-0116	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN						
CALICATA N°	: C-39	LUGAR DE ENS.	: LAB SICUANI	E-1	SM	A-1-b	(0)	16.11	1.69	2.50						
LADO	: IZQUIERDO	NIVEL FREATICO	: NP	E-2	GM-GC	A-2-4	(0)	19.36	6.66	1.50						
PROF. CALICATA.	: -2.00 m			E-3	CL	A-7-6	(11)	42.08	21.63	27.10						

				PERFIL ESTRATIGRAFICO				
ç.,	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		
Eg.	(111)	LOI.	SIMBOLO	DESCRIPTION .	SUCS	AASHTO	INDICE	fig
	-0.10m	AS		Carpeta Asfaltica	-	-	-	
	-0.20m -0.30m	M-1	00000000000000000000000000000000000000	Materiales finos sin plasticidad o con plasticidad muy baja.	SM	A-1-b	(0)	
	-0.40m -0.50m -0.60m -0.70m	M-2	GM-GC	Grava limosas mezclas de grava arena limosa.	GM-GC	A-2-4	(0)	
	-0.90m -1.00m			Grava arcillosas, mezclas de grava-arena-arcilla gravas con material fino, cantidad apreciable material fino.				
	-1.20m -1.30m -1.40m	М-3	С	Arcillas Inorganicas de plasticidad baja o mediana, arcillas gravas, arcillas arenosas, arenas limosas, arcillas magras	CL	A-7-6	(11)	
				FOTOS	·			

<u>. </u>	OBSE	ZVACIONES	

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ing. RAUL E. DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 034/2020-MTC/20

PROYECTO:

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS – SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO N° 034-2020-MTC/20"

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO Nº 034-2020-MTC/201

UBICACIÓN : SICUANI ING. ESP. : RAUL DELGADO ARAGON FECHA : 10-12-2020 TECNICO : HUMBERTO HUALLPA HUMIRI

	in the second of				DATOS DE ENSAYO								
PROGRESIVA	: KM 1097+500	REGISTRO Nº	: EL-PE-0130	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN			
CALICATA N°	: C-44 - A	LUGAR DE ENS.	: LAB SICUANI	E-1	SM	A-1-b	(0)	17.05	2.94	1.90			
LADO	: DERECHO	NIVEL FREATICO	: 1.40 m	E-2	SM	A-1-b	(0)	17.28	2.17	3.30			
DDOE CALICATA	2.00			E 2	CI	A 6	(0)	26.2	1/1 2/	17 30			

			: C-44 - A : DERECHO		GAR DE ENS. : LAB SICUANI E-1 SW A-1-0 (0) 1. I'EL FREATICO : 1.40 m E-2 SM A-1-b (0) 1.						2.94	3.30
	CALICATA.		: -2.00 m	MIVEL FREA	. 1.90 III	E-3				14.34	17.30	
					PERFIL ESTRATIGRAFICO							
	()	EST.	SIMBOLO		DESCRIPCIÓN			CLASIFIC	CACION			
fig.	(m)	E31.	SIMBOLO		DESCRIPCION	SU	CS	AASI	HTO	IND	ICE	fg.
	-0.10m	AS			Carpeta Asfaltica	-			-			
	-0.20m		SM		Materiales finos sin plasticidad o con plasticidad muy baja.	SI	И	A-1	-b	((0)	
	-0.30m		ΙφΙφΙφ	Τφ						. , ,		
	-0.40m -0.50m											
	-0.60m											
-0.70m SM					Materiales finos sin plasticidad o con plasticidad muy baja.	SI	SM A-1-b			((0)	
	-0.80m -0.90m											
	-1.00m									NF		
	-1.40m											
	-1.50m											
	-1.60m -1.80m		CL		Arcillas Inorganicas de plasticidad baja o mediana, arcillas gravas, arcillas arenosas, arenas limosas, arcillas magras	C	L	A-	6	(9	9)	
	-2.00m											
					FOTOS							
				Comtos (Km. 10). Km. 10. Km. 1	27 1 E 500 2 201 2 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3 3							

OBSE	SERVACIONES										

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

TITIS RAVILE DELGADO ARAGON
ESPECIALISTA EN SUECOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALLPA HUMIRI
TEC. EN SUELOS Y PAVIMENTOS
CONTRATO N° 034/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO Nº 034-2020-MTC/201

 UBICACIÓN
 : SICUANI
 ING. ESP.
 : RAUL DELGADO ARAGON

 FECHA
 : 14-12-2020
 TECNICO
 : HUMBERTO HUALLPA HUMIRI

	DATOS DE LA EXCAVACION							DATOS DE ENSAYO							
PROGRESIVA	: KM 1103+050	REGISTRO Nº	: EL-PE-0158	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN					
CALICATA N°	: C-55	LUGAR DE ENS.	: LAB SICUANI	E-1	GP-GM	A-1-a	(0)	15.69	0.78	2.50					
LADO	: DERECHO	NIVEL FREATICO	: NP	E-2	GP-GM	A-1-a	(0)	13.25	NP	2.90					
PROF. CALICATA.	: -2.10 m			E-3	CL	A-4	(0)	23.02	7.66	14.90					
				E-4	CI	A-6	(3)	28.55	10.46	10.30					

				PERFIL ESTRATIGRAFICO					
rèc.	(m)	m) EST.	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		Ι.
650	(111)	20	S2020	5200.00	SUCS	AASHTO	INDICE	fig	
	-0.10m	AS		Carpeta Asfaltica	-	-	-		
	-0.20m	M-1	GP-GM	Grava mal graduadas, mezcla de arena- grava con poco o nada de material fino.	GP-GM	A-1-a	(0)		
	-0.30m -0.40m			Grava limosas mezclas de grava arena limosa.	31 SIII	7-1-a	(0)		
	-0.50m	- M-2		G	Grava mal graduadas, mezcla de arena- grava con poco o nada de material fino.				
	-0.60m		-2 GP-GM		GP-GM	A-1-a	(0)		
	-0.70m			Grava limosas mezclas de grava arena limosa.					
	-0.90m								
	-1.00m	- M-3		Arcillas Inorganicas de plasticidad baja o mediana, arcillas gravas, arcillas arenosas, arenas limosas, arcillas magras	CL	A-4	(0)		
	-1.20m		M-3 CL						
	-1.30m						(0)		
	-1.50m								
	-1.60m								
	-1.70m	M-4	CL	Arcillas Inorganicas de plasticidad baja o mediana, arcillas gravas, arcillas arenosas, arenas limosas, arcillas magras	CL	A-6	(0)		
	-2.10m								

Km ROS + COST Km

OBSE	ZVACIONES	
		_

Ing. J. Anthony Mayta Mastant
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ting. RAVILE DELGADO ARAGON ESPECIALISTA EN SUEDOS Y PAVIMENTOS CONTRATO Nº 034-2020-MTC/20 HUMBERTO HUALLA HUMIRI
TEC EN SUELOS Y PAINENTOS
CONTRATO Nº 034/2020-NTC/20

PROYECTO:

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS – SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO N° 034-2020-MTC/20"

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

PROYECTO : "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI" - CONTRATO Nº 034-2020-MTC/201

 UBICACIÓN
 : SICUANI
 ING. ESP.
 : RAUL DELGADO ARAGON

 FECHA
 : 14-12-2020
 TECNICO
 : HUMBERTO HUALLPA HUMIRI

DATOS DE LA EXCAVACION DATOS DE ENSAYO PROGRESIVA : KM 1104+050 REGISTRO Nº : EL-PE-0164 ESTR. INDICE LL HN CALICATA N° : C-57 LUGAR DE ENS. E-1 GM A-1-b (0) 15.43 1.89 1.80 : LAB.- SICUANI LADO : DERECHO NIVEL FREATICO : NP E-2 GP-GM A-1-a (0) 15.97 0.57 2.50 GC 13.90 PROF. CALICATA. : -2.00 m E-3 A-2-4 (0) 29.01 8.12

				PERFIL ESTRATIGRAFICO				
	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		
fig.	(m)	201.	I. SIMBOLO	DESCRIPCION	SUCS	AASHTO	INDICE	fêç.
	-0.10m	AS		Carpeta Asfaltica	-	-	-	
	-0.20m -0.30m	M-1	GM	Grava limosas mezclas de grava arena limosa.	GM	A-1-b	(0)	
	-0.40m -0.50m -0.60m -0.70m	M-2	GP-GM	Grava mal graduadas, mezcla de arena- grava con poco o nada de material fino.	GP-GM	A-1-a	(0)	
	-0.80m -0.90m -1.00m			Grava limosas mezclas de grava arena limosa.				
	-1.10m -1.20m -1.30m -1.40m	M-3	GC + + + + + + + + + + + + + + + + + + +	Grava arcillosas, mezclas de grava-arena-arcilla gravas con material fino, cantidad apreciable material fino.	GC	A-2-4	(0)	

OBSE	ACIONES	
	<u> </u>	_

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ting: RAVILE DELGADO ARAGON
ESPECIALISTA EN SUEDOS Y PAVIMENTOS
CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

HUMBERTO HUALLPA HUMIRI
TEC EN SUELOS PAVIMENTOS
CONTRATO N° 13-4/2020-MTC/20

CONSORCIO VIAL

PROYECTO: "SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS – SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO N° 034-2020-MTC/20" SICUANI PERFIL ESTRATIGRAFICO LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS PROYECTO : SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO Nº 034-2020-MTC/20** UBICACIÓN · SICHANI ING. ESP. : RAÚL DELGADO ARAGÓN FECHA · 15-12-2020 TÉCNICO · HUMBERTO HUALI PA HUMIRI DATOS DE LA EXCAVACION DATOS DE ENSAYO PROGRESIVA · KM 1106+050 REGISTRO Nº : EL-PE-0177 ESTR SUCS AASHTO INDICE LL ΙP HN CALICATA N° : C-61 SM-SC 5.56 2.60 LUGAR DE ENS. : LAB.-SICUANI E-1 A-1-b (0) 19.36 SM LADO 5.60 17.60 : DERECHO NIVEL FREATICO : NP F-2 A-1-b (0) 2.29 PROF. CALICATA. 13.60 CL 11.28 : -2.00 m E-3 A-6 (5) 31.03 PERFIL ESTRATIGRAFICO CLASIFICACION EST. DESCRIPCIÓN SIMBOLO (m) ÉŻ. SUCCS AASHTO Carpeta Asfaltica Materiales finos sin plasticidad o con plasticidad muy baja. SM-SC SM-SC A-1-b (0) Arenas arcillosas, mezclas de arena-arcilla. -0.30m SM M-2 Materiales finos sin plasticidad o con plasticidad muy baja. A-1-b (0) SM Arcillas Inorganicas de plasticidad baja o mediana, arcillas gravas, arcillas arenosas, arenas limosas, arcillas magras M-3 CL A-6 (5)

OBSE	ACIONES	
		Ī
		-

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ing. RAULE DELGADO ARAGON ESPECIALISTA EN SUEDOS Y PAVIMENTOS CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI HUMBERTO HUALLPA HUMIRI TEC. EN SUELOS Y PAVIMENTOS CONTRATO N° 034/2020-NTC/20

PROYECTO:

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS – SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO N° 034-2020-MTC/20"

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS PROYECTO : SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI - CONTRATO N° 034-2020-MTC/20° UBICACIÓN : SICUANI | ING. ESP. : RAÚL DELGADO ARAGÓN | FECHA : 27-11-2020 | TÉCNICO : HUMBERTO HUALLPA HUMIRI DATOS DE LA EXCAVACION | DATOS DE ENSAYO

DATOS DE LA EXCAVACION					DATOS DE ENSAYO					
PROGRESIVA	: KM 1107+050	REGISTRO Nº	: EL-PE-0184	ESTR.	SUCS	AASHTO	INDICE	LL	IP	HN
CALICATA N°	: C-63	LUGAR DE ENS.	: LAB SICUANI	E-1	SM-SC	A-2-4	(0)	19.55	6.07	2.5
LADO	: DERECHO	NIVEL FREATICO	: NP	E-2	SC	A-4	(3)	23.21	7.74	12.9
PROF. CALICATA.	: -2.00 m			E-3	SC	A-2-4	(0)	24.70	7.98	5.9

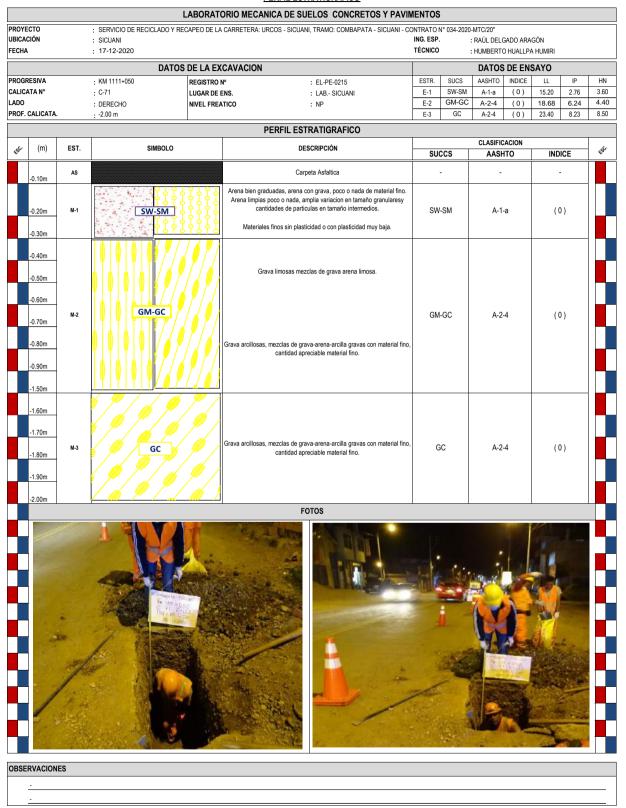
PROF.	CALICATA	L	: -2.00 m		E-3 SC	A-2-4 (0)	24.70 7.98	5.9	
				PERFIL ESTRATIGRAFICO					
fig.	(m)	EST.	SIMBOLO	DESCRIPCIÓN		CLASIFICACION		F (g ^C)	
45.	(111)	201.	CIMEDES	BESSIAI SIGN	SUCCS	AASHTO	INDICE	45.	
	-0.10m	AS		Carpeta Asfaltica	-	-	-		
	-0.20m	M-1	SM-SC	Materiales finos sin plasticidad o con plasticidad muy baja.	SM-SC	A-2-4	(0)		
	-0.30m			Arenas arcillosas, mezclas de arena-arcilla.	OW CO	7,24	(0)		
	-0.40m								
	-0.50m	M-2	SC	Arenas arcillosas, mezclas de arena-arcilla.	SC	A-4	(3)		
	-0.60m								
	-0.70m		707/20	7					
	-0.80m		12/09/2/0						
	-0.90m		SC						
	-1.00m		12/6/9/2/0						
	-1.10m	M-3	Arenas arcillosas, mezclas de arena-arcilla.	SC	A-2-4	(0)			
	-1.20m	:	17/9/2/0						
		-	17/6/9/7/6						
	-1.30m -1.40m	-	17/6/9//6						
			17/0/2/0	4					
	-2.00m		V 1 1 1 2 1 1	FOTOS					
			<pre>combapata Sicuani</pre>				2 '0		
			Km 1107+050				- 10 10 10		
			DW-17-2525			A			
		120		Sombo	para Shami				
	5			Km. II	200 L Dur				
			N TAR						
							-	6	

OBSE	RVACIONES
	<u> </u>
	<u> </u>

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO № 034-2020-MTC/20

CONSORCIO VIAL SICUANI


TIGE RAVILE DELGADO ARAGON
ESPECIALISTA EN SUELOS PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

HUMBERTO HUALUPA HUMIRI
TEC. EN SUELON Y PARIMENTOS
CONTRATO N° 034/2020-MTC/20

CONSORCIO VIAL SICUANI

PERFIL ESTRATIGRAFICO

CONSORCIO VIAL SICUANI Ing. J. Anthony Mayta Manan RESIDENTE DE OBRA CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ing. RAULE DELGADO ARAGON ESPECIALISTA EN SUEDOS Y PAVIMENTOS CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI HUMBERTO HUALLPA HUMIRI TEC. EN SUELOS Y PAVIMENTOS CONTRATO N° 034/2020-MTC/20

RESULTADO DE ENSAYOS

CONSORCIO VIAL SICUANI

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

									CU	ADRO					CICAT	AS T	RAMO	SIC	CUAN	II - CC	OMBAP										
							_	1	1		ANA	LISIS GRAI	NULOME	TRICO					-		LIMI	TES DE CONS	ISTENCIA	PRO	CTOR	CBR		CLAS	SIFICACION		
NUMERO DE CALICATA	PROGRESIVA (Km)	LADO	PROF. DE CALICATA	NUMERO DE MUESTRA	PROFUNDIDAD DE ESTRATO	HUMEDAD NATURAL % 3 1/2	3"	2 1/2"	2*	1 1/2*	1*	3/4"	1/2*	3/8*	#4	#10	#20	#40	#100	#200	LIMITE	LIMITE PLASTICO	INDICE DE PLASTICIDAD	DENSIDAD MAXIMA SECA (gr/cm3)	OPTIMO CONTENIDO DE HUMEDAD (%)		CBR DE DRATORIO 100%	sucs	AASHTO	INDICE	OBSERVACIONES
C-01	1076 + 550	IZQUIERDO	1.60 m	M- 1	-0.10 m a -0.30 m	3.9 -	100.0	96.4	93.7	87.4	78.6	72.8	68.2	63.0	55.5	47.4	38.8	29.8	21.4	16.9	20.58	11.14	9.44					GC	A-2-4	(0)	
001	1070 - 000	IZGOILITEO	1.00 111	M- 2	-0.30 m a -1.60 m	5.0 -	100.0	97.2	95.6	91.0	85.0	79.0	74.3	67.9	55.6	47.5	39.2	30.8	22.8	18.3	20.81	12.42	8.39					GC	A-2-4	(0)	
C-02	1077+050	DERECHO	2.10 m	M- 1	-0.10 m a -0.30 m	2.2 -	100.0	96.3	94.7	94.1	88.3	83.5	79.1	73.5	63.5	54.0	44.5	28.9	15.9	12.0	19.01	13.56	5.46	2.254	6.26	38.6%	66.1%	SM-SC	A-1-b	(0)	
0 02	10771000	DENEGRIO	2.10 111	M- 2	-0.30 m a -2.10 m	5.6 -	100.0	95.2	93.4	88.7	83.7	79.1	75.8	72.6	68.6	65.7	61.0	38.9	6.6	3.4	21.28	NP	NP	2.096	8.66	43.3%	58.9%	SP	A-1-b	(0)	RELLENO
C-03	1077 + 550	IZQUIERDO	1.50 m	M- 1	-0.10 m a -0.40 m	4.5 -	100.0	100.0	90.3	85.0	76.1	69.6	64.2	58.4	49.3	42.4	34.2	21.4	13.4	10.6	20.11	13.54	6.57					GP-GC	A-2-4	(0)	
	1011 - 000	izgoizitoo	1.00	M- 2	-0.40 m a -1.50 m	5.2 -	100.0	100.0	94.2	89.9	78.1	70.1	63.4	57.0	46.8	39.3	32.1	19.5	10.8	8.6	15.36	NP	NP					GP-GM	A-1-a	(0)	
				M- 1	-0.10 m a -0.30 m	2.7 -	100.0	96.3	92.5	84.9	74.0	68.3	63.4	58.0	49.6	41.8	34.7	25.3	17.1	13.9	19.46	11.85	7.61	2.265	6.18	26.0%	47.5%	GC	A-2-4	(0)	NIVEL FREATICO
C-04	1078 + 050	DERECHO	2.10 m	M- 2	-0.30 m a -0.60 m	2.7 -	100.0	88.7	79.6	78.4	69.8	64.5	58.4	52.9	44.2	38.5	32.4	21.7	14.6	12.2	19.17	13.47	5.70	2.268	6.25	48.5%	85.4%	GM-GC	A-1-a	(0)	2.10 mts.
				M- 3	-0.60 m a -2.10 m	4.5 -	100.0	100.0	100.0	96.4	86.0	81.3	75.6	68.3	55.6	46.7	38.1	29.8	24.5	20.8	21.81	15.86	5.95	2.108	9.09	30.9%	40.5%	GM-GC	A-1-b	(0)	RELLENO
				M- 1	-0.10 m a -0.30 m	5.2 -	100.0	100.0	94.2	89.9	78.1	70.1	63.4	57.0	46.8	39.3	32.1	19.5	10.8	8.6	20.84	14.28	6.56					GP-GC	A-2-4	(0)	
C-05	1078 + 550	IZQUIERDO	1.50 m	M- 2	-0.30 m a -0.60 m	3.1 -	100.0	97.5	91.5	87.9	82.3	76.1	71.2	65.0	54.4	46.0	37.3	29.3	22.6	19.3	22.28	15.84	6.44					GM-GC	A-2-4	(0)	
				M- 3	-0.60 m a -1.50 m	4.9 -	100.0	90.4	88.9	85.4	77.4	69.5	62.6	55.0	43.9	34.0	27.4	23.0	19.4	16.8	19.78	14.38	5.40					GM-GC	A-1-b	(0)	
				M- 1	-0.10 m a -0.50 m	3.9 -	100.0	100.0	95.2	87.4	75.3	66.6	59.6	53.3	44.3	34.7	23.2	16.5	11.4	8.3	19.85	14.18	5.66	2.096	8.66	43.3%	58.9%	GP-GC	A-1-a	(0)	ROCA FIJA
C-06	1079 + 050	IZQUIERDO	1.10 m	M- 2	-0.50 m a -1.10 m	4.0 -	100.0	97.3	92.5	87.8	83.0	78.0	73.3	68.5	57.5	47.4	37.5	28.4	21.5	17.9	20.72	15.40	5.32	2.096	8.66	43.3%	58.9%	GM-GC	A-1-b	(0)	RELLENO
				M- 1	-0.10 m a -0.30 m	4.4 -	100.0	100.0	95.8	92.4	82.6	75.1	68.3	61.9	52.7	45.5	37.9	26.3	15.3	12.3	19.33	14.72	4.61					GM-GC	A-1-a	(0)	
				M- 2	-0.30 m a -0.50 m	4.5 -	100.0	100.0	100.0	100.0	98.6	97.2	95.5	93.9	90.4	73.0	58.3	45.2	35.4	30.9	23.50	15.36	8.13					SC	A-2-4	(0)	
C-07	1079 + 550	IZQUIERDO	1.50 m	M- 3	-0.50 m a -1.00 m	10.6 -	100.0	100.0	100.0	98.0	94.0	90.0	85.2	78.7	66.0	62.1	58.7	56.0	48.2	39.1	22.21	17.69	4.52					GM-GC	A-4	(1)	
				M- 4	-1.00 m a -1.50 m	4.1 -	100.0	100.0	100.0	95.4	87.1	78.7	73.2	66.8	54.4	42.2	34.7	28.4	16.5	11.3	16.82	NP	NP					GP-GM	A-1-a	(0)	
				M- 1	-0.10 m a -0.30 m	2.7 -	100.0	100.0	100.0	94.7	82.9	76.5	70.3	64.3	54.0	45.7	39.1	31.6	20.1	16.2	19.23	18.33	0.90	2.261	6.10	26.5%	48.0%	GM	A-1-b	(0)	
				M- 2	-0.30 m a -1.50 m	2.9 -	100.0	100.0	94.1	86.8	80.6	73.8	69.9	64.9	54.9	44.4	35.6	28.8	21.1	17.2	21.13	15.38	5.75	2.252	7.07	24.1%	43.8%	GM-GC	A-1-b	(0)	
C-08	1080 + 050	DERECHO	2.00 m	M- 3	-1.50 m a -2.00 m	3.9 -	100.0	100.0	98.0	94.7	87.0	83.3	78.9	73.7	63.0	52.7	43.2	34.4	25.5	21.7	22.58	15.38	7.20	2.007	6.19	16.3%	30.2%	SC	A-2-4	(0)	TERRENO DE FUNDACION
C-09	1080 + 550	IZQUIERDO	1.50 m	M- 1	-0.10 m a -0.40 m	3.9 -	100.0	93.1	91.0	87.6	85.1	81.4	78.8	74.7	66.3	58.7	50.7	40.1	27.3	22.7	19.39	14.13	5.26					SM-SC	A-1-b	(0)	
C-03	1000 + 330	IZQUIENDO	1.50 111	M- 2	-0.40 m a -1.50 m	8.4 -	100.0	100.0	100.0	100.0	94.7	94.0	93.5	92.8	91.0	85.6	79.6	69.5	44.7	36.6	19.16	14.04	5.12					SM-SC	A-4	(0)	
0.40	4004 - 050	DEDECHO	0.00	M- 1	-0.10 m a -0.40 m	3.9 -	100.0	100.0	100.0	98.6	94.6	91.9	87.8	81.2	70.2	57.5	47.4	38.2	26.1	22.5	19.23	14.17	5.06	2.244	6.28	26.4%	36.5%	SM-SC	A-1-b	(0)	
C-10	1081 + 050	DERECHO	2.20 m	M- 2	-0.40 m a -2.20 m	4.4 -	100.0	94.3	91.8	87.9	82.0	76.8	71.0	64.1	53.0	42.0	31.7	23.5	17.1	15.2	25.15	14.56	10.59	2.288	6.48	28.1%	36.1%	GC	A-2-6	(0)	RELLENO
0.11	1001 . 550	IZOLUEDDO	1 E0 w:	M- 1	-0.10 m a -0.30 m	3.2 -	100.0	100.0	100.0	97.8	96.9	91.8	82.9	76.1	63.0	51.5	41.2	32.0	21.5	18.1	22.00	15.42	6.58					SM-SC	A-2-4	(0)	ĺ
C-11	1081 + 550	IZQUIERDO	1.50 m	M- 2	-0.30 m a -1.50 m	3.2 -	100.0	93.1	91.7	90.7	89.1	86.5	85.0	83.2	77.3	68.4	60.3	53.9	46.0	41.6	24.62	16.48	8.14					SC	A-4	(1)	
				M- 1	-0.10 m a -1.50 m	4.1 -	100.0	100.0	100.0	98.3	95.6	91.5	87.0	79.1	65.8	52.1	42.2	33.2	21.9	18.8	20.70	13.86	6.84	2.272	6.26	18.0%	33.4%	SM-SC	A-2-4	(0)	
C-12	1082 + 050	IZQUIERDO	2.10 m	M- 2	-1.50 m a -2.10 m	5.7 -	100.0	100.0	100.0	98.1	96.2	93.7	91.4	88.0	80.5	71.5	60.3	49.8	40.6	37.2	24.26	13.95	10.31	1.987	7.42	3.7%	13.7%	SC	A-6	(1)	TERRENO DE FUNDACION

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI Ing. RAULE DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

GAMMINI

HUMBERTO HUALLIPA HUMIRI
TEC EN SUELOS Y PAVIMENTOS
CONTRATO N° 034 2020-1017C/20

CONSORCIO VIAL SICUANI

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

										CU	ADRO					LICAT	CAS T	ΓRAN	IO SI	CUA	NI - C	OMBAP										
												ANA	LISIS GR/	NULOME	TRICO			1				LIMI	TES DE CONS	ISTENCIA	PRO	CTOR	CBR		CLAS	SIFICACION		
NUMERO DE CALICATA	PROGRESIVA (Km)	LADO	PROF. DE CALICATA	NUMERO DE MUESTRA	PROFUNDIDAD DE ESTRATO	HUMEDAD NATURAL % 3.1	1/2*	3"	2 1/2*	2*	1 1/2*	1*	3/4"	1/2*	3/8*	#4	#10	#20	#40	#100	#200	LIMITE	LIMITE PLASTICO	INDICE DE PLASTICIDAD	DENSIDAD MAXIMA SECA (gr/cm3)	OPTIMO CONTENIDO DE HUMEDAD (%)	CBR DE LABORATORIO 95% LAE	CBR DE BORATORIO 100%	sucs	AASHTO	INDICE	OBSERVACIONES
				M- 1	-0.10 m a -0.70 m	7.0	- 1	0.00	100.0	95.6	90.6	79.5	72.4	65.8	59.0	48.8	39.6	32.0	25.6	20.4	18.5	27.45	18.88	8.57					GC	A-2-4	(0)	
C-13	1082 + 550	DERECHO	1.50 m	M- 2	-0.70 m a -1.10 m	6.3	- 1	0.00	90.4	88.2	84.0	78.7	74.7	70.3	65.6	55.0	45.7	37.8	30.6	20.2	16.2	19.00	13.78	5.22					GM-GC	A-1-b	(0)	
				M- 3	-1.10 m a -1.50 m	26.5	- 1	0.00	100.0	100.0	100.0	99.5	99.0	98.3	97.2	93.7	90.9	-		81.6	73.6	23.41	17.47	5.93					ML-CL	A-4	(8)	
				M- 1	-0.10 m a -0.30 m	2.5	- 1	0.00	100.0	100.0	96.1	93.0	89.2	84.2	77.6	65.4	56.1	47.0	32.8	19.6	15.8	18.32	16.91	1.40	2.249	6.41	19.9%	37.1%	SM	A-1-b	(0)	
0.44	4000 - 050	IZOUIEDDO	0.00	M- 2	-0.30 m a -1.50 m	10.0	- 1	0.00	100.0	100.0	97.1	94.1	88.1	77.5	40.1	27.9	22.7	18.7	15.1	11.6	10.2	20.56	12.02	8.54	2.249	7.91	21.7%	31.2%	GP-GC	A-2-4	(0)	
C-14	1083 + 050	IZQUIERDO	2.00 m	M- 3	-1.50 m a -2.00 m	5.3	- 1	00.0	100.0	100.0	99.6	93.6	90.1	87.6	84.2	78.6	59.6	46.3	36.4	29.2	25.9	29.42	15.35	14.08	1.956	12.37	4.5%	8.5%	SC	A-2-6	(0)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.40 m	5.1	- 1	0.00	100.0	93.4	81.9	75.7	70.0	65.3	59.4	51.2	44.2	38.5	32.1	22.5	18.6	19.22	14.92	4.30					GM-GC	A-1-b	(0)	
C-15	1083 + 550	DERECHO	1.50 m	M- 2	-0.40 m a -0.60 m	5.1	- 1	0.00	96.6	91.8	87.0	82.2	77.3	72.6	66.0	54.9	43.3	33.6	26.0	21.1	19.0	27.17	17.51	9.66					GC	A-2-4	(0)	
				M- 3	-0.60 m a -1.50 m	6.6	- 1	0.00	96.8	85.3	80.1	70.4	63.7	58.1	52.7	44.6	30.0	18.9	8.8	3.3	1.7	20.17	13.17	7.00					GP	A-2-4	(0)	
0.40	4004 050	1701115000	0.00	M- 1	-0.10 m a -0.30 m	7.4	- 1	0.00	100.0	91.4	84.7	69.2	60.5	52.1	44.3	34.0	27.5	21.7	16.8	12.0	10.4	21.74	14.05	7.68	2.246	6.28	35.3%	65.9%	GP-GC	A-2-4	(0)	
C-16	1084 + 050	IZQUIERDO	2.00 m	M- 2	-0.30 m a -2.00 m	7.2	- 1	0.00	100.0	100.0	100.0	99.4	97.3	95.0	90.7	80.6	58.6	45.1	36.1	30.2	28.5	20.25	15.07	5.19	1.998	12.77	6.6%	12.3%	SM-SC	A-2-4	(0)	RELLENO
				M- 1	-0.10 m a -0.30 m	5.9	- 1	0.00	100.0	100.0	94.1	85.9	79.3	74.8	69.2	58.5	48.9	40.2	31.5	23.1	20.5	24.53	16.41	8.12	2.256	6.24	22.2%	38.8%	GC	A-2-4	(0)	
				M- 2	-0.30 m a -0.60 m	5.6	- 1	0.00	97.7	91.9	90.3	82.2	77.8	74.2	69.0	59.8	49.7	41.3	34.1	28.8	26.7	30.44	19.81	10.63	2.235	6.50	20.0%	36.7%	GC	A-2-6	(0)	NIVEL FREATICO 1.40 mts.
C-17	1084 + 275	EJE	2.10 m	M- 3	-0.60 m a -1.50 m	3.3	- 1	0.00	100.0	90.3	74.7	58.7	51.6	45.2	39.8	31.2	23.9	17.2	10.1	6.4	5.5	17.58	15.94	1.64	2.247	6.33	27.4%	49.7%	GW-GM	A-1-a	(0)	1.40 IIIIS.
				M- 4	-1.50 m a -2.10 m	15.2	- 1	00.0	100.0	100.0	100.0	97.4	95.0	91.9	88.0	81.8	68.4	56.1	45.5	32.6	19.5	29.12	18.51	10.61	2.086	9.32	3.0%	6.5%	SC	A-2-6	(0)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	2.3	- 1	0.00	100.0	93.3	87.4	71.2	59.9	54.0	48.5	39.9	33.3	28.4	20.5	13.3	10.8	21.13	14.97	6.16					GP-GC	A-2-4	(0)	
C-18	1084 + 550	DERECHO	1.50 m	M- 2	-0.30 m a -1.00 m	6.7	- 1	0.00	100.0	97.1	94.4	84.5	76.6	70.5	62.8	50.7	40.0	31.3	24.9	21.3	20.1	28.96	18.68	10.28					GC	A-2-6	(0)	
				M- 3	-1.00 m a -1.50 m	9.7	- 1	0.00	100.0	100.0	97.6	96.7	94.1	92.0	89.1	83.9	70.0	62.9	56.6	49.7	46.5	23.04	16.95	6.09					SM-SC	A-4	(2)	
				M- 1	-0.10 m a -0.30 m	2.4	- 1	0.00	100.0	100.0	100.0	97.0	83.6	70.1	52.6	35.5	28.8	25.9	16.6	6.3	5.1	0.00	NP	NP	2.281	6.46	35.1%	46.4%	GW-GM	A-1-a	(0)	
				M- 2	-0.30 m a -0.60 m	7.2	- 1	0.00	100.0	100.0	96.8	91.8	89.1	85.2	81.1	76.6	66.2	57.2	44.9	25.9	23.0	18.39	15.88	2.51	2.275	6.56	19.8%	34.0%	SM	A-1-b	(0)	
C-19	1085 + 050	IZQUIERDO	2.00 m	M- 3	-0.60 m a -1.50 m	12.2	- 1	0.00	94.5	90.4	86.1	81.6	76.3	71.2	64.7	53.1	42.8	33.6	26.2	21.4	18.8	27.47	17.89	9.59	2.249	7.26	17.5%	33.1%	GC	A-2-4	(0)	
				M- 4	-1.50 m a -2.00 m	21.6	- 1	00.0	100.0	100.0	100.0	99.6	99.4	98.9	98.0	96.5	92.4	87.0	80.4	75.2	74.3	35.45	18.17	17.28	1.953	13.37	2.5%	4.7%	CL	A-6	(11)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	4.3	- 1	0.00	93.8	93.8	90.4	83.2	78.6	73.1	68.4	60.1	51.4	44.4	35.9	24.0	19.7	21.95	17.56	4.39					SM-SC	A-1-b	(0)	
C-20	1085 + 550	IZQUIERDO	1.50 m	M- 2	-0.30 m a -0.60 m	5.6	- 1	0.00	95.2	85.1	63.4	44.6	39.7	36.7	34.2	31.5	28.2	25.7	23.0	17.9	15.6	20.83	14.24	6.58					GM-GC	A-2-4	(0)	
				M- 3	-0.60 m a -1.50 m	11.6	- 1	0.00	100.0	94.3	93.3	92.8	92.3	91.6	90.6	89.0	87.2	86.1	84.4	64.3	51.3	19.15	NP	NP					ML	A-4	(3)	
				M- 1	-0.10 m a -0.30 m	4.6	- 1	0.00	100.0	88.5	83.6	79.7	75.6	71.3	65.8	56.5	47.7	39.3	31.3	22.8	19.9	21.19	16.10	5.09	2.106	9.11	22.9%	42.1%	GM-GC	A-1-b	(0)	
				M- 2	-0.30 m a -1.00 m	9.5	- 1	0.00	100.0	100.0	98.1	93.8	89.1	85.8	81.7	74.0	66.0	57.3	50.3	44.6	41.4	26.35	19.51	6.84	2.276	6.28	18.3%	33.4%	SM-SC	A-4	(1)	
C-21	1000 . 050	DERECHO	2.00 m	M- 3	-1.00 m a -1.50 m	7.5	- 1	0.00	100.0	91.4	88.0	82.1	74.3	66.4	60.3	46.4	41.5	36.8	31.8	26.2	24.2	28.52	17.53	10.99	2.293	6.52	20.0%	35.7%	GC	A-2-6	(0)	
G-21	1086 + 050	DERECHO	2.00 111	M- 4	-1.50 m a -2.00 m	14.4	- 1	0.00	100.0	100.0	100.0	97.5	95.0	91.9	88.2	82.0	68.7	56.5	46.1	32.9	19.6	24.76	17.81	6.96	2.100	9.13	5.9%	7.1%	SM-SC	A-2-4	(0)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	8.3	- 1	0.00	100.0	100.0	96.9	94.6	90.0	84.8	78.8	65.1	50.6	40.0	30.1	23.4	21.8	26.16	17.58	8.58					SC	A-2-4	(0)	
C-22	1086 + 550	IZQUIERDO	1.50 m	M- 2	-0.30 m a -1.00 m	8.3	- 1	0.00	100.0	100.0	100.0	100.0	99.9	99.0	98.0	96.2	93.1	89.3	84.9	80.1	77.8	38.92	25.42	13.50					ML	A-6	(9)	
				M- 3	-1.00 m a -1.50 m	19.5	- 1	0.00	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	94.1	86.6	79.9	75.3	73.9	46.11	31.10	15.01					ML	A-7-5	(11)	
				M- 1	-0.10 m a -0.30 m	3.8	- 1	0.00	100.0	100.0	100.0	99.1	94.7	87.8	79.6	63.8	50.7	41.8	24.2	7.6	5.2	15.77	NP	NP	2.197	6.55	31.0%	41.4%	SP-SM	A-1-b	(0)	
				M- 2	-0.30 m a -0.70 m	5.6	- 1	0.00	100.0	100.0	97.9	94.8	91.3	88.3	84.8	71.6	60.2	52.0	43.5	29.5	22.3	16.60	15.57	1.03	2.267	6.37	13.9%	24.7%	SM	A-1-b	(0)	
C-23	1087 + 050	IZQUIERDO	2.10 m	M- 3	-0.70 m a -1.50 m	6.1	- 1	0.00	100.0	100.0	100.0	99.5	97.5	94.2	89.7	80.4	73.7	68.2	60.6	40.0	30.3	16.65	15.57	1.08	2.260	6.42	16.6%	29.6%	SM	A-2-4	(0)	
				M- 4	-1.50 m a -2.10 m	12.3	- 1	00.0	100.0	100.0	100.0	100.0	100.0	100.0	99.4	96.1	84.4	79.2	70.8	43.7	33.8	21.46	16.25	5.20	2.003	10.81	2.3%	4.4%	SM-SC	A-2-4	(0)	TERRENO DE FUNDACION

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

Ing. RAULE DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

										CU	ADRO					CAT	`AS T	ram	O SI	CUAI	NI - C	OMBAP.										
												ANA	LISIS GR	NULOME	TRICO							LIMI	TES DE CONS	STENCIA	PRO	OCTOR	С	BR	CLAS	SIFICACION		
NUMERO DE CALICATA	PROGRESIVA (Km)	LADO	PROF. DE CALICATA	NUMERO DE MUESTRA	PROFUNDIDAD DE ESTRATO	HUMEDAD NATURAL %	3 1/2"	3"	2 1/2*	2*	1 1/2*	1"	3/4"	1/2*	3/8*	#4	#10	#20	#40	#100	#200	LIMITE	LIMITE PLASTICO	INDICE DE PLASTICIDAD	DENSIDAD MAXIMA SECA (gr/cm3)	OPTIMO CONTENIDO DE HUMEDAD (%)	CBR DE LABORATORIO 95%	CBR DE LABORATORIO 100%	sucs	AASHTO	INDICE	OBSERVACIONES
C-24	1087 + 550	DERECHO	1.50 m	M- 1	-0.10 m a -0.30 m	4.0	-	100.0	100.0	95.0	91.9	86.2	80.3	73.2	65.4	53.3	44.4	36.7	28.1	16.1	12.8	18.95	15.06	3.88					GM	A-1-a	(0)	
0-24	1007 + 330	DERECHO	1.30 111	M- 2	-0.30 m a -1.50 m	6.5	-	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.1	98.2	96.9	94.7	89.8	69.7	60.0	19.71	12.84	6.86					ML-CL	A-4	(5)	
				M- 1	-0.10 m a -0.40 m	5.3	-	100.0	100.0	95.0	92.1	84.0	77.1	70.8	64.6	53.9	44.0	35.8	29.1	23.6	21.4	18.51	12.83	5.68	2.104	9.45	26.2%	42.4%	GM-GC	A-1-b	(0)	
C-25	1088 + 050	IZQUIERDO	2.00 m	M- 2	-0.40 m a -2.00 m	8.8	-	100.0	100.0	100.0	100.0	100.0	99.6	98.9	98.2	96.9	95.3	93.6	89.2	68.4	58.1	16.49	15.10	1.40	2.032	11.28	3.6%	4.7%	ML	A-4	(5)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.40 m	5.1	-	100.0	100.0	100.0	96.7	90.5	86.3	82.2	75.4	64.7	56.1	48.8	40.7	28.3	22.5	20.97	15.12	5.85	2.261	6.20	36.3%	60.9%	SM-SC	A-1-b	(0)	
C-26	1088 + 550	DERECHO	2.00 m	M- 2	-0.40 m a -1.30 m	6.2	-	100.0	92.5	89.9	89.1	81.7	74.1	70.1	60.0	48.8	40.8	34.3	25.4	13.7	11.1	15.63	NP	NP	2.273	7.20	24.9%	44.4%	GP-GM	A-1-a	(0)	
				M- 3	-1.30 m a -2.00 m	33.8	-	100.0	100.0	100.0	100.0	100.0	99.7	98.7	96.9	92.9	85.2	78.9	69.5	63.7	61.4	27.02	16.81	10.21	1.925	12.58	2.9%	5.4%	CL	A-6	(5)	
				M- 1	-0.10 m a -0.50 m	2.9	-	100.0	96.7	89.5	82.9	71.6	65.0	59.6	54.0	45.3	39.5	34.5	25.0	9.6	7.1	15.98	15.85	0.12	2.253	6.88	21.3%	39.9%	GP-GM	A-1-a	(0)	NIVEL FREATICO
				M- 2	-0.50 m a -0.70 m	2.6	-	100.0	100.0	100.0	94.3	87.2	82.2	76.2	70.2	61.2	52.6	44.6	32.2	19.5	16.6	19.61	15.04	4.57	2.238	6.76	21.4%	38.8%	SM-SC	A-1-b	(0)	1.00 mts.
C-27	1089 + 050	IZQUIERDO	2.00 m	M- 3	-0.70 m a -2.00 m	36.0	-	100.0	100.0	100.0	100.0	97.6	95.7	93.7	92.0	88.6	84.7	81.0	77.5	72.3	64.7	26.21	16.35	9.85	1.953	12.81	2.5%	3.3%	CL	A-4	(6)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	2.7	-	100.0	100.0	95.8	90.0	81.7	74.6	67.5	60.0	49.6	42.7	36.8	31.5	22.1	18.3	19.46	14.14	5.32					GM-GC	A-1-b	(0)	
C-28	1089 + 550	DERECHO	1.50 m	M- 2	-0.30 m a -1.50 m	6.5	-	100.0	100.0	100.0		87.2	81.1	76.3	70.5	60.3	50.4	_	34.4	_		19.33	15.53	3.79					SM	A-1-b	(0)	
				M- 1	-0.10 m a -0.60 m	5.8	-	100.0	100.0	95.2	90.4	82.4	76.1	70.5	65.4	56.0	50.0	_	40.6	_	_	19.43	13.96	5.47	2.093	8.63	35.0%	61.4%	GM-GC	A-1-b	(0)	NIVEL FREATICO
				M- 2	-0.60 m a -1.60 m	2.8	-	100.0	100.0	87.6	67.5	56.7	48.1	42.4	37.5		24.4	+	16.4	_	_	19.37	13.52	5.85	2.219	6.59	49.7%	83.1%	GP-GC	A-1-a	(0)	1.70 mts.
C-28 - A	1089 + 760	DERECHO	2.00 m	M- 3	-1.60 m a -2.00 m	29.6	-	100.0	100.0	100.0		91.6	87.6	83.6	80.0	74.2	69.2	65.1		48.1	36.7	26.23	16.99	9.24	2.031	11.74	7.5%	10.0%	SC	A-4	(0)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.40 m	3.7	-	100.0	100.0	95.3	90.6	82.2	75.0	67.5	60.0	49.2	40.4	34.7	26.4	14.6	10.9	15.74	14.25	1.49	2.276	6.52	24.8%	44.4%	GP-GM	A-1-a	(0)	
				M- 2	-0.40 m a -0.70 m	4.8		100.0	100.0	100.0		83.7	78.3	70.8	64.7	53.2	12.1	33.1	23.4			19.38	14.25	5.13	2.098	8.69	32.3%	60.7%	GP-GC	A-1-a	(0)	
C-29	1090 + 050	IZQUIERDO	2.00 m	M- 3	-0.70 m a -2.00 m	5.7	-	100.0		100.0		92.1	87.9	84.7	83.2	77.8				54.8		26.04	16.36	9.68	1.998	12.01	4.7%	8.9%	SC SC	A-1-a	(3)	TERRENO DE FUNDACION
					0.40 0.40	0.7	+	400.0	400.0	400.0	07.0	00.0	00.7	77.0	70.0	50.0	50.0	47.4	07.4	40.0	40.0	40.40	ND	ND					014		(0)	+
C-30	1090 + 550	DERECHO	1.50 m	M- 1	-0.10 m a -0.40 m	3.7	-	100.0	100.0	100.0		90.6	83.7	77.2	70.9	59.6		47.1	37.4			16.13	NP 45.00	NP					SM	A-1-b	(0)	NIVEL FREATICO 1.30 mts.
				M- 2	-0.40 m a -1.50 m	27.2	-	100.0	96.7	96.7	88.6	75.5	66.6	61.2	55.1	45.6	39.2	-				19.94	15.69	4.25					GM-GC	A-1-b	(0)	1.00 mg.
				M- 1	-0.10 m a -0.30 m	4.5	-	100.0	100.0	96.7	96.0	92.1	85.9	80.3	73.9	63.0	54.9		40.0		_	16.07	11.15	4.92	2.277	5.48	46.2%	61.5%	SM-SC	A-1-b	(0)	NIVEL FREATICO
				M- 2	-0.30 m a -0.50 m	9.0	-	100.0	100.0	100.0	100.0	100.0	99.6	99.3	97.5	91.1	80.5	+	55.1	38.9	_	21.21	15.20	6.01	2.253	7.04	41.2%	55.3%	SM-SC	A-2-4	(0)	1.50 mts.
C-31	1091 + 050	IZQUIERDO	2.00 m	M- 3	-0.50 m a -1.50 m	10.7	-	100.0	100.0	100.0	94.7	82.9	76.5	70.3	64.3	54.0	45.7	39.1	31.6	20.1	16.2	20.66	18.80	1.86	1.907	12.81	17.6%	31.2%	GM	A-1-b	(0)	
				M- 4	-1.50 m a -2.00 m	14.5	-	100.0	100.0	100.0	97.9	95.6	94.5	93.1	91.0	86.4	80.1	74.3	68.0	58.1	51.5	26.61	17.83	8.78	1.957	12.09	4.7%	6.3%	CL	A-4	(3)	TERRENO DE FUNDACION
C-32	1091 + 550	DERECHO	1.50 m	M- 1	-0.10 m a -0.30 m	6.3	-	100.0	100.0	100.0	100.0	93.3	89.1	83.4	77.4	67.0	59.2	52.1	40.7	23.1	15.8	20.34	13.29	7.05					SC	A-2-4	(0)	
U-32	1091 + 330	DEKEUNU	1.00 111	M- 2	-0.30 m a -1.5 m	7.3	-	100.0	100.0	100.0	96.8	90.6	87.3	83.2	78.6	68.3	59.2	51.9	45.0	34.0	23.0	18.97	15.17	3.80					SM	A-1-b	(0)	
				M- 1	-0.10 m a -0.30 m	3.2	-	100.0	100.0	95.7	93.3	87.0	80.3	74.5	68.0	57.8	50.4	44.6	34.9	18.4	12.9	12.70	12.67	0.03	2.245	6.37	19.3%	36.3%	SM	A-1-b	(0)	
				M- 2	-0.30 m a -0.50 m	5.6	-	100.0	100.0	100.0	96.0	87.9	79.3	74.2	65.3	53.2	42.9	35.8	29.5	21.9	16.1	18.95	13.75	5.20	2.103	9.01	22.8%	41.1%	GM-GC	A-1-b	(0)	NIVEL FREATICO 1.80 mts.
C-33	1092 + 050	IZQUIERDO	2.00 m	M- 3	-0.50 m a -1.50 m	6.2	-	100.0	100.0	89.1	86.6	75.5	69.8	64.0	58.4	54.5	49.0	44.6	39.5	32.0	26.8	26.30	15.49	10.80	2.282	6.48	23.6%	37.8%	GC	A-2-6	(0)	1.00 mg.
0 00	1032 - 000	izgoicheo	2.00 111	M- 4	-1.50 m a -2.00 m	27.4	-	100.0	100.0	100.0	100.0	97.8	94.3	92.2	88.5	80.4	72.1	62.3	51.9	40.9	35.3	29.91	18.84	11.07	2.069	9.38	10.1%	16.2%	SC	A-6	(0)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	4.2	-	100.0	100.0	100.0	98.7	92.9	87.7	81.7	75.8	65.1	58.4	52.0	45.8	34.0	24.2	18.52	15.54	2.98	2.249	6.49	22.2%	37.1%	SM	A-1-b	(0)	NIVEL FREATICO
				M- 2	-0.30 m a -0.80 m	9.6	١.	100.0	100.0	96.0	94.0	88.3	81.2	75.3	67.1	52.1	40.9	33.2	28.2	23.8	18.4	21.09	14.24	6.85	2.254	7.12	23.8%	39.7%	GM-GC	A-2-4	(0)	1.00 mts.
C-33 - A	1092 + 280	IZQUIERDO	2.00 m	M- 3	-0.80 m a -2.00 m	36.6	-	100.0		94.9	92.1	89.0	85.7	83.9	81.3		66.4			29.9		12.01	NP	NP	1.835	20.93	6.6%	11.0%	SM	A-1-b	(0)	TERRENO DE FUNDACION

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI
TIG. RAVILE. DELGADO ARAGON
ESPECIALISTA EN SUECOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

									CU	JADRO					CICAT	`AS T	'RAM(SIC	CUAN	II - C(OMBAP.										
									1	1	ANA	LISIS GRA	NULOME	TRICO	1	1	т т	- 1			LIMI	TES DE CONS	ISTENCIA	PRO	OCTOR	СВ	R	CLAS	SIFICACION	1	
NUMERO DE CALICATA	PROGRESIVA (Km)	LADO	PROF. DE CALICATA	NUMERO DE MUESTRA	PROFUNDIDAD DE ESTRATO	HUMEDAD NATURAL % 3 1/2	3"	2 1/2*	2*	1 1/2"	1"	3/4"	1/2*	3/8*	#4	#10	#20	#40	#100	#200	LIMITE	LIMITE PLASTICO	INDICE DE PLASTICIDAD	DENSIDAD MAXIMA SECA (gr/cm3)	OPTIMO CONTENIDO DE HUMEDAD (%)	CBR DE LABORATORIO 95% I	CBR DE LABORATORIO 100%	sucs	AASHTO	INDICE	OBSERVACIONES
				M- 1	-0.10 m a -0.30 m	3.2 -	100.0	100.0	100.0	97.5	89.2	83.6	76.8	69.8	57.5	50.4	43.7	33.1	16.9	11.5	13.41	NP	NP	2.202	6.32	22.6%	40.6%	SP-SM	A-1-b	(0)	NIVEL FREATICO
				M- 2	-0.30 m a -0.90 m	3.9 -	100.0	100.0	96.2	94.1	84.9	77.3	69.2	60.9	47.4	37.1	29.4	23.8	18.4	13.8	19.63	14.53	5.10	2.240	6.85	23.8%	42.4%	GM-GC	A-1-a	(0)	0.95 mts.
C-34	1092 + 550	DERECHO	1.50 m	M- 3	-0.90 m a -1.50 m	3.9 -	100.0	97.2	93.8	91.0	87.6	84.4	81.7	79.8	72.3	61.1	48.4	37.2	27.6	21.1	18.67	16.87	1.81	1.813	21.60	16.6%	30.2%	SM	A-1-b	(0)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	2.6 -	100.0	100.0	100.0	98.6	89.9	82.6	74.3	64.2	47.5	36.5	28.3	22.8	17.8	13.9	21.05	14.25	6.81	2.251	7.08	32.1%	54.5%	GM-GC	A-2-4	(0)	NIVEL FREATICO
0.05	4000 - 050	IZOUJEDDO	0.40	M- 2	-0.30 m a -1.50 m	3.1 -	100.0	100.0	100.0	97.5	90.9	85.0	77.7	70.5	59.8	49.6	42.1	32.8	17.9	14.6	16.77	14.50	2.26	2.238	6.78	19.4%	35.6%	SM	A-1-b	(0)	1.95 mts.
C-35	1093 + 050	IZQUIERDO	2.10 m	M- 3	-1.50 m a -2.10 m	20.8 -	100.0	100.0	100.0	100.0	100.0	99.3	96.7	93.7	87.8	82.5	77.7	69.5	53.7	44.8	26.44	17.89	8.55	1.936	12.00	7.4%	10.0%	SC	A-4	(2)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	4.0 -	100.0	95.2	82.9	70.6	49.7	31.0	28.1	27.4	25.8	23.1	20.6	18.1	13.9	10.1	18.83	12.66	6.16					GP-GC	A-2-4	(0)	
C-36	1093 + 550	DERECHO	1.50 m	M- 2	-0.30 m a -1.10 m	5.2	100.0	100.0	87.6	80.3	68.5	59.5	53.8	45.5	33.3	24.3	18.0	14.7	11.9	9.9	21.26	12.93	8.33					GP-GC	A-2-4	(0)	NIVEL FREATICO 1.10 mts.
				M- 3	-1.10 m a -1.50 m	24.0 -	100.0	100.0	100.0	98.4	97.8	96.6	95.5	94.0	91.7	89.0	86.4	81.5	65.3	55.9	22.02	17.44	4.58					ML-CL	A-4	(4)	1.1011113.
				M- 1	-0.10 m a -0.50 m	4.1 -	100.0	95.2	92.6	91.8	81.6	73.4	67.1	61.2	51.3	46.0	40.7	31.6	14.7	10.5	16.23	15.72	0.51	2.270	5.72	35.4%	65.2%	GP-GM	A-1-b	(0)	
				M- 2	-0.50 m a -1.40 m	8.4 -	100.0	100.0	97.5	97.5	91.6	88.4	84.1	79.6	72.4	64.6	55.9	44.4	30.6	25.7	26.13	20.03	6.10	2.251	5.01	46.9%	73.5%	SM-SC	A-2-4	(0)	
C-37	1094 + 050	IZQUIERDO	2.00 m	M- 3	-1.40 m a -2.00 m	28.1 -	100.0	100.0	100.0	100.0	100.0	99.8	99.7	99.6	99.1	98.5	98.1	97.6	93.1	82.9	32.36	19.83	12.53	1.896	14.36	4.0%	6.3%	CL	A-6	(9)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.40 m	10.9 -	100.0	100.0	96.0	95.1	88.4	81.1	74.6	67.2	56.4	48.8	42.5	36.6	25.9	19.8	18.02	14.86	3.16	2.253	6.51	26.0%	43.8%	GM	A-1-b	(0)	
				M- 2	-0.40 m a -0.80 m	21.0 -	100.0	100.0	100.0	100.0	100.0	99.6	99.5	99.2	96.5	89.4	81.5	74.9	67.8	63.4	36.17	22.28	13.89	1.944	11.42	8.2%	14.6%	CL	A-6	(7)	
C-38	1094 + 550	DERECHO	1.50 m	M- 3	-0.80 m a -1.50 m	16.8 -	100.0	100.0	100.0	100.0	100.0	99.9	98.7	96.5	91.7	87.0	80.3	75.3	66.1	56.2	25.35	16.27	9.08	2.035	9.48	9.8%	16.7%	CL	A-4	(4)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	2.5 -	100.0	100.0	96.7	95.8	91.8	88.6	82.9	77.7	67.7	60.3	53.5	43.6	25.2	19.1	16.11	14.42	1.69	2.272	6.07	23.7%	42.1%	SM	A-1-b	(0)	
				M- 2	-0.30 m a -1.10 m	1.5 -	100.0	100.0	91.5	81.3	70.9	63.1	56.2	49.2	39.7	30.6	25.1	21.7	18.0	14.5	19.36	12.70	6.66	2.245	6.88	24.9%	45.3%	GM-GC	A-2-4	(0)	
C-39	1095 + 050	IZQUIERDO	2.00 m	M- 3	-1.10 m a -2.00 m	27.1 -	100.0	100.0	100.0	100.0	99.2	98.9	98.3	96.9	92.3	86.7	82.6	78.3	72.0	66.8	42.08	20.45	21.63	1.872	13.29	3.5%	6.3%	CL	A-7-6	(11)	TERRENO DE FUNDACION
C-40	1095 + 550	DERECHO	1.50 m	M- 1	-0.10 m a -0.30 m	3.4 -	100.0	100.0	94.4	90.4	83.2	75.8	69.3	62.4	52.6	45.4	39.3	32.6	22.7	16.2	19.41	16.31	3.11					GM	A-1-b	(0)	
C-40	1035 + 550	DEKECIIO	1.50 111	M- 2	-0.30 m a -1.50 m	3.9 -	100.0	100.0	94.1	87.9	78.7	72.5	64.0	56.6	43.9	34.2	27.4	23.1	18.3	13.2	19.03	14.90	4.13					GM-GC	A-1-a	(0)	
				M- 1	-0.10 m a -0.30 m	3.4 -	100.0	100.0	100.0	92.6	85.7	79.5	74.3	68.0	57.6	52.0	46.4	37.8	22.3	15.8	16.66	14.56	2.10	2.267	6.28	30.2%	47.2%	GM	A-1-b	(0)	NIVEL FREATICO
0.44	1000 050	IZOLUEDDO	0.00	M- 2	-0.30 m a -1.50 m	3.0 -	100.0	99.7	99.0	98.4	97.0	96.2	95.5	94.9	93.9	71.6	56.2	46.0	35.0	26.6	22.46	18.80	3.65	2.264	6.46	21.1%	29.9%	SM	A-2-4	(0)	1.95 mts.
C-41	1096 + 050	IZQUIERDO	2.00 m	M- 3	-1.50 m a -2.00 m	18.0 -	100.0	100.0	100.0	100.0	99.2	99.0	97.8	96.4	91.8	85.0	74.9	64.5	45.7	35.1	23.13	15.71	7.42	2.122	9.03	12.2%	19.2%	SC	A-4	(0)	TERRENO DE FUNDACION
C-42	1096 + 550	DERECHO	1.50 m	M- 1	-0.10 m a -0.40 m	3.3 -	100.0	100.0	100.0	91.9	82.5	75.1	67.9	60.9	50.2	42.7	36.7	27.8	14.9	9.7	15.86	13.88	1.99					GP-GM	A-1-a	(0)	
U-42	1030 + 000	PENEOUIU	1.30 111	M- 2	-0.40 m a -1.50 m	2.8 -	100.0	100.0	96.8	91.0	84.4	77.3	70.1	62.7	50.9	43.7	38.1	33.0	23.9	16.9	19.00	16.61	2.39					GM	A-1-b	(0)	
C 42	1007 - 050	IZOLUEDDO	0.00 **	M- 1	-0.10 m a -0.40 m	4.6 -	100.0	100.0	98.6	86.1	73.3	65.6	60.1	54.4	45.9	40.7	36.1	27.9	15.0	10.6	16.31	14.24	2.07	2.274	6.23	23.0%	43.2%	GP-GM	A-1-a	(0)	ROCA
C-43	1097 + 050	IZQUIERDO	0.90 m	M- 2	-0.40 m a -0.90 m	3.3 -	100.0	92.8	90.2	83.7	70.8	61.9	54.6	45.8	30.9	21.9	16.2	12.4	9.7	7.6	18.54	15.39	3.15	2.258	7.24	41.3%	76.7%	GW-GM	A-1-a	(0)	RELLENO
C-44	1097 + 550	DERECHO	2.00 m	M- 1	-0.10 m a -0.90 m	5.4 -	100.0	87.8	87.8	84.8	78.7	72.8	68.8	62.2	51.7	42.1	35.9	31.2	23.9	17.7	18.30	15.31	2.99	2.265	6.22	28.8%	49.8%	GM	A-1-b	(0)	NIVEL FREATICO 2.00 mts.
				M- 2	-0.90 m a -2.00 m	4.7 -	100.0	94.7	90.7	88.3	79.9	73.6	68.2	62.6	53.3	44.9	38.7	31.9	22.4	15.8	17.23	15.63	1.60	2.272	6.17	27.4%	44.4%	GM	A-1-b	(0)	RELLENO
		i e			1																									1	.1

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI Ing. RAULE DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

									Cī	JADRO					JCAT	AS T	RAMO	SIC	UAN	I - CO											
									_		ANA	LISIS GRAI	NULOME	TRICO							LIMI	TES DE CONS	ISTENCIA	PRO	CTOR	CBF	₹	CLAS	SIFICACION		
NUMERO DE CALICATA	PROGRESIVA (Km)	LADO	PROF. DE CALICATA	NUMERO DE MUESTRA	PROFUNDIDAD DE ESTRATO	HUMEDAD NATURAL % 3 1/2	3"	2 1/2"	2*	1 1/2*	1*	3/4"	1/2*	3/8*	#4	#10	#20 #	#40	#100	#200	LIMITE LIQUIDO	LIMITE PLASTICO	INDICE DE PLASTICIDAD	DENSIDAD MAXIMA SECA (gr/cm3)	OPTIMO CONTENIDO DE HUMEDAD (%)	CBR DE LABORATORIO 95% L	CBR DE ABORATORIO 100%	sucs	AASHTO	INDICE	OBSERVACIONES
				M- 1	-0.10 m a -0.30 m	1.9 -	100.	100.0	100.0	96.8	87.4	81.1	75.9	70.6	60.9	52.8	45.7 3	5.5	19.5	14.1	17.05	14.11	2.94	2.253	6.45	22.1%	36.7%	SM	A-1-b	(0)	NIVEL FREATICO
044.4	4007 500	E 15	0.00	M- 2	-0.30 m a -1.40 m	3.3 -	100.	100.0	96.9	95.1	90.7	85.3	80.2	74.2	63.3	55.4	48.4 4	1.2	29.2	20.1	17.28	15.11	2.17	2.261	6.24	18.7%	30.2%	SM	A-1-b	(0)	1.40 mts.
C-44 - A	1097 + 500	EJE	2.00 m	M- 3	-1.40 m a -2.00 m	17.3 -	100.	100.0	100.0	100.0	100.0	100.0	99.4	99.4	99.3	96.2	91.5 8	5.7	75.2	69.2	36.30	21.96	14.34	1.836	15.01	7.7%	13.5%	CL	A-6	(9)	TERRENO DE FUNDACION
0.45	4000 - 050	1701115000	2.00 m	M- 1	-0.10 m a -0.90 m	3.4 -	100.	100.0	85.6	83.6	75.3	69.3	64.7	60.1	51.6	44.6	38.5 3	1.2	21.0	15.0	16.99	13.76	3.23	2.263	6.20	28.8%	49.3%	GM	A-1-b	(0)	NIVEL FREATICO 1.50 mts.
C-45	1098 + 050	IZQUIERDO	2.00 m	M- 2	-0.90 m a -2.00 m	5.8 -	100.	96.7	94.1	89.3	78.6	65.6	56.6	48.2	36.9	27.8	22.5 1	9.0	15.9	11.9	15.79	14.43	1.36	2.272	6.17	26.0%	44.4%	GP-GM	A-1-a	(0)	RELLENO
C-46	1098 + 550	DERECHO	1.50 m	M- 1	-0.10 m a -0.50 m	1.4 -	100.	90.7	88.1	83.9	75.3	69.5	63.8	57.7	46.9	40.2	34.8 2	9.2	20.2	14.0	17.45	15.69	1.77					GM	A-1-a	(0)	
U-40	1090 + 330	DEKEUNU	1.00 111	M- 2	-0.50 m a -1.50 m	4.6 -	100.	93.8	91.4	88.3	82.9	76.5	70.8	63.5	53.1	46.1	40.1 3	4.8	25.7	17.3	18.06	15.98	2.09					GM	A-1-b	(0)	
				M- 1	-0.10 m a -0.30 m	3.3 -	100.	100.0	100.0	93.1	81.6	74.5	68.1	60.1	49.2	42.1	37.4 3	0.0	17.3	12.7	14.61	13.42	1.19	2.244	6.20	24.7%	46.4%	GM	A-1-a	(0)	
				M- 2	-0.30 m a -1.20 m	5.3 -	100.	100.0	96.1	90.8	75.1	65.5	60.0	53.3	44.9	37.4	31.5 2	6.8	21.6	15.9	15.35	12.72	2.63	2.267	6.14	23.4%	43.1%	GM	A-1-b	(0)	
C-47	1099 + 050	IZQUIERDO	2.20 m	M- 3	-1.20 m a -2.20 m	17.7 -	100.	100.0	100.0	100.0	100.0	100.0	99.4	99.4	99.3	96.2	91.5	5.7	75.2	69.2	35.59	22.92	12.67	1.828	14.88	9.2%	13.9%	CL	A-6	(8)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.80 m	1.9 -	100.	97.3	97.3	94.2	88.5	81.0	73.9	67.3	57.0	48.9	42.9 3	3.0	17.1	11.5	13.53	NP	NP					SP-SM	A-1-b	(0)	
C-48	1099 + 550	DERECHO	1.60 m	M- 2	-0.80 m a -1.30 m	1.5 -	100.	100.0	83.7	74.8	69.8	62.4	56.1	50.2	41.9	36.1	31.5 2	3.3	10.1	6.6	13.45	NP	NP					GP-GM	A-1-a	(0)	
				M- 3	-1.30 m a -1.60 m	17.7 -	100.	100.0	100.0	100.0	97.7	95.6	95.2	93.6	89.5	81.7	74.8 6	4.7	40.2	28.8	34.14	27.19	6.96					SM	A-2-4	(0)	
				M- 1	-0.10 m a -0.40 m	1.6 -	100.	100.0	100.0	98.5	95.3	90.4	85.0	79.1	68.6	60.5	53.2 4	1.4	22.5	15.6	15.41	13.70	1.71	2.240	6.89	22.6%	41.3%	SM	A-1-b	(0)	
				M- 2	-0.40 m a -1.40 m	2.7 -	100.	100.0	96.7	90.9	82.5	75.8	69.9	63.9	54.2	46.5	40.8 2	9.3	14.5	11.2	52.40	29.86	22.54	2.116	11.26	23.0%	38.6%	GP-GM	A-2-7	(0)	
C-49	1100 + 050	IZQUIERDO	2.20 m	M- 3	-1.40 m a -2.20 m	28.1 -	100.	100.0	100.0	100.0	100.0	98.1	97.4	96.6	94.9	85.1	73.2 6	1.8	51.6	46.6	23.91	16.65	7.26	1.697	19.57	7.6%	12.3%	SC	A-4	(2)	TERRENO DE FUNDACION
C-50	1100 + 550	DERECHO	1.50 m	M- 1	-0.10 m a -0.50 m	2.2 -	100.	100.0	97.9	95.2	88.3	82.6	76.5	70.1	60.6	53.6	46.9 3	9.2	26.2	18.3	17.17	14.45	2.72					SM	A-1-b	(0)	
C-50	1100 + 550	DERECHO	1.50 111	M- 2	-0.50 m a -1.50 m	2.7 -	100.	100.0	98.3	91.3	81.1	75.1	68.9	62.5	52.5	44.8	38.5 2	5.7	9.2	5.7	15.54	14.81	0.73					GP-GM	A-1-a	(0)	
				M- 1	-0.10 m a -0.40 m	3.3 -	100.	100.0	100.0	97.7	92.0	86.7	81.5	74.8	64.3	54.4	45.9 3	3.7	18.3	13.5	15.53	13.71	1.82	2.241	6.93	23.0%	42.1%	SM	A-1-b	(0)	NIVEL FREATICO
				M- 2	-0.40 m a -1.50 m	2.6 -	100.	100.0	100.0	93.5	86.5	80.6	74.6	69.5	59.5	51.4	44.7 3	0.7	11.0	6.6	14.96	NP	NP	2.273	5.87	41.0%	69.9%	SP-SM	A-1-b	(0)	1.50 mts.
C-51	1101 + 050	DERECHO	2.00 m	M- 3	-1.50 m a -2.00 m	25.1 -	100.	100.0	100.0	100.0	100.0	100.0	99.4	99.0	97.8	96.0	94.4 9	1.6	77.9	65.7	27.21	18.61	8.60	1.985	12.27	11.8%	15.5%	CL	A-4	(6)	RELLENO
0.50	4404 - 550	IZOUIEDDO	4.50	M- 1	-0.10 m a -0.30 m	2.3 -	100.	100.0	98.3	95.2	84.0	74.9	69.5	63.1	53.3	46.4	40.6 3	2.0	18.1	12.6	15.30	NP	NP					GM	A-1-b	(0)	
C-52	1101 + 550	IZQUIERDO	1.50 m	M- 2	-0.30 m a -1.50 m	3.6 -	100.	100.0	93.9	88.6	76.6	68.5	62.5	56.6	47.5	40.9	35.5 2	5.0	9.4	5.9	15.51	NP	NP					GP-GM	A-1-a	(0)	
C-53	1102 + 050	DERECHO	2.00 m	M- 1	-0.10 m a -0.50 m	1.2 -	100.	100.0	100.0	98.0	91.1	84.5	78.0	71.2	60.2	52.0	45.2 3	4.9	19.7	13.6	13.44	NP	NP	2.288	6.30	22.7%	41.8%	SM	A-1-b	(0)	
0-00	1102 + 030	DEINEOITO	2.00 111	M- 2	-0.50 m a -2.00 m	13.0 -	100.	100.0	100.0	96.0	95.1	93.0	91.6	89.7	86.3	82.4	80.5 7	7.4	43.6	23.2	17.62	NP	NP	1.990	9.24	20.1%	28.4%	SM	A-2-4	(0)	RELLENO
C-54	1102 + 550	IZQUIERDO	1.50 m	M- 1	-0.10 m a -0.50 m	1.2 -	100.	100.0	96.2	90.9	82.4	74.0	67.8	62.2	53.0	46.0	40.3 3	1.1	16.2	11.3	15.44	14.82	0.62					GP-GM	A-1-b	(0)	
0-04	1102 + 550	יבעטובועטט	1.50 111	M- 2	-0.50 m a -1.50 m	4.1 -	100.	100.0	96.4	91.7	84.8	78.6	73.7	68.0	58.5	51.8	45.5 3	4.7	17.1	12.0	14.89	12.55	2.34					SM	A-1-b	(0)	
				M- 1	-0.10 m a -0.40 m	2.5 -	100.	100.0	98.1	91.5	83.0	74.1	67.1	59.5	49.9	43.7	38.3 2	9.9	15.9	10.8	15.69	14.91	0.78	2.255	6.92	22.8%	42.1%	GP-GM	A-1-a	(0)	
				M- 2	-0.40 m a -0.90 m	2.9 -	100.	100.0	90.2	84.0	71.3	64.9	59.7	54.2	45.5	38.7	33.6 2	4.7	11.2	7.2	13.25	NP	NP	2.239	6.91	22.3%	40.2%	GP-GM	A-1-a	(0)	
C-55	1103 + 050	DERECHO	2.10 m	M- 3	-0.90 m a -1.50 m	14.9 -	100.	100.0	100.0	100.0	99.4	98.6	96.8	94.7	91.0	86.3	81.1 7	4.1 (61.1	52.1	23.02	15.36	7.66	1.913	12.78	2.1%	4.2%	CL	A-4	(3)	
				M- 4	-1.50 m a -2.10 m	10.3 -	100.	100.0	100.0	100.0	99.1	98.5	97.3	96.1	94.4	92.9	91.4 8	9.4	85.4	81.4	28.55	18.09	10.46	1.922	12.51	1.1%	2.1%	CL	A-6	(8)	TERRENO DE FUNDACION

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI Ing. RAULE DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

GAMMAN

HUMBERTO HUALUPA HUMIRI
TEC EN SUELOS PAPAMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

		I	I			1 1				CUF	ADRO		LISIS GRA			JICAI	AS I	KAN	U SI	CUAI	NI - CC	OMBAP	TES DE CONS	ISTENCIA	PRO	CTOR	CRE	, 1	CLAS	SIFICACION		
IUMERO DE			PROF. DE	NUMERO		HUMEDAD						AITA	1010 0104										I CO DE GOILO	IOT ENGIN	DENSIDAD	OPTIMO	35.	`	OLA	III IOAOIOIT		
CALICATA	PROGRESIVA (Km)	LADO	CALICATA	DE MUESTRA	PROFUNDIDAD DE ESTRATO		1/2"	3"	2 1/2"	2*	1 1/2"	1*	3/4"	1/2*	3/8*	#4	#10	#20	#40	#100	#200	LIMITE	LIMITE PLASTICO	INDICE DE PLASTICIDAD	MAXIMA SECA (gr/cm3)	CONTENIDO DE HUMEDAD (%)	CBR DE LABORATORIO 95% L	CBR DE ABORATORIO 100%	sucs	AASHTO	INDICE	OBSERVACIONI
				M- 1	-0.10 m a -0.30 m	2.3	- 10	00.0	100.0	98.5	94.3	86.9	78.8	72.9	66.4	56.9	48.2	41.1	30.5	15.9	11.3	16.06	14.50	1.56					SP-SM	A-1-b	(0)	
C-56	1103 + 550	IZQUIERDO	1.50 m	M- 2	-0.30 m a -0.90 m	3.6	- 10	0.00	100.0	100.0	92.9	86.0	79.6	73.2	65.9	55.0	45.9	35.8	23.5	12.3	8.9	15.36	15.07	0.28					SP-SM	A-1-a	(0)	ROCA CA
				M- 3	-0.90 m a -1.50 m	13.8	- 10	0.00	100.0	100.0	100.0	98.3	95.5	93.4	90.8	87.1	82.6	77.4	70.2	57.2	48.3	31.31	21.19	10.11					SC	A-6	(3)	
				M- 1	-0.10 m a -0.30 m	1.8	- 10	0.00	100.0	98.0	94.9	85.6	75.8	70.5	63.9	54.3	46.6	40.5	31.3	17.4	12.2	15.43	13.54	1.89	2.240	6.92	23.5%	40.8%	GM	A-1-b	(0)	ROCA C
0 57	4404 - 050	DEDECTIO	0.00	M- 2	-0.30 m a -1.00 m	2.5	- 10	0.00	100.0	91.0	84.2	69.5	61.8	55.5	48.7	38.6	32.8	27.0	19.0	11.4	8.4	15.97	15.40	0.57	2.263	5.08	37.7%	72.8%	GP-GM	A-1-a	(0)	1100710
C-57	1104 + 050	DERECHO	2.00 m	M- 3	-1.00 m a -2.00 m	13.9	- 10	0.00	100.0	89.1	86.6	75.5	69.8	64.0	58.4	54.5	49.0	44.6	39.5	32.0	26.8	29.01	20.89	8.12	1.827	14.05	11.3%	19.3%	GC	A-2-4	(0)	TERRENO FUNDACI
				M- 1	-0.10 m a -0.20 m	2.0	- 10	00.0	100.0	100.0	100.0	93.8	87.9	81.4	75.5	64.3	56.5	49.5	38.0	21.0	14.6	16.16	12.28	3.88					SM	A-1-b	(0)	
	4404 550	IZOLUEDDO	4.50	M- 2	-0.20 m a -0.30 m	2.7	- 10	00.0	100.0	100.0	95.6	89.9	83.5	77.6	70.9	60.2	51.1	43.0	32.5	19.3	14.4	16.91	12.85	4.06					SM-SC	A-1-b	(0)	
C-58	1104 + 550	IZQUIERDO	1.50 m	M- 3	-0.30 m a -0.60 m	3.2	- 10	0.00	95.2	88.5	75.9	68.1	61.0	55.0	49.1	41.7	34.9	29.4	21.3	12.8	9.9	17.06	15.46	1.61					GP-GM	A-1-a	(0)	
				M- 4	-0.60 m a -1.50 m	36.3	- 10	0.00	100.0	100.0	100.0	98.6	98.2	97.4	96.6	95.2	93.0	89.7	83.7	71.7	64.9	39.13	26.10	13.03					ML	A-6	(7)	
2.50	4405 050	DEDEGUO	0.00	M- 1	-0.10 m a -0.30 m	2.9	- 10	00.0	100.0	100.0	93.3	87.7	82.6	76.2	68.9	58.4	50.0	43.6	34.0	19.3	14.0	15.76	13.58	2.17	2.244	6.37	22.4%	39.6%	SM	A-1-b	(0)	
C-59	1105 + 050	DERECHO	2.00 m	M- 2	-0.30 m a -2.00 m	3.6	- 10	00.0	100.0	97.0	86.9	78.6	70.2	63.0	56.9	48.8	42.5	37.9	27.4	12.6	8.5	17.69	NP	NP	2.249	6.52	56.4%	87.0%	GP-GM	A-1-a	(0)	RELLE
				M- 1	-0.10 m a -0.20 m	2.0	- 10	0.00	100.0	100.0	97.7	90.4	83.3	76.1	69.2	58.1	50.3	43.9	34.2	19.3	13.8	16.14	13.46	2.68					SM	A-1-b	(0)	
	4405 550	IZOLUEDDO	4.50	M- 2	-0.20 m a -0.40 m	3.7	- 10	00.0	100.0	100.0	95.4	90.0	81.1	73.2	65.5	55.0	47.1	40.6	32.4	22.0	17.6	20.18	14.04	6.15					GM-GC	A-2-4	(0)	
C-60	1105 + 550	IZQUIERDO	1.50 m	M- 3	-0.40 m a -1.00 m	4.1	- 10	0.00	94.8	86.8	84.4	69.1	61.0	53.0	45.9	37.9	32.3	29.0	24.4	15.5	11.0	16.15	14.42	1.73					GP-GM	A-1-a	(0)	
				M- 4	-1.00 m a -1.50 m	18.8	- 10	00.0	100.0	95.3	90.2	88.9	85.8	84.3	82.6	80.2	75.6	71.6	66.6	54.5	46.3	29.17	18.83	10.34					SC	A-6	(2)	
				M- 1	-0.10 m a -0.30 m	2.6	- 10	0.00	100.0	100.0	100.0	97.5	91.4	85.0	76.4	62.8	53.8	46.8	38.3	26.7	21.3	19.36	13.79	5.56	2.250	6.22	47.7%	63.8%	SM-SC	A-1-b	(0)	
				M- 2	-0.30 m a -1.50 m	5.6	- 10	0.00	100.0	98.2	95.7	89.8	84.6	78.3	71.7	60.3	52.3	45.5	34.9	19.8	14.9	17.60	15.31	2.29	2.266	6.75	20.9%	34.1%	SM	A-1-b	(0)	
-61	1106 + 050	DERECHO	2.00 m	M- 3	-1.50 m a -2.00 m	13.6	- 10	00.0 1	100.0	100.0	100.0	98.9	97.0	94.3	91.7	87.2	83.1	78.4	71.7	62.5	55.5	31.03	19.75	11.28	1.998	12.56	3.8%	5.5%	CL	A-6	(5)	TERREN
				M- 1	-0.10 m a -0.20 m	2.2	- 10	0.00	100.0	100.0	98.6	94.5	89.4	83.0	76.0	63.1	54.7	47.8	38.9	25.6	19.6	18.45	13.95	4.50					SM-SC	A-1-b	(0)	
-62	1106 + 550	IZQUIERDO	1.80 m	M- 2	-0.20 m a -0.30 m	2.3	- 10	0.00	93.6	91.1	88.9	79.3	72.4	67.1	61.8	53.5	46.4	41.1	32.4	16.0	10.8	16.26	14.73	1.53					GP-GM	A-1-b	(0)	
-02	1100 + 550	IZQUIERDO	1.00 111	M- 3	-0.30 m a -1.10 m	7.5	- 10	00.0	100.0	100.0	100.0	96.4	93.1	88.2	83.9	76.1	69.2	61.7	53.7	43.2	35.7	24.93	17.06	7.86					SC	A-4	(0)	
				M- 4	-1.10 m a -1.80 m	15.1	- 10	0.00	100.0	100.0	100.0	97.1	92.5	84.4	79.3	74.9	71.8	69.8	68.2	64.2	58.1	33.19	24.35	8.84					ML	A-4	(5)	
				M- 1	-0.10 m a -0.30 m	2.5	- 10	00.0	100.0	100.0	100.0	97.5	94.5	92.3	88.5	81.1	70.0	58.8	44.4	31.5	24.3	19.55	13.48	6.07	2.259	6.57	19.6%	34.6%	SM-SC	A-2-4	(0)	
				M- 2	-0.30 m a -0.60 m	12.9	- 10	00.0	100.0	100.0	100.0	99.4	99.2	97.8	96.4	91.9	84.3	70.8	60.1	54.6	48.0	23.21	15.47	7.74	2.184	8.56	12.3%	22.1%	SC	A-4	(3)	
C-63	1107 + 050	DERECHO	2.00 m	M- 3	-0.60 m a -2.00 m	5.9	- 10	0.00	100.0	100.0	100.0	100.0	98.9	97.3	94.5	85.9	72.0	57.9	44.7	25.3	14.5	24.70	16.72	7.98	2.184	8.50	12.9%	19.8%	SC	A-2-4	(0)	TERREN
				M- 1	-0.10 m a -0.30 m	5.3	- 10	00.0	100.0	100.0	98.0	97.3	95.1	91.0	84.8	72.2	62.1	53.4	44.2	33.2	26.7	19.37	11.87	7.50					SC	A-2-4	(0)	
64	1107 . 550	IZQUIERDO	1 50 ==	M- 2	-0.30 m a -0.90 m	2.2	- 10	0.00	100.0	100.0	100.0	97.4	88.7	77.4	71.3	56.8	43.7	33.8	24.9	16.1	11.3	17.77	15.35	2.42					SP-SM	A-1-a	(0)	
-64	1107 + 550	IZQUIERDO	1.50 m	M- 3	-0.90 m a -1.20 m	3.0	- 10	0.00	100.0	100.0	100.0	95.7	90.0	82.8	74.2	58.2	46.4	34.7	23.0	15.4	12.4	20.28	15.35	4.93					SM-SC	A-1-a	(0)	
				M- 4	-1.20 m a -1.50 m	8.1	- 10	0.00	100.0	98.0	91.4	82.9	74.9	69.2	63.1	54.3	46.5	41.1	37.5	34.0	30.0	21.82	14.75	7.07					GC	A-2-4	(0)	
				M- 1	-0.10 m a -0.30 m	2.4	- 10	0.00	100.0	100.0	100.0	98.4	90.7	81.1	76.6	61.8	46.0	34.6	24.7	15.8	11.3	14.41	13.63	0.77	2.050	8.68	41.8%	69.2%	SW-SM	A-1-a	(0)	
-65	1108 + 050	DERECHO	2.00 m	M- 2	-0.30 m a -0.60 m	2.2	- 10	00.0	100.0	100.0	99.5	86.5	74.8	64.1	54.0	39.8	30.1	21.9	14.8	10.2	8.2	17.99	15.00	2.99	2.252	7.04	24.4%	42.1%	GP-GM	A-1-a	(0)	
				M- 3	-0.60 m a -2.00 m	2.7	- 10	0.00	91.5	81.9	72.5	64.8	56.3	50.5	45.0	36.1	27.7	20.2	12.7	8.0	6.1	18.02	15.82	2.20	2.306	5.91	37.6%	77.8%	GW-GM	A-1-a	(0)	RELLE

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI Ing. RAULE DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

GAMMAN

HUMBERTO HUALUPA HUMIRI
TEC EN SUELOS PAPAMENTOS
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI

LABORATORIO MECANICA DE SUELOS CONCRETOS Y PAVIMENTOS

									CU	ADRO					LICAT	`AS T	RAMO	SICU	ANI -	COM											
						_	1	1	1		ANAL	ISIS GRAI	NULOMET	RICO		1					LIMITES	DE CONSIS	STENCIA	PRO	CTOR	СВ	R	CLAS	SIFICACION		
NUMERO DE CALICATA	PROGRESIVA (Km)	LADO	PROF. DE CALICATA	NUMERO DE MUESTRA	PROFUNDIDAD DE ESTRATO	HUMEDAD NATURAL % 3 1/2	3"	2 1/2*	2*	1 1/2"	1*	3/4"	1/2*	3/8*	#4	#10	#20 #	10 #1	100 #20	00 LIQI		LIMITE LASTICO	INDICE DE PLASTICIDAD	DENSIDAD MAXIMA SECA (gr/cm3)	OPTIMO CONTENIDO DE HUMEDAD (%)	CBR DE LABORATORIO 95%	CBR DE LABORATORIO 100%	sucs	AASHTO	INDICE	OBSERVACIONES
				M- 1	-0.10 m a -0.30 m	2.2 -	100.0	100.0	100.0	100.0	95.2	86.8	77.3	70.4	54.3	39.8	30.4 21	.1 12	2.6 9.1	1 18	.39 1	16.29	2.10					GP-GM	A-1-a	(0)	
				M- 2	-0.30 m a -0.70 m	6.2 -	100.0	100.0	93.1	87.0	78.5	71.3	65.8	60.3	50.7	41.4	34.1 28	.1 22	2.6 18.	.8 23	.46	15.90	7.56					GC	A-2-4	(0)	
C-66	1108 + 550	IZQUIERDO	2.00 m	M- 3	-0.70 m a -1.00 m	2.1 -	100.0	100.0	100.0	99.3	86.5	73.7	61.6	52.5	38.7	27.5	18.9 12	.0 7	.8 6.	1 17	.17 1	14.84	2.33					GW-GM	A-1-a	(0)	
				M- 4	-1.00 m a -1.40 m	4.5 -	100.0	100.0	95.6	90.4	82.8	77.5	71.8	66.0	56.9	45.7	37.7 31	.8 25	5.4 19.	.2 22	.65 1	15.85	6.81					GM-GC	A-2-4	(0)	
				M- 5	-1.40 m a -2.00 m	2.5 -	100.0	100.0	96.4	92.3	83.5	75.0	66.0	57.7	44.8	34.2	25.3 15	.6 9	.6 7.0	18	.45 1	17.70	0.75					GP-GM	A-1-a	(0)	
				M- 1	-0.10 m a -0.30 m	2.6 -	100.0	100.0	100.0	100.0	97.4	90.9	82.8	75.6	60.0	44.8	32.9 22	.9 14	1.9 10.	.7 18	.05 1	15.10	2.94	2.194	6.79	26.1%	41.1%	SP-SM	A-1-a	(0)	
C-67	1109 + 050	DERECHO	2.00 m	M- 2	-0.30 m a -0.70 m	4.2 -	100.0	100.0	100.0	94.8	89.0	83.2	78.0	71.5	61.7	54.1	48.0 42	.1 35	5.3 28.	.0 20	.27 1	14.21	6.06	2.257	5.98	21.1%	39.0%	GM-GC	A-2-4	(0)	
				M- 3	-0.70 m a -2.00 m	7.8 -	100.0	90.8	88.7	82.1	73.6	65.0	57.8	50.6	39.7	31.1	22.0 11	.6 6	.0 4.3	3 14	.57	NP	NP	2.268	6.70	42.3%	73.4%	GP	A-1-a	(0)	RELLENO
				M- 1	-0.10 m a -0.30 m	2.2 -	100.0	100.0	100.0	100.0	96.7	89.9	79.5	71.9	56.7	42.5	31.1 21	.6 13	3.9 10.	.2 16	.35 1	15.07	1.27					SP-SM	A-1-a	(0)	
C-68	1109 + 550	IZQUIERDO	1.90 m	M- 2	-0.30 m a -0.50 m	2.7 -	100.0	100.0	100.0	68.5	61.0	54.3	46.1	38.6	26.1	21.3	17.3 13	.4 9	.7 7.9	9 20	.77 1	14.18	6.59					GP-GC	A-2-4	(0)	
U-00	1109 + 550	IZQUIERDU	1.90 III	M- 3	-0.50 m a -1.70 m	6.4 -	100.0	100.0	94.7	84.5	70.3	62.1	54.1	46.1	35.5	27.4	19.5 11	.0 5	.9 4.3	3 18	.11 1	16.80	1.31					GW	A-1-a	(0)	
				M- 4	-1.70 m a -1.90 m	19.6 -	100.0	100.0	100.0	100.0	100.0	99.6	98.8	97.8	95.7	91.8	88.2 80	.0 63	3.6 52.	.9 31	.66 2	20.93	10.72					CL	A-6	(4)	
				M- 1	-0.10 m a -0.30 m	2.8 -	100.0	100.0	100.0	100.0	91.3	77.5	66.4	59.2	43.5	32.3	24.9 18	.5 11	1.9 8.5	5 14	.94 1	13.62	1.31	2.277	6.62	28.8%	46.6%	GW-GM	A-1-a	(0)	
				M- 2	-0.30 m a -0.50 m	5.1 -	100.0	100.0	100.0	98.8	94.7	89.9	82.4	75.5	64.5	53.6	45.6 37	.6 28	3.2 22.	.7 18	.94 1	15.55	3.39	2.252	6.43	21.3%	37.3%	SM	A-1-b	(0)	
C-69	1110 + 050	DERECHO	2.00 m	M- 3	-0.50 m a -0.80 m	2.2 -	100.0	100.0	100.0	94.2	84.6	74.3	61.9	51.9	38.0	28.1	20.6 13	.4 8	.8 6.9	9 18	.86 1	16.34	2.52	2.249	6.79	28.6%	49.3%	GW-GM	A-1-a	(0)	
				M- 4	-0.80 m a -1.10 m	6.8 -	100.0	100.0	100.0	96.7	91.7	88.8	84.3	79.5	69.9	60.5	53.3 48	.0 42	2.4 35.	.0 23	.90 1	16.34	7.56	2.004	6.20	20.8%	33.6%	SC	A-2-4	(0)	
				M- 5	-1.10 m a -2.00 m	5.1 -	100.0	100.0	95.2	85.9	77.7	71.1	64.7	57.4	47.5	38.2	29.7 21	.8 16	5.2 12.	.8 21	.46 1	15.79	5.67	2.298	5.50	39.2%	62.7%	GM-GC	A-1-a	(0)	RELLENO
				M- 1	-0.10 m a -0.30 m	3.1 -	100.0	100.0	100.0	100.0	97.5	90.8	81.9	73.1	54.9	41.2	31.2 22	.2 13	3.4 9.3	3 15	.66 1	14.92	0.74					SP-SM	A-1-a	(0)	
0.70	4440 - 550	IZOUJEDDO	4.00	M- 2	-0.30 m a -0.50 m	3.8 -	100.0	100.0	100.0	97.4	92.9	86.9	77.9	69.3	53.8	42.2	30.9 20	.2 13	3.7 11.	.0 19	.34 1	14.61	4.73					GP-GC	A-1-a	(0)	
C-70	1110 + 550	IZQUIERDO	1.80 m	M- 3	-0.50 m a -1.10 m	6.0 -	100.0	100.0	100.0	98.3	93.9	90.3	84.8	77.7	65.8	55.0	46.2 37	.4 27	7.7 22.	.3 19	.77 1	12.14	7.63					SC	A-2-4	(0)	
				M- 4	-1.10 m a -1.80 m	7.3 -	100.0	100.0	100.0	97.6	90.0	84.3	77.9	71.1	58.0	43.3	33.0 26	.1 20).9 17.	.2 22	.75 1	13.34	9.41					GC	A-2-4	(0)	
				M- 1	-0.10 m a -0.30 m	3.6 -	100.0	100.0	100.0	100.0	95.7	92.1	86.0	79.6	63.7	47.3	32.5 19	.8 12	2.6 9.8	B 15	.20 1	12.43	2.76	2.245	7.05	43.2%	79.6%	SW-SM	A-1-a	(0)	
				M- 2	-0.30 m a -1.50 m	4.4 -	100.0	100.0	97.3	93.8	88.4	81.6	75.4	68.5	57.0	45.0	34.8 25	.8 18	3.8 15.	.1 18	.68 1	12.44	6.24	2.262	6.29	30.4%	51.6%	GM-GC	A-2-4	(0)	
C-71	1111 + 050	DERECHO	2.00 m	M- 3	-1.50 m a -2.00 m	8.5 -	100.0	100.0	98.8	93.0	83.7	76.3	70.5	65.1	57.3	49.0	42.9 38	.5 34	1.2 28.	.7 23	.40 1	15.17	8.23	2.317	8.16	5.1%	12.2%	GC	A-2-4	(0)	TERRENO DE FUNDACION
				M- 1	-0.10 m a -0.30 m	7.9 -	100.0	100.0	100.0	100.0	96.4	88.2	76.3	69.5	54.5	42.2	32.5 23	.5 15	5.3 11.	.0 16	.40 1	14.83	1.58					GP-GM	A-1-a	(0)	
				M- 2	-0.30 m a -0.50 m	2.8 -	100.0	100.0	100.0	100.0	95.3	90.3	85.1	78.3	61.3	46.6	33.0 21	.4 14	1.0 10.	.7 17	.37 1	13.66	3.70					SW-SM	A-1-a	(0)	
C-72	1111 + 550	IZQUIERDO	1.90 m	M- 3	-0.50 m a -0.80 m	5.0 -	100.0	100.0	94.8	93.4	90.3	84.8	79.4	72.6	61.7	52.7	44.3 35	.3 25	5.6 20.	.2 19	.06 1	13.66	5.40					SM-SC	A-1-b	(0)	
				M- 4	-0.80 m a -1.50 m	5.4 -	100.0	100.0	100.0	95.2	85.5	77.1	70.7	65.7	57.4	49.0	40.9 34	.1 28	3.1 23.	.7 21	.32 1	15.71	5.61					GM-GC	A-1-b	(0)	
				M- 5	-1.50 m a -1.90 m	4.4 -	100.0	100.0	95.2	93.1	82.9	75.9	69.7	61.6	50.9	42.3	34.6 25	.2 14	1.4 10.	.0 17	.47	NP	NP					GP-GM	A-1-a	(0)	
				M- 1	-0.10 m a -0.30 m	2.3 -	100.0	100.0	100.0	100.0	96.6	91.1	83.2	77.1	60.5	47.3	35.3 24	.6 15	5.8 11.	.4 16	.33 1	16.23	0.10	2.250	6.88	44.4%	82.9%	SW-SM	A-1-a	(0)	
C-73	1112 + 050	DERECHO	0.90 m	M- 2	-0.30 m a -0.60 m	3.8 -	100.0	100.0	96.4	92.1	84.4	76.2	69.0	62.5	51.4	41.0	33.0 25	.5 18	3.4 14.	.9 17	.52 1	12.33	5.19	2.256	6.25	50.9%	83.9%	GM-GC	A-1-a	(0)	ROCA
				M- 3	-0.60 m a -0.90 m	4.7 -	100.0	93.7	90.6	84.0	73.0	66.7	60.9	54.9	44.3	36.7	29.4 23	.1 17	7.9 13.	.7 20	.33 1	15.16	5.17	2.245	7.07	46.2%	85.0%	GM-GC	A-1-a	(0)	
				M- 1	-0.10 m a -0.30 m	3.4 -	100.0	100.0	100.0	97.5	89.6	80.5	73.1	66.0	51.0	39.0	28.3 19	.1 12	2.4 9.4	4 16	.64 1	16.55	0.09	2.277	6.42	54.0%	82.8%	GW-GM	A-1-a	(0)	
				M- 2	-0.30 m a -0.60 m	2.5 -	100.0	100.0	100.0	100.0	94.1	86.1	78.6	71.3	54.3	37.9	24.9 15	.7 10	0.7 8.5	5 17	.52 1	13.45	4.07	2.085	8.05	37.3%	66.8%	SW-SC	A-1-a	(0)	
C-74	1112 + 200	IZQUIERDO	2.00 m	M- 3	-0.60 m a -1.10 m	2.8 -	100.0	100.0	93.8	91.6	86.5	82.9	78.3	72.7	61.8	53.9	46.3 38	.0 28	3.4 22.	.8 18	.42 1	13.82	4.60	2.242	6.43	20.1%	34.1%	SM-SC	A-1-b	(0)	
				M- 4	-1.10 m a -2.00 m	4.2 -	100.0	100.0	96.9	88.8	78.1	73.1	67.9	62.5	54.4	47.3	40.6 34	.0 27	7.1 22.	.1 21	.65 1	15.55	6.10	2.265	6.27	13.1%	22.1%	GM-GC	A-2-4	(0)	RELLENO

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO N° 034-2020-MTC/20

CONSORCIO VIAL SICUANI Ing. RAULE DELGADO ARAGON
ESPECIALISTA EN SUELOS Y PAVIMENTOS
CONTRATO N° 034-2020-MTC/20

ANEXO 7. Estudio de tráfico vehicular.

ESTACION 01

CASA
HIDALGO S.A.
H e H

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 TRAMO
 PE-3S (COMBAPATA - SICUANI)

 ESTACIÓN
 E-01(3S(COMBAPATA)

									TIF	O DE VEHICULO)								
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	MO	NIBUS	CON	MION		SEMIT	RAYLER			TRA	YLER		TOTAL	%
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	A URCOS	60	15	21	3	0	13	1	1	1	2	3	0	1	0	2	123	6.31%
7:00 - 8:00	DIA	A URCOS	57	13	17	4	1	10	2	1	1	2	3	0	1	0	1	113	5.79%
8:00 - 9:00	DIA	A URCOS	48	18	23	7	1	10	2	1	1	1	2	0	0	0	1	115	5.90%
9:00 - 10:00	DIA	A URCOS	45	15	20	5	0	12	2	0	0	1	1	0	0	0	3	104	5.33%
10:00 - 11:00	DIA	A URCOS	43	14	16	4	1	10	2	0	2	1	2	0	0	0	2	97	4.97%
11:00 - 12:00	DIA	A URCOS	43	13	18	6	1	10	2	1	2	1	4	1	0	0	2	104	5.33%
12:00 - 13:00	DIA	A URCOS	36	9	16	7	0	12	2	0	1	2	4	0	0	1	3	93	4.77%
13:00 - 14:00	DIA	A URCOS	34	13	12	4	2	8	2	1	1	1	2	1	1	1	3	86	4.41%
14:00 - 15:00	DIA	A URCOS	44	12	17	5	1	8	2	1	1	1	3	0	1	0	3	99	5.08%
15:00 - 16:00	DIA	A URCOS	44	11	18	5	1	11	3	0	1	1	4	0	1	0	7	107	5.49%
16:00 - 17:00	DIA	A URCOS	45	11	18	6	3	8	2	0	1	1	4	0	1	0	4	104	5.33%
17:00 - 18:00	DIA	A URCOS	46	14	17	8	1	11	2	0	1	1	3	0	1	0	3	108	5.54%
18:00 - 19:00	NOCHE	A URCOS	55	17	17	6	0	17	2	0	0	0	1	0	1	1	10	127	6.51%
19:00 - 20:00	NOCHE	A URCOS	43	19	16	7	1	14	3	1	0	0	1	1	0	1	8	115	5.90%
20:00 - 21:00	NOCHE	A URCOS	39	11	10	5	1	10	3	0	0	0	1	0	0	1	7	88	4.51%
21:00 - 22:00	NOCHE	A URCOS	30	9	5	5	5	12	2	0	0	0	1	0	0	1	8	78	4.00%
22:00 - 23:00	NOCHE	A URCOS	18	5	3	2	3	8	2	0	0	0	0	0	0	0	6	47	2.41%
23:00 - 24:00	NOCHE	A URCOS	11	3	2	1	3	4	2	0	0	0	0	0	0	0	4	30	1.54%
24:00 - 1:00	NOCHE	A URCOS	7	3	1	1	3	4	1	0	0	0	0	0	0	0	5	25	1.28%
1:00 - 2:00	NOCHE	A URCOS	4	2	1	1	1	4	1	0	0	0	0	0	0	1	3	18	0.92%
2:00 - 3:00	NOCHE	A URCOS	4	1	1	0	1	3	1	0	0	0	0	0	0	0	3	14	0.72%
3:00 - 4:00		A URCOS	6	2	2	0	1	4	2	0	0	0	0	0	0	0	5	22	1.13%
4:00 - 5:00	NOCHE	A URCOS	16	3	5	1	1	8	1	1	0	0	0	0	0	0	5	41	2.10%
6:00 - 7:00	NOCHE	A URCOS	43	10	15	1	1	10	3	1	0	0	1	0	0	0	7	92	4.72%
	TOTAL		821	243	291	94	33	221	47	9	13	15	40	3	8	7	105	1950	100.00%
	%		42.1%	12.5%	14.9%	4.8%	1.7%	11.3%	2.4%	0.5%	0.7%	0.8%	2.1%	0.2%	0.4%	0.4%	5.4%	100.0%	

CONSORCIO VIAL SICUANI

CASA
HIDALGO e HIDALGO S.A.

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 TRAMO
 PE-3S (COMBAPATA - SICUANI)

 ESTACIÓN
 E-01(3S(COMBAPATA)

									TIF	O DE VEHICULO)								
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	COMBI	IMO	NIBUS	CON	MION		SEMIT	RAYLER			TRA	YLER		TOTAL	%
			AU	CM	СВ	B2	B3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	A SICUANI	51	14	20	6	2	14	2	0	1	0	9	0	0	1	3	123	5.76%
7:00 - 8:00	DIA	A SICUANI	51	20	21	7	1	12	2	0	1	0	5	0	0	1	3	124	5.81%
8:00 - 9:00	DIA	A SICUANI	52	14	21	6	0	12	2	1	1	0	6	0	0	0	3	118	5.53%
9:00 - 10:00	DIA	A SICUANI	50	14	20	5	0	14	3	0	1	0	4	0	0	0	2	113	5.30%
10:00 - 11:00	DIA	A SICUANI	47	13	20	6	1	10	2	0	1	0	4	0	1	1	2	108	5.06%
11:00 - 12:00	DIA	A SICUANI	51	13	20	8	1	13	2	1	1	0	7	1	1	1	5	125	5.86%
12:00 - 13:00	DIA	A SICUANI	49	19	25	7	1	10	2	0	0	0	5	1	0	1	4	124	5.81%
13:00 - 14:00	DIA	A SICUANI	46	17	25	7	1	12	1	1	1	1	5	1	1	0	4	123	5.76%
14:00 - 15:00	DIA	A SICUANI	50	14	30	8	2	14	2	1	1	0	4	0	0	1	4	131	6.14%
15:00 - 16:00	DIA	A SICUANI	56	17	23	7	1	14	3	1	1	0	5	1	0	1	3	133	6.23%
16:00 - 17:00	DIA	A SICUANI	45	16	21	7	1	10	1	0	0	0	6	0	0	0	3	110	5.15%
17:00 - 18:00	DIA	A SICUANI	49	18	20	9	2	10	2	1	0	0	4	1	0	0	3	119	5.58%
18:00 - 19:00	NOCHE	A SICUANI	53	21	22	5	1	15	3	0	0	0	0	0	0	1	8	129	6.04%
19:00 - 20:00	NOCHE	A SICUANI	46	20	19	4	1	12	1	0	0	0	0	0	0	0	4	107	5.01%
20:00 - 21:00	NOCHE	A SICUANI	34	13	11	2	1	11	2	0	0	0	0	0	0	1	5	80	3.75%
21:00 - 22:00	NOCHE	A SICUANI	22	9	5	1	0	6	2	0	0	0	1	0	0	0	5	51	2.39%
22:00 - 23:00	NOCHE	A SICUANI	13	6	2	0	0	7	2	0	0	0	1	0	0	1	3	35	1.64%
23:00 - 24:00	NOCHE	A SICUANI	10	5	2	0	0	4	2	0	0	0	1	0	0	0	4	28	1.31%
24:00 - 1:00	NOCHE	A SICUANI	6	3	1	1	1	5	3	0	0	0	0	0	0	0	4	24	1.12%
1:00 - 2:00	NOCHE	A SICUANI	5	1	1	1	2	4	2	0	0	0	0	0	0	0	4	20	0.94%
2:00 - 3:00	NOCHE	A SICUANI	4	1	1	1	2	5	1	0	0	0	1	0	0	0	3	19	0.89%
3:00 - 4:00	NOCHE	A SICUANI	8	3	3	1	1	6	1	0	1	0	1	1	0	0	5	31	1.45%
4:00 - 5:00	NOCHE	A SICUANI	21	6	5	2	7	9	2	1	0	0	1	0	0	0	4	58	2.72%
6:00 - 7:00	NOCHE	A SICUANI	42	9	16	6	4	15	2	0	0	0	1	0	0	0	6	101	4.73%
	TOTAL		861	286	354	107	33	244	47	7	10	1	71	6	3	10	94	2134	100.00%
	%		40.3%	13.4%	16.6%	5.0%	1.5%	11.4%	2.2%	0.3%	0.5%	0.0%	3.3%	0.3%	0.1%	0.5%	4.4%	100.0%	

CONSORCIO VIAL SICUANI



"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

HIDALGO & HIDALGO S.A.
HEH
CONSTRUCTORES

TRAMO	PE-3S (COMBAPATA - SICUANI)
ESTACIÓN	E-01(3S(COMBAPATA)

									TIF	O DE VEHICULO)								
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	COMBI	OMN	NIBUS	CON	MION		SEMIT	RAYLER			TRA	YLER		TOTAL	%
			AU	CM	СВ	B2	B3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	AMBOS	111	29	41	9	2	27	3	1	2	2	12	0	1	1	5	246	6.02%
7:00 - 8:00	DIA	AMBOS	108	33	38	11	2	22	4	1	2	2	8	0	1	1	4	237	5.80%
8:00 - 9:00	DIA	AMBOS	100	32	44	13	1	22	4	2	2	1	8	0	0	0	4	233	5.71%
9:00 - 10:00	DIA	AMBOS	95	29	40	10	0	26	5	0	1	1	5	0	0	0	5	217	5.31%
10:00 - 11:00	DIA	AMBOS	90	27	36	10	2	20	4	0	3	1	6	0	1	1	4	205	5.02%
11:00 - 12:00	DIA	AMBOS	94	26	38	14	2	23	4	2	3	1	11	2	1	1	7	229	5.61%
12:00 - 13:00	DIA	AMBOS	85	28	41	14	1	22	4	0	1	2	9	1	0	2	7	217	5.31%
13:00 - 14:00	DIA	AMBOS	80	30	37	11	3	20	3	2	2	2	7	2	2	1	7	209	5.12%
14:00 - 15:00	DIA	AMBOS	94	26	47	13	3	22	4	2	2	1	7	0	1	1	7	230	5.63%
15:00 - 16:00	DIA	AMBOS	100	28	41	12	2	25	6	1	2	1	9	1	1	1	10	240	5.88%
16:00 - 17:00	DIA	AMBOS	90	27	39	13	4	18	3	0	1	1	10	0	1	0	7	214	5.24%
17:00 - 18:00	DIA	AMBOS	95	32	37	17	3	21	4	1	1	1	7	1	1	0	6	227	5.56%
18:00 - 19:00	NOCHE	AMBOS	108	38	39	11	1	32	5	0	0	0	1	0	1	2	18	256	6.27%
19:00 - 20:00	NOCHE	AMBOS	89	39	35	11	2	26	4	1	0	0	1	1	0	1	12	222	5.44%
20:00 - 21:00	NOCHE	AMBOS	73	24	21	7	2	21	5	0	0	0	1	0	0	2	12	168	4.11%
21:00 - 22:00	NOCHE	AMBOS	52	18	10	6	5	18	4	0	0	0	2	0	0	1	13	129	3.16%
22:00 - 23:00	NOCHE	AMBOS	31	11	5	2	3	15	4	0	0	0	1	0	0	1	9	82	2.01%
23:00 - 24:00	NOCHE	AMBOS	21	8	4	1	3	8	4	0	0	0	1	0	0	0	8	58	1.42%
24:00 - 1:00	NOCHE	AMBOS	13	6	2	2	4	9	4	0	0	0	0	0	0	0	9	49	1.20%
1:00 - 2:00	NOCHE	AMBOS	9	3	2	2	3	8	3	0	0	0	0	0	0	1	7	38	0.93%
2:00 - 3:00	NOCHE	AMBOS	8	2	2	1	3	8	2	0	0	0	1	0	0	0	6	33	0.81%
3:00 - 4:00	NOCHE	AMBOS	14	5	5	1	2	10	3	0	1	0	1	1	0	0	10	53	1.30%
4:00 - 5:00	NOCHE	AMBOS	37	9	10	3	8	17	3	2	0	0	1	0	0	0	9	99	2.42%
6:00 - 7:00	NOCHE	AMBOS	85	19	31	7	5	25	5	1	0	0	2	0	0	0	13	193	4.73%
	TOTAL	•	1682	529	645	201	66	465	94	16	23	16	111	9	11	17	199	4084	100.00%
	%		41.2%	13.0%	15.8%	4.9%	1.6%	11.4%	2.3%	0.4%	0.6%	0.4%	2.7%	0.2%	0.3%	0.4%	4.9%	100.0%	

CONSORCIO VIAL SICUANI

RESUMEN DE CONTEO VEHICULAR

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-01(3S(COMBAPATA)

									Т	IPO DE VEHICUI	.0							
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
DIA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 ó + EJES	CAMION 2 EJES	CAMION 3 ó + EJES	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	TRAYLER	TRAYLER	TRAYLER	TRAYLER	TOTAL
MARTES	DIA	A URCOS	551	181	195	69	33	125	22	3	17	0	13	0	11	1	55	1276
IVIARTES	DIA	A SICUANI	695	250	333	100	3	200	18	2	3	0	2	0	0	10	146	1762
MIERCOLES	DIA	A URCOS	859	170	316	77	5	134	20	4	7	4	75	0	0	0	14	1685
WITERCOLES	DIA	A SICUANI	761	190	290	94	7	162	19	1	2	1	59	3	0	4	19	1612
JUEVES	DIA	A URCOS	231	81	45	15	7	65	7	1	14	2	30	1	1	0	6	506
JOEVES	DIA	A SICUANI	230	88	54	17	2	62	7	0	3	0	93	1	0	1	8	566
VIERNES	DIA	A URCOS	531	169	218	60	3	135	23	1	1	0	51	0	0	0	0	1192
VIERINES	DIA	A SICUANI	749	198	301	95	5	154	21	1	2	0	54	2	2	0	2	1586
SABADO	DIA	A URCOS	493	165	239	57	2	139	20	0	2	57	0	1	0	0	20	1195
SABADO	DIA	A SICUANI	595	235	284	81	13	138	30	3	2	0	65	2	0	0	5	1453
DOMINGO	DIA	A URCOS	530	161	216	74	0	111	25	0	0	1	14	0	0	1	74	1207
DOMINGO	DIA	A SICUANI	543	159	285	80	4	143	20	1	3	0	70	2	1	0	41	1352
LUNES	DIA	A URCOS	587	150	232	72	1	116	15	1	4	0	31	0	0	0	35	1244
LUNES	DIA	A SICUANI	567	166	282	86	23	114	19	0	5	0	64	0	2	4	26	1358
T	OTAL VEHIC	JLOS	7922	2363	3290	977	108	1798	266	18	65	65	621	12	17	21	451	17994

									т	IPO DE VEHICUL	0							
			AU	СМ	СВ	B2	В3	C2	С3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
DIA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 6 + EJES	CAMION 2 EJES	CAMION 3 ó + EJES			SEMITRAYLER		TRAYLER	TRAYLER	TRAYLER	TRAYLER	TOTAL
MARTES	NOCHE	A URCOS	272	110	79	27	16	64	15	0	0	0	2	0	0	0	69	654
IVIARTES	NOCHE	A SICUANI	275	129	89	20	14	68	7	0	0	0	0	0	0	1	37	640
MIERCOLES	NOCHE	A URCOS	351	82	66	32	14	68	8	1	0	0	0	0	0	1	66	689
WHERCOLES	NOCHE	A SICUANI	223	84	95	13	9	79	16	0	0	0	0	0	0	1	37	557
JUEVES	NOCHE	A URCOS	230	57	41	10	3	46	5	0	0	0	0	1	0	2	25	420
JUEVES	NOCHE	A SICUANI	254	52	49	18	10	68	4	0	0	0	3	0	0	0	59	517
VIERNES	NOCHE	A URCOS	237	81	83	19	18	102	22	2	0	0	4	0	0	5	81	654
VIERINES	NOCHE	A SICUANI	259	74	84	18	19	122	21	1	1	0	2	1	0	0	40	642
SABADO	NOCHE	A URCOS	282	86	71	31	21	120	25	0	0	0	1	0	1	1	67	706
SABADO	NOCHE	A SICUANI	276	91	66	15	18	108	25	0	0	0	0	0	0	2	55	656
DOMINGO	NOCHE	A URCOS	269	85	87	24	14	132	17	1	0	0	2	0	0	1	80	712
DOMINGO	NOCHE	A SICUANI	236	91	84	18	11	101	27	0	0	0	2	0	0	0	58	628
LUNES	NOCHE	A URCOS	261	65	96	24	15	114	26	0	0	0	0	0	0	0	74	675
LUINES	NOCHE	A SICUANI	293	120	111	25	20	111	25	0	0	0	0	0	0	0	62	767
Т	OTAL VEHIC	JLOS	3718	1207	1101	294	202	1303	243	5	1	0	16	2	1	14	810	8917

CONSORCIO VIAL SICUANI

RESUMEN DE CONTEO VEHICULAR

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-01(3S(COMBAPATA)

	ay Adm		
$\ \mathbf{H}\ $	[e]	ILGO S.A.	

	_								Т	IPO DE VEHICUI	.0							
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
DIA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 ó + EJES	CAMION 2 EJES	CAMION 3 ó + EJES	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	TRAYLER	TRAYLER	TRAYLER	TRAYLER	TOTAL
MARTES	DIA	AMBOS	1246	431	528	169	36	325	40	5	20	0	15	0	11	11	201	3038
MIERCOLES	DIA	AMBOS	1620	360	606	171	12	296	39	5	9	5	134	3	0	4	33	3297
JUEVES	DIA	AMBOS	461	169	99	32	9	127	14	1	17	2	123	2	1	1	14	1072
VIERNES	DIA	AMBOS	1280	367	519	155	8	289	44	2	3	0	105	2	2	0	2	2778
SABADO	DIA	AMBOS	1088	400	523	138	15	277	50	3	4	57	65	3	0	0	25	2648
DOMINGO	DIA	AMBOS	1073	320	501	154	4	254	45	1	3	1	84	2	1	1	115	2559
LUNES	DIA	AMBOS	1154	316	514	158	24	230	34	1	9	0	95	0	2	4	61	2602
MARTES	NOCHE	AMBOS	547	239	168	47	30	132	22	0	0	0	2	0	0	1	106	1294
MIERCOLES	NOCHE	AMBOS	574	166	161	45	23	147	24	1	0	0	0	0	0	2	103	1246
JUEVES	NOCHE	AMBOS	484	109	90	28	13	114	9	0	0	0	3	1	0	2	84	937
VIERNES	NOCHE	AMBOS	496	155	167	37	37	224	43	3	1	0	6	1	0	5	121	1296
SABADO	NOCHE	AMBOS	558	177	137	46	39	228	50	0	0	0	1	0	1	3	122	1362
DOMINGO	NOCHE	AMBOS	505	176	171	42	25	233	44	1	0	0	4	0	0	1	138	1340
LUNES	NOCHE	AMBOS	554	185	207	49	35	225	51	0	0	0	0	0	0	0	136	1442
TO	OTAL VEHICU	LOS	11640	3570	4391	1271	310	3101	509	23	66	65	637	14	18	35	1261	26911

CONSORCIO VIAL SICUANI

CLASIFICACION VEHICULAR E IMDA

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-01(3S(COMBAPATA)

							TIP	O DE VE	HICULO								
DIA	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMN	IIBUS	CAN	IION		SEMITI	RAYLER			TR	AYLER		TOTAL
		AU	СМ	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	
MARTES	AMBOS	1793	670	696	216	66	457	62	5	20	0	17	0	11	12	307	4332
MIERCOLES	AMBOS	2194	526	767	216	35	443	63	6	9	5	134	3	0	6	136	4543
JUEVES	AMBOS	945	278	189	60	22	241	23	1	17	2	126	3	1	3	98	2009
VIERNES	AMBOS	1776	522	686	192	45	513	87	5	4	0	111	3	2	5	123	4074
SABADO	AMBOS	1646	577	660	184	54	505	100	3	4	57	66	3	1	3	147	4010
DOMINGO	AMBOS	1578	496	672	196	29	487	89	2	3	1	88	2	1	2	253	3899
LUNES	AMBOS	1708	501	721	207	59	455	85	1	9	0	95	0	2	4	197	4044
Т	OTAL	11640	3570	4391	1271	310	3101	509	23	66	65	637	14	18	35	1261	26911

CONSORCIO VIAL SICUANI

CLASIFICACION VEHICULAR E IMDA

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-01(3S(COMBAPATA)

	SENTIDO	AUTO	CAMIONETA	сомві	OMN	IIBUS	CAN	IION		SEMITI	RAYLER			TRA	AYLER		TOTAL
	SENTIDO	AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	IOIAL
IMDs	ENTRADA	821	243	291	94	33	221	47	9	13	15	40	3	8	7	105	1950
	SALIDA	861	286	354	107	33	244	47	7	10	1	71	6	3	10	94	2134
	AMBOS	1682	529	645	201	66	465	94	16	23	16	111	9	11	17	199	4084

IMDA = IMDs*FCE	SENTIDO	AUTO	CAMIONETA	сомві	OMN	IIBUS	CAN	IION		SEMITE	RAYLER			TRA	AYLER		TOTAL
IIVIDA = IIVIDS · FCE	SENTIDO	AU	СМ	СВ	B2	В3	C2	С3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	IOIAL
FCE LIV = 0.987584	ENTRADA	811	240	288	89	32	208	45	9	13	15	38	3	8	7	99	1905
FCE PES = 0.9401690	SALIDA	851	283	350	101	32	230	45	7	10	1	67	6	3	10	89	2085
IMDA	AMBOS	1662	523	638	190	64	438	90	16	23	16	105	9	11	17	188	3990
		42%	13%	16%	5%	2%	11%	2%	0%	1%	0%	3%	0%	0%	0%	5%	

71%

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MTC/20

29%

ESTACION 02

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 TRAMO
 PE-3S (COMBAPATA - SICUANI)

 ESTACIÓN
 E-02(3S(QQUEHUAR))

									TIF	O DE VEHICULO)								
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	MO	NIBUS	COM	MION		SEMIT	RAYLER			TRA	YLER		TOTAL	%
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	A URCOS	48	23	26	7	1	15	2	1	0	1	8	0	0	1	0	133	5.08%
7:00 - 8:00	DIA	A URCOS	56	26	28	5	1	14	1	1	0	2	8	0	1	0	0	143	5.46%
8:00 - 9:00	DIA	A URCOS	57	19	30	6	1	14	2	1	1	2	6	0	1	1	0	141	5.39%
9:00 - 10:00	DIA	A URCOS	58	25	28	5	2	16	3	1	0	1	6	0	1	1	0	147	5.62%
10:00 - 11:00	DIA	A URCOS	57	21	28	6	2	16	2	1	1	2	7	1	1	1	0	146	5.58%
11:00 - 12:00	DIA	A URCOS	57	20	31	5	2	15	2	1	1	2	11	1	1	1	0	150	5.73%
12:00 - 13:00	DIA	A URCOS	61	20	39	6	2	13	1	1	1	2	7	1	0	1	1	156	5.96%
13:00 - 14:00	DIA	A URCOS	64	20	37	6	1	17	3	0	1	1	7	0	1	0	1	159	6.08%
14:00 - 15:00	DIA	A URCOS	61	17	34	6	2	15	2	0	0	1	7	0	1	0	0	146	5.58%
15:00 - 16:00	DIA	A URCOS	60	22	32	6	1	17	2	0	1	1	8	0	0	0	0	150	5.73%
16:00 - 17:00	DIA	A URCOS	58	20	35	6	2	13	2	0	0	1	7	0	0	1	0	145	5.54%
17:00 - 18:00	DIA	A URCOS	60	20	35	6	2	18	3	1	0	1	9	1	0	1	1	158	6.04%
18:00 - 19:00	NOCHE	A URCOS	84	25	35	6	1	16	2	0	1	0	5	0	0	0	0	175	6.69%
19:00 - 20:00	NOCHE	A URCOS	67	16	24	4	1	16	2	0	0	0	6	0	0	0	1	137	5.24%
20:00 - 21:00	NOCHE	A URCOS	48	12	12	2	1	12	1	0	0	0	7	0	0	0	0	95	3.63%
21:00 - 22:00	NOCHE	A URCOS	29	9	5	1	1	5	2	0	1	0	4	0	0	0	0	57	2.18%
22:00 - 23:00	NOCHE	A URCOS	21	5	1	1	1	7	2	0	0	0	3	0	0	0	0	41	1.57%
23:00 - 24:00	NOCHE	A URCOS	7	2	1	1	1	4	3	1	0	0	4	0	0	0	0	24	0.92%
24:00 - 1:00	NOCHE	A URCOS	6	1	1	1	2	5	2	1	0	0	6	0	0	0	0	25	0.96%
1:00 - 2:00	NOCHE	A URCOS	3	2	1	1	3	5	2	0	0	0	5	0	0	0	0	22	0.84%
2:00 - 3:00	NOCHE	A URCOS	6	2	1	1	2	5	1	0	0	0	4	0	0	0	0	22	0.84%
3:00 - 4:00	NOCHE	A URCOS	6	3	2	1	2	6	1	0	0	0	4	0	0	0	0	25	0.96%
4:00 - 5:00	NOCHE	A URCOS	27	10	5	3	7	15	2	0	0	0	4	0	0	0	0	73	2.79%
6:00 - 7:00	NOCHE	A URCOS	66	19	16	6	2	23	4	0	1	0	10	0	0	0	0	147	5.62%
	TOTAL		1067	359	487	98	43	302	49	10	9	17	153	4	7	8	4	2617	100.00%
	%		40.8%	13.7%	18.6%	3.7%	1.6%	11.5%	1.9%	0.4%	0.3%	0.6%	5.8%	0.2%	0.3%	0.3%	0.2%	100.0%	

CONSORCIO VIAL SICUANI

HIDALGO e HIDALGO S.A.

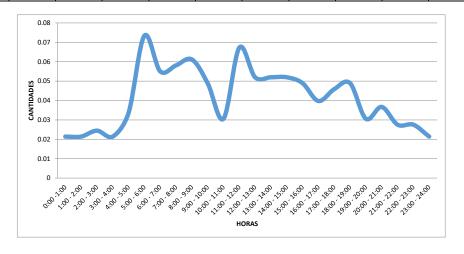
"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 TRAMO
 PE-3S (COMBAPATA - SICUANI)

 ESTACIÓN
 E-02(3S(QQUEHUAR)

									TII	PO DE VEHICULO)								
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	COMBI	MO	NIBUS	CON	MION		SEMIT	RAYLER			TRA	YLER		TOTAL	%
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	A SICUANI	61	15	29	2	0	11	2	0	1	1	7	1	1	0	1	132	4.90%
7:00 - 8:00	DIA	A SICUANI	70	19	34	5	0	12	3	1	0	1	7	1	0	0	0	153	5.68%
8:00 - 9:00	DIA	A SICUANI	64	22	36	5	0	15	3	0	0	0	3	0	0	0	0	148	5.49%
9:00 - 10:00	DIA	A SICUANI	69	19	43	6	1	14	4	0	1	0	5	0	1	0	0	163	6.05%
10:00 - 11:00	DIA	A SICUANI	70	22	35	6	1	16	3	0	0	0	5	1	1	0	0	160	5.94%
11:00 - 12:00	DIA	A SICUANI	62	21	34	6	1	15	3	1	0	0	8	1	1	0	0	153	5.68%
12:00 - 13:00	DIA	A SICUANI	58	22	32	5	1	14	4	0	0	0	9	0	1	0	1	147	5.46%
13:00 - 14:00	DIA	A SICUANI	59	16	31	6	1	19	4	1	1	0	11	0	1	0	0	150	5.57%
14:00 - 15:00	DIA	A SICUANI	56	18	32	6	1	18	4	1	0	1	6	0	0	0	0	143	5.31%
15:00 - 16:00	DIA	A SICUANI	65	23	37	6	1	19	4	1	1	1	11	0	1	0	0	170	6.31%
16:00 - 17:00	DIA	A SICUANI	55	18	36	7	1	17	3	0	1	0	11	0	1	0	1	151	5.61%
17:00 - 18:00	DIA	A SICUANI	75	27	38	7	1	23	4	1	1	1	10	0	0	0	0	188	6.98%
18:00 - 19:00	NOCHE	A SICUANI	73	26	29	6	1	19	3	1	1	0	9	0	0	0	1	169	6.27%
19:00 - 20:00	NOCHE	A SICUANI	69	20	21	7	1	14	4	1	0	0	9	0	0	0	0	146	5.42%
20:00 - 21:00	NOCHE	A SICUANI	49	14	10	6	1	12	4	0	0	0	8	0	0	0	1	105	3.90%
21:00 - 22:00	NOCHE	A SICUANI	39	12	6	5	4	11	2	1	1	0	8	0	0	0	1	90	3.34%
22:00 - 23:00	NOCHE	A SICUANI	25	7	2	3	4	9	2	1	0	0	5	0	1	0	0	59	2.19%
23:00 - 24:00	NOCHE	A SICUANI	13	5	2	1	3	5	2	1	0	0	3	0	0	0	0	35	1.30%
24:00 - 1:00	NOCHE	A SICUANI	7	2	1	1	5	4	1	1	1	0	3	0	0	0	0	26	0.97%
1:00 - 2:00	NOCHE	A SICUANI	4	2	1	0	1	3	1	0	0	0	4	0	0	0	0	16	0.59%
2:00 - 3:00	NOCHE	A SICUANI	4	1	1	1	1	5	1	0	0	0	3	0	0	0	0	17	0.63%
3:00 - 4:00	NOCHE	A SICUANI	6	2	1	1	1	4	1	0	0	0	3	0	0	0	0	19	0.71%
4:00 - 5:00	NOCHE	A SICUANI	20	5	6	1	1	10	2	0	0	0	6	0	1	0	0	52	1.93%
6:00 - 7:00	NOCHE	A SICUANI	47	11	16	1	1	13	2	0	0	0	9	1	0	0	1	102	3.79%
	TOTAL		1120	349	513	100	33	302	66	12	9	5	163	5	10	0	7	2694	100.00%
	%		41.6%	13.0%	19.0%	3.7%	1.2%	11.2%	2.4%	0.4%	0.3%	0.2%	6.1%	0.2%	0.4%	0.0%	0.3%	100.0%	

CONSORCIO VIAL SICUANI


"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 TRAMO
 PE-3S (COMBAPATA - SICUANI)

 ESTACIÓN
 E-02(3S(QQUEHUAR)

LOTAGIO		2 02(00)4402.	,					1											
									TIF	O DE VEHICULO)								
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	COMBI	OMN	NIBUS	CON	/ION		SEMIT	RAYLER			TRA	YLER		TOTAL	%
			AU	CM	CB	B2	B3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	AMBOS	109	38	55	9	1	26	4	1	1	2	15	1	1	1	1	265	4.99%
7:00 - 8:00	DIA	AMBOS	126	45	62	10	1	26	4	2	0	3	15	1	1	0	0	296	5.57%
8:00 - 9:00	DIA	AMBOS	121	41	66	11	1	29	5	1	1	2	9	0	1	1	0	289	5.44%
9:00 - 10:00	DIA	AMBOS	127	44	71	11	3	30	7	1	1	1	11	0	2	1	0	310	5.84%
10:00 - 11:00	DIA	AMBOS	127	43	63	12	3	32	5	1	1	2	12	2	2	1	0	306	5.76%
11:00 - 12:00	DIA	AMBOS	119	41	65	11	3	30	5	2	1	2	19	2	2	1	0	303	5.71%
12:00 - 13:00	DIA	AMBOS	119	42	71	11	3	27	5	1	1	2	16	1	1	1	2	303	5.71%
13:00 - 14:00	DIA	AMBOS	123	36	68	12	2	36	7	1	2	1	18	0	2	0	1	309	5.82%
14:00 - 15:00	DIA	AMBOS	117	35	66	12	3	33	6	1	0	2	13	0	1	0	0	289	5.44%
15:00 - 16:00	DIA	AMBOS	125	45	69	12	2	36	6	1	2	2	19	0	1	0	0	320	6.03%
16:00 - 17:00	DIA	AMBOS	113	38	71	13	3	30	5	0	1	1	18	0	1	1	1	296	5.57%
17:00 - 18:00	DIA	AMBOS	135	47	73	13	3	41	7	2	1	2	19	1	0	1	1	346	6.51%
18:00 - 19:00	NOCHE	AMBOS	157	51	64	12	2	35	5	1	2	0	14	0	0	0	1	344	6.48%
19:00 - 20:00	NOCHE	AMBOS	136	36	45	11	2	30	6	1	0	0	15	0	0	0	1	283	5.33%
20:00 - 21:00	NOCHE	AMBOS	97	26	22	8	2	24	5	0	0	0	15	0	0	0	1	200	3.77%
21:00 - 22:00	NOCHE	AMBOS	68	21	11	6	5	16	4	1	2	0	12	0	0	0	1	147	2.77%
22:00 - 23:00	NOCHE	AMBOS	46	12	3	4	5	16	4	1	0	0	8	0	1	0	0	100	1.88%
23:00 - 24:00	NOCHE	AMBOS	20	7	3	2	4	9	5	2	0	0	7	0	0	0	0	59	1.11%
24:00 - 1:00	NOCHE	AMBOS	13	3	2	2	7	9	3	2	1	0	9	0	0	0	0	51	0.96%
1:00 - 2:00	NOCHE	AMBOS	7	4	2	1	4	8	3	0	0	0	9	0	0	0	0	38	0.72%
2:00 - 3:00	NOCHE	AMBOS	10	3	2	2	3	10	2	0	0	0	7	0	0	0	0	39	0.73%
3:00 - 4:00	NOCHE	AMBOS	12	5	3	2	3	10	2	0	0	0	7	0	0	0	0	44	0.83%
4:00 - 5:00	NOCHE	AMBOS	47	15	11	4	8	25	4	0	0	0	10	0	1	0	0	125	2.35%
6:00 - 7:00	NOCHE	AMBOS	113	30	32	7	3	36	6	0	1	0	19	1	0	0	1	249	4.69%
	TOTAL	•	2187	708	1000	198	76	604	115	22	18	22	316	9	17	8	11	5311	100.00%
	%	•	41.2%	13.3%	18.8%	3.7%	1.4%	11.4%	2.2%	0.4%	0.3%	0.4%	5.9%	0.2%	0.3%	0.2%	0.2%	100.0%	

CONSORCIO VIAL SICUANI

RESUMEN DE CONTEO VEHICULAR

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO	PE-3S (COMBAPATA - SICUANI)
-------	-----------------------------

ESTACIÓN E-02(3S(QQUEHUAR)

Œ	IDALG	O e HID	ALGO S.
ŀ			L
١.		Le.	
П	CONS	STRUC	TORES

									Т	IPO DE VEHICUI	.0							
			AU	CM	СВ	B2	В3	C2	С3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
DIA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 ó + EJES	CAMION 2 EJES	CAMION 3 ó + EJES	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	TRAYLER	TRAYLER	TRAYLER	TRAYLER	101112
MARTES	DIA	A URCOS	863	310	360	73	2	211	13	1	1	2	144	0	0	1	1	1982
IVIARTES	DIA	A SICUANI	786	280	340	69	4	206	27	0	3	4	132	0	0	0	1	1852
MIEDCOLES	DIA	A URCOS	792	262	638	87	3	219	37	2	2	0	72	0	1	1	2	2118
MIERCOLES	DIA	A SICUANI	1027	239	773	73	5	172	37	5	0	1	77	1	2	0	0	2412
JUEVES	DIA	A URCOS	293	100	76	0	76	17	1	0	0	0	105	1	0	2	0	671
JUEVES	DIA	A SICUANI	310	118	67	12	1	78	18	0	0	0	67	2	0	0	0	673
VIERNES	DIA	A URCOS	894	301	456	69	10	172	10	21	4	3	63	2	1	1	0	2007
VIERNES	DIA	A SICUANI	829	264	425	75	3	214	44	1	2	0	72	0	4	0	0	1933
SABADO	DIA	A URCOS	670	257	371	76	4	188	0	1	0	72	3	1	5	0	0	1648
SABADO	DIA	A SICUANI	750	244	438	70	3	234	40	0	2	0	95	0	4	0	0	1880
DOMINICO	DIA	A URCOS	671	242	333	74	3	175	35	0	0	0	112	2	4	2	0	1653
DOMINGO	DIA	A SICUANI	803	259	385	68	8	203	39	1	1	0	89	0	6	0	1	1863
LLINEC	DIA	A URCOS	667	256	417	74	4	266	55	0	0	0	100	0	3	3	0	1845
LUNES	DIA	A SICUANI	802	255	448	63	3	208	47	0	0	0	75	1	11	0	1	1914
Т	OTAL VEHIC	JLOS	10157	3387	5527	883	129	2563	403	32	15	82	1206	10	41	10	6	24451

									Т	IPO DE VEHICUL	.0							
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
DIA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 ó + EJES	CAMION 2 EJES	CAMION 3 ó + EJES	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	TRAYLER	TRAYLER	TRAYLER	TRAYLER	TOTAL
MARTES	NOCHE	A URCOS	370	132	121	25	25	89	11	0	4	0	59	0	0	0	0	836
VIARTES	NOCHE	A SICUANI	344	113	112	29	16	86	15	3	3	0	79	0	0	0	0	800
MIERCOLES	NOCHE	A URCOS	364	85	111	18	7	103	17	0	0	0	41	0	0	0	0	746
VIIENCOLES	NOCHE	A SICUANI	413	89	86	40	22	80	14	0	0	0	78	0	0	0	0	822
UEVES	NOCHE	A URCOS	330	64	35	24	11	71	12	0	0	0	58	0	0	0	0	605
UEVES	NOCHE	A SICUANI	316	81	52	13	6	63	15	0	0	0	29	0	0	0	0	575
VIERNES	NOCHE	A URCOS	324	88	105	26	18	121	23	0	0	0	47	0	0	0	0	752
/IERINES	NOCHE	A SICUANI	284	105	80	28	21	95	21	4	1	0	70	0	0	0	1	710
SABADO	NOCHE	A URCOS	357	120	103	22	23	171	32	0	0	0	73	0	0	0	1	902
DADADO	NOCHE	A SICUANI	293	104	82	29	17	119	19	0	0	0	61	0	0	0	2	726
OOMINGO	NOCHE	A URCOS	368	101	108	20	15	117	21	4	0	0	51	0	0	0	0	805
DOMINGO	NOCHE	A SICUANI	423	120	105	20	19	158	18	2	1	0	64	1	4	0	1	936
UNES	NOCHE	A URCOS	438	111	120	23	22	125	21	0	0	0	62	0	0	0	0	922
UNES	NOCHE	A SICUANI	362	97	125	26	20	121	28	0	0	0	78	0	0	0	0	857
Т	TOTAL VEHICULOS		4986	1410	1345	343	242	1519	267	13	9	0	850	1	4	0	5	10994

CONSORCIO VIAL SICUANI

RESUMEN DE CONTEO VEHICULAR

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

E-02(3S(QQUEHUAR) ESTACIÓN

Commission y Administración	
HIDALGO E HIDALGO S.A. CONSTRUCTORES	

	-								T	IPO DE VEHICUI	.0							
			AU	CM	СВ	B2	В3	C2	С3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
DIA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 6 + EJES	CAMION 2 EJES	CAMION 3 ó + EJES	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	TRAYLER	TRAYLER	TRAYLER	TRAYLER	101112
MARTES	DIA	AMBOS	1649	590	700	142	6	417	40	1	4	6	276	0	0	1	2	3834
MIERCOLES	DIA	AMBOS	1819	501	1411	160	8	391	74	7	2	1	149	1	3	1	2	4530
JUEVES	DIA	AMBOS	603	218	143	12	77	95	19	0	0	0	172	3	0	2	0	1344
VIERNES	DIA	AMBOS	1723	565	881	144	13	386	54	22	6	3	135	2	5	1	0	3940
SABADO	DIA	AMBOS	1420	501	809	146	7	422	40	1	2	72	98	1	9	0	0	3528
DOMINGO	DIA	AMBOS	1474	501	718	142	11	378	74	1	1	0	201	2	10	2	1	3516
LUNES	DIA	AMBOS	1469	511	865	137	7	474	102	0	0	0	175	1	14	3	1	3759
MARTES	NOCHE	AMBOS	714	245	233	54	41	175	26	3	7	0	138	0	0	0	0	1636
MIERCOLES	NOCHE	AMBOS	777	174	197	58	29	183	31	0	0	0	119	0	0	0	0	1568
JUEVES	NOCHE	AMBOS	646	145	87	37	17	134	27	0	0	0	87	0	0	0	0	1180
VIERNES	NOCHE	AMBOS	608	193	185	54	39	216	44	4	1	0	117	0	0	0	1	1462
SABADO	NOCHE	AMBOS	650	224	185	51	40	290	51	0	0	0	134	0	0	0	3	1628
DOMINGO	NOCHE	AMBOS	791	221	213	40	34	275	39	6	1	0	115	1	4	0	1	1741
LUNES	NOCHE	AMBOS	800	208	245	49	42	246	49	0	0	0	140	0	0	0	0	1779
T	OTAL VEHICU	LOS	15143	4797	6872	1226	371	4082	670	45	24	82	2056	11	45	10	11	35445

CONSORCIO VIAL SICUANI

CLASIFICACION VEHICULAR E IMDA

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-02(3S(QQUEHUAR)

							TI	PO DE V	/EHICUL	0							
DIA	SENTIDO	AUTO	CAMIONETA	сомві	OMN	IBUS	CAN	IION		SEMITI	RAYLER			TR	AYLER		TOTAL
		AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	
MARTES	AMBOS	2363	835	933	196	47	592	66	4	11	6	414	0	0	1	2	5470
MIERCOLES	AMBOS	2596	675	1608	218	37	574	105	7	2	1	268	1	3	1	2	6098
JUEVES	AMBOS	1249	363	230	49	94	229	46	0	0	0	259	3	0	2	0	2524
VIERNES	AMBOS	2331	758	1066	198	52	602	98	26	7	3	252	2	5	1	1	5402
SABADO	AMBOS	2070	725	994	197	47	712	91	1	2	72	232	1	9	0	3	5156
DOMINGO	AMBOS	2265	722	931	182	45	653	113	7	2	0	316	3	14	2	2	5257
LUNES	AMBOS	2269	719	1110	186	49	720	151	0	0	0	315	1	14	3	1	5538
TOTAL		15143	4797	6872	1226	371	4082	670	45	24	82	2056	11	45	10	11	35445

CONSORCIO VIAL SICUANI

CLASIFICACION VEHICULAR E IMDA

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-02(3S(QQUEHUAR)

	SENTIDO	AUTO	CAMIONETA	сомві	OMN	IIBUS	CAN	IION		SEMITI	RAYLER			TRA	AYLER		TOTAL
	SENTIDO	AU	СМ	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	IOIAL
IMDs	ENTRADA	1067	359	487	98	43	302	49	10	9	17	153	4	7	8	4	2617
	SALIDA	1120	349	513	100	33	302	66	12	9	5	163	5	10	0	7	2694
	AMBOS	2187	708	1000	198	76	604	115	22	18	22	316	9	17	8	11	5311

IMDA = IMDs*FCE	SENTIDO	AUTO	CAMIONETA	сомві	OMN	IIBUS	CAN	IION		SEMITE	RAYLER			TRA	AYLER		TOTAL
IIVIDA = IIVIDS · FCE	SENTIDO	AU	СМ	СВ	B2	В3	C2	С3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	IOIAL
FCE LIV = 0.987584		1054	355	481	93	41	284	47	10	9	16	144	4	7	8	4	2557
FCE PES = 0.9401690	0.9401690 SALIDA	1107	345	507	95	32	284	63	12	9	5	154	5	10	0	7	2635
	AMBOS	2161	700	988	188	73	568	110	22	18	21	298	9	17	8	11	5192
		82%	27%	37%	7%	3%	22%	4%	1%	1%	1%	11%	0%	1%	0%	0%	

74%

CONSORCIO VIAL SICUANI

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MTC/20

26%

ESTACION 03

CASA
HIDALGO S.A.
He H

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 TRAMO
 PE-3S (COMBAPATA - SICUANI)

 ESTACIÓN
 E-02(3S(QQUEHUAR)

									TIF	O DE VEHICULO)								
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	COMBI	OMN	NIBUS	CON	MION		SEMIT	RAYLER			TRA	YLER		TOTAL	%
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	A URCOS	55	15	29	2	1	15	2	0	1	0	10	0	0	1	0	131	4.91%
7:00 - 8:00	DIA	A URCOS	64	24	38	3	1	16	3	1	0	0	8	0	0	0	0	158	5.92%
8:00 - 9:00	DIA	A URCOS	66	26	40	3	1	17	3	0	0	0	6	0	0	1	0	163	6.11%
9:00 - 10:00	DIA	A URCOS	58	22	47	3	1	16	2	1	0	0	6	0	0	0	0	156	5.85%
10:00 - 11:00	DIA	A URCOS	60	20	40	2	1	15	2	0	0	1	7	0	0	0	0	148	5.55%
11:00 - 12:00	DIA	A URCOS	64	24	43	4	1	14	3	0	0	1	7	0	0	0	0	161	6.03%
12:00 - 13:00	DIA	A URCOS	61	21	46	3	3	15	4	0	0	1	11	0	0	0	0	165	6.18%
13:00 - 14:00	DIA	A URCOS	56	25	45	8	1	15	6	1	1	1	11	0	0	1	0	171	6.41%
14:00 - 15:00	DIA	A URCOS	60	21	44	4	1	18	3	0	0	1	8	0	0	0	0	160	6.00%
15:00 - 16:00	DIA	A URCOS	55	22	39	2	1	14	3	0	0	1	10	0	0	0	0	147	5.51%
16:00 - 17:00	DIA	A URCOS	60	16	43	3	1	15	4	0	0	1	14	0	0	0	0	157	5.88%
17:00 - 18:00	DIA	A URCOS	67	19	46	4	1	13	5	0	0	1	11	0	0	0	0	167	6.26%
18:00 - 19:00	NOCHE	A URCOS	70	22	45	4	1	13	3	0	0	0	9	0	0	0	0	167	6.26%
19:00 - 20:00	NOCHE	A URCOS	46	16	26	2	1	11	2	0	0	0	10	0	0	0	0	114	4.27%
20:00 - 21:00	NOCHE	A URCOS	35	10	12	2	1	9	3	0	1	0	9	0	0	0	0	82	3.07%
21:00 - 22:00	NOCHE	A URCOS	21	8	6	1	2	6	3	0	0	0	6	0	0	0	0	53	1.99%
22:00 - 23:00	NOCHE	A URCOS	14	6	4	2	5	6	2	0	0	0	7	0	0	0	0	46	1.72%
23:00 - 24:00	NOCHE	A URCOS	10	6	3	1	4	7	3	0	1	0	5	0	0	0	0	40	1.50%
24:00 - 1:00	NOCHE	A URCOS	4	1	2	1	4	4	2	1	0	0	3	0	0	0	0	22	0.82%
1:00 - 2:00	NOCHE	A URCOS	3	3	2	1	2	4	2	0	0	0	4	1	0	0	0	22	0.82%
2:00 - 3:00	NOCHE	A URCOS	5	3	2	1	2	3	1	0	0	0	5	0	0	0	0	22	0.82%
3:00 - 4:00	NOCHE	A URCOS	12	4	4	1	3	7	3	0	1	0	5	0	0	0	1	41	1.54%
4:00 - 5:00	NOCHE	A URCOS	24	7	10	2	2	10	2	1	0	0	7	0	0	0	0	65	2.44%
6:00 - 7:00	NOCHE	A URCOS	45	14	24	3	1	13	2	0	0	0	7	0	1	0	0	110	4.12%
	TOTAL		1015	355	640	62	42	276	68	5	5	8	186	1	1	3	1	2668	100.00%
	%		38.0%	13.3%	24.0%	2.3%	1.6%	10.3%	2.5%	0.2%	0.2%	0.3%	7.0%	0.0%	0.0%	0.1%	0.0%	100.0%	

CONSORCIO VIAL SICUANI

CASA HeH

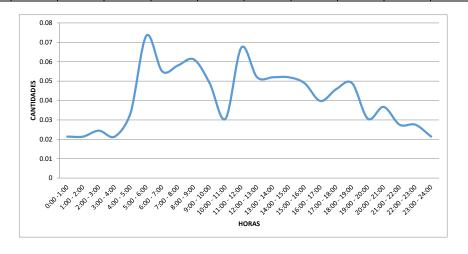
"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 TRAMO
 PE-3S (COMBAPATA - SICUANI)

 ESTACIÓN
 E-02(3S(QQUEHUAR)

									TIF	O DE VEHICULO)								
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	COMBI	MO	NIBUS	CON	MION		SEMIT	RAYLER			TRA	YLER		TOTAL	%
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	A SICUANI	37	12	36	4	1	9	2	1	0	0	8	1	1	1	1	114	4.47%
7:00 - 8:00	DIA	A SICUANI	54	15	58	2	0	9	2	1	0	0	9	0	1	0	0	151	5.92%
8:00 - 9:00	DIA	A SICUANI	54	15	53	3	0	10	1	0	0	1	7	0	0	0	0	144	5.64%
9:00 - 10:00	DIA	A SICUANI	50	17	50	2	0	13	2	1	0	0	7	0	0	0	0	142	5.57%
10:00 - 11:00	DIA	A SICUANI	51	19	47	2	1	13	3	1	0	0	11	0	0	0	0	148	5.80%
11:00 - 12:00	DIA	A SICUANI	45	18	47	4	1	12	3	1	1	0	12	0	0	0	0	144	5.64%
12:00 - 13:00	DIA	A SICUANI	53	16	40	2	0	15	2	0	1	0	9	1	1	0	0	140	5.49%
13:00 - 14:00	DIA	A SICUANI	41	16	46	3	0	14	2	0	0	0	6	0	0	0	0	128	5.02%
14:00 - 15:00	DIA	A SICUANI	52	17	50	2	1	13	3	0	0	0	6	0	0	0	0	144	5.64%
15:00 - 16:00	DIA	A SICUANI	55	22	49	2	1	17	4	1	0	0	12	0	0	0	0	163	6.39%
16:00 - 17:00	DIA	A SICUANI	54	22	49	3	1	20	3	1	0	0	7	1	0	0	0	161	6.31%
17:00 - 18:00	DIA	A SICUANI	67	26	53	4	1	19	3	1	0	0	10	0	1	0	0	185	7.25%
18:00 - 19:00	NOCHE	A SICUANI	80	26	48	3	1	20	3	1	1	0	6	0	0	0	1	190	7.45%
19:00 - 20:00	NOCHE	A SICUANI	52	16	28	2	0	13	1	0	1	0	7	0	0	0	1	121	4.74%
20:00 - 21:00	NOCHE	A SICUANI	35	16	14	2	0	9	2	0	0	0	5	0	0	0	0	83	3.25%
21:00 - 22:00	NOCHE	A SICUANI	23	8	7	1	1	9	2	0	0	0	6	0	0	0	0	57	2.23%
22:00 - 23:00	NOCHE	A SICUANI	16	6	5	1	2	7	2	0	1	0	6	0	0	0	0	46	1.80%
23:00 - 24:00	NOCHE	A SICUANI	7	3	3	1	2	5	4	1	0	0	5	0	0	0	0	31	1.22%
24:00 - 1:00	NOCHE	A SICUANI	5	4	1	1	3	4	2	0	0	0	4	0	0	0	0	24	0.94%
1:00 - 2:00	NOCHE	A SICUANI	5	2	2	1	3	3	2	0	0	0	5	0	0	0	0	23	0.90%
2:00 - 3:00	NOCHE	A SICUANI	5	2	3	1	3	3	2	0	0	0	5	0	0	0	0	24	0.94%
3:00 - 4:00	NOCHE	A SICUANI	6	3	3	1	4	5	2	0	0	0	6	0	0	0	0	30	1.18%
4:00 - 5:00	NOCHE	A SICUANI	21	6	7	1	4	9	2	0	0	0	5	0	0	0	0	55	2.16%
6:00 - 7:00	NOCHE	A SICUANI	43	8	20	2	2	11	2	0	1	0	14	0	0	0	0	103	4.04%
	TOTAL	•	911	315	719	50	32	262	56	10	6	1	178	3	4	1	3	2551	100.00%
	%		35.7%	12.3%	28.2%	2.0%	1.3%	10.3%	2.2%	0.4%	0.2%	0.0%	7.0%	0.1%	0.2%	0.0%	0.1%	100.0%	

CONSORCIO VIAL SICUANI


"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

 TRAMO
 PE-3S (COMBAPATA - SICUANI)

 ESTACIÓN
 E-02(3S(QQUEHUAR)

		. (. (1											
										O DE VEHICULO									
HORA	TURNO	SENTIDO	AUTO	CAMIONETA	COMBI	IMO	NIBUS	CON	MION			RAYLER				YLER		TOTAL	%
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3		
6:00 - 7:00	DIA	AMBOS	92	27	65	6	2	24	4	1	1	0	18	1	1	2	1	245	4.69%
7:00 - 8:00	DIA	AMBOS	118	39	96	5	1	25	5	2	0	0	17	0	1	0	0	309	5.92%
8:00 - 9:00	DIA	AMBOS	120	41	93	6	1	27	4	0	0	1	13	0	0	1	0	307	5.88%
9:00 - 10:00	DIA	AMBOS	108	39	97	5	1	29	4	2	0	0	13	0	0	0	0	298	5.71%
10:00 - 11:00	DIA	AMBOS	111	39	87	4	2	28	5	1	0	1	18	0	0	0	0	296	5.67%
11:00 - 12:00	DIA	AMBOS	109	42	90	8	2	26	6	1	1	1	19	0	0	0	0	305	5.84%
12:00 - 13:00	DIA	AMBOS	114	37	86	5	3	30	6	0	1	1	20	1	1	0	0	305	5.84%
13:00 - 14:00	DIA	AMBOS	97	41	91	11	1	29	8	1	1	1	17	0	0	1	0	299	5.73%
14:00 - 15:00	DIA	AMBOS	112	38	94	6	2	31	6	0	0	1	14	0	0	0	0	304	5.82%
15:00 - 16:00	DIA	AMBOS	110	44	88	4	2	31	7	1	0	1	22	0	0	0	0	310	5.94%
16:00 - 17:00	DIA	AMBOS	114	38	92	6	2	35	7	1	0	1	21	1	0	0	0	318	6.09%
17:00 - 18:00	DIA	AMBOS	134	45	99	8	2	32	8	1	0	1	21	0	1	0	0	352	6.74%
18:00 - 19:00	NOCHE	AMBOS	150	48	93	7	2	33	6	1	1	0	15	0	0	0	1	357	6.84%
19:00 - 20:00	NOCHE	AMBOS	98	32	54	4	1	24	3	0	1	0	17	0	0	0	1	235	4.50%
20:00 - 21:00	NOCHE	AMBOS	70	26	26	4	1	18	5	0	1	0	14	0	0	0	0	165	3.16%
21:00 - 22:00	NOCHE	AMBOS	44	16	13	2	3	15	5	0	0	0	12	0	0	0	0	110	2.11%
22:00 - 23:00	NOCHE	AMBOS	30	12	9	3	7	13	4	0	1	0	13	0	0	0	0	92	1.76%
23:00 - 24:00	NOCHE	AMBOS	17	9	6	2	6	12	7	1	1	0	10	0	0	0	0	71	1.36%
24:00 - 1:00	NOCHE	AMBOS	9	5	3	2	7	8	4	1	0	0	7	0	0	0	0	46	0.88%
1:00 - 2:00	NOCHE	AMBOS	8	5	4	2	5	7	4	0	0	0	9	1	0	0	0	45	0.86%
2:00 - 3:00	NOCHE	AMBOS	10	5	5	2	5	6	3	0	0	0	10	0	0	0	0	46	0.88%
3:00 - 4:00	NOCHE	AMBOS	18	7	7	2	7	12	5	0	1	0	11	0	0	0	1	71	1.36%
4:00 - 5:00	NOCHE	AMBOS	45	13	17	3	6	19	4	1	0	0	12	0	0	0	0	120	2.30%
6:00 - 7:00	NOCHE	AMBOS	88	22	44	5	3	24	4	0	1	0	21	0	1	0	0	213	4.08%
	TOTAL		1926	670	1359	112	74	538	124	15	11	9	364	4	5	4	4	5219	100.00%
	%		36.9%	12.8%	26.0%	2.1%	1.4%	10.3%	2.4%	0.3%	0.2%	0.2%	7.0%	0.1%	0.1%	0.1%	0.1%	100.0%	

CONSORCIO VIAL SICUANI

RESUMEN DE CONTEO VEHICULAR

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)	
-----------------------------------	--

E-02(3S(QQUEHUAR)

									Т	IPO DE VEHICUI	.0							
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
DIA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 ó + EJES	CAMION 2 EJES	CAMION 3 ó + EJES	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	TRAYLER	TRAYLER	TRAYLER	TRAYLER	TOTAL
MARTES	DIA	A URCOS	747	277	468	25	8	165	18	0	6	1	120	0	0	2	0	1837
IVIARTES	DIA	A SICUANI	717	272	466	33	9	158	14	5	1	1	120	7	2	2	5	1812
MIERCOLES	DIA	A URCOS	949	222	838	30	7	168	30	2	0	1	105	0	0	1	0	2353
WIERCOLES	DIA	A SICUANI	839	233	939	30	3	200	23	0	0	0	76	0	1	0	0	2344
JUEVES	DIA	A URCOS	382	121	140	14	3	109	27	0	0	0	82	0	0	0	0	878
JUEVES	DIA	A SICUANI	273	96	209	16	0	81	22	3	1	0	105	0	1	0	0	807
VIERNES	DIA	A URCOS	861	304	536	41	4	190	34	0	0	0	89	0	0	0	0	2059
VIERINES	DIA	A SICUANI	777	222	628	27	4	160	24	2	0	0	64	1	1	0	0	1910
SABADO	DIA	A URCOS	643	223	477	36	6	196	47	0	0	2	119	0	0	0	0	1749
SABADO	DIA	A SICUANI	509	196	560	31	4	140	30	0	0	0	87	0	0	0	0	1557
DOMINGO	DIA	A URCOS	662	319	463	76	22	199	53	4	0	5	119	0	0	0	0	1922
DOMINGO	DIA	A SICUANI	565	206	599	31	3	192	29	1	0	0	124	1	0	0	0	1751
LUNES	DIA	A URCOS	790	273	543	30	6	220	34	0	0	13	101	0	0	0	0	2010
LUINES	DIA	A SICUANI	576	238	608	25	6	176	30	0	0	0	117	0	0	0	0	1776
Т	OTAL VEHICU	JLOS	9290	3202	7474	445	85	2354	415	17	8	23	1428	9	5	5	5	24765

									Т	IPO DE VEHICUL	.0							
			AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
DIA	TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 ó + EJES	CAMION 2 EJES	CAMION 3 ó + EJES	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	TRAYLER	TRAYLER	TRAYLER	TRAYLER	TOTAL
MARTES	NOCHE	A URCOS	323	153	173	12	22	76	23	0	1	0	66	0	0	0	0	849
IVIANTES	NOCHE	A SICUANI	228	104	163	10	20	95	16	0	2	0	77	0	0	0	1	716
MIERCOLES	NOCHE	A URCOS	288	96	173	13	32	68	10	0	1	0	74	0	0	0	0	755
WHENCOLES	NOCHE	A SICUANI	272	94	142	5	22	70	21	0	1	0	71	0	0	0	0	698
II IEVES	NOCUE	A URCOS	248	95	140	14	13	104	22	0	2	0	28	0	0	0	1	667
JUEVES	NOCHE	A SICUANI	253	66	110	5	18	66	11	0	1	0	65	0	0	0	1	596
VIERNES	NOCHE	A URCOS	257	71	115	11	26	72	30	0	0	0	88	0	1	0	0	671
VIERNES	NOCHE	A SICUANI	310	98	156	15	19	98	35	2	0	0	58	0	0	0	0	791
SABADO	NOCHE	A URCOS	275	78	135	15	17	98	31	0	0	0	63	0	0	0	0	712
SABADO	NOCHE	A SICUANI	283	102	130	15	23	95	25	0	0	0	64	0	0	0	0	737
DOMINGO	NOCHE	A URCOS	298	83	118	14	22	90	23	0	0	0	73	3	0	0	0	724
DOMINGO	NOCHE	A SICUANI	330	84	122	10	13	144	22	0	0	0	71	0	0	0	0	796
LUNES	NOCHE	A URCOS	304	91	92	17	21	103	31	2	1	0	97	0	0	0	0	759
LUNES	NOCHE	A SICUANI	383	106	133	13	30	81	12	0	0	0	68	0	0	0	0	826
Т	TOTAL VEHIC	ULOS	4052	1321	1902	169	298	1260	312	4	9	0	963	3	1	0	3	10297

CONSORCIO VIAL SICUANI

RESUMEN DE CONTEO VEHICULAR

HIDALGO e HIDALGO S.A.

CONSTRUCTORES

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-02(3S(QQUEHUAR)

•	. (- (- ,															
								Т	IPO DE VEHICUL	.0							
		AU	CM	СВ	B2	В3	C2	С3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
TURNO	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMNIBUS 2 EJES	OMNIBUS 3 ó + EJES	CAMION 2 EJES	CAMION 3 ó + EJES	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	SEMITRAYLER	TRAYLER	TRAYLER	TRAYLER	TRAYLER	TOTAL
DIA	AMBOS	1464	549	934	58	17	323	32	5	7	2	240	7	2	4	5	3649
DIA	AMBOS	1788	455	1777	60	10	368	53	2	0	1	181	0	1	1	0	4697
DIA	AMBOS	655	217	349	30	3	190	49	3	1	0	187	0	1	0	0	1685
DIA	AMBOS	1638	526	1164	68	8	350	58	2	0	0	153	1	1	0	0	3969
DIA	AMBOS	1152	419	1037	67	10	336	77	0	0	2	206	0	0	0	0	3306
DIA	AMBOS	1227	525	1062	107	25	391	82	5	0	5	243	1	0	0	0	3673
DIA	AMBOS	1366	511	1151	55	12	396	64	0	0	13	218	0	0	0	0	3786
NOCHE	AMBOS	551	257	336	22	42	171	39	0	3	0	143	0	0	0	1	1565
NOCHE	AMBOS	560	190	315	18	54	138	31	0	2	0	145	0	0	0	0	1453
NOCHE	AMBOS	501	161	250	19	31	170	33	0	3	0	93	0	0	0	2	1263
NOCHE	AMBOS	567	169	271	26	45	170	65	2	0	0	146	0	1	0	0	1462
NOCHE	AMBOS	558	180	265	30	40	193	56	0	0	0	127	0	0	0	0	1449
NOCHE	AMBOS	628	167	240	24	35	234	45	0	0	0	144	3	0	0	0	1520
NOCHE	AMBOS	687	197	225	30	51	184	43	2	1	0	165	0	0	0	0	1585
TAL VEHICU	ILOS	13342	4523	9376	614	383	3614	727	21	17	23	2391	12	6	5	8	35062
	TURNO DIA DIA DIA DIA DIA DIA DIA DIA DIA NOCHE NOCHE NOCHE NOCHE NOCHE NOCHE NOCHE NOCHE	TURNO SENTIDO DIA AMBOS NOCHE AMBOS	TURNO SENTIDO AUTO DIA AMBOS 1464 DIA AMBOS 1788 DIA AMBOS 655 DIA AMBOS 1638 DIA AMBOS 1152 DIA AMBOS 1152 DIA AMBOS 1227 DIA AMBOS 1227 DIA AMBOS 1366 NOCHE AMBOS 551 NOCHE AMBOS 501 NOCHE AMBOS 501 NOCHE AMBOS 567 NOCHE AMBOS 558 NOCHE AMBOS 558 NOCHE AMBOS 628 NOCHE AMBOS 628 NOCHE AMBOS 687	AU CM TURNO SENTIDO AUTO CAMIONETA DIA AMBOS 1464 549 DIA AMBOS 1788 455 DIA AMBOS 655 217 DIA AMBOS 1638 526 DIA AMBOS 1152 419 DIA AMBOS 1227 525 DIA AMBOS 1366 511 NOCHE AMBOS 551 257 NOCHE AMBOS 550 190 NOCHE AMBOS 560 190 NOCHE AMBOS 567 169 NOCHE AMBOS 558 180 NOCHE AMBOS 628 167 NOCHE AMBOS 628 167 NOCHE AMBOS 687 197	AU CM CB TURNO SENTIDO AUTO CAMIONETA COMBI DIA AMBOS 1464 549 934 DIA AMBOS 1788 455 1777 DIA AMBOS 655 217 349 DIA AMBOS 1638 526 1164 DIA AMBOS 1152 419 1037 DIA AMBOS 1227 525 1062 DIA AMBOS 1366 511 1151 NOCHE AMBOS 551 257 336 NOCHE AMBOS 560 190 315 NOCHE AMBOS 567 169 271 NOCHE AMBOS 558 180 265 NOCHE AMBOS 628 167 240 NOCHE AMBOS 687 197 225	AU CM CB B2 TURNO SENTIDO AUTO CAMIONETA COMBI DISS 2 EJES DIA AMBOS 1464 549 934 58 DIA AMBOS 1788 455 1777 60 DIA AMBOS 655 217 349 30 DIA AMBOS 1638 526 1164 68 DIA AMBOS 1152 419 1037 67 DIA AMBOS 1152 419 1037 67 DIA AMBOS 1227 525 1062 107 DIA AMBOS 1366 511 1151 55 NOCHE AMBOS 551 257 336 22 NOCHE AMBOS 560 190 315 18 NOCHE AMBOS 561 161 250 19 NOCHE AMBOS 557 169 271 26 NOCHE AMBOS 558 180 265 30 NOCHE AMBOS 558 180 265 30 NOCHE AMBOS 558 180 265 30 NOCHE AMBOS 628 167 240 24 NOCHE AMBOS 628 167 240 24 NOCHE AMBOS 628 167 240 24	AU CM CB B2 B3 TURNO SENTIDO AUTO CAMIONETA COMBI DIA AMBOS 1464 549 934 58 17 DIA AMBOS 1788 455 1777 60 10 DIA AMBOS 1638 526 1164 68 8 DIA AMBOS 1638 526 1164 68 8 DIA AMBOS 1152 419 1037 67 10 DIA AMBOS 1152 419 1037 67 10 DIA AMBOS 1227 525 1062 107 25 DIA AMBOS 1366 511 1151 55 12 NOCHE AMBOS 560 190 315 18 54 NOCHE AMBOS 567 169 271 26 45 NOCHE AMBOS 558 180 265 30 40 NOCHE AMBOS 558 180 265 30 NOCHE AMBOS 528 167 240 24 35 NOCHE AMBOS 628 167 240 24 35 NOCHE AMBOS 628 167 240 24 35 NOCHE AMBOS 628 167 240 24 35	AU	AU	TIPO DE VEHICUL AU CM CB B2 B3 C2 C3 T252 TURNO SENTIDO AUTO CAMIONETA COMBI OMNIBUS 2 EJES EJES EJES EJES DIA AMBOS 1464 549 934 58 17 323 32 5 DIA AMBOS 1788 455 1777 60 10 368 53 2 DIA AMBOS 655 217 349 30 3 190 49 3 DIA AMBOS 1638 526 1164 68 8 8 350 58 2 DIA AMBOS 1152 419 1037 67 10 336 77 0 DIA AMBOS 1152 419 1037 67 10 336 77 0 DIA AMBOS 1227 525 1062 107 25 391 82 5 DIA AMBOS 1366 511 1151 55 12 396 64 0 NOCHE AMBOS 560 190 315 18 54 138 31 0 NOCHE AMBOS 567 169 271 26 45 170 65 2 NOCHE AMBOS 558 180 265 30 40 193 56 0 NOCHE AMBOS 558 180 265 30 40 193 56 0 NOCHE AMBOS 568 167 240 24 35 234 45 0 NOCHE AMBOS 668 197 225 30 NOCHE AMBOS 668 197 225 30 NOCHE AMBOS 568 167 240 24 35 234 45 0	TURNO SENTIDO AUTO CAMIONETA COMBI COMBI SELES ELES EL	TURNO SENTIDO AUTO CAMIONETA COMBI COMBINENS CAMION CAMION CAMIONETA COMBINENS CAMION CAMION CAMIONETA COMBINENS CAMION CAMI	TURNO SENTIDO AUTO CAMIONETA COMBI CAMIONETA COMBI CAMIONETA CAMIONETA COMBI CAMIONETA CAM	TURNO	TURNO SENTIDO AUTO CAMIONETA COMBI CELES FLES FLE	TURNO SENTIDO AUTO CAMIONETA COMBI COMBINES CAMION 2 FLEIS F	TURNO SENTIDO AUTO CAMIONETA COMBI COMBI COMBINE CAMION 2 CAMION 3 C

CONSORCIO VIAL SICUANI

CLASIFICACION VEHICULAR E IMDA

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-02(3S(QQUEHUAR)

							TIP	O DE VE	HICULO								
DIA	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMN	IIBUS	CAN	110N		SEMITE	RAYLER			TR	AYLER		TOTAL
		AU	CM	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	
MARTES	AMBOS	2015	806	1270	80	59	494	71	5	10	2	383	7	2	4	6	5214
MIERCOLES	AMBOS	2348	645	2092	78	64	506	84	2	2	1	326	0	1	1	0	6150
JUEVES	AMBOS	1156	378	599	49	34	360	82	3	4	0	280	0	1	0	2	2948
VIERNES	AMBOS	2205	695	1435	94	53	520	123	4	0	0	299	1	2	0	0	5431
SABADO	AMBOS	1710	599	1302	97	50	529	133	0	0	2	333	0	0	0	0	4755
DOMINGO	AMBOS	1855	692	1302	131	60	625	127	5	0	5	387	4	0	0	0	5193
LUNES	AMBOS	2053	708	1376	85	63	580	107	2	1	13	383	0	0	0	0	5371
1	TOTAL	13342	4523	9376	614	383	3614	727	21	17	23	2391	12	6	5	8	35062

CONSORCIO VIAL SICUANI

CLASIFICACION VEHICULAR E IMDA

"SERVICIO DE RECICLADO Y RECAPEO DE LA CARRETERA: URCOS - SICUANI, TRAMO: COMBAPATA - SICUANI"

TRAMO PE-3S (COMBAPATA - SICUANI)

ESTACIÓN E-02(3S(QQUEHUAR)

	SENTIDO	AUTO	CAMIONETA	СОМВІ	OMN	IBUS	CAN	IION		SEMITE	RAYLER			TRA	AYLER		TOTAL
	SENTIDO	AU	СМ	СВ	B2	В3	C2	C3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	IOIAL
IMDs	ENTRADA	1015	355	640	62	42	276	68	5	5	8	186	1	1	3	1	2668
	SALIDA	911	315	719	50	32	262	56	10	6	1	178	3	4	1	3	2551
	AMBOS	1926	670	1359	112	74	538	124	15	11	9	364	4	5	4	4	5219

IMDA = IMDs*FCE	SENTIDO	AUTO	CAMIONETA	сомві	OMN	IBUS	CAIV	IION		SEMITE	RAYLER			TRA	AYLER		TOTAL
IIVIDA - IIVIDS FCE	SENTIDO	AU	СМ	СВ	B2	В3	C2	С3	T2S2	T2S3	T3S2	T3S3	C2R2	C2R3	C3R2	C3R3	TOTAL
FCE LIV = 0.987584	ENTRADA	1003	351	633	59	40	260	64	5	5	8	175	1	1	3	1	2609
FCE PES = 0.9401690	SALIDA	900	312	711	48	31	247	53	10	6	1	168	3	4	1	3	2498
IMDA	AMBOS	1903	663	1344	107	71	507	117	15	11	9	343	4	5	4	4	5107
		37%	13%	26%	2%	1%	10%	2%	0%	0%	0%	7%	0%	0%	0%	0%	

23% 77%

Ing. J. Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MTC/20

CONSORCIO VIAL SICUANI

FACTOR DE CARGA EQUIVALENTE

ESTACION COMBAPATA

LOTACION	COMBAFATA			
	CAMPO		NORM	ATIVA
TIPOLOGIA	FCE sin FCLL	FCE con FCLL	FEC Factor Equivalencia de carga según Reglamento Nacional de Vehículos - MTC (S/FCLL)	FEC Factor Equivalencia de carga según Reglamento Nacional de Vehículos -MTC (C/FCLL) (*)
BUS 2 EJES	0.244451006	0.34938535	4.503653709	6.66540749
BUS 3 EJES	1.07500117	1.67950972	2.525951767	3.738408616
CAMION 2 EJES	0.070713063	0.10995187	4.503653709	6.66540749
CAMION 3 EJES	1.560823933	2.64625848	3.284580203	4.8611787
SEMITRAYLER 2S2	2.337970106	4.09144769	6.522867163	9.653843401
SEMITRAYLER 2S3	0.730762263	1.24318543	6.209679958	9.190326337
SEMITRAYLER 3S2	0.778286215	1.36200088	5.303793656	7.849614611
SEMITRAYLER 3S3	1.616641423	2.64695452	4.990606451	7.386097547

^(*) Presión de neumáticos, estimada en 80 PSI

ESTACION QQHUAR

ESTACION	QQHUAK			
	CAMPO		NORM.	ATIVA
TIPOLOGIA	FCE sin FCLL	FCE con FCLL	FEC Factor Equivalencia de carga según Reglamento Nacional de Vehículos - MTC (S/FCLL)	FEC Factor Equivalencia de carga según Reglamento Nacional de Vehículos -MTC (C/FCLL) (*)
BUS 2 EJES	0.117377409	0.18519125	4.5036537	6.6654075
BUS 3 EJES	0.972863616	1.65690549	2.5259518	3.7384086
CAMION 2 EJES	0.065320921	0.10429339	4.5036537	6.6654075
CAMION 3 EJES	1.053895911	1.71481605	3.2845802	4.8611787
SEMITRAYLER 2S2	0.522791373	0.89921736	6.5228672	9.6538434
SEMITRAYLER 2S3	0.280654883	0.44937252	6.2096800	9.1903263
SEMITRAYLER 3S2	0.319581776	0.51699263	5.3037937	7.8496146
SEMITRAYLER 3S3	1.947340491	3.3267475	4.9906065	7.3860975

CONSORCIO VIAL SICUANI

Ing. V Anthony Mayta Mamani
CONTRATON 034-2020 MTC/20

ESAL

COD_ESTACION TRAMO KM EP01- COMBAPATA COMBAPATA - QQUEHUAR

CÁLCULO DEL Nº DE REPETICIONES DE EJES EQUIVALENTES (8.2 Tn). SIN FCLL

_							CLI L'HOIOI		CUUIVALE	.NILO (0.2 I	iij, oliv i oli						
			Omr	ibus	Cam	iones		Semi '	Trayler			Tra	yler		Total	Acumulado	Total
			2E	3E	2E	3E	2S2	2S3	3S2	>= 3S3	2T2	2T3	3T2	3T3	TOTAL	Acumulado	Total
Ī	Tráfico Total =Normal	2020	190	64	438	90	16	23	16	105	9	11	17	188	1167		
	Tráfico Total =Normal+Generado	2021	199	67	491	100	17	25	17	117	9	11	18	211	1282		
	FCE x Fcpll		0.24	1.08	0.07	1.56	2.34	0.73	0.78	1.62	10.98	9.76	9.76	8.54		***************************************	
	Tasa crecimiento = R		0.29	0.29	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05			
	R/100 = r		0.003	0.003	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071			ı
	Factor de Crecimiento		1.003	1.003	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071			ı
Año	Días del año		365	365	365	365	365	365	365	365	365	365	365	365			
1	IMDa x Fc x Fp x 365 x 0.5	2021	8878	13145	6336	28485	7254	3334	2415	34519	18035	19596	32065	328934	502 996	502 996	5.03E+05
2	2022		8 904	13 183	6 783	30 493	7 765	3 569	2 585	36 953	19 306	20 977	34 326	352 124	536 968	1 039 964	1.04E+06
3	2023		8 929	13 221	7 261	32 643	8 312	3 821	2 767	39 558	20 668	22 456	36 746	376 949	573 331	1 613 295	1.61E+06
4	2024		8 955	13 259	7 773	34 944	8 898	4 090	2 962	42 347	22 125	24 039	39 337	403 524	612 254	2 225 549	2.23E+06
5	2025		8 981	13 298	8 321	37 408	9 526	4 379	3 171	45 332	23 684	25 734	42 110	431 972	653 916	2 879 465	2.88E+06
6	2026		9 007	13 336	8 908	40 045	10 197	4 687	3 395	48 528	25 354	27 548	45 079	462 426	698 511	3 577 976	3.58E+06
7	2027		9 033	13 375	9 536	42 868	10 916	5 018	3 634	51 950	27 142	29 490	48 257	495 027	746 246	4 324 221	4.32E+06
8	2028		9 060	13 414	10 208	45 891	11 686	5 371	3 890	55 612	29 055	31 569	51 659	529 927	797 341		5.12E+06
9	2029		9 086	13 453	10 928	49 126	12 510	5 750	4 164	59 533	31 104	33 795	55 301	567 286	852 034		5.97E+06
10	2030		9 112	13 492	11 698	52 589	13 392	6 155	4 458	63 730	33 296	36 177	59 199	607 280	910 579		6.88E+06
11	2031		9 139		12 523	56 297	14 336	6 589	4 772	68 223	35 644	38 728	63 373	650 093	959 716		7.84E+06
12	2032		9 165		13 406	60 266	15 346	7 054	5 109	73 032	38 157	41 458	67 841	695 925			8.87E+06
13	2033		9 192		14 351	64 514	16 428	7 551	5 469	78 181	40 847	44 381	72 623	744 988	1 098 525		9.97E+06
14	2034		9 218		15 363	69 063	17 586	8 084	5 854	83 693	43 726	47 510	77 743	797 509		11 144 527	1.11E+07
15	2035		9 245		16 446	73 932	18 826	8 654	6 267	89 593	46 809	50 859	83 224	853 734			
16	2036		9 272		17 605	79 144	20 154	9 264	6 709	95 910	50 109	54 445	89 092	913 922			1.37E+07
17	2037		9 299		18 847	84 723	21 574	9 917	7 182	102 671	53 642	58 283	95 373	978 353	1 439 864		1.52E+07
18	2038		9 326		20 175	90 696	23 095	10 616	7 688	109 910	57 424	62 392	102 096	1 047 327		16 728 349	1.67E+07
19	2039		9 353		21 598	97 091	24 724	11 364	8 230	117 658	61 472	66 791	109 294	1 121 164			1.84E+07
20	2040		9 380		23 120	103 935	26 467	12 165	8 810	125 953	65 806	71 500	116 999	1 200 206	1 764 342	20 141 429	2.01E+07

^{* =} Vehículos Pesados

COD_ESTACION TRAMO KM

EP01- COMBAPATA COMBAPATA - QQUEHUAR

CÁLCULO DEL Nº DE REPETICIONES DE EJES EQUIVALENTES (8.2 Tn). CON FCLL

			Omr	nibus	Cam	iones		Semi '	Trayler				yler		Total	Acumulado	Tota
			2E	3E	2E	3E	2S2	2S3	3S2	>= 3S3	2T2	2T3	3T2	3T3	iotai	Acumulado	lota
	Tráfico Total =Normal	2020	190	64	438	90	16	23	16	105	9	11	17	188	1167		
	Tráfico Total =Normal+Generado	2021	199	67	491	100	17	25	17	117	9	11	18	211	1282		
	FCE x Fcpll		0.349385352	1.679509724	0.109951871	2.646258479	4.091447685	1.243185431	1.362000877	2.646954523	16.25073689	14.4465081	14.4465081	12.64227931			
	Tasa crecimiento = R		0.29	0.29	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05			
	R/100 = r		0.003	0.003	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071			
Г	Factor de Crecimiento		1.003	1.003	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071			
0	Días del año		365	365	365	365	365	365	365	365	365	365	365	365			
1	IMDa x Fc x Fp x 365 x 0.5	2021	12689	20536	9853	48294	12694	5672	4226	56519	26692	29001	47457	486823	760 455	760 455	7.60
	2022		12 726	20 596	10 547	51 699	13 589	6 072	4 524	60 504	28 574	31 046	50 802	521 144	811 821	1 572 276	1.57
	2023		12 763	20 655	11 291	55 344	14 547	6 500	4 842	64 769	30 588	33 235	54 384	557 884	866 802	2 439 077	2.44
	2024		12 800	20 715	12 087	59 245	15 572	6 958	5 184	69 335	32 745	35 578	58 218	597 215	925 652	3 364 729	3.36
	2025		12 837	20 775	12 939	63 422	16 670	7 449	5 549	74 224	35 053	38 086	62 323	639 319	988 645	4 353 374	4.35
	2026		12 874	20 836	13 851	67 894	17 845	7 974	5 940	79 456	37 524	40 771	66 716	684 391	1 056 072	5 409 446	5.41
	2027		12 911	20 896	14 827	72 680	19 103	8 536	6 359	85 058	40 170	43 645	71 420	732 640	1 128 247	6 537 693	6.54
	2028		12 949	20 957	15 873	77 804	20 450	9 138	6 808	91 055	43 002	46 722	76 455	784 291	1 205 503	7 743 196	7.74
	2029		12 986	21 018	16 992	83 289	21 892	9 782	7 288	97 474	46 033	50 016	81 845	839 584	1 288 199	9 031 394	9.03
	2030		13 024	21 078	18 190	89 161	23 435	10 472	7 801	104 346	49 279	53 542	87 615	898 775	1 376 718	10 408 112	1.04
Т	2031		13 062		19 472	95 447	25 087	11 210	8 351	111 702	52 753	57 317	93 792	962 138	1 450 332	11 858 444	1.19
	2032		13 099		20 845	102 176	26 856	12 000	8 940	119 577	56 472	61 358	100 404	1 029 969	1 551 697	13 410 141	1.34
	2033		13 137		22 314	109 379	28 749	12 846	9 570	128 007	60 453	65 684	107 483	1 102 582	1 660 206	15 070 347	1.51
	2034		13 176		23 888	117 091	30 776	13 752	10 245	137 032	64 715	70 315	115 060	1 180 314	1 776 363	16 846 709	1.68
	2035		13 214		25 572	125 345	32 946	14 722	10 967	146 693	69 277	75 272	123 172	1 263 526	1 900 705	18 747 415	1.87
	2036		13 252		27 375	134 182	35 269	15 759	11 741	157 035	74 162	80 578	131 856	1 352 604	2 033 812	20 781 226	2.08
	2037		13 291		29 304	143 642	37 755	16 870	12 568	168 106	79 390	86 259	141 151	1 447 963	2 176 300	22 957 526	2.30
П	2038		13 329		31 370	153 769	40 417	18 060	13 454	179 957	84 987	92 340	151 103	1 550 044	2 328 830	25 286 357 27 778 469	2.56
	2039		13 368		33 582	164 610	43 266	19 333	14 403	192 644	90 978	98 850	161 755	1 659 322	2 492 112	27 778 469	2.78
	2040		13 407		35 950	176 215	46 316	20 696	15 418	206 225	97 392	105 819	173 159	1 776 305	2 666 902	30 445 371	3.04

Ing. J. Anthony Mayta Mamani RESIDENTE DE OBRA CONTRATO Nº 034-2020 MTC/20

NSORCIO VIAL SICUANI

COD_ESTACION EP02 - QQUEHUAR TRAMO QQUEHUAR - SICUANI KM

CÁLCULO DEL Nº DE REPETICIONES DE EJES EQUIVALENTES (8.2 Tn), SIN FCLL

			Omr	iibus	Cami				Travler		L3 (0.2 111),		vler				
			2E	3E	2E	3E	2S2	2S3	3S2	>= 3S3	2T2	2T3	3T2	3T3	Total	Acumulado	Total
	Tráfico Total =Normal	2020	188	73	568	110	22	18	21	298	9	17	8	11	1343		
	Tráfico Total =Normal+Generado	2021	197	76	638	122	24	19	23	334	9	18	8	11	1479		
	FCE x Fcpll		0.117377409	0.972863616	0.065320921	1.053895911	0.522791373	0.280654883	0.319581776	1.947340491	10.98022763	9.761154124	9.761154124	8.54			
	asa crecimiento = F	₹	0.29	0.29	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05	7.05			
	R/100 = r		0.003	0.003	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071			
	actor de Crecimient	0	1.003	1.003	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071	1.071			
Año	Días del año		365	365	365	365	365	365	365	365	365	365	365	365			
1	a x Fc x Fp x 365 x	2021	4220	13494	7606	23465	2290	973	1341	118700	18035	32065	14251	17148	253 589	253 589	2.54E+05
2	2022		4 232	13 533	8 142	25 119	2 451	1 042	1 436	127 068	19 306	34 326	15 256	18 357	270 269	523 858	5.24E+05
3	2023		4 245	13 572	8 716	26 890	2 624	1 115	1 537	136 027	20 668	36 746	16 332	19 651	288 122	811 981	8.12E+05
4	2024		4 257	13 611	9 330	28 786	2 809	1 194	1 646	145 617	22 125	39 337	17 483	21 037	307 231	1 119 211	1.12E+06
5	2025		4 269	13 651	9 988	30 815	3 007	1 278	1 762	155 883	23 684	42 110	18 715	22 520	327 683	1 446 894	1.45E+06
6	2026		4 282	13 690	10 692	32 988	3 219	1 368	1 886	166 872	25 354	45 079	20 035	24 108	349 573	1 796 466	1.80E+06
7	2027		4 294	13 730	11 446	35 313	3 446	1 465	2 019	178 637	27 142	48 257	21 447	25 807	373 003	2 169 469	2.17E+06
8	2028		4 306	13 770	12 253	37 803	3 689	1 568	2 161	191 231	29 055	51 659	22 959	27 627	398 081		2.57E+06
9	2029		4 319	13 810	13 117	40 468	3 949	1 678	2 313	204 713	31 104	55 301	24 578	29 574	424 924	2 992 474	2.99E+06
10	2030		4 331	13 850	14 042	43 321	4 227	1 797	2 477	219 145	33 296	59 199	26 311	31 659	453 655	3 446 129	3.45E+06
11	2031		4 344		15 032	46 375	4 526	1 923	2 651	234 595	35 644	63 373	28 166	33 891	470 519	3 916 648	3.92E+06
12	2032		4 357		16 091	49 645	4 845	2 059	2 838	251 133	38 157	67 841	30 151	36 280	503 397		4.42E+06
13	2033		4 369		17 226	53 145	5 186	2 204	3 038	268 838	40 847	72 623	32 277	38 838	538 592	4 958 637	4.96E+06
14	2034		4 382		18 440	56 891	5 552	2 359	3 252	287 791	43 726	77 743	34 553	41 576	576 267		5.53E+06
15	2035		4 395		19 740	60 902	5 943	2 526	3 482	308 081	46 809	83 224	36 989	44 507	616 598		6.15E+06
16	2036		4 407		21 132	65 196	6 362	2 704	3 727	329 800	50 109	89 092	39 596	47 645	659 771		6.81E+06
17	2037		4 420		22 622	69 792	6 811	2 895	3 990	353 051	53 642	95 373	42 388	51 004	705 987	7 517 259	7.52E+06
18	2038		4 433		24 216	74 713	7 291	3 099	4 271	377 942	57 424	102 096	45 376	54 600	755 460		8.27E+06
19	2039		4 446		25 924	79 980	7 805	3 317	4 572	404 586	61 472	109 294	48 575	58 449	808 420		9.08E+06
20	2040		4 459		27 751	85 618	8 355	3 551	4 895	433 110	65 806	116 999	52 000	62 570	865 113	9 946 253	9.95E+06

= Vehículos Pesados

COD_ESTACION EP02 - QQUEHUAR
TRAMO QQUEHUAR - SICUANI
KM

CÁLCULO DEL Nº DE REPETICIONES DE EJES EQUIVALENTES (8.2 Tn), CON FCLL

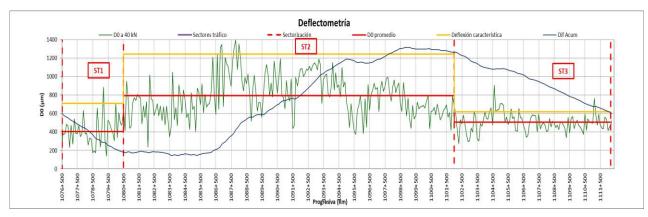
			Omr	nibus	Cami	iones		Semi *	Trayler			Tra	yler		Total	Acumulado	Total
			2E	3E	2E	3E	2S2	2S3	3S2	>= 3S3	2T2	2T3	3T2	3T3	Total	Acumulado	Total
	Tráfico Total =Normal	2020	53	134	246	26	6	9	9	357	4	1	1	5	851		
	Tráfico Total =Normal+Generado	2021	56	143	262	27	6	9	9	381	4	1	1	5	904		
	FCE x Fcpll	***************************************	0.185191253	1.656905491	0.104293388	1.714816051	0.899217362	0.449372518	0.516992633	3.326747496	16.25073689	14.4465081	14.4465081	12.64227931	12.64228		
	Tasa crecimiento = R		6.90	6.90	6.90	6.90	6.90	6.90	6.90	6.90	6.90	6.90	6.90	6.90			
	R/100 = r		0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069			
	Factor de Crecimiento		1.069	1.069	1.069	1.069	1.069	1.069	1.069	1.069	1.069	1.069	1.069	1.069			
Año	Días del año		365	365	365	365	365	365	365	365	365	365	365	365			
1	IMDa x Fc x Fp x 365 x 0.5	2021	1893	43241	4987	8450	985	738	849	231317	11863	2636	2636	11536	321 131	321 131	3.21E+05
2	2022		1 898	43 366	5 338	9 045	1 054	790	909	247 625	12 699	2 822	2 822	12 349	340 720	661 851	6.62E+05
3	2023		1 904	43 492	5 715	9 683	1 128	846	973	265 082	13 595	3 021	3 021	13 220	361 681	1 023 532	1.02E+06
4	2024		1 909	43 618	6 118	10 366	1 208	905	1 042	283 771	14 553	3 234	3 234	14 152	384 111	1 407 643	1.41E+06
5	2025		1 915	43 745	6 549	11 097	1 293	969	1 115	303 777	15 579	3 462	3 462	15 150	408 113	1 815 756	1.82E+06
6	2026		1 920	43 872	7 011	11 879	1 384	1 038	1 194	325 193	16 677	3 706	3 706	16 218	433 798	2 249 554	2.25E+06
7	2027		1 926	43 999	7 505	12 716	1 482	1 111	1 278	348 119	17 853	3 968	3 968	17 361	461 285		2.71E+06
8	2028		1 931	44 127	8 034	13 613	1 586	1 189	1 368	372 661	19 112	4 247	4 247	18 585	490 702		3.20E+06
9	2029		1 937	44 255	8 600	14 573	1 698	1 273	1 464	398 934	20 459	4 547	4 547	19 895	522 182		3.72E+06
10	2030		1 943	44 383	9 207	15 600	1 818	1 363	1 568	427 059	21 902	4 867	4 867	21 298	555 874	4 279 597	4.28E+06
11	2031		1 948		9 856	16 700	1 946	1 459	1 678	457 167	23 446	5 211	5 211	22 799	547 420	4 827 017	4.83E+06
12	2032		1 954		10 551	17 877	2 083	1 562	1 797	489 397	25 099	5 578	5 578	24 407	585 881		5.41E+06
13	2033		1 960		11 294	19 137	2 230	1 672	1 923	523 899	26 868	5 971	5 971	26 128	627 054		6.04E+06
14	2034		1 965		12 091	20 487	2 387	1 790	2 059	560 834	28 762	6 392	6 392	27 970	671 128		6.71E+06
15	2035		1 971		12 943	21 931	2 556	1 916	2 204	600 373	30 790	6 843	6 843	29 941	718 310		7.43E+06
16	2036		1 977		13 855	23 477	2 736	2 051	2 359	642 699	32 961	7 325	7 325	32 052	768 818		8.20E+06
17	2037		1 982		14 832	25 132	2 929	2 195	2 526	688 009	35 284	7 842	7 842	34 312	822 886		9.02E+06
18	2038		1 988		15 878	26 904	3 135	2 350	2 704	736 514	37 772	8 395	8 395	36 731	880 765	9 901 859	9.90E+06
19	2039		1 994		16 997	28 801	3 356	2 516	2 894	788 438	40 435	8 986	8 986	39 320	942 725	10 844 584	1.08E+07
20	2040		2 000		18 196	30 831	3 593	2 693	3 098	844 023	43 286	9 620	9 620	42 093	1 009 052	11 853 636	1.19E+07

* = Vehículos Pesados

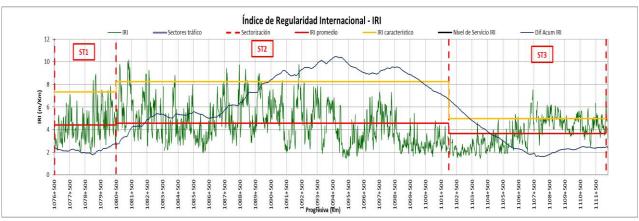
CONSORCIO VIAL SICUANI

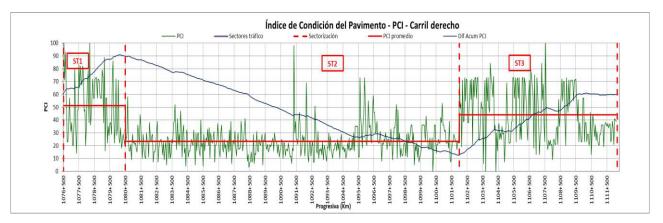
		EP01- CO	МВАРАТА	EP02 - QQI	JEHUAR
		COMBAPATA	- QQUEHUAR	QQUEHUAR	- SICUANI
N°	Año	SIN PRESION DE LLANTAS	CON PRESION DE LLANTAS	SIN PRESION DE LLANTAS	CON PRESION DE LLANTAS
1	2021	5.03E+05	7.60E+05	2.54E+05	3.21E+05
2	2022	1.04E+06	1.57E+06	5.24E+05	6.62E+05
3	2023	1.61E+06	2.44E+06	8.12E+05	1.02E+06
4	2024	2.23E+06	3.36E+06	1.12E+06	1.41E+06
5	2025	2.88E+06	4.35E+06	1.45E+06	1.82E+06
6	2026	3.58E+06	5.41E+06	1.80E+06	2.25E+06
7	2027	4.32E+06	6.54E+06	2.17E+06	2.71E+06
8	2028	5.12E+06	7.74E+06	2.57E+06	3.20E+06
9	2029	5.97E+06	9.03E+06	2.99E+06	3.72E+06
10	2030	6.88E+06	1.04E+07	3.45E+06	4.28E+06
11	2021	7.84E+06	1.19E+07	3.92E+06	4.83E+06
12	2022	8.87E+06	1.34E+07	4.42E+06	5.41E+06
13	2023	9.97E+06	1.51E+07	4.96E+06	6.04E+06
14	2024	1.11E+07	1.68E+07	5.53E+06	6.71E+06
15	2025	1.24E+07	1.87E+07	6.15E+06	7.43E+06
16	2026	1.37E+07	2.08E+07	6.81E+06	8.20E+06
17	2027	1.52E+07	2.30E+07	7.52E+06	9.02E+06
18	2028	1.67E+07	2.53E+07	8.27E+06	9.90E+06
19	2029	1.84E+07	2.78E+07	9.08E+06	1.08E+07
20	2030	2.01E+07	3.04E+07	9.95E+06	1.19E+07

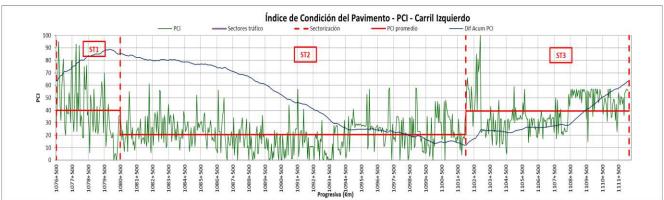
CONSORCIO VIAL SICUANI

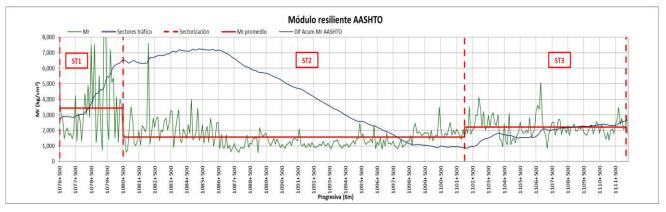

Ing. V Anthony Mayta Mamani
RESIDENTE DE OBRA
CONTRATO Nº 034-2020-MTC/20

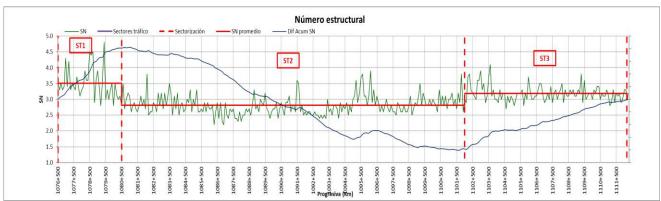
ANEXO 8. Sectorización multiparamétrico.


1. Sectorización Homogénea Multicriterio


El proyecto cuenta con intervenciones establecidas dentro de los Términos de Referencia, la cual consiste en una intervención que considera el reciclado del pavimento existente y la colocación de una carpeta asfáltica, lo cual cambiará la condición actual del pavimento en términos del IRI e Índice de condición de pavimento (PCI). Asimismo, según el Estudio de Tráfico (Anexo A del presente Estudio) existe variación a lo largo del tramo en estudio, por tanto, ha influido en la presente sectorización.


Se realizó la sectorización homogénea para diseño, determinando las medidas de tendencia central, obteniéndose los valores promedio, desviación estándar y coeficiente de variación para cada uno de los sectores homogéneos determinados. El resultado de la sectorización homogénea multiparametro desarrollado para el corredor vial en estudio es mostrado a continuación:




lustración 1 Sectorización homogénea de diseño Tramo.

Del gráfico anterior, se puede apreciar que el tramo de carretera Combapata - Sicuani, ha sido dividido en 3 sectores homogéneos, basados en los resultados obtenidos en las diferentes actividades de medición realizadas, quedando establecidos de la siguiente manera:

Tabla 1 Sectores homogéneos Tramo Combapata - Sicuani

Sector	Progresiva Inicial (Km)	Progresiva Final (Km)
1	1076+502	1080+500
2	1080+500	1102+000
3	1102+000	1112+169

Basados en lo anterior, se procede a determinar los valores promedio que serán establecidos en el diseño de la estructura de pavimento. Los resultados son los siguientes:

Tabla 2 Sectorización Multicriterio, Resultados de Mediciones

Tramo	Sector	Progresiva Inicial	Progresiva Final	Mr diseño (Kg/cm2)	NEE 8.2T (2021 -2025)	IRI (m/km)	Serviciabilidad (PSI)	PCI Carril derecho	PCI Carril izquierdo	SN efectivo
Combapata - Sicuani	1	1076+502	1080+500	3443	4.35E+06	4.4	Regular (2.2)	51	40	3.5
	2	1080+500	1102+000	1562	4.35E+06	4.6	Regular (2.2)	23	20	2.8
	3	1102+000	1112+169	2207	1.82E+06	3.7	Regular (2.6)	44	39	3.2

De la tabla anterior, se tiene los tres sectores presenta una condición regular de serviciabilidad, es decir, por lo cual los vehículos pueden transitar con comodidad de forma continua pero a velocidad limitada, en tanto que para los valores de PCI el sector 1 y 3 presentan una clasificación de regular a pobre, en tanto que el sector 2 tiene una condición muy pobre; con respecto a los valores de IRI el sector 2 presenta una condición mala y los sectores 1 y 3 la calificación es regular; finalmente con respecto al número estructural (SN) efectivo se observa que el sector 2 presenta un menor valor.

De lo descrito anteriormente para cumplir con los Niveles de Servicio exigidos, se establece que la intervención es necesaria, siendo necesario un reforzamiento de la estructura de pavimento, en particular el sector 2 que presenta una condición mala para los indicadores previamente analizadas.

Se han identificado los sectores homogéneos basados en las mediciones realizadas, solo existe una variación del tráfico en el tramo 3, por lo cual, ha tenido influencia en la determinación de los sectores homogéneos.

Los sectores definidos son los siguientes:

Tabla 3 Sectores homogéneos definidos Tramo Combapata - Sicuani

Sector	Progresiva Inicial (Km)	Progresiva Final (Km)		
1	1076+502	1080+500		
2	1080+500	1102+000		
3	1102+000	1112+169		