HAL

archives-ouvertes

A Simple Dispatch Technique for Pure Java
Multi-Methods

Rémi Forax, Etienne Duris, Gilles Roussel

» To cite this version:

Rémi Forax, Etienne Duris, Gilles Roussel. A Simple Dispatch Technique for Pure Java Multi-

Methods. 2001. <hal-00627863>

HAL Id: hal-00627863
https://hal-upec-upem.archives-ouvertes.fr /hal-00627863

Submitted on 29 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00627863

A Simple Dispatch Technique
for Pure Java Multi-Methods

Rémi Forax, Etienne Duris, and Gilles Roussel

Université de Marne-la-Vallée, Institut Gaspard Monge
5, boulevard Descartes - 77454 Marne-la-Vallée Cedex 2, France

{forax, duris, roussel}Q@univ-mlv.fr

Abstract. In Java, method dispatch is done at runtime, by late-binding,
with respect to the dynamic type of the only receiver object. Allowing
late-binding on dynamic type of all arguments is usually considered de-
sirable to simplify many programming designs and is known as multi-
polymorphism. To achieve this feature, several recent research works at-
tempt to provide Java with multi-methods. In contrast to these works
that either extends the language or modify the virtual machine, our
approach proposes a pure Java framework that intensively uses the re-
flection mechanism of the language.

Presenting this approach, this paper focuses on a new simple and effi-
cient multi-method dispatch technique, implemented in the Java Multi-
Method Framework (JMMF') optional package. We also discuss visibility
and inheritance implications for this implementation of multi-methods.

1 Introduction

Component-based software development is now recognized as one of the quicker
and cheaper way to produce maintainable applications. This kind of develop-
ment is strongly linked to object-oriented concepts and especially to encap-
sulation and locality. Indeed, objects provide a simple and modular access to
component functionalities, that corresponds to methods in most object-oriented
languages. Moreover, modularity and encapsulation impose that objects contain
implementation of the functionalities under their own responsibility. This allows
to interchange components that share the same interface with different imple-
mentations, facilitating reusability. Then, given a method call on an object, late
binding mechanism of object-oriented languages dynamically provides a direct
access to the right implementation, with respect to the component the object
belongs to.

In Java, late binding only concerns the target object (receiver) of a method
call, and not its arguments. This is generally sufficient for typical operations
whose semantics is related to object state. Nevertheless, for operations that de-
pend on the kind of component or on the relations between objects, late binding
on all arguments is sometimes more suitable. This feature is known as multi-
polymorphism and could be achieved with multi-methods [8,6,4,16,18,7,9].

This paper presents a simple implementation of multi-methods in an optional
package that does not extends the core language nor modifies the Java Virtual
Machine (JVM) semantics. This Java Multi-Method Framework (JMMF) pack-
age is a pure Java API that intensively uses the reflection mechanism of the
language. This choice and the fact that the class hierarchy is dynamically exten-
sible require a fully dynamic implementation. In this framework, a multi-method
stands as an object representing a set of methods that have same name and same
number of arguments. For a given context, a target object and a n-uple of actual
parameter types, our method resolution provides the corresponding most spe-
cific method. In this paper, we focus on a new simple and efficient algorithm to
find this most specific method, that is more efficient than [10] and surprisingly
simple.

Among the advantages of multi-methods [5, 15] we are more concerned with
their ability to simplify the specification of algorithms outside the objects they
deal with [12,17,11]. More precisely, in component based software develop-
ment, where functionalities have to be added to provided components accessible
through interfaces, multi-methods allow to respect an object-oriented style. In-
deed, they preserve locality since a method can be specified for each specific
parameter type, and provide encapsulation since all these methods are specified
in a same class. Encapsulation could also be achieved by successive tests (for
instance using an instanceof operator) but this solution is not object-oriented
and does not preserve the locality of the specification (there is not, for each
element kind, one particular method).

After illustrating our framework with an example in section 2, section 3
intuitively presents the whole method resolution for multi-methods. Its two main
stages are more precisely described in section 4 and section 5. Then, section 6
explores multi-method inheritance issues in this framework. Before conclusion,
section 7 presents some special issues concerning multi-methods and section 8
presents some related works.

Most properties of algorithms presented in this paper are formally proved in
section 4,5 and 6, but proofs may be forgotten by convinced readers.

2 Multi-method use-cases

In order to give an intuitive idea of the JMMF, we illustrate the process of
constructing and using a multi-method through a simple example.

2.1 Component-based approach
Counsider the following XML representation of this paper (paper.xml):

<paper>
<title>A Simple Dispatch Technique for Pure Java Multi-Methods</title>
<abstract>
In Java, method dispatch at runtime, by late binding ...
</abstract>

<section name="Introduction'">
<paragraph>
Component-based software development ...
</paragraph>
</section>

</paper>
In this context, we want to count the number of Element in the XML docu-
ment. To do this, we specify a Java program that manipulates XML documents
with Document Object Model (DOM) data-structures.
DOM is a standard set of interfaces (cf. figure 1) defined by the W3C that allow
different vendor implementations of XML parsers. DOM is used as an interface

to the proprietary data structures and APIL. In our example we use the Xerces
Parser from the Apache Project.

Document
Object
Model

interface

specifications

Implementation

DImpl |
classes

Fig. 1. Document Object Model and a specific implementation

Since, in the DOM API, no method counting the number of elements is
available and since we want to respect the component-based approach of DOM,
we can not change interfaces and we do not want to directly access or extend
implementation classes.

Thanks to the JMMF multi-method framework, the following class DOM-
ElementCount allows the algorithm to be specified in a single class, apart from
the DOM hierarchy.

import org.w3c.dom.*;
class DOMElementCount {

MultiMethod mm = MultiMethod.create(getClass(), "traverse", 1);
int traverse(Element element) {

int count=1;
if (element.hasChildNodes()) {
NodeList children=element.getChildNodes();
for(int i=0; i<children.getLength(); i++)
count+=call(children.item(i));
}

return count;

}

int traverse(CharacterData data) { return 0; }
int traverse(Document doc) { return call(doc.getDocumentElement()); }
int call(Node node) {

try {
// call the most specific method traverse according to node type

return ((Integer)mm.invoke(this, new Object[]{node})).intValue();
} catch(Exception ex) { return 0; }

}
}

In this example, the static method create constructs an instance of class
MultiMethod that stands for the set of classical Java methods hosted by the
class DOMElementCount, having the name traverse and exactly one parameter.

Then, an invocation of method call with an expression statically typed Node
as argument, the instance mm of class MultiMethod, field of DOMElementCount,
will perform the dispatch of method traverse with respect to the dynamic
concrete type of the Node argument.

import org.apache.xerces.parsers.DOMParser;

DOMParser parser = new DOMParser();
parser.parse("paper.xml");
org.w3c.dom.Node root=parser.getDocument () ;

DOMElementCount counter=new DOMElementCount();
System.out.println(counter.call(root));

When the method invoke is called, transmitting the argument as an Object
array, the method resolution mechanism for multi-methods looks for the most
specific method traverse according to the actual type of the argument and, if
any, invokes it.

2.2 Some design issues

In the previous example, the method resolution for traverse is carried out by a
call to the method call that we name the invocation method. It is also possible
to give the name traverse to this invocation method, but this requires to pay
particular attention. Indeed, there could be a clash between static compile-time
method resolution and dynamic multi-method one. To avoid this problem, the
argument can be casted into the parameter type of the invocation method to be
sure that this method will be chosen by the compiler.

We could also note that the parameter of the method call is declared of
type Node. A parameter of type Object can be used instead, in order to relax
static type-checking, allowing to add other methods to this multi-method (for
instance by inheritance), even if they are not declared with a parameter subtype
of Node.

Restricting the type of the call parameter is the only way to support static
type checking in our framework. All other type checks are performed dynami-
cally, in particular in this example the fact that traverse returns an int is only
verified at run-time by the cast into Integer!.

3 Overview of method resolution for multi-method

Basically, the algorithm we propose for multi-method dispatching consists in two
main steps. The first one is processed at the multi-method creation time, that is
when the JVM processes the method create of the class MultiMethod. This step
performs reflection-based analysis and computes several data-structures that will
be used anywhere a dispatch is necessary for an invocation of this multi-method.
The second step of our algorithm is processed at invocation time, that is when
the JVM processes the method invoke of an instance of MultiMethod. Based
on the data structure built at the first step, the set of applicable and accessible
methods for this call site is refined in order to provide the most specific one,
possibly requiring a disambiguation process.
These two stages are described in details in the next two sections.

4 Data structure construction at creation time

4.1 Syntactically applicable methods

In the first part of this paper (section 4, 5 and 7), we consider as general case
the multi-method constructed by:

MultiMethod mm = MultiMethod.create(hostClass, "methodName", n);

where hostClass is a concrete class in which all methods of name methodName
with n arguments are public and non static. We also suppose that none of the
considered methods is overrides other method. These restrictive choices are made
in a first time, in order to simplify explanations, but we will deal with cases that
relax these constraints in sections 7 and 6.

Since we are looking for the set of methods hosted by class hostClass, de-
clared with the name methodName and with exactly n parameters, we must add
to methods declared in hostClass those inherited from superclasses and super-
interfaces. We call it the set of syntactically applicable methods since only the
name and the number of parameters are matching with the required method. In
the classical Java method resolution ([13] § 15.12.2.1), the notion of applicable

! As the invoke method of java.lang.reflect.Method do.

methods is used. It means, in addition to our syntactically applicable notion, that
the type of each argument can be converted to the type of the corresponding
parameter and we will need to take care, further, of this — semantic — informa-
tion. We also need to insure that methods have visibility rights but it is the
case at first sight, since we’ve assumed that all methods are public. We will deal
with access modifier in relation with inheritance in section 7. At this step, each
syntactically applicable and accessible method only needs type information to
become a full candidate to invocation with respect to n given argument types.

The set of method signatures that are considered by the multi-method is
formally represented by a set M, that is sometimes called the behavior of the
multi-method. We do not take into account the return types and thrown ex-
ception since Java does not use these information to determine the method to
invoke.

Definition 1 (Methods and parameter types).

Given a multi-method defined by a host class, a name and a number of arguments,
the set of methods it represents is the set of methods with the right name and
the right number of parameter and that are accessible in the host class. This set
is represented as follows:

M = {m; : methodName(T} 1, ..., T 1),
msa: ...,
myp : methodName (T p, ..., Ty p) }

where, as in the rest of this paper, the notation T; ; is used to generically identify
the type of the i-th parameter of the method m;.

This set is arbitrarily indexed by integers from 1 to p. These indexes uniquely
identify each method (signature) since we’ve assumed that, at first time, no
overriding between methods arises. As a corollary, note that if m; and m; have
exactly the same signature then j equals k.

In the later, for sake of simplicity, we will identify a method with its signa-
ture, since we have supposed a one to one association. From the implementation
point of view, we only assume that a table allows us to associate each signa-
ture in M (a given mj, j € [1..p]) to the corresponding method object of class
java.lang.reflect.Method. In fact, this association could be done when look-
ing for accessible method in the host class, and it will be used, at invocation
time, to actually invoke the chosen method (cf. section 5.4).

4.2 Subtyping relations and parameter type hierarchy

In order to sort methods with each other, even if a total order could not exists,
and to determine, from a m-uple of values of given types, which methods could
be invoked with this values as argument, we need to consider, and organize
each other, a set of types that includes the type of each parameter of each
syntactically applicable method declaration, together with all their supertypes
in the type hierarchy they belong to.

Subtyping relations are one of the main features of object oriented languages,
because they allow any subtype T" of type T to be used in place of T' by an assig-
nation conversion. This subtyping relation we will use is the reflexive transitive
closure of the non reflexive relation of direct subtype, noted TV <; T if T' is a
direct subtype of T'.

In Java, there are three cases where a value of type T” could be assigned
to a variable of type T' ([13], § 5.1) and, when any method is invoked in Java,
one of these assignation conversions (in this case called invocation conversion)
is necessarily applied to each argument:

1. identity conversion in cases where T = T'. This implies that both T < T’
and T' < T

2. widening primitive conversion, sometimes called implicit primitive cast, as
when a value of type short could be assigned to a variable of type int.
The relations for primitive types are the following: byte <; short <; int,
char <; int and int <; long <; float <; double (cf. figure 2);

3. widening reference conversion is provided by several contexts:

— explicit inheritance: if T’ extends T, then T' <; T, T and T’ being
classes or interfaces;

— implicit inheritance: any type T”, that does neither explicitly extends
nor implements any other one, implicitly extends the class Object and
thus 7" <1 Object, T being such a class or interface;

— interface implementation: if 7' implements T', then T' <; T, T' being a
class and T an interface;

— some other cases, specific to Java, provide types with relation <i, e.g.,
with arrays, as shown in figure 2.

(Serializable |(Cloneable|

T
T -7
direct supertype of EI

Fig. 2. Classes, interfaces and primitive types hierarchies

Definition 2 (Subtyping).

We will say that a type T' is a subtype of a type T, noted T' < T, if and only if

there exists an assignation conversion from type T’ to type T.
T'"<T& T =T)v(T'<,T)
where <,, represents n successive applications of <, with n > 1.

Since we will have to compare types to each other and in order to ease the
programmer to deal with subtyping relations, the JMMF package provides a
method getSupertypes(7T) that returns the set of all direct supertypes of T
that is, with respect to our notations, {T" | T' <1 T"'}.

More precisely, this method of the JMMF uses a TypeModel object whose
default value respect the subtyping semantics of Java, but this behavior can be
changed.

4.3 Directed acyclic graph

To deal with these relations between types, we use a graph G where vertices
represent types and edges represent subtyping relations. First, this graph G is
oriented such that an edge T — T’ means that T' “is a direct supertype of” T',
that is T' <1 T. Next, from the essence of subtyping, this graph is acyclic. It is
not a tree because of the multiple supertyping allowed by Java features like, for
instance, the ability of an interface to extend more than one interface. Thus, we
use a structure of directed acyclic graph for G and we classically note T —* T’
ifT' <T.

Definition 3 (DAG as type hierarchy).

Given o set of methods M related to a multi-method definition, let Tporam =
{T:; | 3(3,7) € [1..n] x [1..p]} be the set of all types declared as a parameter type
of these methods. We consider the type hierarchy associated to M as a Direct
Acyclic Graph (DAG) G whose set of vertices is V(G) = Uprer,, ., ATIT" < T}
and where there is an edge T — T' if and only if T' <, T.

Figure 2 gives a hierarchy example of Java classes, interfaces and primitive
types, which is very close to our expected DAG §G. Note that, as our DAG will,
this figure does not distinguish between extends, implements or other subtyping
(assignation conversion) relations.

Given a multi-method, the corresponding DAG is constructed by adding
recursively all the types that appear as a parameter of its applicable methods,
together with all their supertypes, obtained by the getSupertypes() method,
until reaching the fix point. Termination is insured by the types Object, double
and boolean that are the roots of these hierarchies.

4.4 Annotate the DAG

Pursuing our aim of being able to compare methods each other from their n-
uples of declared types (signatures), we now annotate each type considered in the

DAG by its ability to be an acceptable argument type for methods of the multi-
method. This annotation must be done for each method and at each parameter
position. This annotation could be represented by a bit matrix Ar of n rows and
p columns, where the value Ay[i][j] stands for the ability of T' to be the type of
the i-th argument of method m;.

Definition 4 (Type Annotation).
The annotation Ar, ,[r][c] of type T;; at position r of method m. is set to 1 if
and only if one of the following is true:

—t=randj=c, ie., T;; =T, is the r-th parameter type of method m.;
— there exists T, . € V(G) (r-th parameter type of method m.) such that
Ar,. . [rllel =1 and T, . —* T; ;.

In all other case, Ar, ;[r][c] = 0.

Theorem 1 (Acceptable argument types).
A type T € V(G) is acceptable as r-th argument of method m. if and only if
Arlr][e] = 1.

Proof. There are two implications to prove:

1. First, suppose that T is acceptable as r-th argument of method m.. Since m. could
be invoked with an argument of type T as r-th argument, there is an invocation
conversion from T to the declared parameter type T, . of mc. Thus, from section
4.2, this implies a subtyping relation between these types: T < T, .. By definition
of our DAG and its edges, it follows that T.. —* T. By the first case in the
definition 4, we have Ar, .[r]lc] = 1 and by second case of this same definition,
since Tr o =" T, we have Ar[r][c] = 1.

2. Now, suppose that Ar|r][c] = 1. By definition 4, two cases are possible:

— either T is the type declared as the r-th parameter of method m.. Then m.
obuiously accepts values of type T as r-th argument;

— or there exists a type Ty . such that T, . =~ T and Ar, . [r][c] = 1. In this case,
the edge from T, . to T implies that T < T, . and thus, a invocation conversion
is possible from T to Ty .. Then, via this conversion, m. accepts values of type
T as r-th argument.

O

The second item of definition 4 represents the fact that if a value of type T
is acceptable as i-th argument of method m, then any value of any subtype T’
of T is also acceptable at the same position of the same method. From the DAG
point, of view, this implies a kind of propagation of annotations along its edges
toward subtypes.

The constructive algorithm for this annotations successively considers the
parameter type at each position of each method declaration. For a given param-
eter type T at position i of a method mj, the bit Ar[i][j] is set. Annotations
are recursively propagated onto Aqp[i][j] for every subtype T of T considered
in the DAG. This propagation, that follows the edge of the DAG, could simply
performs a bit-wise OR with previously computed annotations. The fact that our
graph is a DAG provides that this propagation terminates.

To illustrate our purpose, we choose a guiding example that exploits a part
of the (particularly intricate) type hierarchy of figure 2, and consider the multi-
method defined as follows:

MultiMethod myMM = MultiMethod. create(MyHostClass .class, "myMethod", 3);

where accessible and syntactically applicable methods myMethod declared in My-
HostClass and having exactly three parameters are defined with the following
signatures:
M = { m; : myMethod(B, C,K),
my : myMethod(D, I, I),
m3 : myMethod(B, I, J)}

The annotated DAG obtained for this multi-method is presented in figure 3
where a bullet figures out the fact that the annotation Ap[i][j] is set. Dark
bullets stands for set annotations (types declared as parameter) and light bullets
for propagated ones.

The fact that T could be the type of
— the 2nd argument of m3 or

— the 3rd argument of m1
is depicted by:

=AM
EEE

E@ arg% V

ar

arg3 E@

gis a supertype of E@
_— =

Fig. 3. An example of annotated DAG

4.5 Partial order over methods

From this annotated DAG, we now could establish, when it is possible, relations
between method signatures based on their respective n-uples of parameter types.
Indeed, from subtyping relation between types (cf. section 4.2), we define the
relation of specificity between two methods and their signatures as follows: a
method is more specific than another if each parameter type of the former is a
subtype of the corresponding parameter type of the latter. More formally:

Definition 5 (Specificity Relation Between Method Signatures).

We say that a method signature m; : (T j, ..., Ty, j), is more specific than a sig-
nature my : Th g, ..., Tn), and note mj < my, if and only if, for each parameter
position, T ; is a subtype of T; . (or they are equal):

mj : (lej’ ...,ij) < my: (Tl,ka ...,ka) S Vie [ITL], TiJ < Ti,k
We say in this case that my, is less specific than m;
At this point, it is worthwhile to note three important things.

1. The intuition behind the relation “m; is more specific than m;”, formalized

later in section 5.2, is that my could always be invoked with any n-uple of
argument types accepted by m;.
For instance, consider the parameter types declared for methods m:(B,C,K)
and mg3:(B,I,J): the fact that B < B, C < I and K < J provides that m; is
more specific than mg. Actually, ms could accept as argument any triple of
types that is acceptable for my (cf. figure 4-a).

2. Next, it is possible with definition 5 that both m; < my and my, < my; this
case only arises when, for all position 4, T}; = Tj. This obviously implies
that m; = my since we have assumed that two methods with the same
signature are necessarily equals (cf. section 4.1).

3. Last thing to note is that it is not always possible to order each other two
method signatures with respect to the specificity relation, i.e., some m; could
be neither more specific nor less specific than some my. These methods
are said not comparable and provides us with a partial order on the set of
methods M. Two main reasons could yield to not comparable methods.

— On the one hand, the declared parameter types T ; and Tj at a given
position i could be not comparable, i.e., both T; ; £ T x and Ty, £ T;, ;.
Types I and J of our hierarchy example leads to such a situation as
third parameter types of methods ms and mg that are therefore not
comparable (cf. figure 4-b).

— On the other hand, for a given position i;, one could have T, ; < Tj, 1
and for another position iz, Tj, 1 < T, ;-

Such an example is given by methods my:(B,C,K) and ms:(D,I,I) of
our example since, at first position, D < B and at second position, C < I.
Then my and my are not comparable (cf. figure 4-c).

The key structure we are using to represent these relations between methods
is again a bit matrix, with p rows and p columns; such a single matrix allows us
to store all method relations for a given multi-method.

Let PO be this matrix of partial order between methods. The bit PO[r][¢] at
the r-th row and the c-th column is set if m, < m.. In other words, the method
m. could accept as argument any n-uple of value that are acceptable by the
method m,..

Definition 6 (Partial order over methods).
Given two indexes of methods, r and c in [1..p], POI[r][c] is set to 1 if and only
if my < me. It is set to 0 in any other cases.

m3:(B,I,J) ml is m2:(D,I,I) m2 and m3 ml:(B,C,K) ml and m2

@ @ \L\L more specific @ /r @ ‘? are not @ \l/ /r/y\ are not

ml:(B,C,K) than m3 m3:(B,I,J) comparable m2:(D,I,I) comparable

Fig. 4. Specificity relation defines only partial order

A row POJr][#] is a bit array whose values at 1 identify the set (the indexes)
of methods that are less specific than m,. Since sets are represented by bit
arrays, we will use both notations equally, i.e., a method is in a set if the bit at
its index is set. Furthermore, we can equally use the set-theoretical operations
(union/intersection) and bit-wise operations (OR/AND).

Definition 7 (Less Specific Methods).
Given a method m;, the set of methods {my, | PO[j][k] = 1} is the set of methods
that are less specific than mj;. We will also note this set POJj].

Definition 8 (More Specific Methods).

Given a method m;, the set of methods {my | PO'[j][k] = 1} is the set of methods
that are more specific than m;. We will also note this set POt[j],

In this notation, PO is the transposed matriz of PO, formally defined by:

Vi, k € [1..p], PO"[j][k] = PO[K][j]

The algorithm that allows this structure PO to be computed is surprisingly
simple. In order to know if a method m; is more specific than a method my, it
suffices to verify, for all parameter position ¢, that the parameter type 15 ; is an
acceptable argument type for method my, at this position. Since this information
is precisely represented by the annotation Ar, ,[i][k], we could formally define,
and then compute, the values of the matrix PO:

Theorem 2 (PO as annotation conjunction).
If mj is a method of declared signature (T4 j,...,Tn,j), then for all k € [1..p]
PO[j][k] = 1 if and only if AND;c[y) AT ;[i][k] =1

Proof. There are two implications to prove:

1. Suppose that, for a given k, PO[j][k] = 1. This means, from definition 6, that m; <
my. From the definition of this specificity relation, it follows thatV i € [1.n], T;; <
T; . By our DAG’s construction this implies that, ¥V i € [1.n], T;x — T; ;. But
with our generic notation and from the first case of definition 4, we know that
Vi € [l.n], Ar, [i][k] = 1. Then, the second case of definition 4 provides us,
since V i € [1.n], Tip =" Tij, with V i € [1.n], Az, [i][k] = 1. It follows that
ANDig[l_,n]ATi’j[i][k] =1.

2. Let us suppose now that, for a given k, Ar, ,[i][k] = 1 for all i € [1..n]. For each
i, two cases are then possible:

— either k = j and thus T;; < T,

— or k # j and then, since Ar,;[i][k] = 1, there exists T;) such that both
A, [i[k] = 1 and T;p, =" Ti;. By definition of our DAG edges, this im-
plies that Ti,]' S Ti,k-

Since V i € [1.n], T;; < Tk, then mj < my, and PO[j]|[k] must be set to 1.

O

Corollary 1 (Computation of Less Specific Methods).
Previous theorem provides us with a simple computation of the selt of methods
that are less specific than a given method m;:

PO[J] = ANDiE[l..n]-ATi,j [Z]
Considering our running example, the PO matrix is computed as follows:

[+]AND]e| o [#]AND[e| o [o] = [s] o o]
[+]AND[o| o [s]AND[o| » [o] = [o] » o]
[+]AND[o| o [s]aND[o] o [o] = [o] o o]

This matrix, built horizontally here through PO’s rows, will be used later,
reading it vertically through the other entry PO"s rows (i.e., PO columns), to
determine the set of methods that are more specific than a given method m;
(i.e. the set of methods mj, whose bit is set at the index k in PO'[j]). Figure 5
shows the matrix P of our example together with it transposed version PO¢.

PO[1] = Ap[1] AND Ac[2] AND A [3] = |
PO[2] = Ap[1] AND A;[2] AND A;[3]
PO[3] = Ap[1] AND A;[2] AND A;[3] =]

ml is more t m3 is less
PO EHE - PO EHE ,
nl B[T8] specific nl BT specific
m2 [[of | than m2 [[of | than
m3 [[]e] m3 [o] [0]
ml and m3 ml and m3

Fig. 5. Partial order between the methods of our example

5 Multi-method dispatch at invocation time

The process we described in the previous section is completely done at creation
time. We are now interested in invocation time process, that is, given a n-uple of
(dynamic) argument types of the multi-method invocation, our aim is to dispatch
the invocation to the most specific method, if any, corresponding to this n-uple
of types. The first problem that can arise is that one of these types could be
unknown in the DAG we built. This type can be unknown at compile-time since
in Java types (classes) can be loaded dynamically at run time. Thus, even a static
analysis of the type hierarchy at creation time cannot identify such a type.

5.1 Completing DAG with dynamic types

From our running example, let a multi-method invocation be the following:

D d = new DO;
C ¢ =new CQ;
J 1 = createDynamicInstanceAssignableToJ();

myMM. invoke (target, new Object[1{d,c,1});

In such a case, the dynamic type L of reference 12 is only known at runtime.
We suppose here that a class L, implementing interface J, is dynamically loaded
(for instance from the network) by the method createDynamicInstanceAssi-
gnableToJ (). Thus, we need to complete our DAG G in order to both establish
relations between L and the other types and compute its annotations.

Fig. 6. Our DAG example dynamically completed by newly discovered type L

The algorithms performed at invocation time to complete the DAG G are of
the same nature as those performed at creation time. A newly discovered type T
is first added as a vertex of the DAG, together with all its supertypes that not
yet appear in G. The annotations of all the newly added types are recursively
deduced (by bitwise OR propagation) from those of their direct supertypes, as
illustrated by figure 6. In fact, the initialization from existing type annotations
of the new type annotations can be performed recursively at the same time as
the DAG completion.

Note that the partial order data structure PO is not concerned by these
modifications since the newly discovered types are necessarily different from
parameter types.

2 We will generically note by a lowercase character such as t a variable that contains
an object typed by the corresponding uppercase character, such as T.

5.2 Semantically applicable methods

Type annotations computed either at creation time or invocation time tell us
if a single given type is acceptable for an argument at a given position of a
given method. We now want to deduce, for a n-uple u = (T4, ..., T},) of argument
types of a given invocation site, if it corresponds not any, one and only one,
or multiple acceptable methods in M. Indeed, we are looking for the set of
semantically applicable methods for which invocation conversions would be able
to accept u as argument types. This set, noted S.A,, and defined below, could be
simply computed from T;’s annotations.

Definition 9 (Semantically Applicable Methods).
Given a n-uple u = (T, ..., Ty,) of types in V(G), SA[j] is set to 1 if and only
if u is a n-uple of argument types acceptable for m;.

Theorem 3 (SA as Annotation Conjunction).

Let w = (Ty, ..., T,,) where each T; € V(G), then
SA, = ANDie[l..n]ATi [Z]

Proof. The proof is obvious by definitions 4, 9 and theorem 1.
O

The number of bit set to 1 in S.A, give us important information, summarized
below in three cases:

1. if zero bit is set to 1 then there are no semantically applicable method;

2. if one bit at index 7 is set to 1 then there is only one semantically applicable
method which profile is m;;

3. if more than one bit is set to 1 then there are multiple semantically applicable
methods and we do not have enough information here to decide what will
happen. Some disambiguation processing is needed.

Let us go back to our example of multi-method myMM (cf. section 4.4 and
figure 3) to exhibit three illustrating examples for these cases.
Let u; be the n-uple (B, C, D). Theorem 3 leads to:

SAy, = Ap[1] AND A¢[2] AND Ap[3] = [e,0, ®]AND[e, ®, ®|AND[0, 0, 0] = [0, 0, 0]

There is no semantically applicable method for (B, C, D) argument type tuple.

If uy = (D, C, L), the same principle gives SA,, = [0, 0, e]. The only seman-
tically applicable method for (D, C, L) argument type tuple is the method with
signature ms : mymethod(B,I,.J).

Let now uz be the n-uple (D, C,C). It follows that SA,, = [o,e,s]. There
is two semantically applicable methods for (D, C,C) argument type tuple: the
method with signature mo : mymethod(DI,I) and the one with signature msg :
mymethod(B, I, J).

5.3 Disambiguation process from method’s partial order

The disambiguation process presented in this section is (only) performed when
the number of semantically applicable methods, for a given n-uple u of argument
types, is greater than one. In this case, we want to determine if one of these
methods is more specific than all the others. In order to get this information, we
first compute a bit array MSA,,.

Definition 10 (Most Specific Syntactically Applicable Method).
Given a n-uple u = (Ty,...,T,) of types in V(G), we define

MSA, = SA, AND (AND; | s.a,u1=13 PO'[l])

Theorem 4 (Set of methods associated to MSA).
Given a n-uple uw = (T, ..., T,,), the set of methods {m;j|MSA,[j| = 1} is either
empty or a singleton.

Proof. Let us suppose, by contradiction, that there exists j and k such that j # k,
MSAL] =1 and MSALk] = 1. Since, in construction of MSAw, a bitwise AND is
applied with SA., then SAL[j] = 1 and SA.[k] = 1. This implies that PO'[j] and
PO'[k] appear in AND(; | s.4,1=13 PO'[l] and since we have supposed that MSA.[j] =
MSALK] =1, PO'[J]lj] = PO'[j]lk] =1 and PO'[K][j] = PO'[k][k] = 1. By defini-
tion of PO, this means that both my < m; and m; < my. This is possible if and only
if 7 =k, that contradicts our hypothesis.

O

Theorem 5 (Most Specific Method).
Given a n-uple v = (T1,...,Ty), a method my, is the most specific semantically
applicable method for u if and only if MSA,[j] = 1.

Proof. There are two implications to prove:

1. Suppose that my, is the most specific method for w. Then, it is semantically applica-
ble, i.e., SA.[k] = 1. Furthermore, for all other method m; such that SA.[j] =1,
my, < my by hypothesis. Then, for all these j, PO'[j][k] = 1, and then MSA.[j] =
1.

2. Suppose now that MSA,[j] = 1. This implies, in the one hand, that m; is se-
mantically applicable (since SA.[j] = 1) and, on the other hand, that for all other
semantically applicable methods my, PO![K][j] = 1. Then m; < my for all such k.

O

Corollary 2 (Existence of a most specific method).
There is no most specific method if and only if Vj € [1..p], MSA,[j] = 0.

In order to illustrate these situations, consider the n-uple us = (D, C, C) for
which we deduce, at section 5.2 and from SA,, = [o,e,e], that there were an
ambiguity. Now, from definition 10 and from the matrix PO! at figure 5, we
could compute MSA,,:

MSEAus = SAu, AND (ANDyg; | s.4,,11=13 PO'[I])
= [0, ,e] AND (PO"[2] AND PO"[3))
= [o, o, o] AND ([o, o, o] AND [o’ o, o])
= [o, o, o] AND [o, o, o] = [o’ o, o]

Then, from corollary 2, there exists no most specific semantically applica-
ble method for ug. This is not surprising since, as illustrated in figure 4, the
only semantically applicable methods for w, are ms and mg3 and they are not
comparable.

Fig. 7. The DAG example completed by newly discovered type F

Let us consider another example of invocation with the n-uple of types us =
(B,C, F) where the type F is dynamically loaded at invocation time from a
class F that implements K. The DAG is then completed as illustrated in figure
7 and we could compute, from theorem 3, that SA,, = [e,0,e]. In this case of
ambiguity, we then compute MSA,,:

MS Ay, = SAu, AND (ANDy; | sa,,11=13 PO'[I])
= [e,0, 8] AND (PO'[1] AND PO'[3])
= [o, o, o] AND ([o, o, o] AND [o’ o, o])
= [o, o, o] AND [o, o, o] = [o’ o, o]
Thanks to this disambiguation technique, we are now able to determine that
the signature of the most specific semantically applicable method is m;.

5.4 Implementation

Algorithms and data-structures described by now permits to determine, given
a n-uple of argument types u, the index of the unique most specific method
signature in M if it exists.

This process may fail at two stages:

— after computation of SA, (section 5.2), if it only contains 0 at each index.
In this case, where not any method signature is semantically applicable with
respect to types of u, our implementation throws a NoSuchMethodException
exception;

— after computation of MSA,, (section 5.3), if it only contains 0 at each index.
In this case, where it is not possible to decide which method signature to
use among several semantically applicable ones, our implementation throws
a MultipleMethodException exception.

Similarly, this process may complete at two stages:

— after computation of SA,, if there is a unique index k for which SA,[k] = 1;
— after computation of MSA,, if there is a unique index k for which & for
which MS, = 1.

In last two cases, given the index k of the most precise signature, the cor-
responding method has to be invoked. In the JMMF implementation, this is
done with the Java reflection API and from an instance of class Method whose
method invoke () is called with the provided arguments of u. To do this, we just
need to retrieve the instance of Method corresponding to the signature my, as
we presumed in section 4.1.

With this aim in view, when create (hostClass,methodName,n) is called at
creation time, the set M is computed using the reflective method getMethods ()
on hostClass. This method returns a array of Method instances which is filtered,
according to methodName and n, to produce an array that only contains syntac-
tically applicable methods. Actually, this last array can be used to implement
the set M since getMethods () implementation ensures that each signature of
the returned Method instances is unique, in particular with method overriding.
Moreover, with this implementation, retrieving the Method instance given the
index of the most precise signature only consists in an array access.

6 Inheritance and multi-methods

Providing multi-methods in a language that supports inheritance and subtyping,
we may hope that multi-methods also support these features. To this end, the
JMMF implementation accepts a multi-method call with a target object that
is an instance of a subtype SubHostClass of the class HostClass specified at
creation time?®.

Since the class SubHostClass may contain other syntactically applicable
methods than HostClass, data-structures computed for HostClass are not valid.
Then, at a first sight, one could process at invocation time all data-structures

3 If the class object passed as argument is not a subclass of hostClass an exception
is thrown.

constructed at creation time for HostClass. Fortunately, an interesting prop-
erty of our algorithm is that it enables a total data-structure sharing between
HostClass and SubHostClass.

To establish this property, we are going to show that given a set of semanti-
cally applicable method signatures M, all computations can be performed on a
larger set M’. Thus, signatures coming from HostClass and from SubHostClass
could coexists in a same data-structure.

Definition 11 (Multiple sets notations).
Let M and M' be two sets of method signatures. We define Ar and A’ the
corresponding annotations of type T for, respectively, M and M'. In the same
way we define PO', SA., and MS.,.

Moreover, if M C M', for each signature index j such that m; € M we
note ja the index of the same signature in M' such that m; , € M' and
mj; = ij, .

Definition 12 (Included set mask).

Given two sets of method signatures M and M’ such that M C M’, we define
the bit array Maska such that, Ymy € M', Maskm[k] = 1 if and only if it
exists mj € M such that k = ja .

Intuitively, the mask Maska is able to hide (by a bit set at 0) in M’ all
method signatures that are not considered in M, and to leave visible the method
signatures in M’ that are already considered in M even if they are registered
with a different index. This mask will allow us to prove the equivalence between
structures computed from M and structures computed from the part of M’ that
corresponds to M, modulo an index permutation.

Lemma 1 (Included set data-structures).
Given a type T and two sets of method signatures M and M’ such that M C M':

1. Ar[i][j] = 1 if and only if A'z[i][jae] AND Maska[jre] = 1;
2. PO[j][k] = 1 if and only if PO'[jr][krrr] AND Maska[ire] = 1.
8. SAuF] = 1 if and only if SA,[jrm] AND Maskap[jme] =1

Proof. There are three equivalences to prove:

1. — If Ar[i][j] = 1 then either T = T;; or T is a subtype of T; ;. Since T;; is
the i-th parameter type of method m; and m; = m;,,,, Ti; = Ti;,,, - Thus,
T =T,;,, orT is a subtype of T;;,,, which implies that A'r[i][jre] = 1. By
definition, m; € M, that proves the implication.
— If A'r[i][k] AND Maskpm[k] =1 then it erists mj € M such that k = jry and
A'7[i][jam] = 1. The rest of the proof is equivalent to previous implication.
2. — If PO[jllk] = 1 then m; is more specific than my. Since m; = m;,,, and
my = my,,,, mj,, s more specific than my ., and thus PO'[ja]lkpe] = 1.
By definition, m; € M, that proves the implication.
— If PO [jp][kaar] AND Maskm[jae] = 1 then it exists mj € M such that
k= jamr and PO'[jau]lkar] = 1. The rest of the proof is equivalent to previous
implication.

3. — If SAL[J] = 1, by definition, Vi € [1..n], Ar;[i][j] = 1. From previous equiva-
lence it follows that Vi € [1..n], A7, [i][jae] AND Maskm[jre] =1 and since, by
hypothesis, m; € M, it folows that Maskm([jre] =1 andVi € [1.n], A7, [i][jae] =
1. This proves the implicition.

— Other implication is comparable.

O

Definition 13 (Semantically applicable methods for included set).

Let M and M’ be two sets of method signatures such that M C M'. Given a
n-uple u of argument type, we define semantically applicable methods of M for
u from the semantically applicable methods of M’ for u as follows:

SA, = SA, AND Mask

The bit array SA;, o provides us with a set of methods (indexes) from M’
that are both semantically applicable for the n-uple u and considered in M. As
we did in section 5.3 with theorem 5, we now want to know how to refine this set
if several such semantically applicable exist. In order to disambiguate them, we
have to take care that in the set PO'", we must take only into account methods
indexes of SA;, 1 (and not all SA;).

Theorem 6 (Most specific method computation for included set).

MSAL) =1 if and only if SA, v [jir] AND (AND | sar iy PO"[I]) =1
Proof. The proof is obvious from previous lemmas.

O

If the set containing both syntactically applicable method signatures from
HostClass and from SubHostClass is constructed without modifying indexes
of HostClass signatures, then the whole part of the computations (annotations
and partial order) that relies on HostClass can be reused. More generally, if a
new SubHostClass is discovered dynamically, all previous computations can be
reused provided that previous assigned indexes are not modified. In the imple-
mentation, figure 8 illustrates such a case. Newly computed values are shown in
gray. This figure also represents the mask used for each class and the table of
Method instances.

7 Special issues

7.1 Invocation semantics

The semantics of our disambiguation process is slightly different from those per-
formed at compile-time by java compilers (JLS § 15.12.2.2). Indeed, the JLS
disambiguation takes into account the type T' (class or interface) in which the
method is declared. This type T could be any super-type of the receiver de-
clared type. This basically means that the receiver is considered as an hidden

Dispatch tables

class HostClass {

myMethod(B b,C c¢,K k){ }
myMethod(D d,I il, I i2){ }
myMethod(B b,I i,J j){ }

] class SubHostClass extends HostClass {
) myMethod(D 4,1 %l,IliZ)(}
fe——— > myMethod(D 4,I i,J j){ }
(] myMethod(C c,K k,E e
PO }y (C ¢,K k/E e){ }
e |o
Ld
3 .
e Object

Fig. 8. Example of data-structure involved in inheritance

parameter, i.e., a method declared in the class T with signature m(74, ..., T),) is
actually viewed, for the JLS disambiguation process, as a method of signature
m(TO; Tl: 8] Tn)

Since our disambiguation process does not takes into account the type of
the method declaring class, this improve performance by lowering of one the
number of arguments involved and thus improve performance. But this is not
the reason for this choice and furthermore, we think that the semantics provided
by taking this declaring class type into account leads to undesirable behavior.
Let us examine why, with two examples.

Inheritance from two not comparable declaring interfaces

class C {}

class D extends C {}

interface I { void m(C c¢); }

interface J { void m(D d); }

interface K1 extends I, J {}

interface K2 extends I, J { void m(D d); }
class Test {

static void test(K1 k1, K2 k2, D d) {

k1.m(d); // Reference to m is ambiguous.
k2.m(d); // Correct

}

}

In this example, invocation k1.m(d) is considered ambiguous since methods
m(C ¢) and m(D d) are declared in two interfaces I and J that are not compa-
rable. However, any dynamic type of an actual receiver will necessary have both
methods definition.

Nonetheless, invocation k2.m(d) is not ambiguous, even if interfaces K2 and
K1 implies the same semantics on any concrete class Impl that implements them:

— this allow any reference to instance of class Impl to be assigned to variables
of type K1 (resp. K2), I and J;
— they impose that Impl implements both methods m(D d) and m(C ¢).

This example shows that method declaration overriding has some surprising
semantics.

Covariant declaring types with contravariant parameter types.

class C {}
class D extends C {}
class A {
void m(D d) {}
void m(C c) {}
}
class B extends A { void m(C c) {} }
class Test2 {
static void test(D d, B b) {

b.m(d); // Reference to m is ambiguous.
A a=b;

a.m(d); // correct

}

}

Even the contravariant method overloading classical example, presented be-
low, is neither satisfactory.

In this example, invocation b.m(d) is ambiguous since it both matches method
m(C ¢) declared in B and method m(D d) declared in A. Indeed, as JLS disam-
biguation process takes into account the class of the method declaration, it tries
to sort the type couples (A,D) and (B,C), but they are not comparable since
B<AandD<C.

However, it is obvious that in class B, method m(D d) will always be avail-
able, then there is no reason not to choose it as more the specific. Furthermore,
subtyping b into an object of type A typechecks at compile time and produces,
at runtime, the “expected” behavior of the previous invocation.

We claim that this behavior, as those illustrated in the previous example, are
not satisfactory.

Receiver’s declared type as additional parameter type. One justification
presented for taking into account the class of the receiver in method disambigua-
tion is the fact that, if two methods override each other, then the overriding
method (declared in a subclass) automatically appears to the disambiguation
process as more specific than the overidden one. But a method signature used
at runtime does not take into account the class in which it is declared (both
overriding and overidden methods produce the same signature). It is therefore
useless to differenciate these two methods at the typing level.

One other reason to take into account the receiver declared type is that
it is not equivalent to inherit from a method than to define it in a class. For
instance, since private methods of a given class could only be invoked in this
class, Java compilers use the type of the class declaring a private method to
forbids its invocation in a subclass. But even this solution is useful to performs
a visibility-check at compile time, this does not rely on type checking.

Finally, the main drawbacks of not taking into account the declaration class
is to yield different semantics to method reusability between inheritance and
parameter subtyping, but we think this fits well with class languages. Let us
explain this distinction. If a method m needs to access two references of type A
and C, there are two ways to define it: either as a method with one parameter of
type C in class A or as a method with a two parameters of type A and C, declared
anywhere. Whereas in the former case, m must be non static, in the latter case
it could be static. Furthermore, suppose (for visibility reasons), that the static
method is declared in A; we obtain the following code.

class A {

void m(C c) {}

static void m(A a, C c) {}
}

Now, if m is considered in a multi-dispatch invocation, both solutions are
equivalent. Nevertheless, if these methods are reused through a subtype B ex-
tending A, the inherited static method will not behave like the non-static one
in a disambiguation process as those presented in this paper. In fact, with our
disambiguation, the non static method will be considered as belonging to B with
a signature (C), whereas the static method be always considered belonging to
A with a signature (A,C) (since it is declared static). With a disambiguation
that would takes declaring class into account, the signature of the non static
method m would have been considered as (A,C), and then not considered in a
multi-dispatch through B.

With all these advantages and drawbacks in mind, we consider that the type
of the receiver object should not be taken into account by the disambiguation
process. It comes to the same thing as considering that all accessible method of a
class are declared in the class, and to view the class as a “blackbox” with respect
to method declaration. This could be view as a kind of type “reification”.

7.2 Method restrictions

In section 4.1 we have supposed that all methods were public, concrete and non-
static. In fact, there are no restriction concerning abastract methods since they
behave like concrete ones for our algorithms.

Concerning static methods, there is no reason not to consider them in the set
of syntactically applicable methods. The only special behaviour they induce is
when multi-method is called with a null target reference. Then only static meth-
ods of the class used at creation time should be selected in the computations. To
do so, we introdce another mask for static method and process disambiguation
in the same way than inheritance.

If the method is not public, then our implementation must verify that the
class containing the invocation site of the mutli-method has the correct visibil-
ity and has to throw an exception in case of visibility violation. Moreover, for
private and default methods, extra verification should be performed in case of
inheritance, as suggested by the following example with classical (single) dis-
patch. For all these reason and for the multi-methods use case we address, our
implementation only deals with public methods by now.

class A {
private void m1(){
System.out.println("private");

}
public void m2(){
this.m1(); // Method invocation we want to emulate
}
}
class B extends A {
public void m1(){
System.out.println("public");

}

public void test(B b){
b.m2(); // Prints private since ml is binded at compile time
b.m1(); // Prints public is private ml is not accessible here

}
}

7.3 The case of null

By now, we did not considered the possibility to perform an invocation of a multi-
method with the null reference as argument. However, in myMM. invoke (target,
new Object[1{d,c,1}), the target reference and any argument (except if a
primitive type is expected) could be the null reference. A null argument at
the target position corresponds to the invocation of a static method, as seen
in the previous section. For null argument in all other positions, we deal with
null as a value of a special type that is considered as a subtype of any object
reference type. Thus, the DAG is completed with this special type which an-
notation is directly constructed from methods profile. Then at invocation time,

the disambiguation process is exactly the same as the one of classical argument
types.

8 Related works

There exists a lot of works on multi-methods [1, 8,6, 3, 18], but in this section we
will focus on works concerning the introduction of multi-methods in Java. We
will present these works in chronological order.

Boyland and Castagna [4] first proposed to extend Java with parasitic meth-
ods which provide some special form of late binding on all parameters. This
extension is not as general as multi-method but is very attractive since it is
comparable to multi-methods in most practical cases. Moreover, it allows strong
type checking and multi-method inheritance, preserves modularity and separate
compilation, and is conservative (it has no effect on existing Java programs).
Parasitic methods are introduced by adding the keyword parasitic to the Java
syntax. Classes using this extension are translated into Java code. Contrarily
to the present work, method selection according to the dynamic type of object
is not related to the type order but to the textual/inheritance order of para-
sitic method. This allows simple and very efficient translation into instanceof
statements.

Clifton, Leavens, Chambers and Millstein [7] proposed a conservative exten-
sions to Java to support multi-method dispatch, called MultiJava. MutliJava in-
troduces syntactic modifications to provide multi-methods. The MultiJava com-
piler is then in charge of type-checking and of producing the corresponding Java
code based on cascaded instanceof statements. The main feature of this exten-
sion is its ability to perform modular safe type-checking of multi-methods. To do
this, they impose strong restrictions on parameter types and methods implemen-
tations. This approach is completely opposed to our, indeed, we do not perform
any static type-checking but we allow maximum flexibility in implementation.

Holst, Szafron, Leontiev and Pang [9] have proposed a very efficient im-
plementation of multi-methods for Java, modifying the virtual machine. This
extension is conservative, since multi-dispatch is solely applied to methods of
classes implementing the interface MultiDispatchable. Contrarily to previous
work and similarly to our, this implementation proposes loose type checking
(with warnings) for multi-methods; exceptions are thrown at run-time in case
of type-checking error. One of the proposed implementations is based on the
SRP technique [14] to provide most specific method. This work was unknown at
the moment of the JMMF development, but the technique is comparable to the
one presented in this paper. Nevertheless, method disambiguation requires to
add “virtual” methods and to sort methods to ensure that in case of ambiguity
the most specific method always exists and is the one with smallest index. Our
implementation does no have these requirements but imposes extra bit-wise AND
on PO rows to perform disambiguation. Moreover, as shown in section 6, since
no extra methods nor order is needed on methods, annotations and matrix PO

can be shared in case of inheritance. Implementation of these two techniques in
a common framework is still required to quantify their respective advantages.

9 Conclusion

This paper presents a Java framework that provides the programmer with multi-
methods. Our implementation is a customizable pure Java optional package. It
does not involve any JVM patch nor extra keyword to the original language def-
inition. With respect to other research works on multi-method [1,3,4,7,9] that
address typing issues, ours focus on the simplicity of design, use and implemen-
tation efficiency rather than on static type checking.

Indeed, the new simple multi-method dispatch algorithm presented in this
paper provides a dispatch in O(n + p) where n is the number of parameter and p
the number of methods in the multi-method. Moreover, this algorithm provides
large reuse of data-structures.

Nevertheless, the most important issue of this work is that it provides the
programmer with an easy way to design and maintain algorithm specification. In
particular, multi-methods simply allow algorithm on recursive data-structures [11],
such as trees, to be externally specified. For instance, JMMF is intensively used
in the project SmartTools [2] that aims at providing generic tools for compiler
constructions and programming environments.

References

1. Rakesh Agrawal, Linda DeMichiel, and Bruce Lindsay. Static type-checking of
multi-methods. In OOPSLA’91 proceedings, ACM SIGPLAN, pages 113-128,
Phoenix Arizona, October 1991.

2. Isabelle Attali, Franck Chalaux, Carine Courbis, Pascal Degenne, Alexandre Fau,
and Didier Parigot. SmartTools. Cooperative project for Interactive Generic Tools
(http://www-sop.inria.fr/oasis/SmartTools/), June 2000.

3. Francois Bourdoncle and Stephan Merz. Type-checking higher-order polymorphic
multi-methods. In POPL’97 proceedings, ACM SIGPLAN-SIGACT, pages 302—
315, Paris, France, January 1997.

4. J. Boyland and G. Castagna. Parasitic methods: An implementation of multi-
methods for Java. In OOPSLA’97, number 32-10 in SIGPLAN Notices, pages
66-76, New York, October 1997. ACM Press.

5. Kim Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Object Group,
Gary T. Leavens, and Benjamin Pierce. On binary methods. Theory and Practice
of Object Systems, 1(3):221-242, 1996.

6. Craig Chambers. Object-oriented multi-methods in Cecil. In ECOOP’92 proceed-
ings, Utrecht, The Netherlands, July 1992.

7. Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava:
Modular open classes and symmetric multiple dispatch. In OOPSLA’00 proceed-
ings, ACM SIGPLAN Notices, Minneapolis, USA, October 2000.

8. Linda G. DeMichiel and Richard P. Gabriel. The Common Lisp Object System:
An overview. In ECOOP’87 Proceedings, pages 151-170, Paris, France, June 1987.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Christopher Dutchyn, Paul Lu, Duane Szafron, Steve Bromling, and Wade Holst.
Multi-dispatch in the java virtual machine design and implementation. In
COOTS’01 proceedings, San Antonio, USA, January 2001.

Rémi Forax, Etienne Duris, and Gilles Roussel. Java multi-method framework.
In TOOLS Pacific’00 Proceedings, Sidney, Australia, November 2000. IEEE Com-
puter.

Rémi Forax and Gilles Roussel. Recursive types and pattern-matching in Java. In
GCSE’99 proceedings, number 1799 in LNCS, Erfurt, Germany, September 1999.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java™ Language
Specification — Second Edition. Addison-Wesley, 2000.

Wade Holst, Duane Szafron, Yuri Leontiev, and Candy Pang. multi-method dis-
patch using single-receiver projections. Technical Report 98-03, Departement of
Computer Science, University of Alberta, Edmonton, Alberta, Canada, 1998.
Gregor Kiczales, Jim Des Rivieres, and Daniel Bobrow. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, 1991.

Maxim Kizub. Kiev language specification. An extension of Java language that in-
herits Pizza features and provides multi-methods (http://forestro.com/kiev/),
July 1998.

Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston, 1996.

Todd Millstein and Craig Chambers. Modular statically typed multimethods. In
ECOOP’99 proceedings, number 1628 in LNCS, pages 279-303, Lisbon, Portugal,
June 1999.

