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Convergence of a misanthrope process

to the entropy solution of 1D problems

R. Eymard, M. Roussignol and A. Tordeux

Université Paris-Est

September 15, 2011

Abstract

We prove the convergence, in some strong sense, of a Markov process called “a misanthrope process” to the

entropy weak solution of a one-dimensional scalar nonlinear hyperbolic equation. Such a process may be used

for the simulation of traffic flows. The convergence proof relies on the uniqueness of entropy Young measure

solutions to the nonlinear hyperbolic equation, which holds for both the bounded and the unbounded cases. In

the unbounded case, we also prove an error estimate. Finally, numerical results show how this convergence result

may be understood in practical cases.

Keywords: misanthrope stochastic process, non linear scalar hyperbolic equation, entropy Young measure solu-

tion, traffic flow simulation, weak BV inequality

1 Introduction

Some recent models of traffic flows [8] are based on the notion of misanthrope process, introduced in [6, 1]. Such

a process is a stochastic Markov jump process (ηt)t≥0, usually defined on N
Z, which models the time evolution of

occupation of discrete sites by a collection of identical objects. The random variable ηt(n) represents the number

of objects at site n ∈ Z at time t. Jumps of this process consist of jumps of an object from one site n ∈ Z to the next

one n + 1 with a rate denoted b(n, n + 1) ≥ 0. The aim of this paper is to prove that the values of a misanthrope

process at time t may approximate the entropy weak solution u(x, t) of a non linear hyperbolic equation, first on a

bounded interval (A,B) of R (the bounded case), then on R (the unbounded case).

In the bounded case, the non linear equation is

∂tu(x, t) + ∂x(f(u))(x, t) = 0 x ∈ (A,B), t ∈ R
+, (1)

for given reals A < B, where the partial derivatives of u with respect to time and space are respectively denoted

by ∂tu and ∂xu, with initial data

u(x, 0) = uini(x), x ∈ (A,B), (2)

and some boundary conditions which are formally:

u(A, t) = u(t), t ∈ R
+, (3)

and

u(B, t) = u(t), t ∈ R
+. (4)

In (1)-(4), we denote by uini a bounded measurable function defined for all x ∈ (A,B), and by u, u bounded

measurable functions defined for all t ∈ R
+. We assume, without restricting the generality, that these three

functions are a.e. valued in [0, U ], for a given U ∈ R
+. Note that the weak sense of the boundary conditions

(3)-(4), deduced from Otto’s works [20], is precised below (in this paper, the regularity on the limit is not sufficient

for using the strong sense for these boundary conditions given in [4]).
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In the unbounded case the non linear equation is

∂tu(x, t) + ∂x(f(u))(x, t) = 0 x ∈ R, t ∈ R
+, (5)

with initial data

u(x, 0) = uini(x), x ∈ R, (6)

where uini denotes a bounded measurable function defined for all x ∈ R, a.e. valued in [0, U ].

Such studies of limit of stochastic process to the solution of hyperbolic equations are called “Euler hydrodynamics

of attractive particle systems” in [2], [15], [3], [12]. Indeed, as described in [3], a misanthrope process (ηt)t≥0 on

E = [[0,K]]Z is said to have Euler hydrodynamic limit u(x, t) if, for all continuous function Ψ from R to R
+ with

compact support, we have, for all t ≥ 0

lim
N→∞

E


 1

N

∑

y∈Z

ηNt(y) Ψ
( y
N

)

 =

∫

R

Ψ(x) u(x, t) dx. (7)

We may remark that, defining the real process νN (x, t) by νN (x, t) = ηNt(y), for all x ∈ [y/N, (y + 1)/N),
y ∈ Z and t ∈ R

+, (7) is equivalent to the convergence for the weak-⋆ topology of L∞(R), and for all t ∈ R
+, of

the function E(νN (·, t)) to u(·, t) as N → ∞.

It is then proved that the Euler hydrodynamic limit u(x, t) of a misanthrope process is the entropy weak solution

of (5) such that the function f must check the condition

f(ρ) =

∫
b(η(0), η(1)) dµρ(η), ∀ρ ∈ R,

where R is the largest subset of [0,K] such that, for any ρ ∈ R, the set of all measures µ on E, which are invariant

for the process and shift-invariant with
∫
η(0)dµ(η) = ρ, has an extremal element denoted by µρ (recall that a

measure µ is invariant for the process if the process with initial distribution µ has the distribution µ for all t > 0);

note that R is closed and necessarily contains 0 and K, but, as mentioned in [3], the relation [0,K] = R remains

an open problem.

In this paper, although our starting point is also the notion of misanthrope process, we use a different way to

approximate equations (1) and (5), with different definitions for both the limit sense and the function f . Let us

first emphasize that we will handle the bounded case (A,B) as well as the unbounded one (in the first case, the

study of the boundary terms has to be done). In the bounded case, we define, for N ∈ N
⋆, h = (B − A)/N

and we discretize the interval [A,B] in constant size intervals (A + (n − 1)h,A + nh), n ∈ {1, . . . , N}, each

interval corresponding to a site for the stochastic process. In the unbounded case we discretize R in intervals

((n − 1)h, nh), n ∈ Z of size h, each interval corresponding to a site for the stochastic process. In both cases,

we discretize the continuous interval of possible values [0, Ū ] of u(x, t) in discrete values (ki, i = 0, ...,K) with

K ∈ N
⋆ and k ∈ R such that k = U

K .

For a given function g such that

• g is Lipschitz continuous from R
2 to R

+, hence it is assumed to be nonnegative (we denote in this paper M
the smallest Lipschitz constant of g)

• g(x, y) = 0 for all (x, y) ∈ (] −∞, 0] × R) ∪ (R × [U,+∞[),

• (x, y) 7→ g(x, y), from [0, U ]2 to R
+, is nondecreasing with respect to x and nonincreasing with respect to

y,

• the function f occurring in the nonlinear hyperbolic equation (1) is such that f(x) = g(x, x), for all x ∈ R,

we define the jump rate of the process by

b(x, y) =
1

h k
g(x, y), ∀x, y ∈ R. (8)
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Thanks to the hypotheses on the function g, we get b(0, .) = 0 and b(., kK) = 0.

In the bounded case, we define a non-homogeneous Markov jump process on E = (k[[0,K]])[[1,N ]] with the fol-

lowing possible jumps and the associated rates defined at time t by:

• jump from η to T 0,1(η) with T 0,1(η)(1) = η(1) + k and T 0,1(η)(j) = η(j) for all j = 2, . . . , N , and rate

b(u(t), η(1)),

• jump from η to Tn,n+1(η) for n = 1, . . . , N−1, with Tn,n+1(η)(n) = η(n)−k, Tn,n+1(η)(n+1) = η(n+
1)+k and Tn,n+1(η)(j) = η(j) for all j = 1, . . . , N different from n and n+1, and rate b(η(n), η(n+1)),

• jump from η to TN,N+1(η) with TN,N+1(η)(N) = η(N) − k and TN,N+1(η)(j) = η(j) for all j =
1, . . . , N − 1, and rate b(η(N), u(t)).

Note that the process is a homogeneous Markov jump process for almost everywhere constant boundary conditions.

Using the following notation

ηt(0) = u(t) and ηt(N + 1) = u(t), ∀t ∈ R
+, (9)

the corresponding Chapman-Kolmogorov equation reads:

dEψ(ηt)

dt
= E

(
N∑

n=0

b(ηt(n), ηt(n+ 1))
(
ψ(Tn,n+1(ηt)) − ψ(ηt)

)
)
, ∀t ∈ R

+, ∀ψ ∈ D, (10)

where D is the set of all functions ψ from E to R
+.

We associate to the process ηt the real process ν(x, t) defined from (A,B) × R
+ to [0, Ū ] by

ν(x, t) = ηt(n) ∀x ∈ [A+ (n− 1)h,A+ nh), ∀n ∈ [[1, N ]], ∀t ∈ R
+. (11)

The final result for the bounded case (Theorem 2.2) is the convergence of

∫ T

0

∫ B

A

E (|ν(x, t) − u(x, t)|) dxdt =

∫ T

0

∑

1≤n≤N

∫

[A+(n−1)h,A+nh)

E (|ηt(n) − u(x, t)|) dxdt

to zero as h and k/h simultaneously tend to zero, where u(x, t) is the entropy weak solution of equation (1),

assuming that ν(x, 0) converges in some sense to uini(x) as h and k/h simultaneously tend to zero. Note that this

limit sense is stronger than that provided by (7), since it implies that E(ν(x, t)) converges in L1((A,B) × (0, T ))
to u (although it would be possible, we do not consider here the framework C0

(
0, T ;L1((A,B))

)
for the sake of

simplicity). The proof of these results are closely related to the methods involved in the convergence proofs for

numerical schemes [5, 9, 19] (further works for providing an error estimate might also be done).

In the unbounded case, we define an homogeneous Markov jump process on E = (k[[0,K]])Z with the possible

jumps from η to Tn,n+1(η) for n ∈ Z, with Tn,n+1(η)(n) = η(n) − k, Tn,n+1(η)(n + 1) = η(n + 1) + k and

Tn,n+1(η)(j) = η(j) for all j different from n and n+ 1, and rate b(η(n), η(n+ 1)).
The corresponding Chapman-Kolmogorov equation reads:

dEψ(ηt)

dt
= E

(
∑

n∈Z

b(ηt(n), ηt(n+ 1))
(
ψ(Tn,n+1(ηt)) − ψ(ηt)

)
)
, ∀t ∈ R

+, ∀ψ ∈ D, (12)

where D is the set of all bounded functions ψ from E to R
+ depending on a finite number of coordinates.

We associate to the process ηt the real process ν(x, t) defined from R × R
+ to [0, Ū ] by

ν(x, t) = ηt(n) ∀x ∈ [(n− 1)h, nh), ∀n ∈ Z, ∀t ∈ R
+. (13)
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In the unbounded case, we prove a similar convergence result to the bounded case, and moreover prove in Theorem

3.4 that, for given R and T , for a suitable initial value ν(x, 0) close from uini(x) (assumed to have bounded

variations) and for k = h2, if u(x, t) is the entropy weak solution of equation (5), we have

∫ T

0

∫ R

−R

E (|ν(x, t) − u(x, t)|) dxdt ≤ Ceh
1
4 , (14)

where Ce only depends on R, T , g and uini. Inequality (14) can be equivalently written

∫ T

0

∑

{n∈Z/|nh|≤R,|(n−1)h|≤R}

∫

[(n−1)h,nh)

E (|ηt(n) − u(x, t)|) dxdt ≤ Ceh
1
4 (15)

which brings into play values ηt(n) of the process at a finite number of sites n.

So we obtain an approximation of the entropy solution of (1) and (5) with the help of a misanthrope process in a

different way than Euler hydrodynamic. The sense of the limit is different and the relation between the function f
in the hyperbolic equation and the misanthrope process is explicitly given by f(x) = g(x, x). Note that different

functions g(., .) could match a given function f(.) with respecting the above hypotheses (see also [13], [17] and

references therein):

• the Godunov numerical flux: introduced in [14], it may be summarized by the following expression.

g(a, b) =

{
min{f(ξ), ξ ∈ [a, b]} if a ≤ b,
max{f(ξ), ξ ∈ [b, a]} if b ≤ a.

(16)

• the splitting numerical flux: assume f = f1 + f2, with f1, f2 ∈ C1(R,R), f ′1(s) ≥ 0 and f ′2(s) ≤ 0 for all

s ∈ [0, U ] (such a decomposition for f is always possible, see the modified Lax-Friedrichs numerical flux

below), and take

g(a, b) = f1(a) + f2(b).

Note that if f ′ ≥ 0, taking f1 = f and f2 = 0, the splitting numerical flux boils down to the upwind

numerical flux, i.e. g(a, b) = f(a).

• the modified Lax-Friedrichs numerical flux, also called the Rusanov numerical flux in different frameworks:

take

g(a, b) =
f(a) + f(b)

2
+D(a− b), (17)

with D ∈ R such that 2D ≥ max{|f ′(s)|, s ∈ [Um, U ]}.

We remark that in the last two examples the functions defined above can be negative. We could easily extend the

definition of the misanthrope process by assuming that, if b(n, n + 1) < 0, then −b(n, n + 1) denotes the rate of

jump of such an object from the site n+ 1 to the site n. Then all the results of this paper would hold as well. But,

for the sake of simplicity, we only consider here positive jump rates.

This paper is organized as follows: the second section is devoted to the bounded case, while the third section deals

with the unbounded case; numerical computations on the Riemann problem are presented in section 4. Some tracks

for further research are finally shown in a short conclusion.
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2 The bounded case

In this section, our aim is to prove that the misanthrope process, defined by the Chapman-Kolmogorov equation

(10) and a given initial probability measure on D, converges to an entropy weak solution in some sense. Let us

recall this notion in the bounded case as given in [20].

Let us denote a⊤b the maximum of a and b, a⊥b the minimum of a and b, for all real values a, b, and C1
c ([A,B]×

R
+,R+) the set of the restriction to [A,B]×R

+ of the non-negative C1 functions with compact support from R
2

to R
+.

Definition 2.1 (Entropy weak solution) Let f ∈ C1(R,R) (or f : R → R Lipschitz continuous) be given, let

uini ∈ L∞((A,B)), and u, u ∈ L∞(R+) be given functions. We say that u is a weak entropy solution of problem

(1)-(4) if:

• u ∈ L∞((A,B) × (0,∞)),

• there exists M > 0 such that, for all functions ζ⊤(s) = s⊤κ−κ and F⊤(s) = f(s⊤κ)− f(κ) with κ ∈ R,

we have for all ϕ ∈ C1
c ([A,B] × R

+,R+)

∫ ∞

0

∫ B

A

(ζ⊤(u)∂tϕ(x, t) + F⊤(u) ∂xϕ(x, t)) dxdt

+M

∫ ∞

0

(ζ⊤(u(t))ϕ(A, t) + ζ⊤(u(t))ϕ(B, t)) dt+

∫ B

A

ζ⊤(uini)ϕ(x, 0) dx ≥ 0,

(18)

• the same inequality as (18) holds replacing ζ⊤(s) by ζ⊥(s) = κ − s⊥κ and F⊤(s) by F⊥(s) = f(κ) −
f(s⊥κ).

We have the following fundamental theorem [20].

Theorem 2.1 Let f ∈ C0(R) be Lipschitz continuous , uini ∈ L∞((A,B)), u, u ∈ L∞(R+), then there exists a

unique entropy weak solution in the sense of Definition (2.1) to Problem (1).

Remark 2.1 The solution of (18) does not depends on the choice of M (the value M is chosen in this paper as the

Lipschitz constant of g). A uniqueness result on a larger class of objects (Young measures instead of measurable

functions) is used in this paper for the proof of convergence (this result is proved in [22] for the purpose of the

convergence study of a numerical scheme [10]). It is interesting to remark that if one replaces in (18), the set of

function ζ⊤ or ζ⊥ by the set of all entropies |u − κ| (as done in the unbounded case, see Definition 3.1), one has

an existence result (since |u−κ| = s⊤κ−κ+κ− s⊥κ) but no uniqueness result, see [22] for a counter-example

to uniqueness.

2.1 Estimates

The first step is to obtain a discrete entropy inequality for the misanthrope process.

Lemma 2.1 (Discrete entropy inequalities) Let ζ ∈ C2(R) be a convex function (i.e. ζ ′′(κ) ≥ 0 for all κ ∈
R). Let ηt be the misanthrope process defined by the Chapman-Kolmogorov equation (10) and a given initial

probability measure on D. Then the following inequalities hold:

h
dE (ζ(ηt(n)))

dt
+ E (Gζ(ηt(n), ηt(n+ 1)) −Gζ(ηt(n− 1), ηt(n))) ≤ k g(U, 0) max

s∈[0,U ]
ζ ′′(s),

∀n ∈ {1, . . . , N},
(19)

denoting Gζ = G⊤
ζ or G⊥

ζ , for given X < 0 < U < Y , where

G⊤
ζ (x, y) =

∫ Y

X
ζ ′′(s)(g(x⊤s, y⊤s) − f(s)) ds+ g(x, y)ζ ′(X), ∀x, y ∈ [X,Y ],

G⊥
ζ (x, y) =

∫ Y

X
ζ ′′(s)(f(s) − g(x⊥s, y⊥s)) ds+ g(x, y)ζ ′(Y ), ∀x, y ∈ [X,Y ].

(20)
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Proof of Lemma 2.1

Since we have ζ ∈ C2(R), we get for all η ∈ E and for a given n ∈ {1, . . . , N}, that there exists s−n (η) ∈
(η(n) − k, η(n)) such that

1

k

(
ζ(η(n) − k) − ζ(η(n))

)
= −ζ ′(η(n)) +

k

2
ζ ′′(s−n (η)),

and that there exists s+n (η) ∈ (η(n), η(n) + k) such that

1

k

(
ζ(η(n) + k) − ζ(η(n))

)
= ζ ′(η(n)) +

k

2
ζ ′′(s+n (η)).

Hence, from Chapman-Kolmogorov equation (10), we obtain, choosing, for n ∈ {1, . . . , N}, ψ ∈ D such that

ψ(η) = ζ(η(n)) for all η ∈ E,

h
dEζ(ηt(n))

dt
+ E (ζ ′(ηt(n))(g(ηt(n), ηt(n+ 1)) − g(ηt(n− 1), ηt(n))))

=
k

2
E
(
ζ ′′(s−n (ηt))g(ηt(n), ηt(n+ 1)) + ζ ′′(s+n (ηt))g(ηt(n− 1), ηt(n))

)
, ∀n ∈ {1, . . . , N}.

Thanks to the monotonicity properties of g, we have the properties, for x, y, z, s ∈ R (defining sign+(s) = 1 if

s > 0, 0 otherwise):

sign+(y − s)(g(y, z) − g(s, s)) ≥ g(y⊤s, z⊤s) − g(s, s),

and

sign+(y − s)(g(s, s) − g(x, y)) ≥ g(s, s) − g(x⊤s, y⊤s),
and therefore

sign+(y − s)(g(y, z) − g(x, y)) ≥ g(y⊤s, z⊤s) − g(s, s) + g(s, s) − g(x⊤s, y⊤s),

easily checked by considering all cases. Since we may write,

ζ ′(y) =

∫ Y

X

ζ ′′(s)sign+(y − s) ds+ ζ ′(X),

we get, using (20) and ζ ′′(s) ≥ 0 for all s ∈ R,

ζ ′(y)(g(y, z) − g(x, y)) ≥ G⊤
ζ (y, z) −G⊤

ζ (x, y),

thanks to Definition (20) of G⊤
ζ , which concludes the proof of (19) in this case. Turning to the case Gζ = G⊥

ζ , we

write, for x, y, z, s ∈ R (defining sign−(s) = −1 if s < 0, 0 otherwise):

sign−(y − s)(g(y, z) − g(s, s)) ≥ g(s, s) − g(y⊥s, z⊥s),

and

sign−(y − s)(g(s, s) − g(x, y)) ≥ g(x⊥s, y⊥s) − g(s, s),

and therefore

sign−(y − s)(g(y, z) − g(x, y)) ≥ g(s, s) − g(y⊥s, z⊥s) + g(x⊥s, y⊥s) − g(s, s),

again verified by considering all cases. Since we may write

ζ ′(y) =

∫ Y

X

ζ ′′(s)sign−(y − s) ds+ ζ ′(Y ),
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we get, using (20) and ζ ′′(s) ≥ 0 for all s ∈ R,

ζ ′(y)(g(y, z) − g(x, y)) ≥ G⊥
ζ (y, z) −G⊥

ζ (x, y),

thanks to Definition (20) of G⊥
ζ , which concludes the proof of (19) in this case.

Let us write the following lemma, which provides an inequality used in the convergence proof playing the same

role as the so-called “weak BV inequalities” in the case of deterministic numerical schemes (see [5, 9, 11] for the

use of such inequalities).

Lemma 2.2 Let T > 0. Let ηt be the misanthrope process defined by the Chapman-Kolmogorov equation (10)

and a given initial probability measure on D. Then there exists C ∈ R, only depending on T , U , g such that,

assuming k
h ≤ 1,

∫ T

0

N∑

n=0

E (H(ηt(n), ηt(n+ 1))) dt ≤ C√
h
, (21)

where H is defined by

H(a, b) = max
(c,d)∈C(a,b)

|g(c, d) − f(c)| + max
(c,d)∈C(a,b)

|g(c, d) − f(d)|, ∀a, b ∈ R, (22)

denoting, for all a, b ∈ R, by C(a, b) = {(c, d) ∈ [a⊥b, a⊤b]2; (d− c)(b− a) ≥ 0}.

Proof of Lemma 2.2

In this proof, we shall denote by Ci (i ∈ N) various quantities only depending on g, U , T .

Applying the Cauchy-Schwarz inequality to the left hand side of (21) yields

(∫ T

0

N∑

n=0

E (H(ηt(n), ηt(n+ 1))) dt

)2

≤ 2T (N + 1)

∫ T

0

N∑

n=0

E (H2(ηt(n), ηt(n+ 1))) dt

with

H2(a, b) = max
(c,d)∈C(a,b)

(g(c, d) − f(c))2 + max
(c,d)∈C(a,b)

(g(c, d) − f(d))2, ∀a, b ∈ R.

Thanks to the monotonicity properties of g (and using the fact that g(s, s) = f(s)), the following inequality holds,

for any (c, d) ∈ C(a, b):

∫ b

a

(f(s) − g(a, b)) ds ≥
∫ d

c

(f(s) − g(a, b)) ds ≥
∫ d

c

(f(s) − g(c, d)) ds ≥ 0. (23)

Let us remark that the following property

|
∫ d

c

(θ(s) − θ(c)) ds| ≥ 1

2G
(θ(d) − θ(c))2, ∀c, d ∈ R. (24)

holds for all monotone, Lipschitz continuous function θ : R → R, with a Lipschitz constant G > 0. Indeed, let us

assume, for instance, that θ is nondecreasing and c < d (the other cases are similar). Then, one has θ(s) ≥ ϕ(s),
for all s ∈ [c, d], where ϕ(s) = θ(c) for s ∈ [c, d − l] and ϕ(s) = θ(c) + (s − d + l)G for s ∈ [d − l, d], with

lG = θ(d) − θ(c), and therefore:

∫ d

c

(θ(s) − θ(c)) ds ≥
∫ d

c

(ϕ(s) − θ(c)) ds =
l

2
(θ(d) − θ(c)) =

1

2G
(θ(d) − θ(c))2.

Applying (24), we can notice that

∫ d

c

(f(s) − g(c, d)) ds ≥
∫ d

c

(g(c, s) − g(c, d))ds ≥ 1

2M
(f(c) − g(c, d))2, (25)
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and

∫ d

c

(f(s) − g(c, d)) ds ≥
∫ d

c

(g(s, d) − g(c, d))ds ≥ 1

2M
(f(d) − g(c, d))2. (26)

Multiplying (25) and (26) by 1/2, taking the maximum for (c, d) ∈ C(a, b), and adding the two equations yields,

with (23),

∫ b

a

(f(s) − g(a, b)) ds ≥ 1

4M
H2(a, b) (27)

So we have to find a bound for

T1 =

∫ T

0

N∑

n=0

E

(∫ ηt(n+1)

ηt(n)

(f(s) − g(ηt(n), ηt(n+ 1))) ds

)
dt

If Φ is a primitive of the function (·)f ′(·), an integration by parts yields, for all (a, b) ∈ R
2,

Φ(ηt(n+ 1)) − Φ(ηt(n)) =

∫ ηt(n+1)

ηt(n)

sf ′(s) ds

= ηt(n+ 1)(f(ηt(n+ 1)) − g(ηt(n), ηt(n+ 1)) − ηt(n)(f(ηt(n)) − g(ηt(n), ηt(n+ 1))

−
∫ ηt(n+1)

ηt(n)

(f(s) − g(ηt(n), ηt(n+ 1)) ds (28)

and we can write T1 = T3 + T2 with

T3 =

∫ T

0

N∑

n=0

E

(
ηt(n)(g(ηt(n), ηt(n+ 1)) − f(ηt(n)))
+ηt(n+ 1)(f(ηt(n+ 1)) − g(ηt(n), ηt(n+ 1)))

)
dt,

and

T2 =

∫ T

0

N∑

n=0

E

(
Φ(ηt(n)) − Φ(ηt(n+ 1))

)
dt =

∫ T

0

E

(
Φ(u(t)) − Φ(u(t))

)
dt.

It is clear that T2 ≤ C2.

Using Chapman-Kolmogorov formula (10) with ψ(η) = η(n)2 for n ∈ {1, . . . , N}, we have

h
N∑

n=1

E
(
ηt(n)2

)
− h

N∑

n=1

E
(
η0(n)2

)

=

∫ T

0

N∑

n=1

E ((k − 2ηt(n))g(ηt(n), ηt(n+ 1)) + (k + 2ηt(n))g(ηt(n− 1), ηt(n))) dt.

Then we get

h

N∑

n=1

E
(
ηt(n)2

)
− h

N∑

n=1

E
(
η0(n)2

)

= 2

∫ T

0

k

N∑

n=0

E (g(ηt(n), ηt(n+ 1))) dt

−
∫ T

0

E ((2ηt(N + 1) + k)g(ηt(N), ηt(N + 1)) + (k − 2ηt(0))g(ηt(0), ηt(1))) dt

+2

∫ T

0

(ηt(N + 1)f(ηt(N + 1)) − ηt(0)f(ηt(0))) dt− 2T3.
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(recall that we denote by ηt(0) = u(t) and ηt(N + 1) = u(t)). We have

∫ T

0

k

N∑

n=0

E (g(ηt(n), ηt(n+ 1))) dt ≤ C5k(N + 1) ≤ C4k

h
.

This gives, using simple bounds for η(n), u, u that

T3 ≤ C1 + C4k
h .

We can then deduce :

1

4M

∫ T

0

N∑

n=0

E (H2(ηt(n), ηt(n+ 1))) dt ≤ C1 +
C4k

h
+ C2 ≤ C3. (29)

This completes the proof of Lemma 2.2.

Let us recall that ν(x, t) is a function from R × R
+ to [0, Ū ] associated to ηt by ν(x, t) = ηt(n) if x ∈ [nh, (n+

1)h). The following lemma proves an entropy inequality associated to ν(x, t).

Lemma 2.3 Let ηt be the misanthrope process defined by the Chapman-Kolmogorov equation (10) and a given

initial probability measure on D. Let ν be the real process defined by (11). Let κ ∈ [0, U ] be given and ζ⊤(s) =
s⊤κ− κ and F⊤(s) = f(s⊤κ) − f(κ). Then the following inequality holds:

∫ +∞

0

∫ B

A

E
(
ζ⊤(ν(x, t))

)
∂tϕ(x, t) dxdt+

∫ B

A

ζ⊤(uini(x))ϕ(x, 0) dx

+M

∫ +∞

0

ζ⊤(u(t))ϕ(A, t) dt+M

∫ +∞

0

ζ⊤(u(t))ϕ(B, t) dt

+

∫ +∞

0

∫ B

A

E(F⊤(ν(x, t))) ∂xϕ(x, t) dxdt ≥ −
∫ +∞

0

ϕ(A, t)dµ(t) −
∫ +∞

0

ϕ(B, t)dµ(t)

−
∫ B

A

ϕ(x, 0)dµini(x) −
∫

(A,B)×R+

ϕ(x, t)dµ0(x, t) −
∫

(A,B)×R+

(|∂tϕ(x, t)| + |∂xϕ(x, t)|)dµ1(x, t),

(30)

for all ϕ ∈ C∞
c (R × R,R+) (recall that M is a Lipschitz constant for g).

The same inequality holds replacing ζ⊤(s) by ζ⊥(s) = κ− s⊥κ and F⊤(s) by F⊥(s) = f(κ) − f(s⊥κ).
In (30), the measures µ0, µ1, µ, µ and µini verify the following properties:

1. For all T > 0, there exists C0 depending only on T , g and U such that

µ0([A,B] × [0, T ]) + µ([0, T ]) + µ([0, T ]) ≤ C0(k +

√
k

h
). (31)

2. For all T > 0, there exists C1 depending only on g, uini, U and T such that, for h < R,

µ1([A,B] × [0, T ]) ≤ C1(
√
h+

√
k

h
). (32)

3. The measure µini is the measure of density E|uini(.) − ν(., 0)| + C ini

√
k

h
with respect to the Lebesgue

measure, where C ini only depends on T , g and U .
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Proof of Lemma 2.3

We remark that we cannot directly apply Lemma 2.1 to ζ = ζ⊤ since Lemma 2.1 involvesC2(R) convex functions.

Therefore, we approximate the function ζ⊤, for a given κ ∈ [0, U ], by a regular function ζ⊤ε , defined, for a value

ε ∈ (0, 1) which will be chosen later, and for a mollifier ρ (defined as a nonnegative element of C∞
c (R) with

support included in [−1, 1] and integral equal to 1), by

ζ⊤ε (x) =

∫

R

(y⊤κ− κ)
1

ε
ρ(
x− y

ε
) dy.

We then get that, for given X < −1 < U + 1 < Y , we have (ζ⊤ε )′(X) = 0 and (ζ⊤ε )′(Y ) = 1, and

|ζ⊤(x) − ζ⊤ε (x)| ≤
∫

R

|y − x|1
ε
ρ(
x− y

ε
) dy ≤ ε, ∀x ∈ R. (33)

Let us denote G⊤
ε the function G⊤

ζ⊤
ε

as defined by (20). We have, for x ∈ [X,Y ], (ζ⊤ε )′′(x) = 1
ερ(

x−κ
ε ), which

leads to

G⊤
ε (x, y) =

∫ Y

X

1

ε
ρ(
s− κ

ε
)(g(x⊤s, y⊤s) − f(s)) ds, ∀x, y ∈ [X,Y ].

We define G⊤(x, y) by

G⊤(x, y) = g(x⊤κ, y⊤κ) − f(κ), ∀x, y ∈ [X,Y ],

and we get, since M is a Lipschitz constant for g,

|G⊤(x, y) −G⊤
ε (x, y)| ≤ 2M

∫ Y

X

|s− κ|1
ε
ρ(
s− κ

ε
) ds ≤ 2Mε, ∀x, y ∈ [X,Y ]. (34)

We have, for x, x′ ∈ [X,Y ], that

ζ⊤ε (x) − ζ⊤ε (x′) =

∫

R

(y⊤κ− κ)
1

ε
ρ(
x− y

ε
) dy −

∫

R

(y⊤κ− κ)
1

ε
ρ(
x′ − y

ε
) dy,

Hence, changing y in the second integral in y − x+ x′,

|ζ⊤ε (x) − ζ⊤ε (x′)| ≤
∫

R

∣∣(y⊤κ− κ) − ((y − x+ x′)⊤κ− κ)
∣∣1
ε
ρ(
x− y

ε
) dy

≤
∫

R

|x′ − x|1
ε
ρ(
x− y

ε
) dy = |x′ − x|.

(35)

It leads to ∫ Y

X

1

ε
ρ(
y − κ

ε
)(f(x⊤y) − f(x⊤κ)) dy ≤

∫ Y

X

1

ε
ρ(
y − κ

ε
)M |y − κ|dy ≤Mε, (36)

(recall that M is also a Lipschitz constant for f ).

Letϕ ∈ C∞
c (R×R,R+) be given. Applying Lemma 2.1 to ζ = ζ⊤ε , we multiply Inequality (19) by 1

h

∫ nh

(n−1)h
ϕ(A+

x, t) dx, sum over n = 1, . . . , N and integrate the resulting equation with respect to t. This gives

T1 + T2 ≤ T3, (37)

with

T1 =

∫ +∞

0

N∑

n=1

h
dE
(
ζ⊤ε (ηt(n))

)

dt

1

h

∫ nh

(n−1)h

ϕ(A+ x, t) dxdt,

T2 =

∫ +∞

0

N∑

n=1

E
(
G⊤

ε (ηt(n), ηt(n+ 1)) −G⊤
ε (ηt(n− 1), ηt(n))

) 1

h

∫ nh

(n−1)h

ϕ(A+ x, t) dxdt,
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and

T3 = C

N∑

n=1

∫ +∞

0

max
s∈[X,Y ]

(ζ⊤ε )′′(s)kg(U, 0)
1

h

∫ nh

(n−1)h

ϕ(A+ x, t) dxdt.

We may write

T1 =

∫ +∞

0

∫ B

A

dE
(
ζ⊤ε (ν(x, t))

)

dt
ϕ(x, t) dxdt,

which provides, thanks to an integrate by parts with respect to time,

T1 = −
∫ +∞

0

∫ B

A

E
(
ζ⊤ε (ν(x, t))

)
∂tϕ(x, t) dxdt−

∫ B

A

E
(
ζ⊤ε (ν(x, 0))

)
ϕ(x, 0) dx. (38)

We have

T1 = −
∫ +∞

0

∫ B

A

E(ζ⊤(ν(x, t)))∂tϕ(x, t) dxdt−
∫ B

A

ζ⊤(uini(x))ϕ(x, 0) dx+ T4 + T5 + T6,

with T4, T5 and T6 such that

T4 =

∫ +∞

0

∫ B

A

E
(
ζ⊤(ν(x, t)) − ζ⊤ε (ν(x, t))

)
∂tϕ(x, t) dxdt.

T5 =

∫ B

A

E
(
ζ⊤ε (uini(x)) − ζ⊤ε (ν(x, 0))

)
ϕ(x, 0) dx.

T6 =

∫ B

A

(ζ⊤(uini(x)) − ζ⊤ε (uini(x))ϕ(x, 0) dx.

We get from (33) that

|T4| ≤ ε

∫ +∞

0

∫ B

A

|∂tϕ(x, t)|dxdt,

and

|T6| ≤ ε

∫ B

A

ϕ(x, 0) dx,

and, from (35), we may write

|T5| ≤
∫ B

A

E|uini(x) − ν(x, 0)|ϕ(x, 0) dx.

Turning to the study of T2, we can write

T2 = T7 − T8 + (T2 − T9) + (T9 − T10 + T8) + (T10 − T7),

with

T7 = −
∫ +∞

0

∫ B

A

E(f(ν(x, t)⊤κ) − f(κ))∂xϕ(x, t) dxdt,

T8 =

∫ +∞

0

(E(G⊤(ηt(0), ηt(1))ϕ(A, t) −G⊤(ηt(N), ηt(N + 1))ϕ(B, t)) dt,

T9 =

∫ +∞

0

N∑

n=1

E
(
G⊤

ε (ηt(n), ηt(n+ 1)) − F⊤
ε (ηt(n))

)
ϕ(A+ nh, t) dt

+

∫ +∞

0

N∑

n=1

E
(
F⊤

ε (ηt(n)) −G⊤
ε (ηt(n− 1), ηt(n))

)
ϕ(A+ (n− 1)h, t) dt,
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and

T10 = −
∫ +∞

0

∫ B

A

E
(
F⊤

ε (ν(x, t))
)
∂xϕ(x, t) dxdt,

where F⊤
ε is the function defined by

F⊤
ε (x) =

∫ Y

X

1

ε
ρ(
y − κ

ε
)(f(x⊤y) − f(y))dy, ∀x ∈ R. (39)

In order to compare T2 with T9 we write

T2 =

∫ +∞

0

N∑

n=1

E
(
G⊤

ε (ηt(n), ηt(n+ 1)) − F⊤
ε (ηt(n))

) 1

h

∫ nh

(n−1)h

ϕ(A+ x, t) dxdt

+

∫ +∞

0

N∑

n=1

E
(
F⊤

ε (ηt(n)) −G⊤
ε (ηt(n− 1), ηt(n))

) 1

h

∫ nh

(n−1)h

ϕ(A+ x, t) dxdt.

Using the inequalities

|ϕ(A+ nh, t) − 1

h

∫ nh

(n−1)h

ϕ(A+ x, t) dx| ≤
∫ nh

(n−1)h

|∂xϕ(A+ x, t)|dx,

|ϕ(A+ (n− 1)h, t) − 1

h

∫ nh

(n−1)h

ϕ(A+ x, t) dx| ≤
∫ nh

(n−1)h

|∂xϕ(A+ x, t)|dx,

|G⊤
ε (x, y) − F⊤

ε (y)| ≤ 2H(x, y), |G⊤
ε (x, y) − F⊤

ε (x)| ≤ 2H(x, y) ∀x, y ∈ [X,Y ],

we get

|T9 − T2| ≤ 2

∫ +∞

0

N∑

n=1

E (H(ηt(n), ηt(n+ 1)) +H(ηt(n− 1), ηt(n)))

∫ nh

(n−1)h

|∂xϕ(A+ x, t)|dxdt.

We define the measure µ1 by

∫

R×R+

ψ(x, t) dµ1(x, t)

= C

∫ +∞

0

N∑

n=1

E (H(ηt(n), ηt(n+ 1)) +H(ηt(n− 1), ηt(n)))

∫ nh

(n−1)h

|∂xψ(x, t)|dxdt,

which is, thanks to Lemma 2.2, such that (32) holds.

We have

T10 − T9 =

∫ +∞

0

(E(G⊤
ε (ηt(0), ηt(1))ϕ(A, t) −G⊤

ε (ηt(N), ηt(N + 1))ϕ(B, t)) dt.

then using (34), we get

|T9 − T10 + T8| ≤ 2Mε

∫ +∞

0

(ϕ(A, t) + ϕ(B, t)) dt.

We now remark that

G⊤(a, b) = g(a⊤κ, b⊤κ) − f(κ) ≤ g(a⊤κ, κ) − f(κ) ≤M(a⊤κ− κ),

and that

−G⊤(a, b) = f(κ) − g(a⊤κ, b⊤κ) ≤ f(κ) − g(κ, b⊤κ) ≤M(b⊤κ− κ).
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This leads to

T8 ≤M

∫ +∞

0

(
ζ⊤(u(t))ϕ(A, t) + ζ⊤(u(t))ϕ(B, t)

)
dt.

Besides, we have, using (36),

|T7 − T10| ≤ 2Mε

∫ +∞

0

∫ B

A

|∂xϕ(x, t)|dxdt.

Turning to the study of T3, we finally write that

|T3| ≤
Ckg(U, 0)

εh

∫ +∞

0

∫ B

A

ϕ(x, t) dxdt.

We then define the measure µ0 by

∫

R×R+

ψ(x, t) dµ0(x, t) =

(
ε+

Ckg(U, 0)

εh

)∫ +∞

0

∫ B

A

ψ(x, t) dxdt,

and we choose ε =
√

k
h .

Gathering all the above results, and doing similarly for the “bottom” case, this completes the proof of Lemma

2.3.

2.2 Convergence study

We now state and prove a convergence result.

Theorem 2.2 Let us consider a sequence (hi, ki)i∈N with hi → 0 and ki/hi → 0 as i → ∞. Let us denote by

νi(x, t) the process ν(x, t) associated by (11) to the misanthrope process, defined by the Chapman-Kolmogorov

equation (10) and a given initial probability measure on D, with parameters hi, ki. If we assume that

lim
i→∞

E

(∫ B

A

∣∣uini(x) − νi(x, 0)
∣∣ dx

)
= 0,

the process νi(x, t) converges to the unique entropy weak solution u(x, t) of the equation (1), in the sense that for

all T > 0

lim
i→∞

∫

[A,B]×[0,T ]

E (|νi(x, t) − u(x, t)|) dxdt = 0

Proof of Theorem 2.2

Let us define the Young measure µi, for any i ∈ N, by

∫

R

ζ(s) dµi(x, t)(s) = E (ζ(νi(x, t))) , t ∈ R
+, x ∈ R, ∀ζ ∈ C0(R).

We first remark that there exists a subsequence, again denoted µi, and a Young measure µ limit for the nonlinear

weak-⋆ topology, that is

lim
i→∞

∫

[A,B]×R+

ϕ(x, t)

∫

R

ζ(s) dµi(x, t)(s) dxdt

=

∫

[A,B]×R+

ϕ(x, t)

∫

R

ζ(s) dµ(x, t)(s) dxdt, ∀ϕ ∈ C∞
c (R × R,R+), ∀ζ ∈ C0(R).

In order to justify this, let us develop in the framework of this paper an argument which is classical in the L∞

framework [7]. There exists a sequence (ζj)j∈N of elements of C0([0, Ū ]), dense in C0([0, Ū ]) for the uniform
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convergence topology. Then the sequence
(∫

R
ζ1(s) dµi(x, t)(s)

)
i∈N

is bounded in L∞((A,B)×R
+). Then there

exists a subsequence and g1 ∈ L∞((A,B) × R
+) such that

∫
R
ζ1(s) dµi(x, t)(s) converges to g1 for the weak-⋆

topology of L∞((A,B)×R
+). By a diagonal process, we may extract a subsequence again denoted (µi)i∈N such

that for all j ∈ N the sequence of functions (x, t) →
∫

R
ζj(s) dµi(x, t)(s) tends to gj for the weak-⋆ topology of

L∞((A,B) × R
+). By density, for all ζ ∈ C0([0, Ū ]), there exists a function gζ ∈ L∞((A,B) × R

+) such that∫
R
ζ(s) dµi(x, t)(s) converges to gζ(x, t), as i → ∞, for the weak-⋆ topology of L∞((A,B) × R

+). Now, by

considering the Lebesgue points of all functions (gj)j∈N, we build a subset of (A,B)×R
+ whose complementary

in (A,B)×R
+ has zero Lebesgue measure. For (x, t) in this subset, we may consider the application ζ → gζ(x, t),

checking that (x, t) is a Lebesgue point as well for any function ζ ∈ C0([0, Ū ]). This application defines a Young

measure on (A,B) × R
+ since it is continuous.

For a given κ ∈ R, we pass to the limit i→ ∞ in (30). Hence we get that µ is such that

∫ +∞

0

∫ B

A

∫

R

(s⊤κ− κ) dµ(x, t)(s) ∂tϕ(x, t) dxdt+

∫ B

A

(uini(x)⊤κ− κ)ϕ(x, 0) dx

+M

∫ +∞

0

ϕ(A, t)(u(t)⊤κ− κ) dt+M

∫ +∞

0

ϕ(B, t)(u(t)⊤κ− κ) dt

+

∫ +∞

0

∫ B

A

∫

R

(f(s⊤κ) − f(κ))dµ(x, t)(s) ∂xϕ(x, t) dxdt ≥ 0.

We have also the same inequality with functions κ − s⊥κ. Then µ is an entropy Young measure solution (also

called “process” solution in [22]) of the problem. Thanks to the uniqueness result, given as Theorem 2 in [22], we

know that this entropy Young measure solution resumes to the entropy weak solution u(x, t). We then have

lim
i→∞

∫

[A,B]×R+

ϕ(x, t)

∫

R

s2dµi(x, t)(s) dxdt =

∫

[A,B]×R+

ϕ(x, t)u(x, t)2dxdt,

and

lim
i→∞

∫

[A,B]×R+

ϕ(x, t)u(x, t)

∫

R

sdµi(x, t)(s) dxdt =

∫

[A,B]×R+

ϕ(x, t)u(x, t)dxdt,

which shows that

lim
i→∞

∫

[A,B]×R+

ϕ(x, t)

∫

R

(s− u(x, t))2dµi(x, t)(s) dxdt = 0.

Hence we conclude the proof of the theorem taking ϕ = 1 on ((A,B) × [0, T ]) and using the Cauchy-Schwarz

inequality.

3 The unbounded case

In this section, we now aim to prove that the misanthrope process, defined by the Chapman-Kolmogorov equation

(12) and a given initial probability measure, converges to some entropy weak solution that we have to define in the

unbounded case (this is simpler than in the bounded case).

Definition 3.1 (Entropy weak solution) Let f ∈ C1(R,R) and uini ∈ L∞(R). The entropy weak solution to

Problem (5) is a function u such that

• u ∈ L∞(R × R
+),

• the following inequality holds

∫
|u(x, t) − κ|∂tϕ(x, t) dtdx+

∫ (
f(u(x, t)⊤κ) − f(u(x, t)⊥κ)

)
∂xϕ(x, t) dtdx

+
∫

R
|uini(x) − κ|ϕ(x, 0) dx ≥ 0, ∀ϕ ∈ C1

c (R × R
+,R+),∀κ ∈ R.

(40)
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We have the following fundamental theorem [16] (let us observe that the unbounded case has been solved a long

time before the bounded one).

Theorem 3.1 Let f ∈ C0(R) be Lipschitz continuous , uini ∈ L∞(R), then there exists a unique entropy weak

solution to Problem (5).

3.1 Estimates

Estimates in the unbounded case are obtained in a similar way as in the bounded case. The next lemma is similar

to Lemma 2.1 and is proved using Gζ = 1
2 (G⊤

ζ +G⊥
ζ ).

Lemma 3.1 (Discrete entropy inequalities) Let ζ ∈ C2(R) be a convex function. Let ηt be the misanthrope

process defined by the Chapman-Kolmogorov equation (12) and a given initial probability measure on D.

Then the following inequality holds:

h
dE (ζ(ηt(n)))

dt
+ E (Gζ(ηt(n), ηt(n+ 1)) −Gζ(ηt(n− 1), ηt(n))) ≤ k g(U, 0) max

κ∈[0,U ]
ζ ′′(κ), ∀n ∈ Z,

(41)

denoting, for given X < 0 < U < Y ,

Gζ(x, y) =
1

2

∫ Y

X

ζ ′′(κ)(g(x⊤κ, y⊤κ) − g(x⊥κ, y⊥κ))dκ+ g(x, y)
ζ ′(X) + ζ ′(Y )

2
, ∀x, y ∈ [X,Y ]. (42)

The next lemma is similar to Lemma 2.2. The differences come from the fact that, in the unbounded case, one

needs in introduce arbitrary bounds, related to the support of test functions in the entropy formulation.

Lemma 3.2 Let ηt be the misanthrope process defined by the Chapman-Kolmogorov equation (12) and a given

initial probability measure on D. Let T > 0, R > 0, A,B ∈ N such that R < Bh < R + 1 and −R > Ah >
−R− 1. Then there exists C ∈ R, only depending on T , R, U , g such that, for h < R, assuming k

h ≤ 1,

∫ T

0

B−1∑

n=A

E (H(ηt(n), ηt(n+ 1))) dt ≤ C√
h
, (43)

with H defined by (22).

One more time, the next lemma is similar to Lemma 2.3.

Lemma 3.3 Let ηt be the misanthrope process defined by the Chapman-Kolmogorov equation (12) and a given

initial probability measure on D. Let ν be the real process defined by (13). Let κ ∈ R be given. Then the following

inequality holds:

∫ +∞

0

∫

R

E (|ν(x, t) − κ|) ∂tϕ(x, t) dxdt+

∫

R

|uini(x) − κ|ϕ(x, 0) dx

+

∫ +∞

0

∫

R

E(f(ν(x, t)⊤κ) − f(ν(x, t)⊥κ)) ∂xϕ(x, t) dxdt ≥

−
∫

R

ϕ(x, 0)dµini(x) −
∫

R×R+

ϕ(x, t)dµ0(x, t) −
∫

R×R+

(|∂tϕ(x, t)| + |∂xϕ(x, t)|)dµ1(x, t),

(44)

for all ϕ ∈ C∞
c (R × R,R+), and where the measures µ0, µ1 and µini verify the following properties:

1. For all R > 0 and T > 0, there exists C0 depending only on R and T , g and U such that

µ0([−R,R] × [0, T ]) ≤ C0

√
k

h
. (45)
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2. For all R > 0 and T > 0, there exists C1 depending only on g, uini, U , R and T such that, for h < R,

µ1([−R,R] × [0, T ]) ≤ C1(
√
h+

√
k

h
). (46)

3. The measure µini is the measure of density E|uini(.)−ν(., 0)|+ C ini

√
Kh

with respect to the Lebesgue measure,

where C ini only depends on R and T , g and U .

3.2 Convergence study

The following convergence result may be proved as in the bounded case, its proof relies on the preceding lemma

and on the uniqueness theorem given in [7].

Theorem 3.2 Let us consider a sequence hi, ki with hi → 0 and ki/hi → 0. Let us denote by νi(x, t) the process

ν(x, t) associated by (13) to the misanthrope process defined by the Chapman-Kolmogorov equation (12) and a

given initial probability measure on D with parameters hi, ki. If we assume that for all A < B

lim
i→∞

E

(∫ B

A

∣∣uini(x) − νi(x, 0)
∣∣ dx

)
= 0,

the process νi(x, t) converges to the unique entropy weak solution u(x, t) of the equation (5), in the sense that for

all T > 0 and all A < B

lim
i→∞

∫

[A,B]×[0,T ]

E (|νi(x, t) − u(x, t)|) dxdt = 0

3.3 Error estimate

Let us finally provide an error estimate in the unbounded case, the proof of which is inspired by that of error

estimates for deterministic numerical schemes [9]. To this purpose, we assume that uini has locally bounded

variations (that we denote by uini ∈ BVloc(R)), which simply means that its derivative in the distribution sense is

a measure which is not necessarily finite (for example, uini = 0 on [2k, 2k + 1) and uini = 1 on [2k + 1, 2k + 2),
for all k ∈ Z).

Lemma 3.4 Let uini ∈ BVloc(R) ∩ L∞(R). Let ν be a stochastic process on R × R
+, valued in in a bounded

subset of R, such that there exists measures µ0, µ1 on R × R
+ and µini on R such that

∫ +∞

0

∫

R

E

(
|ν(x, t) − κ|∂tϕ(x, t) + (f(ν(x, t)⊤κ) − f(ν(x, t)⊥κ))∂xϕ(x, t)

)
dxdt

+

∫

R

|uini(x) − κ|ϕ(x, 0)dx

≥ −
∫

R×R+

(
|∂tϕ(x, t)| + |∂xϕ(x, t)|

)
dµ1(x, t) −

∫

R×R+

ϕ(x, t)dµ0(x, t) −
∫

R

ϕ(x, 0)dµini(x),

∀κ ∈ R, ∀ϕ ∈ C∞
c (R × R

+,R+).

(47)

Let u be the unique entropy weak solution of (5) in the sense of Definition 3.1.

Let ψ ∈ C∞
c (R × R

+,R+) be given, and let S = {ψ 6= 0} = {(x, t) ∈ R × R
+; ψ(x, t) 6= 0} and S0 =

{ψ(·, 0) 6= 0} = {x ∈ R; ψ(x, 0) 6= 0}. Then there exists C only depending on ‖ψ‖L∞(R×R+), ‖∂tψ‖L∞(R×R+),

‖∂xψ‖L∞(R×R+), f , S, S0 and uini, such that

∫ +∞

0

∫

R

E

[
|ν(x) − u(x, t)|∂tψ(x, t) +

(
f(ν(x)⊤u(x, t)) − f(ν(x)⊥u(x, t))

)
(∂xψ(x, t))

]
dxdt

≥ −C(µini(S0) + (µ1(S))
1
2 + (µ1 + µ0)(S)).

(48)
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Proof of Lemma 3.4

The main tool of the proof (the so-called Krushkov’s “double variable technique”) is to take κ = u(y, s) in (47),

κ = ν(x, t) in (40) and to introduce mollifiers in order to have y close to x and s close to t. Let ρ ∈ C∞
c (R,R)

satisfying the following properties:

supp(ρ) = {x ∈ R; ρ(x) 6= 0} ⊂ [−1, 0], (49)

ρ(x) ≥ 0, ∀x ∈ R,

∫

R

ρ(x)dx = 1.

For example, one might define ρ̃ by ρ̃(x) = exp(−1/(1 − (2x + 1)2)) for x ∈ (−1, 0) and 0 elsewhere, and

ρ(x) = ρ̃(x)/
∫ 0

−1
ρ̃(y)dy. For r ∈ R, r ∈ [1,+∞), one defines ρr(x) = rρ(rx), for all x ∈ R.

Let ψ ∈ C∞
c (R × R

+,R+), and let ϕ : (R × R
+)2 → R

+ be defined by:

ϕ(x, t, y, s) = ψ(x, t)ρr(x− y)ρr(t− s).

Note that, for any (y, s) ∈ R × R
+, one has ϕ(·, ·, y, s) ∈ C∞

c (R × R
+,R+) and, for any (x, t) ∈ R × R

+, one

has ϕ(x, t, ·, ·) ∈ C∞
c (R × R

+,R+). Let us consider, in (40) (in which we denote the space and time variables

by (y, s)), ϕ(x, t, ·, ·) as test function, and κ = ν(x, t). We then take the mean value and integrate for (x, t) ∈
R × R

+. We thus get, remarking that, thanks to (49), ϕ(x, t, y, 0) = 0 for all t ≥ 0,

∫ ∞

0

∫

R

∫ ∞

0

∫

R

E

[
|u(y, s) − ν(x, t)|∂sϕ(x, t, y, s)

+
(
f(u(y, s)⊤ν(x, t)) − f(u(y, s)⊥ν(x, t))

)
∂yϕ(x, t, y, s)

]
dydsdxdt ≥ 0,

∀κ ∈ R, ∀ϕ ∈ C∞
c (R × R

+,R+).

(50)

We now consider, in (47), ϕ(·, ·, y, s) as test function and κ = u(y, s). We then integrate (47) for (y, s) ∈ R × R
+.

We then get

∫ ∞

0

∫

R

∫ ∞

0

∫

R

E

(
|ν(x, t) − u(y, s)|∂tϕ(x, t, y, s)

+(f(ν(x, t)⊤u(y, s)) − f(ν(x, t)⊥u(y, s)))∂xϕ(x, t, y, s)
)
dxdtdyds

+

∫ ∞

0

∫

R

∫

R

|uini(x) − u(y, s)|ϕ(x, 0, y, s)dxdyds ≥

−
∫ ∞

0

∫

R

∫

R×R+

(
|∂tϕ(x, t, y, s)| + |∂xϕ(x, t, y, s)|

)
dµ1(x, t)dyds

−
∫ ∞

0

∫

R

∫

R×R+

ϕ(x, t, y, s)dµ0(x, t)dyds

−
∫ ∞

0

∫

R

∫

R

|ϕ(x, 0, y, s)|dµini(x)dyds,

(51)

Adding the two inequalities (50) and (51) and using ∂sϕ(x, t, y, s)+∂tϕ(x, t, y, s) = ∂tψ(x, t)ρr(x−y)ρr(t−s)
and ∂xϕ(x, t, y, s) + ∂yϕ(x, t, y, s) = ∂xψ(x, t)ρr(x− y)ρr(t− s), yield

E11 + E12 + E14 ≥ −E2, (52)

where
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E11 =

∫ ∞

0

∫

R

∫ ∞

0

∫

R

E

[
|ν(x, t) − u(y, s)|∂tψ(x, t)ρr(x− y)ρr(t− s)

]
dxdtdyds,

E12 =

∫ ∞

0

∫

R

∫ ∞

0

∫

R

E

[(
f(ν(x, t)⊤u(y, s)) − f(ν(x, t)⊥u(y, s))

)

∂xψ(x, t)ρr(x− y)ρr(t− s)
]
dxdtdyds,

E14 =

∫

R

∫ ∞

0

∫

R

|uini(x) − u(y, s)|ψ(x, 0)ρr(x− y)ρr(−s)dydsdx

and

E2 =

∫ ∞

0

∫

R

∫

R×R+

(
|ρr(x− y)(∂tψ(x, t)ρr(t− s) + ψ(x, t)ρ′1,r(t− s))|

+|ρr(t− s)(∂xψ(x, t)ρr(x− y) + ψ(x, t)ρ′r(x− y))|
)
dµ1(x, t)dyds

+

∫ ∞

0

∫

R

∫

R×R+

ρr(x− y)ψ(x, t)ρr(t− s)dµ0(x, t)dyds

+

∫ ∞

0

∫

R

∫

R

|ψ(x, 0)ρr(x− y)ρr(−s)|dµini(x)dyds.

(53)

Let us now study the four terms of (52). In the following, the notationCi (i ∈ N) will refer to various real quantities

only depending on ‖ψ‖L∞(R×R+), ‖∂tψ‖L∞(R×R+), ‖∂xψ‖L∞(R×R+), f , S, S0 and uini.

Equality (53) leads, thanks to
∫

R
|ρ′r(s)|ds = r

∫
R
|ρ′(s)|ds, to

E2 ≤ (r + 1)C1µ1(S) + C2µ
ini(S0) + C2µ0(S). (54)

Let us handle the term E11. For all x ∈ R and for all t ∈ R
+, one has, using (49),

∫

R

∫ ∞

0

ρr(x− y)ρ1,r(t− s)dsdy = 1.

Then,

|E11 −
∫ +∞

0

∫

R

E

[
|ν(x, t) − u(x, t)|∂tψ(x, t)

]
dxdt| ≤

∫ ∞

0

∫

R

∫ ∞

0

∫

R

[
|u(x, t) − u(y, s)||∂tψ(x, t)|ρr(x− y)ρr(t− s)

]
dxdtdyds ≤ ‖∂tψ‖∞ε(r, S),

with

ε(r, S) = sup{‖u− u(· + η, · + τ)‖L1(S), |η| ≤
1

r
, 0 ≤ τ ≤ 1

r
}. (55)

Since uini ∈ BV (R), the function u belongs toBV (R×(−T, T )), for all T > 0, setting, for instance, u(., t) = uini

for t < 0 (see [16] where this result is proved passing to the limit on numerical schemes).

Then,

ε(r, S) ≤ C3

r
. (56)

Hence,

|E11 −
∫ +∞

0

∫

R

E

[
|ν(x, t) − u(x, t)|∂tψ(x, t)

]
dxdt| ≤ C4

r
. (57)

In the same way, using |f(a⊤b)− f(a⊤c)| ≤M |b− c| and |f(a⊥b)− f(a⊥c)| ≤M |b− c| for all a, b, c ∈ [0, U ]
where M is the Lipschitz constant of f in [0, U ],
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|E12 −
∫ +∞

0

∫

R

E

(
f(ν(x, t)⊤u(x, t)) − f(ν(x, t)⊥u(x, t))

)

∂xψ(x, t)dxdt| ≤ C5ε(r, S) ≤ C6

r .
(58)

In order to estimate E14, let us take in (40) (in which we denote the space and time variables by (y, s)), for x ∈ R

fixed, ϕ = ϕ(x, ·, ·), with

ϕ(x, y, s) = ψ(x, 0)ρr(x− y)

∫ ∞

s

ρr(−τ)dτ,

and κ = uini(x). Note that ϕ(x, ·, ·) ∈ C∞
c (R × R

+,R+). We then integrate the resulting inequality with respect

to x ∈ R. We get

−E14 + E15 + E16 ≥ 0,

with

E15 = −
∫ ∞

0

∫

R

∫

R

∫ ∞

s

(f(u(y, s)⊤uini(x)) − f(u(y, s)⊥uini(x)))

ψ(x, 0)ρ′r(x− y)ρr(−τ)dτdydxds,

E16 =

∫

R

∫

R

∫ ∞

0

ψ(x, 0)ρr(x− y)ρr(−τ)|uini(x) − uini(y)|dτdydx.

To bound E15, one introduces E15b defined as

E15b = −
∫ ∞

0

∫

R

∫

R

∫ ∞

s

(f(u(y, s)⊤uini(y)) − f(u(y, s)⊥uini(y)))

ψ(x, 0)ρ′r(x− y)ρr(−τ)dτdydxds.
Integrating by parts for the x variable yields

E15b =

∫ ∞

0

∫

R

∫

R

∫ ∞

s

(f(u(y, s)⊤uini(y)) − f(u(y, s)⊥uini(y)))

∂xψ(x, 0)ρr(x− y)ρr(−τ)dτdydxds.
Then, noting that the time support of this integration is reduced to s ∈ [0, 1/r], one has

E15b ≤
C11

r
. (59)

Furthermore, one has

|E15 − E15b| ≤ C12

∫ ∞

0

∫

R

∫

R

∫ ∞

s

|uini(x) − uini(y)||ρ′r(x− y)|ψ(x, 0)ρr(−τ)dτdydxds,

which is bounded by C13ε0(r, S0), since the time support of the integration is reduced to s ∈ [0, 1/r], where

ε0(r, S0) is defined by

ε0(r, S0) = sup{
∫

S0

|uini(x) − uini(x+ η)|dx; |η| ≤ 1

r
}. (60)

Since uini ∈ BV (R), one has ε0(r, S0) ≤ C14/r and therefore, with (59), E15 ≤ C15/r, and one also has that the

term E16 is bounded by C16/r. Hence, since E14 ≤ E15 + E16,

E14 ≤ C17

r
. (61)

Using (52), (54), (57), (58), (61), one obtains
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∫ +∞

0

∫

R

E

[
|ν(x, t) − u(x, t)|∂tψ(x, t) +

(
f(ν(x, t)⊤u(x, t)) − f(ν(x, t)⊥u(x, t))

)
∂xψ(x, t)

]
dxdt

≥ −C1(r + 1)µ1(S) − C2(µ
ini(S0) + µ0(S)) − C18

r
,

which, taking r = 1/
√
µ1(S) if 0 < µ1(S) ≤ 1 (r → ∞ if µ1(S) = 0 and r = 1 if µ1(S) > 1), gives (48).

This concludes the proof of Lemma 3.4.

Theorem 3.3 Let uini ∈ BVloc(R) ∩ L∞(R), let u be the unique entropy weak solution of the problem. Let us

assume the same hypotheses as in Lemma 3.4,

Then, for all R > 0 and all T > 0 there exists Ce and R̄, only depending on R, T , f and uini, such that the

following inequality holds:

∫ T

0

∫ R

−R

E|ν(x, t) − u(x, t)| dxdt ≤ Ce(µ
ini([−R̄, R̄]) + [µ1([−R̄, R̄] × [0, T ])]

1
2

+(µ1 + µ0)([−R̄, R̄] × [0, T ])).

Proof of Theorem 3.3

Let R > 0 and T > 0. Let M be a Lipschitz constant of f in [0, U ] (indeed, since f ∈ C1(R,R), one has

M = sup{|f ′(s)|; s ∈ [0, U ]}).

Let ρ ∈ C1
c (R+, [0, 1]) be a function such that ρ(r) = 1 if r ∈ [0, R +MT ], ρ(r) = 0 if r ∈ [R +MT + 1,∞)

and ρ′(r) ≤ 0, for all r ∈ R
+ (ρ only depends on R, T , f and uini).

One takes, in (48), ψ defined by

ψ(x, t) = ρ(|x| +Mt)T−t
T , for x ∈ R and t ∈ [0, T ],

ψ(x, t) = 0, for x ∈ R and t ≥ T.

Note that ρ(|x| +Mt) = 1, if (x, t) ∈ [−R,R] × [0, T ].
The function ψ is not in C∞

c (R × R
+,R+), but, using a usual regularization technique, it may be proved that such

a function can be considered in (48), in which case Inequality (48) writes, with R̄ = R+MT + 1,

∫ T

0

∫

R

E

[
|ν(x, t) − u(x, t)|

(T − t

T
Mρ′(|x| +Mt) − 1

T
ρ(|x| +Mt)

)
+

(
f(ν(x, t)⊤u(x, t)) − f(ν(x, t)⊥u(x, t))

)
T−t
T ρ′(|x| +Mt) x

|x| )
]

dxdt ≥
−C(µini([−R̄, R̄]) + (µ1([−R̄, R̄] × [0, T ]))

1
2 + (µ1 + µ0)([−R̄, R̄] × [0, T ])),

where C only depends on R, T , f and uini.

Since ρ′ ≤ 0, one has

(
f(ν(x, t)⊤u(x, t)) − f(ν(x, t)⊥u(x, t))

) T − t

T
ρ′(|x| +Mt)(

x

|x| )
)
≤

|ν(x, t) − u(x, t)|T−t
T M(−ρ′(|x| +Mt)),

and therefore, since ρ(|x| +Mt) = 1, if (x, t) ∈ [−R,R] × [0, T ],

∫ T

0

∫

[−R,R]

E|ν(x, t) − u(x, t)|dxdt ≤ CT (µini([−R̄, R̄]) + (µ1([−R̄, R̄] × [0, T ]))
1
2

+(µ1 + µ0)([−R̄, R̄] × [0, T ])).

This completes the proof of Theorem 3.3.

We then deduce the following theorem.
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Theorem 3.4 Let ηt be the misanthrope process defined by the Chapman-Kolmogorov equation (12) and the initial

probability measure given by the Dirac measure on the function defined, for all n ∈ Z, by the closest element of

kZ to 1
h

∫ nh

(n−1)h
uini(x) dx. Let ν be the real process defined by (13). For all R > 0 and T > 0, assuming

uini ∈ BVloc(R) ∩ L∞(R), taking k = h2, then there exists Ce, only depending on R, T , g, uini, such that the

following inequality holds: ∫ T

0

∫ R

−R

E|ν(x, t) − u(x, t)| dxdt ≤ Ceh
1
4 . (62)

4 Numerical computations on the Riemann problem

For a given U > 0, one considers Problem (1)-(4) with (A,B) = (0, 1), assuming that uini is defined, for given

real values ul, ur ∈ [0, U ] and x0 ∈ (0, 1), by

uini(x) =

{
ul if x < x0

ur otherwise
(63)

and that the functions u and u are respectively defined by u(t) = ul and u(t) = ur for all t ∈ R
+ (this problem is

the generalization of the Riemann problem to the bounded setting since this boundary condition allows to reproduce

the unbounded solution at least for a finite time which is not precisely given in the examples below).

In the linear case f(u) = v u, v ∈ R, the entropy weak solution to Problem (1)-(4) (which is also in this case the

unique weak solution) is then obtained by translation of the initial condition:

u(x, t) = uini(x− tv) =

{
ul if x− tv < x0

ur if x− tv > x0

If the flux function f is non-linear, the entropy weak solution shows shock or rarefaction waves: shock waves

are discontinuity lines between two density levels, that propagate over the time. Rarefaction waves are regular

transitions between density levels. The entropy condition allows to specify the unique physical solution. When f
is strictly convex or concave, the solution is deduced from the sign of ul − ur.

Assuming f strictly convex (resp. strictly concave), ul > ur (resp. ul < ur) and denoting

σ =
f(ur) − f(ul)

ur − ul
,

then the entropy weak solution u of Problem (1)-(4) is the shock wave starting at x0 and propagating at the constant

speed σ

u(x, t) =

{
ul if (x− x0)/t < σ,
ur if (x− x0)/t > σ.

The solution is a shock wave starting at x0 and propagating at the constant speed σ.

If one assumes f strictly convex (resp. strictly concave) and ul < ur (resp. ul > ur) then the entropy weak

solution of Problem (1)-(4) is the rarefaction wave given by

u(x, t) =





ul if (x− x0)/t < f ′(ul),
G((x− x0)/t) if f ′(ul) ≤ (x− x0)/t ≤ f ′(ur),
ur if (x− x0)/t > f ′(ur),

with G is the reciprocal function to f ′, which means that, for a given value u0 ∈ [ul⊥ur, ul⊤ur], then u(x0 +
tf ′(u0), t) = u0.

In the application of this model to traffic flow [18, 21], the flux function f is assumed to be concave. The

nondecreasing part of the function corresponds to a free traffic state into which traffic characteristics propagate

down-stream. The nonincreasing part describes an interactive or congested traffic state. For this traffic state, the

characteristics propagate up-stream. These aspects are observed on real traffic data [8].
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With the aim to model traffic flow, one considers henceforth the two following positive and concave flux functions:

f1(u) =

{
u 0 ≤ u ≤ 1/2
1 − u 1/2 < u ≤ 1

(64)

and

f2(u) = u(1 − u). (65)

Hence f1 ∈ C0(R) is a triangular and piecewise linear flux function while f2 ∈ C∞(R) is a regular polynomial

one.

One proposes to numerically approximate the solution of Problem (1)-(4) by using the misanthrope process ηt

defined on E = (h2[[0, N2]])[[1,N ]] with N ∈ N
⋆ and h = 1/N (one assumes with the previous notation that

k = h2, U = 1 and therefore K = U/k = N2). The process is characterized by the Chapman-Kolmogorov

equation (10).

The jump rate of the process, given by (8), depends on the numerical flux function. One uses and compares two

numerical fluxes in the numerical experiments: the Godunov numerical flux (16) and a modified positive Rusanov

(or Lax-Friedrichs) numerical flux given by

g(a, b) =
1

2
(f(a) + f(b) + a− b)+ ,

with (x)+ =

{
x if x ≥ 0
0 otherwise

(see figure 1 and 4).

One uses an event-driven evolution scheme to simulate the stochastic process η. Each site occupied by at least

one particle has an exponential clock giving the jump time of a particle towards the next site, or creation (resp.

deletion) of a particle for the first (resp. last) site. The exponential times are calibrated by the jump rate function b.
The process is simulated as follows. At the initial time, one calculates the jump time of each site according to their

jump rate. Then, at each step (i.e. at each jump), one has to:

1. Select the site with the minimal time;

2. Transfer a particle from this site to the next one, or create or delete a particle;

3. Update the global time of the system with the jump time of the section selected;

4. Calculated the new jump times of the sections whose jump rate has been modified.

In the simulation experiments, one considers two initial conditions:

Exp. 1 leading to a rarefaction wave,

uini(x) =

{
ul = 0.8 if x < x0 = 0.5
ur = 0.2 otherwise,

(see Figures 2 and 5);

Exp. 2 leading to a shock wave,

uini(x) =

{
ul = 0.4 if x < x0 = 0.8
ur = 0.7 otherwise,

(see Figures 3 and 6).

One compares the numerical approximations respectively obtained using the Godunov and Rusanov numerical

fluxes. The simulation are done for different values of the parameter h (equal to 0.05, 0.02 and 0.01).

One observes that the precision of the approximations is similar for the two numerical fluxes when the flux function

is triangular since the jump rate functions are close. The approximation solutions are more accurate when using

the Godunov numerical flux than the Rusanov one if the flux function is the polynomial f : u 7→ u(1 − u). As

expected, in all the cases, the approximations are more and more accurate as h tends towards 0.
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5 Conclusion

We show the convergence of a misanthrope process to the entropy solution of a hyperbolic equation, both on a

bounded and a non-bounded space. The proof of the convergence is based on the Chapman-Kolmogorov equation

and on the uniqueness of the entropy Young measure solution. In the non-bounded case, we provide an error

estimate through a method close to those involved in the convergence proofs for deterministic numerical schemes.

The use of this framework enables a strong limit sense of the stochastic process to the entropy weak solution

of the problem (note that, even in the linear case, one should use the nonlinear framework for proving such a

convergence).

From a numerical point of view, the stochastic continuous-time misanthrope process might be compared to first

order deterministic discrete-time numerical schemes, in particular from the points of view of the computing time

and the accuracy. It seems clear that the error estimate provided in this paper is not sharp, in a similar way to that

obtained for deterministic numerical schemes. The error estimate including boundary terms remains to be studied.

Finally, the results given in this paper show the close relation between modeling traffic flows using misanthrope

processes and using the limit nonlinear scalar hyperbolic equation. Large work remains to be done for improving

the accuracy of these models.
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Figure 1: Jump rate function for the triangular flux (64). Left, case of the Godunov numerical flux and, right, case

of the modified Rusanov one.
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Figure 2: Exp. 1 – case of the triangular flux (64). Solution (in gray dotted lines) and the misanthrope process plot

at time t = {0, 0.2, 0.4} for h = {0.05, 0.02, 0.01}. Top, one uses the Godunov numerical flux and bottom the

modified Rusanov one.
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Figure 3: Exp. 2 – case of the triangular flux (64). Solution (in gray dotted lines) and the misanthrope process plot

at time t = {0, 0.8, 1.6} for h = {0.05, 0.02, 0.01}. Top, one uses the Godunov numerical flux and bottom the

modified Rusanov one.
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Figure 4: Jump rate function for the polynomial flux (65). Left, case of the Godunov numerical flux and, right,

case of the modified Rusanov one.
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Figure 5: Exp. 1 – case of the polynomial flux (65). Solution (in gray dotted lines) and the misanthrope process

plot at time t = {0, 0.4, 0.8} for h = {0.05, 0.02, 0.01}. Top, one uses the Godunov numerical flux and bottom

the modified Rusanov one.



28

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Godunov numerical flux
 h = 0.05

space

de
ns

ity
 le

ve
l

t = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

h = 0.02

space

de
ns

ity
 le

ve
l

t = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

h = 0.01

space

de
ns

ity
 le

ve
l

t = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Rusanov numerical flux
 h = 0.05

space

de
ns

ity
 le

ve
l

t = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

h = 0.02

space

de
ns

ity
 le

ve
l

t = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

h = 0.01

space

de
ns

ity
 le

ve
l

t = 0

Figure 6: Exp. 2 – case of the polynomial flux (65). Solution (in gray dotted lines) and the misanthrope process

plot at time t = {0, 2.2, 4.4} for h = {0.05, 0.02, 0.01}. Top, one uses the Godunov numerical flux and bottom

the modified Rusanov one.


