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Grain Buiding Ordering
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Université Paris-Est, 2, Bd Blaise Pascal, 93162l Noisy-le-Grand, France
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Abstract. Given a set E, the partitions of E are usually ordered by
merging of classes. In segmentation procedures, this ordering often gen-
erates small parasite classes. A new ordering, called ”grain building or-
dering”, or GBO, is proposed. It requires a connection over E and states
that A 4 B, with A,B ⊆ E, when each connected component of B con-
tains a connected component of A. TheGBO applies to sets, partitions,
and numerical functions. Thickenings ψ with respect to the GBO are in-
troduced as extensive idempotent operators that do not create connected
components. The composition product ψγ of a connected opening by a
thickening is still a thickening. Moreover, when {γi, i ∈ I} is a gran-
ulometric family, then the two sequences {ψγi, i ∈ I} and {γiψ, i ∈ I}
generate hierarchies, from which semi-groups can be derived. In addition,
the approach allows us to combine any set of partitions or of tessellations
into a synthetic one.

1 Introduction

In image processing, the segmentation techniques, which aim to partition the
space of definition of the image under study, often generate a few correct classes.
They are large and representative, but surrounded by a multitude of small para-
sitic other ones. Figure 1, depicts a typical example of the phenomenon. Several
authors, such as Ph. Salembier et Al. [9] or J. Crespo et Al. [3], among others,
propose solutions by merging of flat zones that satisfy convenient criteria, in as-
sociation with some constraints (e.g. not to subdivide the small zones). In [14],
P. Soille and J. Grazzini try to stamp out the parasites by imposing the presence
of one extremum at least of the image inside each segmented class. In [1], the
small regions are removed by erosions of partitions.

Small classes turn out to be inherent in the segmenting techniques. In case
of connective segmentation, for example, they satisfy the chosen criterion, in the
same way as the large classes. If they are reduced by intersection of constraints,
they become singletons [11], or they are absorbed by the background [7]. The
trouble is shifted, but not solved: what to do, then, with this background, or
with these unclassified singletons? The solution adopted in [11] (figures 11 and
12) consists in building the influence zones of the large classes, which absorb the
small ones. Independently, the above authors often did the same, but surrep-
titiously, for not catching attention on a procedure that resembles to cooking,
rather than to nice theorems.



Fig. 1. Segmentations quasi-flat zones of increasing slopes λ ; as λ increases, the details
of the face progressively vanish, though the parasite small grains remain (by courtesy
of Noyel et Al. [6]).

The elimination of the small classes refers to a wider question: what does the
usual ordering on partitions stand for? According to this so called ”refinement
ordering”, one goes from a smaller partition to a larger one uniquely by merging
classes, hence by only removing frontiers and not by moving them, or by creating
new ones. This rapidly leads to ambiguous situations whose paradigm is depicted
in figure 2. In case of the figure, must we introduce some choice in a segmenting
approach which is basically deterministic?

Fig. 2. The usual ordering on partitions can suppress the small class in a) only by
merging it with one of the two large ones. Could another ordering divide up the small
central class among the two others, as in b)?

When passengers are fully packed in the metro, and that one person leaves
the carriage, does one of his neighbors suddenly swell and monopolize the whole
free space for himself? At the end of a war, do both winners and losers decide, as
an absolute rule, not to move any frontier? In figure 2 as well, we would like to
refuse the ukase of the refinement ordering, and to share the small class among
the two large ones, by joining x to y by a simple arc. If we proceed this way,



then every class of the resulting partition contains at least one class of the initial
one. It is exactly this property that we will now raise to an axiom 1.

2 Grain building ordering (GBO)

Given set E, we consider the lattice P(E) of all its subsets, and provide it with
an arbitrary connection C∗, said to be standard. Unlike inclusion, where A ⊆ B

means that any point of A belongs to B, the ordering relation introduced below
holds on the C∗-components de P(E), hence its generic appellation of connected
ordering. We will indicate a few notation. The image of P(E) under operation
ψ is written by Pψ

Pψ = {ψ(X), X ∈ P(E)}.

In order to avoid confusion between the various openings that intervene, we

denote by
.

Ax, the C∗-component of A at point x (instead of γx(A)). When the

labelling of the C∗-components of A is not necessary, one just writes
.

A (with
.

A ⊆ A). When the context is not ambiguous the expression ”C∗- connected
component” is replaced by ”component”, or by ”grain”, and ” C∗-connected
opening” by ”connected opening”. On the other hand, we keep the same symbol
⊆ to designate the setwise inclusion as well as the ordering relation it induces
between operators (i.e. γ ⊆ γ′ iff γ(A) ⊆ γ′(A) for all A ⊆ E).

Let A ∈ P(E), of connected components
·

Ai. An anti-extensive grain operator

is an operation on A that suppresses some
·

Ai and leave unchanged the others,
according to an increasing binary criterion that holds on each grain separately.
When the grain operator γ is idempotent, we speak of connected opening. It
may be the matter of an area threshold, or of the radius of the inscribed disc,
or of any external attribute.

An extensive and idempotent operation ψ : P(E) → P(E), is traditionally
called thickening, or sometimes idempotent thickening [10]. In addition we as-
sume here that the thickening ψ does not create connected components. Given
connection C∗, neither the grain operators and their connected openings, nor
thickenings, involve the lattice structure of P(E), but its inclusion ordering only.
Therefore, these three notions apply for any partial ordering on P(E).

Proposition 1. When P(E) is equipped with connection C∗, then the relation

A 4 B iff each
.

B ⊆ B contains at least one
.

A (1)

defines over P(E) a C∗-connected ordering, called grain building ordering (in
short: GBO).

1 A first version of this work, with all proofs and supplementary results, was presented
in a worksop at ESIEE, in April 2010 [13]. This initial work inspired Ch.Ronse with
several other orderings on partial partitions, and with the resulting optimisations.
They can be found in these proceedings [8].



For example, a ⊆-thickening ψ that does not create connected components is
not only ⊆-extensive, but also 4-extensive, and as its idempotence is independent
of the ordering, it turns out to be a 4-thickening as well. It is the same for any
connected opening γ. We have indeed that γ(A) � A, since every C∗-component
of γ(A) contains a C∗-component of A, namely itself. Note that the 4-order of
γ(A) and A is the opposite of that of inclusion. Remark also that the axiom of
the conditional union, which characterizes the connection, does not intervene in
Proposition 1.

Every set ordering relation extends to partitions via their classes. In the
present case, we can state the following:

Corollary 2. The set property (1) generates an ordering on the space D of the
partitions of E with C∗-connected classes, where D1 4 D1, D1, D2 ∈ D, when
each class of D2 contains one class of D1 at least.

Clearly, the set GBO does not preserve inclusion, neither connection C∗, since
when A 4 B some C∗-components of the smaller set, A, may lie partly or even
completely outside of B, as shown in figure 3. In case of sets, GBO is thus non
comparable to inclusion, though, for partitions, it is more restrictive than the
usual refinement:

D1 ≤ D2 ⇒ D1 4 D2, D1, D2 ∈ D, (2)

an implication which is no longer true for partial partitions. For extending
the setwise GBO to functions, one proceeds by comparing each section Xf (t) =
{x : x ∈ E, f(x) ≥ t} to the analogue Xg(t), by putting

f 4 g ⇔ Xf (t) 4 Xg(t), ∀t ∈ R̄ (or ∀t ∈ Z) .

which defines a numerical ordering, which is illustrated by Figure 4.

The set GBO does not induce any lattice: if
.

A1 and
.

A2 are two 4 −components

of A, each of both sets
.

A1 = A1 and
.

A2 = A2 is an upper bound of A, but there
is no upper bound of A smaller than A1 and A2. Therefore one can still introduce
increasing mappings.

By duality under complementation, Relation (1) induces the following one:

A⋆ 4 B⋆ if every
.

(Bc) ⊆ Bc contains at least one
.

(Ac) ⊆ Ac, (3)

which is still an ordering relation. The two relations (1) and (3) are not equiva-
lent, neither incompatible, and their logical intersection defines a third ordering,
of type homotopic type, in that it makes symmetrical the roles of grains and
pores. Other orderings associated with connections and partitions can be de-
fined [13] [8]. In particular, one can take the logical intersection between GBO
and inclusion, which eliminates all outside small objects. This yields the restric-
tion of the GBO to the partial partitions with same support. The 4-thickenings
below satisfy this double ordering.

This partial GBO governs the variations of some physical phenomena, such
as changes of metallic grains under fatigue. It appears also in political changes
(e.g. the dismemberment or the Ottoman Empire at the end of 19th century).



Fig. 3. GBO: a) for sets: the dilates of a few grains (in white) generate a set larger
than the initial one ; b) for partitions: in dark grey, the larger partition.

Fig. 4. GBO for numerical functions. Function g, in dotted lines, is the greater.

3 Thickening and 4 ordering

3.1 4-thickening from connected opening

We will now construct operations that simplify sets and partitions, by sorting out
certain main regions which then expand and cover the whole space. Their choice
is governed by an opening, and their expansion by a thickening. The simplest,
but the most worked out case, occurs when the opening is C∗-connected:*

Proposition 3. Given a connection C∗ on P(E), let γ : P(E)→ P(E) be a ⊆-
anti-extensive grain operator, and ψ : P(E)→ P(E) be a ⊆-thickening that does
not create connected components. The composition product ψγ is a thickening
for the GBO, and we have

I 4 ψγ = γψγ = (ψγ)2. (4)

The product γψ also behaves as a thickening, up to factor ψ:

I 4 ψγψ = γψγψ = (γψ)n n > 1. (5)



Below, the grain operators of the proposition are always connected openings.
Note that the proposition does not inform us on the distance between connected
components in ψγ and γψ.

Extension to partitions Proposition 3 can be stated in terms of partitions of E
into connected classes. Let D be the set of these partitions, D ∈ D and Dx the
class of D at point x. The set connected opening γ induces on D the following
operation γD

Dx[γD(D)] = γ(Dx) = Dx if x ∈ γ(Dx)

Dx[γD(D)] = {x} if not

Proposition 3 extends to partitions by replacing γ : P(E)→ P(E) by γD :
D(E)→ D(E), and by using a thickening ψ : D(E)→ D(E).

Fig. 5. a) Initial tessellation A, b) opening γ(A) that suppresses grains according to
their inscribed disc (here for radius ≤ 15); c) Voronoi thickening ψγ(A) of γ(A), which
is identical to its opening γψγ(A).

4-thickening from non-connected opening When opening γ is not con-
nected, then Proposition 3 is no longer valid, and is replaced by a more specific
result.

Proposition 4. Let γ be an opening on P(E) that acts independently on con-
nected components, and let ψ : P(E)→ P(E) be a ⊆-extensive operator that

does not create C∗- components. Denote by (γ̃ψ)γ(A) the union of those C∗-
components of γψγ(A) that contain a C∗-component of γ(A). The composition



product (γ̃ψ) is then 4-extensive on Pγ = γ[P(E)]:

γ(A) 4 (γ̃ψ)jγ(A) 4 (γ̃ψ)j+1γ(A). (6)

The idempotence of ψ is not necessary, and the condition, on γ, of individual
processing is satisfied by the usual openings by convex structuring elements. For

finite sets of E = Z
2 the limit µ = (γ̃ψ)nγ = (γ̃ψ)n+1γ is reached after n steps,

n <∞ (see Figure 6).

Fig. 6. The initial tesselation is that of figure 7; a) opening of the classes by a dodecagon
of size 15 ; b) limit opening µ , c) limit Voronoi thickening ψµ (and γψµ = µ).

Tessellations, partitions and Voronoi thickenings

Tesselations In R
2, it is convenient to distinguish between a partition and the

opening of its classes. Following R. Miles, we shall call ”tesselation” any set of
R

2 whose all C∗-components but one are topologically open, the last one being
a locally finite union of simple arcs. These contours are called ”cleavages”, and
the open classes ”tassels” [13]. When the cleavages class is connected, then the
tassels are simply connected. The practical interest of a tessellation is that its
open classes can always be handled as subsets of P(R2).

Voronoi thickening in R
2 Start from the family G0 of all locally finite unions

of disjoints open sets. Let A = ∪
·

Ak ∈ G0 ⊆ P(R2). The zone of influence of
·

Ak is the set of all points closer to
·

Ak than to any other
·

Ap ∈ A, p 6= k, and
the Voronoi thickening of A is the union ψ(A) of all zones of influence. The
complement set [ψ(A)]c is a locally finite union of simple arcs [4], called skeleton
by zones of influence. Therefore, the operator ψ is a ⊆-thickening on G0 that
does not create connected components, hence a 4-thickening. Consider now a



grain opening γ : G0 → G0, then Rel. (4) implies that the composition product
ψγ : G0 → G0 is still a 4-thickening.

Although ψ is not 4-increasing in general, it becomes 4-increasing for those
pairs A and A′ ∈ G0, such that A′ = A ∪ B, B ∈ G0, the C∗-components of B
being disjoint from those of A.

Proposition 5. Let A,A′, B ∈ G0, with A′ = A∪B, and B ∩A = ∅. Then the
Voronoi thickening ψ is 4-increasing, i.e.

{A′ = A ∪B, B ∩A = ∅} ⇒ {A′
4 A ⇒ ψ(A′) 4 ψ(A)}. (7)

Voronoi thickening in Z
2 One cannot transpose the above approach directly to

Z
2, because the involved digital distances do not ensure that the connectivity of

the seeds is preserved under growing. We must proceed by sequences of elemen-
tary operations which do maintain homotopy at each step (chap. XI-E in [10])
such as G. Bertrand’s topological watersheds [2], in a binary and complemented
version. Freedom is left for the succession of the elementary thickenings, so that
one can well approximate the final equidistant cleavages of the Euclidean homo-
logues. Moreover, Proposition 5 extends to P(Z2) when ψ is the opposite of a
topological watershed.

3.2 Hierarchies of thickenings based on connected opening

Consider, in R
2 or in Z

2, a family {γj, j ∈ J} of connected openings that
depend on the integers j ∈ J , and the Voronoi thickening ψ. We now construct
hierarchies of connected thickenings ψγj . Remark firstly that ⊆-decreasingness
of the γi is equivalent to their 4-increasingness (the γi are connected openings,
and each connected component of γj(A) is also a connected component of γi(A))

{j ≥ i ⇒ γj ⊆ γi} ⇔ {j ≥ i ⇒ γj � γi}.

Hierarchies can be obtained in two ways, according as we focus on the in-
creasingness of j → γjψ, or as we look for semi-groups. The second approach
generates a more powerful structure, but requires sequences of operations.

Hierarchies of ordered operators

Proposition 6. Let ψ be a thickening by zones of influence, and let {γj, j ∈ J}
be a 4-increasing family of connected openings, both in R

2 or in Z
2. Then the

two thickenings {ψγj, j ∈ J} and {γjψ, j ∈ J} form two chains for the GBO:

j ≥ i ⇒ ψγj < ψγi and γjψ < γiψ i, j ∈ J.



Fig. 7. a) Initial tessellation ψ, b) and c) thickening ψγ10ψγ0, and then ψγ20ψγ10ψγ0.
The results are ordered according to both 4, and to the semi-group.

Hierarchies by semi-groups Consider the 4-connected thickening ψγ and let
γ = γj decrease according to j ∈ J ,

j ≥ i ⇒ γj ≤ γi, i, j ∈ J .

The connected components ψγj are unchanged under γi, and by idempotence of
ψ, we obtain

j ≥ i ⇒ (ψγi)(ψγj) = (ψγj).

Consequently, the {ψγj} generate, by sequential composition, the Matheron
semi-group Mj :

MiMj = MjMi = Mj = (ψγj)...(ψγ2)(ψγ1), (8)

where the Mj are increasing for the GBO, since

j > i ⇒Mj = (ψγj)...(ψγi+1)Mi ≻Mi.

Figure 7 illustrates such a progression.

Saliency and Hierarchy Unlike the hierarchies based on the refinement ordering,
those on the GBO involve two saliencies for each edge, at least in the case of
Voronoi reconstructions that we study here. A new edge appears either at the
lowest level, or when a new grain is generated at level i. Then it does not change
as long as the two grains it separates are still present in the hierarchy, and
disappears permanently when one of these grains vanishes, at level j > i.

An example of this double saliency is depicted in Figure 8. A hierarchy has
been produced by applying the semi group of operators (8) to the tessellation of
Figure 7a). The pyramid is represented in a synthetic way by the two numerical



Fig. 8. a) and b), the two saliencies of a �-hierarchy; c) and d), the respective cross
sections of these saliencies at level 42; e) set diifference between c) and d), which results
in partition 42 of the �-hierarchy.

functions of Figure 8a) and b). By selecting all frontiers darker than 42 in Figure
8a) we obtain the family of those frontiers that appear before step 42 (Fig. 8c)).
Similarly, the threshold of 8b) at level 42 provides all frontiers that disappeared
before step 42 (Fig. 8d)). The set difference between the two sections results in
the partition at level 42 in the hierarchy (Fig. 8e)).

Mixing two hierarchies Segmentation processing often leads to hierarchies where
a sequence of partitions is ordered by refinement (symbol ≤). This occurs, for
example, in maps of watersheds when one weights the edges between adjacent
basins according to their flooding level. Let {Di, i ∈ I} be such a sequence of
partitions, with

i ≤ j ⇒ Di ≤ Dj ⇒ Di 4 Dj

Consider a thickening ψγ that 4-enlarges Di i.e. Di 4 ψγ(Di). As ψγ is not 4-

Fig. 9. a) partition Di; b) partition Dj ≥ Di; c) ψγ(Di), where the dotted rings
indicate the places of changes; d) partition D∗

j = Dj ⊔ ψγ(Di).

increasing, we cannot write ψγ(Di) 4 ψγ(Dj); the hierarchical structure seems



to be lost. However, the partition ψγ(Di) is composed of the partial partition D′

i

of all classes of Di left unchanged under ψγ, and of the partial partition D′′

i of all
the other classes of ψγ(Di). Let S′ and S′′ be the two corresponding supports,
with S′ ∪S′′ = E. Take the restriction of Dj to set S′ and that of ψγ(Di) to set
S′′, and define by D∗

j the partition of E which is obtained by the concatenation
⊔ of these two partial partitions:

D∗

j = (Dj)in S′ ⊔ (ψγ(Di))in S′
′ .

The partition D∗

j is equal to ψγ(Di) in S′′, and 4-larger than ψγ(Di) elsewhere,
hence D∗

j � ψγ(Di). Moreover, D∗

j is invariant under ψγ, since all its classes are
invariant under γ. We can write

Di 4 ψγ(Di) 4 D∗

j = ψγ(D∗

j ).

Suppose now that the γ′s are themselves ordered, i.e. that they form the gran-
ulometry {γp, p ∈ P}. Then, for p ≤ q we can write

p ≤ q and i ≤ j ⇒ Di 4 ψγp(Di) 4 ψγp(D
∗

j ) 4 ψγqψγp(D
∗

j ).

We find again the semi-goup (8).

4-thickening a low level The GBO can also serve as a tool for filtering. Consider
a level Di0 in the hierarchy {Di, i ∈ I} that we want to 4-amend for reducing
its small particles (e.g. Figure 10b)). One can perform some 4-thickening ψγ,
which produces the new partition ψγ(Di0) of Figure 10c), and apply to ψγ(Di0)
the criterion which already allowed us to suppress edges in the initial hierarchy
{Di, i ∈ I}. Indeed, one can check by comparing Figures 10 a) and c) that most
of the long previous edges are still in place, in the case of this example at least.a)
Initial tessellation; b) additional noisy small classes; c) thickening ψµ of b), by
a dodecagonal opening γ of size 5.

4 Conclusion

The grain building ordering presented here, as well as the other orderings stud-
ied [8] model how partitions of the space are reorganized, and enlarged, in some
physical processes. It does it in a more realistic way than the usual refinement
ordering, but in compensation, it leads to less simple properties (e.g. two salien-
cies instead of one). In practice, it allows to eliminate small parasite classes in
partitions, and also to ”average” different partitions closed enough to each other
(this last point, not presented above, was already developed in [12]).
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Fig. 10. a) Initial tessellation; b) additional noisy small classes; c) thickening ψµ of
b), by a dodecagonal opening γ of size 5.
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